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Abstract— Knowledge distillation (KD), as an effective com-
pression technology, is used to reduce the resource consumption
of graph neural networks (GNNs) and facilitate their deployment
on resource-constrained devices. Numerous studies exist on GNN
distillation, and however, the impacts of knowledge complexity
and differences in learning behavior between teachers and stu-
dents on distillation efficiency remain underexplored. We propose
a KD method for fine-grained learning behavior (FLB), compris-
ing two main components: feature knowledge decoupling (FKD)
and teacher learning behavior guidance (TLBG). Specifically,
FKD decouples the intermediate-layer features of the student
network into two types: teacher-related features (TRFs) and
downstream features (DFs), enhancing knowledge comprehension
and learning efficiency by guiding the student to simultaneously
focus on these features. TLBG maps the teacher model’s learning
behaviors to provide reliable guidance for correcting deviations
in student learning. Extensive experiments across eight datasets
and 12 baseline frameworks demonstrate that FLB significantly
enhances the performance and robustness of student GNNs within
the original framework.

Index Terms— Feature knowledge decoupling (FKD), gradient
correction, graph neural networks (GNNs), knowledge distillation
(KD), learning behavior.

I. INTRODUCTION

GRAPHS serve as a way for representing real-world data
structures [1], [2], with nodes representing entities and

edges representing their relationships. Mining graph data can
yield valuable insights to help us understand complex dynamic
relationships in various domains. For example, in social net-
works [3], graph data mining reveals community structures,
influence patterns, and information or trend dissemination.
In bioinformatics [4], [5], it aids in understanding protein
interactions, genetic pathways, and disease spread. However,
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the inherent irregularity and disorder of graph data pose
significant challenges to its mining and analysis. In response to
these challenges, graph neural networks (GNNs) have emerged
as a crucial innovation, effectively addressing the nonlinear
and heterogeneous nature of graph structures [6], [7], [8],
[9], [10], [11]. This has greatly promoted the development of
the field of graph learning, marking a significant contribution
to the development and application of graph-based analysis
techniques [12], [13], [14], [15].

Despite their potential in academic research, GNNs rely on
high-quality labeled data. To obtain these data, a more com-
plex model and substantial computing resources are required,
especially huge graph structures. Thus, deploying them on
resource-limited devices (i.e., iPhones and cameras) [16] poses
considerable obstacles.

In recent years, knowledge distillation (KD) [17] has
emerged as an efficient method for model compression to
solve the problem of deploying networks on resource-limited
devices. Its core operation is to transfer “dark knowledge”
from a larger, more complex network (named the teacher) to
a smaller, compact one (named the student). The crucial objec-
tive is for the student to approach or even exceed the teacher’s
performance, reduce computational demands, and speed up
inference time. As a result, many researchers [18], [19], [20]
have integrated KD into GNNs to address challenges such
as acquiring labeled data and deploying network architectures
with limited computational resources.

In the existing studies, Yang et al. [21] are the pioneers
of using KD for GNNs by designing the local structure
preservation (LSP) method. This approach closely aligns a
student’s node structural feature with a teacher’s node struc-
tural feature. Subsequent studies [22], [23], [24] broaden this
focus to encompass local and global structures, capturing more
complex graph structural information. For instance, He et al.
[23] develop an adversarial KD framework (GraphAKD). This
framework identifies differences between teacher and student
outputs by preserving internode and interclass correlations.
Wang et al. [24] introduce adversarial ideas into online KD and
propose an innovative online adversarial distillation (OAD)
framework. In addition, some studies also explore model aug-
mentation approaches [25], [26], [27]. Feng et al. [25] propose
a general and principled framework. This framework employs
reinforcement learning to exchange node- and structure-level
knowledge between two shallow GNNs. They effectively
avoid requiring a deep and well-optimized teacher to distill
knowledge. However, current learning frameworks primarily
train students to absorb coarse-grained static knowledge [28].
This provides highly abstract information to students, hinders
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their deep understanding of specific tasks, and impacts their
learning efficiency. Furthermore, the prevalent transfer of static
knowledge between the teacher and student presents two
issues: 1) it overlooks the dynamic aspects of a teacher’s
knowledge comprehension and 2) it potentially diminishes a
student’s flexibility and adaptability in handling tasks.

To address these issues, we propose a fine-grained learning
behavior (FLB)-oriented method, named FLB. FLB aims to
deepen a student’s knowledge comprehension and pay more
attention to a teacher’s learning behavior. It comprises two
crucial components: feature knowledge decoupling (FKD) and
teacher learning behavior guidance (TLBG). In KD, knowl-
edge encompasses logit-based knowledge from the output
layer and information-rich feature-based knowledge from the
intermediate layer. Our FKD component focuses more on
processing feature-based knowledge. Specifically, it decouples
the student’s feature knowledge into teacher-related features
(TRFs) and downstream features (DFs). TRF pays more atten-
tion to learning from a teacher, while DF targets learning from
downstream task labels. Meanwhile, we maintain the mutual
independence of TRF and DF to avoid interference. FKD can
deepen a student’s knowledge comprehension and enhance
learning efficiency by providing refined knowledge. TLBG
designs a gradient network that maps teachers’ learning behav-
iors, helping the students handle related tasks more effectively.
The gradient network mainly captures a teacher’s dynamic
learning behavior by tracking gradient changes. Subsequently,
it transfers this as potential “dark knowledge” to a student.
This approach encourages the student to mimic a teacher’s
learning behavior during learning. The advantages of the
gradient network include: 1) it focuses more on the teacher’s
gradient fluctuations and weight adjustment processes and
guides a student to learn the teacher’s decision-making logic
and strategies and 2) it reveals changes and optimizations in
the teacher’s internal operations, thereby aligning the student
closer to the teacher in terms of output accuracy. Consequently,
the student can demonstrate improved flexibility and adaptabil-
ity when encountering similar tasks.

In summary, FLB significantly improves a student’s abil-
ity to grasp knowledge and effectively corrects a student’s
data handling and decision-making processes. This method
dramatically enhances a student’s flexibility and adaptability
in similar tasks. In addition, the student achieves greater
efficiency and accuracy in making predictions.

The main contributions of this article can be summarized
as follows.

1) We propose an FLB method to boost the student’s learn-
ing efficiency by providing more fine-grained knowledge
and analyzing the teacher’s learning behavior. This
method also enhances the student’s flexibility and adapt-
ability in coping with tasks.

2) We propose an FKD component that separates the stu-
dent’s intermediate-layer feature knowledge into TRF
and DF, ensuring their independence and noninterfer-
ence. Compared to existing methods, this component
offers the student more fine-grained knowledge to
enhance the understanding of knowledge.

3) We propose a TLBG component to capture the teacher’s
learning behavior through gradient changes, transferring
this as a form of “dark knowledge” for the student. This
enables the student to adopt a learning behavior sim-
ilar to that of the teacher. Unlike existing frameworks,
TLBG focuses on the transfer of dynamic learning states
between the teacher and the student. It can adjust the

student’s learning behavior by mapping the teacher’s
dynamic update process.

4) We evaluate the effectiveness of FLB, FKD, and TLBG
within diverse KD frameworks based on GNNs. The
experimental results show that our approach further
improves the accuracy of existing GNN-based KD
frameworks.

Section II introduces the related work to this article.
Section III reviews the background of KD, GCN, and the def-
inition of node classification. Section IV provides the details
of the proposed method. Section V validates the performance
of our proposed method on different datasets and frameworks.
Section VI concludes this article.

II. RELATED WORK

A. Graph Neural Networks

GNNs are initially proposed by Gori et al. [29] to pro-
cess substantial amounts of graph-structured data encountered
in practical applications [30]. Since then, GNNs have been
widely used in various fields [31], [32]. Initially, GNNs mainly
focus on effectively aggregating information from neighboring
nodes to enhance node feature representations. They employ
recursive network structures to update each node’s state iter-
atively until stability is achieved. A significant milestone in
the evolution of GNNs was achieved with the introduction of
ChebNet. It utilizes Chebyshev polynomials to approximate
spectral filters of the graph Laplacian operator, thereby per-
forming convolution operations on graphs. Meanwhile, graph
convolutional network (GCN) [33] designs a variant of a con-
volutional neural network (CNN) for semi-supervised learning
on graph-structured data. GCN is particularly noted for its
computational efficiency and adeptness in handling graph data,
signifying a pivotal advancement in GNNs. Building upon this
foundation, several enhanced models have emerged, including
the graph attention network (GAT) [34], which introduces
an attention mechanism allowing nodes to focus more on
their neighbors’ features. Similarly, GraphSAGE [35] extends
the utility of GCN to large-scale graphs by employing local
neighborhood sampling and feature aggregation techniques.

Furthermore, recent advancements in graph learning have
also significantly deepened our comprehension and utilization
of GNNs. For instance, Li et al. [12] propose the multimodal
graph learning framework based on 3-D Haar semi-tight
framelet transforms. This highlights the utility of captur-
ing intermodal relationships and leveraging spectral-based
graph structure learning to enhance prediction accuracy.
PEGFAN [13] introduces a mathematical framework for
extending traditional graph learning techniques to accom-
modate heterophilous graph structures. BLoG [14] offers a
novel perspective on leveraging the local node and global
graph information. This technique emphasizes balancing
local feature extraction with global structural coherence.
Huang et al. [15] investigate the feasibility of the GCNs with
random weights in extracting meaningful graph representa-
tions. This method sheds light on the intrinsic capabilities of
GCNs in capturing graph topology and feature distributions
without extensive training.

B. Knowledge Distillation
As a model compression method, KD was first proposed

by Hinton et al. [17]. Its main objective is to distill a
complex high-performance teacher into a lightweight stu-
dent while retaining comparable performance. This concept
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has sparked extensive research [36], [37], [38], [39], [40].
In KD, knowledge is categorized into logit-based and feature-
based. Logit-based knowledge [28], [41], [42] emphasizes
label regularization to enhance the student model perfor-
mance. For instance, DKD [28] divides the traditional KD
process into two independent components: target class KD
(TCKD) and nontarget class KD (NCKD). It addresses the
efficiency and flexibility limitations of conventional methods.
Li et al. [41] adopt a curriculum-based strategy to introduce
a dynamic, learnable temperature parameter in the distillation
process. Feature-based knowledge [43], [44], [45], [46] utilizes
intermediate features from teachers, often outperforming logit-
based methods. Among them, FitNets [43] first introduces
intermediate-layer features for knowledge matching between
the student and the teacher. AT [46] utilizes attention transfer,
enabling students to learn from the teacher’s attention maps.
Park et al. [45] expand research beyond individual data sam-
ples by considering their structural relationships.

C. KD on GNNs
Numerous recent studies have integrated KD with

GNNs [21], [47], [48], [49]. Among them, LSP [21] is
the first distillation method tailored for GCN. Subsequently,
combination of parameterized label propagation and feature
transformation (CPF) [47] designs a student network using
label propagation and feature transformation mechanisms to
fully harness valuable prior knowledge. To eliminate data
dependency, graph-less neural networks (GLNNs) [50] dis-
tills knowledge from GNNs into multi-layer perceptrons
(MLPs), sparking a wave of GNN-to-MLP distillation mod-
els [51], [52], [53], [54], [55]. Wu et al. [51] propose
a knowledge-inspired reliable distillation (KRD) framework,
which evaluates the reliability of knowledge in GNNs by
gauging the invariance of information entropy against noise
perturbations. Full-frequency GNN-to-MLP (FF-G2M) [54]
distinguishes low- and high-frequency knowledge from GNNs
for injection into MLPs, enhancing the student model
with multifaceted knowledge. Yang et al. [55] design a
vector-quantized variational autoencoder (VQ-VAE) to tackle
the scalability and latency challenges associated with GNNs.

Besides these model compression methods, KD for graph
augmentation (KDGA) [56] tackles negative augmentation
issues arising from distribution shifts between original and
augmented graphs through homogeneity analysis. Guo et al.
[57] transfer knowledge from various GNNs in an “enhanced”
manner to boost traditional GNN performance. Yun et al. [18]
distill the head and tail category student model to classify the
related nodes. This effectively addresses category imbalance.
To mitigate the adverse effects of incomplete information on
the student model, two teachers based GNN (T2-GNN) [58]
introduces distinct feature- and structure-level teachers to offer
targeted guidance to students. To improve the fairness of
GNNs without sacrificing utility, Zhu et al. [27] propose a
FairGKD framework.

Although current KD methods applied to GNNs
demonstrate considerable performance, they often involve
coarse-grained static knowledge, which can pose challenges
to the student’s learning process. First, due to the highly
generalized nature of the transferred knowledge, a student
may not comprehend it in a way similar to that of a teacher.
Second, static knowledge only reflects the current learning
status of the network, which might not suffice for adapting to
task changes.

To address the above issues, we propose an FLB method
to refine the student’s learning knowledge and correct its
learning behavior. In FLB, the FKD component separates the
student’s feature knowledge into TRF and DF. It effectively
addresses the issue of coarse-grained knowledge, which is
challenging to comprehend. The TLBG component captures
the teacher’s learning behavior through observed gradient
changes and imparts this understanding as potential “dark
knowledge” to the student. It effectively alleviates the student’s
lack of adaptability and flexibility in coping with similar tasks.

III. PRELIMINARIES

A. Notions and Problem Statement
For a given connected graph G = (V, E) with V representing

the set of nodes and E representing the set of edges, the goal
is to perform classification prediction on the unlabeled set of
nodes VU ⊂ V in graph G, i.e., the task of node classification
on the graph.

B. Graph Neural Networks
In GNNs, a graph is typically represented as G = (V, E, X),

where X ∈ Rn×d represents the d-dimensional features
of n nodes. For a given node v, GNNs aggregate mes-
sages from its neighboring nodes Nv . Then, GNNs use the
message-passing paradigm to update the node v’s embedding
features hv , which can be represented as

hl+1
v = COM

(
hl

v,
[
AGG

({
hl

u |∀u ∈ Nv

})])
(1)

where hl
v and hl+1

v represent the embedding of the node v at
the lth and (l + 1)th layers, respectively. COM(·) represents
the combination function, and AGG(·) represents the neighbor
aggregation function. h0

v is initialized using node features Xv .
Furthermore, the embedding of the entire graph can be repre-
sented as

hl
G = READOUT

{
hl

v|v ∈ V
}

(2)

where READOUT is a graph-level pooling function.

C. Knowledge Distillation
Different from traditional methods, KD utilizes the outputs

of the teacher to guide the student in learning, thereby obtain-
ing a distillation loss defined as

LKD = H
(
σS

(
Z S

; τ
)
, σT

(
Z T

; τ
))

(3)

where Z S and Z T represent the output distributions of the
student and teacher, respectively. H(·) is the Kullback–Leibler
divergence (KL-divergence), and σ represents the softmax
function with temperature τ . A higher τ (with a limit of
τ → ∞) results in the output distribution being closer to
the zero-mean distribution [17]. However, this may cause the
student to be unable to capture effective information from
the teacher, reducing the accuracy of the student’s predicted
probabilities. Conversely, a lower τ leads to a sharper output
distribution. This potentially renders the student insensitive to
a teacher’s “dark knowledge,” thereby limiting the student’s
performance. Generally, τ is set within the range of 1–10.

In addition, partial KD also utilizes the intermediate layers
of information from teachers and students for matching, and
the distillation loss typically uses Lmse loss

Lmse = MSE
(
F S, F T )

= ∥ f
(
F S)

− g
(
F T )

∥
2
2 (4)
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Fig. 1. Overview of the FLB method. We show the main components. (a) TLBG component designs a gradient network G to map the teacher learning
process in the training process. In the inferring process, provide a pretrained G to the student to adjust its final layer gradients. (b) FKD component decouples
and reconstructs the penultimate layer’s features in the student, providing it with fine-grained features to deepen its knowledge comprehension.

where F S and F T represent the intermediate-layer features of
the student and teacher, respectively. f (·) and g(·) are trans-
formation functions used for dimension matching (e.g., linear
transformation, convolution transformation, and interpolation
transformation). ∥·∥

2
2 represents the square of the Euclidean

norm.

IV. METHODOLOGY

In this section, we will elaborate on our proposed
FLB-oriented KD approach for GNNs, namely, FLB. Specifi-
cally, we first provide an overview of the FLB methodology in
Section IV-A. Then, we introduce the details of its core com-
ponents in Sections IV-B and IV-C. Finally, the optimization
objectives and training inference process of this method are
detailed in Section IV-D.

A. Overview of FLB
In this section, we provide the overview of FLB, as illus-

trated in Fig. 1. The FLB methodology enhances the student
performance through two aspects: 1) mimicking the dynamic
learning process of the teacher to correct the student’s learning
trajectory and 2) refining coarse-grained knowledge to facili-
tate easier comprehension by the student. We model the two
aspects as the TLBG component and the FKD component. For
the TBLG component, as illustrated in Fig. 1(a), we devise
an MLP-based gradient network, denoted as G. We pretrain
G synchronously with the teacher to obtain the mapping of
the teacher’s learning process. This design ensures that the
student can imitate the teacher’s learning process while absorb-
ing the teacher’s knowledge. We will discuss the TLBG in
Section IV-C. Fig. 1(b) illustrates that the FKD component
incorporates a three-branch feature decoupling and reconstruc-
tion (FDR) network. This network’s architecture is aligned
with that of the student (e.g., GCN or MLPs) to ensure the

Fig. 2. Structure diagram of FKD.

rationality of our component. Each branch in the FDR is
constrained by a corresponding loss function, with the design
specifics elaborated in Fig. 2 and discussed in Section IV-B.

B. Feature Knowledge Decoupling
In KD, “knowledge” is coarse-grained abstract information.

Due to the relatively smaller scale of the student model,
it may fail to absorb knowledge in the same manner as
the teacher. To the best of our knowledge, in KD methods
for CNN, DKD [28] has been designed to decouple the
logit-based knowledge of the student. However, given that
GNNs capture relational information between nodes, features
from intermediate layers provide richer information than the
final output of the network. With this motivation, we design
the FKD component. This component decouples the student’s
intermediate-layer features (denoted as FeatSM−1 , where M rep-
resents the number of layers in the student) into TRFs and DFs.
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We compel the student to learn from both features individu-
ally and concurrently to enhance its performance. To clearly
delineate this process, the FKD component is designed as a
three-branch FDR network, aligning with the architecture of
the student network. According to the functions of the three
branches, we define them as the TRFs branch, the DFs branch,
and the reconstruction features branch.

For the TRFs branch, we anticipate that it will extract
information from the student’s intermediate-layer features that
are relevant to the teacher’s intermediate-layer features, rep-
resented as TRF. To ensure that the TRF focuses solely on
teacher features, we employ supervision using the teacher‘s
intermediate-layer features, that is,

Lrel = MSE
(
TRF, FeatTN−1

)
(5)

where FeatTN−1 represents the (N − 1)th layer features of the
teacher and N represents the number of layers in the teacher.

However, given the disparity in network architecture design
between the teacher and the student, we utilize the feature
correlation matrix of TRF and FeatTN−1 to evaluate the gap
between the two. Equation (5) is modified as

Lrel = MSE
(
matrixTRF, matrixFeatTN−1

)
(6)

where

matrix(A) = AAT

=

a11 · · · a1m
...

. . .
...

an1 · · · anm


a11 · · · an1

...
. . .

...
a1m · · · anm

 (7)

where A represents the feature information of TRF or FeatTN−1 ,
n is the number of nodes, and m denotes the dimension of the
network’s hidden layers.

Similarly, the DF branch should extract DFs from the
student’s features, represented as DF. Here, we utilize down-
stream task labels to constrain DF, that is,

Lunrel = CE(DF, y) (8)

where CE(·) denotes the cross-entropy loss function and
y signifies the labels for the downstream tasks.

Note that, to minimize the mutual impact of TRF and DF
during the student training process, it is imperative to ensure
their independence and lack of correlation. Consequently,
we impose additional constraints on these features utiliz-
ing the distance correlation measurement method introduced
in [59], i.e.,

Lmutual = dcor(TRF, DF)

=
v2

n(TRF, DF)√
v2

n(TRF, TRF) × v2
n(DF, DF)

(9)

where v2
n(·, ·) represents the product of two numbers before

and after.
The purpose of the reconstruction feature branch is to ensure

the effective decoupling of the first two branches. Specifically,
we concatenate the decoupled TRF and DF along the column
direction, denoted as Concatenate(TRF, DF). Then, we utilize
the reconstruction feature branch to adjust its dimensions
so that it aligns them with the original intermediate-layer
feature dimensions of the student. We denote the output of
the reconstruction feature branch as RF. Indeed, RF can be
regarded as the new intermediate-layer features of the student,

obtained after decoupling and reconstructing the student’s
intermediate-layer features.

Note that, we do not directly compare the differences
between the student’s original intermediate-layer features and
the post-reconstructed intermediate-layer features. Instead,
we supervise this branch by evaluating the changes in loss
throughout the student’s entire training process. In other
words, we constrain the related loss of the post-reconstructed
output results using the loss associated with the student’s
original output results. This is specifically represented as

Lrec = Hinge
(
L′

ce
(
ZRF, y

)
,Lce

(
Z S, y

))
+ Hinge

(
L′

mse
(
ZRF, Z T )

,Lmse
(
Z S, Z T ))

(10)

where ZRF represents the output values obtained by inputting
RF into the last layer of the student, i.e., ZRF

=

Graphcovnθ∽SM
(RF), where Graphcovnθ∽SM

(·) represents the
last layer of the student with M layers. L′ represents the
relevant loss from ZRF, while L represents the relevant loss
from Z S . Hinge(L′,L) = max(0, ζ − (L′

− L)). ζ represents
the evaluation boundary threshold. Hinge(L′,L) is used to
assess the disparity between ZRF and Z S , thereby further
constraining the TRF and DF features. It ensures that the FKD
component can effectively perform its decoupling function and
provides the student with more fine-grained knowledge.

In summary, we define the following overall loss function
for the FKD component:

L feat = Lrel + Lunrel + Lmutual + Lrec. (11)

C. Teacher Learning Behavior Guidance
The TLBG component is designed to capture the teacher’s

complex dynamic learning behavior and correct the student’s
learning process. We model the TLBG component as a net-
work G based on MLPs, which has the same number of
layers and the dimensions of hidden layers as the student.
In the training phase, G is trained synchronously with the
teacher to obtain a mapping of the teacher’s learning process.
Subsequently, in the inference phase, G is utilized to correct
the gradients of the last layer of the student. Therefore, the
student can learn the teacher’s knowledge and imitate
the teacher’s learning process. Next, we provide the
detailed descriptions of the training and inference phases of
network G. The pseudocode of the TLBG is described in
Algorithm 1.

1) Training Process: In this phase, we take the gradient
from the first layer of the teacher network as input and
use the gradient value from the last layer for supervision.
This design aims to map the teacher’s learning and updating
process during each iteration, that is, the network’s update
process from the first layer to the last layer into the gradient
network G. Specifically, we match the output values
of the network G with the gradients of the last layer of the
teacher network using a similarity function, which is

LS = 1 − Similarity
(

grad, gradθTN

)
(12)

where Similarity(·) denotes the similarity function, for which
we employ cosine similarity. grad and gradθTN

represent the
gradients of G and the last layer of the teacher, respectively.
By leveraging this approach, we save the teacher’s learning
behavior within G. Notably, our gradient network G can
only reflect the changes from the first to the last layer in
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Algorithm 1 TLBG Component
Input: Graph G = (V, E), Node Features X, teacher network

T with parameters θT , gradient network G with parameters
θG .

Output: teacher network T, gradient network G
1: Initialize T and G
2: Generate subgraphs gi and node features Xg i of subgraphs,

where g1 ∪ g2 ∪ · · · ∪ gb = G and i = 1, 2, . . . , b.
3: while stop training condition not satisfied do
4: if gradθT1

from the first layer of T then
5: Save the current gradient value as state =

{
gradθT1

}
6: else
7: state is None.
8: end if
9: Input gi and Xg i to T to obtain ZT .

10: Compute Lce

11: Update θT with ∂Lce
∂θT

and obtain gradθT1
, gradθTN

.
12: if state then
13: Input gradθT1

to G to obtain grad
14: Compute Ls according to Eq. (12).
15: Update θG with ∂Ls

∂θG
16: end if
17: end while
18: return T and G

the teacher network. We cannot guarantee that the output of
network G will exhibit the same change results as those in the
intermediate layers of the teacher network. In other words,
we are solely considering the overall changes from input to
output in the teacher network and their impact on the overall
changes in the student.

2) Inferring Process: In this phase, following the same
behavioral pattern as during the G training process, we use
the gradient of the first layer of the student network as input
into the pretrain G. Subsequently, we use the output of G as
a correction value for the gradient of the last layer of the
student network, denoted as grad′. Finally, we employ grad′

for a secondary update of the last layer of the student network,
which is expressed as

ĝradθS
= gradθS

+ λF
(
grad′, gradθS

)
(13)

where ĝradθS
represents the modified gradient, gradθS

is the
original gradient of the student, λ is a scaling factor that
measures how much corrective action needs to be applied, and
F(·) is an adjustment factor for the student gradient. Rather
than directly applying the modified gradient grad′, we quantify
the discrepancy between grad′ and gradθS

in terms of a propor-
tional relationship. This discrepancy is then accentuated via an
exponential function, ensuring that its values are constrained
between 0 and 1. The function F(·) is meticulously designed to
facilitate the student’s optimization of network parameters by
imitating the teacher’s learning behavior. Consequently, F(·) is
formulated as F(grad′, gradθS

) = exp(gradθS
/grad′) − 1.

D. Optimization Objective

The FLB method we propose not only enhances the learning
efficiency of the student but also strengthens its comprehension
ability, as well as its flexibility and adaptability to tasks. The

Algorithm 2 FLB Method
Input: Graph G = (V, E), Node Features X, teacher network

T, gradient network G, student network S with parameters
θS , Feature Decoupling Reconstruction FDR.

Output: student network S with parameters θS
1: Initialize S and FDR
2: Generate subgraphs gi and node features Xg i of subgraphs,

where g1 ∪ g2 ∪ · · · ∪ gb = G and i = 1, 2, . . . , b.
3: while stop training condition not satisfied do
4: if gradθS1

from the first layer of S then
5: Save the current gradient value as state =

{
gradθS1

}
6: else
7: state is None.
8: end if
9: Input gi and Xg i to S to obtain ZS and intermediate

layer features S f eat .
10: Input gi and Xg i to T to obtain ZT and intermediate

layer features T f eat .
11: Input gi and S f eat to FDR to obtain TRF, DF and RF.
12: Compute L total according to Eq. (14).
13: Compute gradθS1

, gradθSM
according to ∂Ltotal

∂θS
.

14: if state then
15: Input gradθS1

to G to obtain grad ′

16: Update gradθSM
according to Eq. (13).

17: end if
18: Update θS
19: end while

optimization objective of this method is

L total = αLce + (1 − α)(βLmse + (1 − β)Lfeat) (14)

where Lce represents the CE loss between the student and the
downstream task labels and Lmse denotes the mean-squared
error loss between the student and the teacher. Lfeat reflects the
sum of feature losses as shown in (11). Meanwhile, we show
the pseudocode of the proposed FLB method in Algorithm 2.

The overall process of our proposed method can be
described as follows. Initially, the teacher network T and
gradient network G involved in the TLBG component are
initialized and synchronously pretrained until convergence
as described in Algorithm 1. Then, the pretrained T and G are
utilized, in conjunction with FKD, to train student network S
as outlined in Algorithm 2. Finally, only the trained S is used
to predict task data in the inference phase.

V. EXPERIMENTS

In this section, we first describe the experimental setup
and integrate FLB as a plug-and-play method into different
frameworks to compare its performance. This incorporation
aims to demonstrate the generality of the FLB method. Next,
we conduct extensive ablation studies to evaluate the effective-
ness of the FKD and TLBG components. Then, we perform
the sensitivity analysis on the hyperparameters involved in this
article. In addition, we analyze the impact of teachers with
different numbers of layers on student performance. Finally,
we provide related analyses of the computation and time
efficiency of the method to illustrate the reliability of the FLB
method more effectively.
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TABLE I
SUMMARY OF DATASETS

TABLE II
NETWORK ARCHITECTURES IN KD. “-T” AND “-S” REPRESENT

THE TEACHER AND STUDENT NETWORK ARCHITECTURE UNDER
THE MODEL COMPRESSION FRAMEWORKS, RESPECTIVELY.

“-TS” REPRESENTS THE SAME TEACHER–STUDENT
NETWORK ARCHITECTURE UNDER THE MODEL
AUGMENTATION FRAMEWORK. THE TOTAL SUM
OF PARAMETERS IN THE STUDENT MODEL AND

THE FDR NETWORK WITHIN THE FKD
COMPONENT IS RECORDED IN PARENTHESES.

“/” REPRESENTS THAT NO ATTENTION
HEADS ARE UTILIZED

A. Experimental Setup

1) Datasets: In the field of GNNs, we conduct experiments
on eight public datasets. The statistical details of datasets are
presented in Table I.

2) Baseline Methods: By integrating the FLB method
into the current state-of-the-art frameworks and comparing it
with their original forms, we demonstrate its effectiveness.
This involves a comparison with various model compression
frameworks, such as KD [17], LSP [21], GraphAKD [23],
OAD [24], CPF [47], NOSMOG [52], FF-G2M [54],
KRD [51], and VQGraph [55]. In addition, we compare
it with model augmentation frameworks such as KD [17],
T2-GNN [58], KDGA [56], LTE4G [18], and FairGKD [27].

1https://pubmed.ncbi.nlm.nih.gov/

TABLE III
OPTIMAL HYPERPARAMETER VALUES FOR EACH DATASET

3) Teacher–Student Network Architectures: Except for KD,
our proposed FLB method follows the original teacher–student
network architecture settings in the frameworks. For KD,
we only select three classical GNN models as our teacher
architectures on the Cora dataset: GCN, GAT, and Graph-
SAGE, while the teacher architectures for other datasets and all
student architectures are consistently set as GCN. To compare
the differences between the teacher and student network archi-
tectures, we have also enumerated the detailed information for
each architecture, as shown in Table II.

4) Implementation Details: In this article, we implement
relevant experiments in the PyTorch framework [66] and
DGL library [67]. In Section IV-B, we retain the original
experimental settings of all methods except for KD. For KD,
we optimize the models using the Adam optimizer with a
learning rate of 0.01 and a weight decay rate of 5e−4. For
ζ involved in the Hinge(·) function in (10), we uniformly set it
to 0.2. The output results are the average of five separate runs.
Moreover, we use three evaluation metrics, namely, accuracy
(Acc), area under the ROC curve (AUC), and balanced F score
(F1), to measure the performance of the models under the
baseline frameworks. For the hyperparameters in (13) and (14),
we utilize grid search to determine the optimal values for each
dataset, using Acc as the primary criterion. The optimal hyper-
parameter values for each dataset are displayed in Table III.
The detailed experimental analysis is shown in Section IV-D.
All experimental results presented in Tables IV–VII are
obtained under identical environmental conditions.

B. Performance Comparison With Baseline
In this section, we integrate the FLB method into state-

of-the-art baseline frameworks and conduct performance
comparison experiments when the teacher architecture is GCN,
GAT, or GraphSAGE, and the student architecture is GCN.
For the teacher architecture of GCN, we conduct experi-
ments on all baseline frameworks and datasets, as shown in
Tables IV–VI. For the teacher architecture of GAT and
GraphSAGE, we only conduct experiments on six baseline
frameworks (KD, LSP, KRD, FF-G2M, KDGA, and T2-GNN)
and the Cora dataset, as shown in Table VII.

1) Results With the Teacher Model as GCN: Tables IV–VI
present the experimental results obtained by integrating the
FLB method into the frameworks of model compression and
augmentation. We have made the following observations.

a) Results of GCN-to-GCN model compression: In
Table IV, we show the results of the teacher–student archi-
tecture with different hidden layer dimensions and different
numbers of layers. Incorporating FLB has increased Acc,
AUC, and F1 compared to the original results of the KD,
LSP, GraphAKD, and OAD baseline frameworks. Notably,
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TABLE IV
NODE CLASSIFICATION EVALUATION RESULTS (%) UNDER THE GCN-TO-GCN MODEL COMPRESSION FRAMEWORKS. “+FLB”

INDICATES THAT IT IS ADDITIONALLY EQUIPPED WITH OUR METHOD. 1 REPRESENTS THE PERFORMANCE
IMPROVEMENT AFTER ADDING THE FLB METHOD UNDER THE CURRENT FRAMEWORK

TABLE V
NODE CLASSIFICATION EVALUATION RESULTS (%) UNDER THE GCN-TO-MLP MODEL COMPRESSION FRAMEWORKS.
“+FLB” INDICATES THAT IT IS ADDITIONALLY EQUIPPED WITH OUR METHOD. 1 REPRESENTS THE PERFORMANCE

IMPROVEMENT AFTER ADDING THE FLB METHOD UNDER THE CURRENT FRAMEWORK

adding FLB to the LSP framework demonstrates exceptional
performance across all five datasets. Specifically, FLB achieves
accuracy improvements of 2.04% and 8.09% for Acc and F1
on the Co-cs dataset, respectively. Meanwhile, we also observe
that the AUC results show significant enhancement under the
LSP framework. This illustrates that the FLB method is more
effective in avoiding potential information loss caused by only
considering local structures. This further reduces the error rate
of the framework and improves its robustness.

Acc, AUC, and F1 values have also been improved for the
KD, GraphAKD, and OAD frameworks. However, the increase
varies across datasets (e.g., in the Citeseer dataset, OAD’s
Acc increased by 4.30%, while in the A-photo dataset, it only
improved by 0.54%). This indicates that the performance of
FLB may be influenced by the specific framework structure
and dataset characteristics.

b) Results of GCN-to-MLPs model compression: We
further apply the FLB method to five baseline frameworks of
KD, CPF, KRD, FF-G2M, and VQGraph, utilizing the GCN-
to-MLPs as the teacher–student architecture, as illustrated in
Table V. Compared with the original framework, Acc, AUC,
and F1 have improved after integrating the FLB method,
especially for the KD framework. In contrast to the modest
gains in AUC and F1, the notable increase in Acc suggests
that the FLB method substantially bolsters these frameworks’
positive and negative classification capabilities. Moreover, the
slight enhancements in AUC and F1 indicate that the FLB
method enhances the robustness of the five baseline frame-
works, particularly in datasets with balanced distributions.

Further analysis of the data in Table V reveals that the
FLB method performs exceptionally well on certain datasets.
For example, in the Citeseer dataset, the Acc of the CPF
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TABLE VI
NODE CLASSIFICATION EVALUATION RESULTS (%) UNDER THE GCN-TO-GCN MODEL AUGMENTATION FRAMEWORKS.

“+FLB” INDICATES THAT IT IS ADDITIONALLY EQUIPPED WITH OUR METHOD. 1 REPRESENTS THE PERFORMANCE
IMPROVEMENT AFTER ADDING THE FLB METHOD UNDER THE CURRENT FRAMEWORK

framework increased by 3.87% after integrating the FLB
method, while in the A-photo dataset, the Acc of the VQGraph
framework increased by 1.09%. These results indicate that the
FLB method not only improves the overall classification ability
of the models but also shows significant advantages on specific
datasets and frameworks.

c) Results of GCN-to-GCN model augmentation: In
addition, incorporating the FLB method into five model aug-
mentation frameworks (KD, T2-GNN, KDGA, LTE4G, and
FairGKD) results in significant performance improvements
under the Acc, AUC, and F1 evaluation criteria, as shown
in Table VI. Notably, this improvement is particularly evident
in smaller datasets, such as Cornell and Texas. This can be
attributed to the issues with unbalanced data distribution in
smaller datasets, which affect the models’ data processing
abilities. The FLB method can address this by providing
the model with more fine-grained feature knowledge. This
enriched feature information not only enhances the model’s
comprehension of feature knowledge but also alleviates the
challenges brought by unbalanced data distribution. The con-
sistent improvements across different datasets and metrics also
underscore the method’s effectiveness and flexibility.

2) Results on Cora With Different GNN Architectures:
Table VII presents the performance of six baseline frameworks
on the Cora dataset under different teacher–student archi-
tectures, including GAT-to-GCN, GraphSAGE-to-GCN, GAT-
to-GAT, GraphSAGE-to-GraphSAGE, GAT-to-MLPs, and
GraphSAGE-to-MLPs. We have reached the following con-
clusions.

a) Results of model compression experiments where the
teacher architecture is GAT: By analyzing the experimental
results in columns 2–4 of Table VII, we derive the following
insights. When the teacher architecture is GAT, incorporating
our FLB method to distill the heterogeneous student archi-
tectures significantly improves Acc, AUC, and F1 values.
These improvements are especially notable in the LSP method.
However, for distillation between homogeneous architectures,
we observed a 0.10% decrease in Acc in the KDGA method
after integrating FLB. We believe that this may be because

TABLE VII
NODE CLASSIFICATION EVALUATION RESULTS (%) ON CORA, WHERE

THE TEACHER UTILIZES GAT AND SAGE (ABBREVIATION FOR
GRAPHSAGE) AND THE STUDENT UTILIZES GCN, GAT, SAGE,

AND MLPS. “+FLB” INDICATES THAT IT IS ADDITIONALLY
EQUIPPED WITH OUR METHOD. 1 REPRESENTS THE
PERFORMANCE IMPROVEMENT AFTER ADDING THE
FLB METHOD UNDER THE CURRENT FRAMEWORK

GAT typically uses a multihead attention mechanism to sta-
bilize the training process and enhance model performance.
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TABLE VIII
ABLATION STUDY ON MODEL COMPRESSION GCN-

TO-GCN AND GCN-TO-MLPS [METRIC: ACC (%)]. 1 REPRESENTS
THE PERFORMANCE IMPROVEMENT UTILIZING DIFFERENT COM-

PONENTS

The introduction of the FLB method may cause interference
among different attention heads when processing features and
labels, thereby affecting the overall model performance. This
phenomenon is particularly evident when the attention heads
perform well on augmented graphs but cannot collaborate
effectively on the original graph. This indicates that incorpo-
rating the FLB method in the GAT framework requires more
caution and may necessitate further parameter adjustments to
balance the overall performance of the framework.

b) Results of model compression experiments where
the teacher architecture is GraphSAGE: In columns 5–7
of Table VII, compared to heterogeneous teacher–student
pairs, when the teacher–student architectures are GraphSAGE,
incorporating the FLB method significantly improves the per-
formance of the original framework in terms of Acc, AUC,
and F1 evaluation metrics, especially in F1 (e.g., a 15.97%
increase in the KDGA framework and a 2.74% increase in the
T2-GNN framework). This improvement is attributed to the
sampling mechanisms of GraphSAGE, which, when integrated
with the FLB method, can more effectively utilize this method
to enhance the feature information of the original framework,
significantly improving the capture of feature layer informa-
tion. Conversely, in the case of heterogeneous teacher–student
pairs, although integrating the FLB method can improve the
classification accuracy of the original framework on relatively
balanced data, it may confuse positive and negative sam-
ples in imbalanced data, especially in the KRD framework.
We believe that this may be due to GraphSAGE’s heavy
reliance on aggregating information from each node’s neigh-
bors. The introduction of FLB may alter how this aggregated
information is represented or utilized in the MLPs, leading
to mismatches or less effective use of contextual information,
thereby reducing AUC. Therefore, when using GraphSAGE

TABLE IX
ABLATION STUDY ON MODEL AUGMENTATION GCN-TO-GCN [METRIC:

ACC (%)]. 1 REPRESENTS THE PERFORMANCE IMPROVEMENT
UTILIZING DIFFERENT COMPONENTS

as the teacher in heterogeneous teacher–student pairs, further
optimization of the FLB method is needed to avoid negative
impacts.

C. Ablation Study
In the classical KD framework, we utilize the datasets in

Table I and three teacher–student architectures to evaluate
the two components of the FLB method: FKD and TLBG.
The experiment aims to highlight the effectiveness of each
component. The experimental results corresponding to these
architectures and their respective datasets are systematically
recorded in Tables VIII and IX. In addition, to further sub-
stantiate the soundness of the FLB method, we visualized the
two components in Figs. 3 and 4.

1) Effectiveness of FKD on Student Performance: Accord-
ing to the results in Tables VIII and IX, it is evident that
the FKD component has the potential to enhance the perfor-
mance of students with different architectures. Note that the
performance improvements of 0.49% and 1.08% are observed
for larger datasets such as Co-cs and smaller datasets such as
Texas, respectively. This is attributed to the decoupling ability
of FKD, which decomposes the student’s feature knowledge
into TRF and DF, thereby enabling the student to assimi-
late more fine-grained knowledge. This approach effectively
addresses the challenges posed by highly integrated knowl-
edge. Furthermore, combined with the data in the last column
of Table II, we find that, compared to the model augmentation
architecture, the FKD component in the model compression
architectures can bring a greater performance improvement to
the student models at a lower space resources occupancy rate.

We visualize the heatmaps of the correlations between the
original student features (FeatSM−1 ), TRF, DF, RF from the
FKD component, and the teacher features (FeatTN−1 ) in Fig. 3.
We observe that Fig. 3(b) correlates more with the teacher
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Fig. 3. Heatmap of the correlation between student and teacher features
before and after decoupling on the Cora dataset. The vertical axis is the
dimension of student-related features (FeatSM−1 , TRF, DF, and RF). The hori-
zontal axis is the dimension of teacher characteristics (FeatTN−1 ). (a) FeatSM−1

versus FeatTN−1 . (b) TRF versus FeatTN−1 . (c) DF versus FeatTN−1 . (d) RF
versus FeatTN−1 .

features than the other three heatmaps. This indicates that
the TRF obtained through the teacher-related branch effec-
tively retains the teacher’s feature information. Conversely,
although Fig. 3(c) demonstrates a better correlation with the
teacher features than Fig. 3(a), it still shows some discrepancy
with the teacher features compared to Fig. 3(b). Meanwhile,
Fig. 3(d) and (a) suggests that the RF, derived from coupling
the TRF and DF through the reconstruction branch, can effec-
tively learn different feature information from both the teacher
and downstream tasks. This further demonstrates that the FKD
component enhances the student’s knowledge comprehension.
We have also visualized the gradient changes in the student
models with and without the FKD components in the first and
third columns of Fig. 4. We find that FKD assists in correcting
the gradient distribution during the optimization process of the
student models.

2) Effectiveness of TLBG on Student Performance: Except
for FKD, TLBG can also increase the prediction accuracy
across various datasets. For instance, under the GCN-to-
MLP teacher–student architecture, the student’s Acc values
improved by 0.57%, 0.08%, 0.21%, 0.45%, and 0.32% on the
Cora, Citeseer, Pubmed, Co-cs, and A-photo datasets, respec-
tively. In addition, an analysis of the gradient distributions in
the first and second columns of Fig. 4 clearly shows that TLBG
has effectively adjusted the gradient distribution of the student.
This indicates that TLBG can correct the student’s gradient
distribution by mapping the dynamic changes in the teacher’s
gradients to enhance the flexible and adaptive learning process.

D. Hyperparameters Sensitivity Analysis
We also perform the experimental analysis to study the

sensitivity of the three hyperparameters α, β, and λ involved
in the FLB method. Specifically, we utilize GCN with vary-
ing numbers of layers and hidden layer dimensions as the
teacher–student architecture for model compression on the
Cora, Citeseer, Pubmed, Co-cs, and A-photo datasets. Using

the Cora, Citeseer, Cornell, Texas, and Chameleon datasets,
we adopt the teacher–student architectures with the same GCN
structure for model augmentation. In these experiments, two
hyperparameters are fixed to evaluate the sensitivity of the
third hyperparameter. Fig. 5(a)–(c) illustrates the impact of
the values of the three hyperparameters α, β, and λ on the
classification accuracy of the student, respectively.

1) Impact of Hyperparameters on the Loss Function: In
FLB, appropriate values for α and β are crucial to adjust the
weight balance among the three types of loss. We vary α and β
from 0.1 to 0.9 with a step size of 0.1 to investigate the effects
of different weight combinations of the loss function on node
classification. Fig. 5(a) and (b) shows the Acc results. For
example, FLB achieves the optimal performance on the Texas
dataset with α = 0.5 and β = 0.8. In Fig. 5(a), the student’s
performance initially increases and then decreases with the α
value. This indicates that a suitable weight balance adjustment
between the first and the last two losses in (14) can enhance the
classification accuracy. Fig. 5(b) illustrates that the student’s
performance follows a similar trend for a particular α value as
β increases. It suggests that the network’s performance can be
optimized by balancing Lmse and Lfeat. Notably, when α and
β reach optimal values, the loss function emphasizes feature
loss more, aiding in capturing complex and deep data features.

Furthermore, in experiments, we observe that different
datasets respond differently to the optimal values of α and
β. For instance, the optimal α and β values differ between
Cora and Texas datasets. This variation underscores that the
loss function’s optimal weight balance depends on the spe-
cific network structures and data characteristics. Consequently,
achieving optimal performance requires careful parameter tun-
ing for each specific application and dataset.

2) Impact of Hyperparameters on the Gradient Correction
Effect: In FLB, λ in (13) is crucial to determine the gradient
correction degree. We set the λ value within the range of
0.1–1.0, incrementing by 0.1, and the results are depicted in
Fig. 5(c). The impact of λ varies between model compression
and model augmentation datasets. In model compression,
λ demonstrates relative insensitivity to network architectures
with different hidden layer dimensions and layer numbers.
This means that the student’s performance remains relatively
stable, even when appropriate gradient correction is applied.
It is possibly because the network’s design is inherently
concise and efficient, limiting the impact of additional gra-
dient correction on performance enhancement. Conversely,
we observe more significant fluctuations in λ in model aug-
mentation datasets, exhibiting distinct peaks and valleys. This
variation suggests that gradient correction is more critical in
this case. In model augmentation, the network is typically
designed to be more complex and handle higher dimensional
data. Therefore, appropriate gradient correction can signifi-
cantly promote the learning process and avoid issues such
as gradient vanishing or explosion, enhancing overall model
performance.

In addition, different datasets exhibit varying sensitivities
to λ, which may be related to their inherent characteristics
and complexity. Some datasets may respond more to gradient
adjustments, while others remain more robust against such
corrections. Therefore, selecting an optimal λ value tailored
to specific application scenarios and dataset properties is
also critical for achieving optimal performance. Thus, the
careful selection and adjustment of values, based on the model
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Fig. 4. Visualization of gradient changes. Sequences of (a)–(c), arranged from left to right, successively represent the student (only), student with TLBG,
student with FKD, and student with FLB. (a) Model compression GCN-to-MLP and Co-cs dataset. (b) Model augmentation GCN-to-GCN and Texas dataset.
(c) Model Compression GCN-to-GCN and Cora dataset.

Fig. 5. Effect of hyperparameter values on student network performance on different datasets. (a) α values. (b) β values. (c) λ values.

Fig. 6. Results of the teacher–student capacity gap on student performance
based on GCN architecture, KD framework, and Cora dataset. The student
model is consistently a two-layer GCN with a 64-D hidden layer. The hidden
layer of the teacher model is set to 256 dimensions.

architecture and dataset characteristics, are essential to ensure
training stability and optimal performance.

E. Teacher–Student Gap Analysis Based on GCN
In Fig. 6, we present the impact of increasing the complexity

of the teacher network and the use of the FLB method on

the student’s prediction accuracy. Observations indicate that
when GCN is used as the architecture for both teacher and
student networks, a learning gap similar to that in CNNs exists
between them. When the teacher network has three layers,
the two-layer GCN student network achieves the optimal
performance. This indicates that the complexity of the teacher
network needs to match the learning capacity of the student
network to effectively enhance its performance. In addition,
we find that the FLB method can effectively mitigate the
mismatch in learning capacity due to the difference in network
sizes between the teacher and the student.

F. Computation and Time Efficiency Analysis

We also evaluate the computational and time efficiency
of different frameworks equipped with our proposed FLB
method, as shown in Table X. The floating-point operations
(FLOPs) of most frameworks decrease by integrating the FLB
method. This indicates that the FLB method is effective in
reducing computational load. However, the training time varies
across different teacher–student architectures. This variation
might be due to the FLB method introducing additional
processing of intermediate-layer features to the original frame-
work, leading to extra time consumption.
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TABLE X
RESULTS OF COMPUTATIONAL AND TIME EFFICIENCY DURING THE TRAINING PROCESS FOR NINE FRAMEWORKS UNDER THE CORA DATASET, BOTH

WITH AND WITHOUT THE FLB METHOD. “FLOPS (G)” DENOTES THE NUMBER OF FLOATING-POINT OPERATIONS (IN BILLIONS) DURING THE
TRAINING PROCESS. “IME(S)” INDICATES THE TOTAL TIME REQUIRED FOR TRAINING THE STUDENT MODEL. THE TEACHER–STUDENT

MODELS FOR EACH FRAMEWORK ARE CONSISTENT WITH THOSE DESCRIBED IN TABLES IV–VI. DETAILED EXPERIMENTAL
SETTINGS FOLLOW THE IMPLEMENTATION DESCRIBED IN SECTION V-A4. “+FLB” INDICATES THE INCLUSION OF OUR

PROPOSED METHOD. ↑ AND ↓ DENOTE THE INCREASE AND DECREASE IN COMPUTATION AND TIME BEFORE AND
AFTER EQUIPPING EACH FRAMEWORK WITH THE FLB METHOD, RESPECTIVELY

VI. CONCLUSION

In this article, we propose a novel KD method for GNNs,
named FLB. This method can integrate into existing frame-
works, enhancing their performance with fine-grained feature
information and efficient learning behavior correction mecha-
nisms. Specifically, FLB comprises two primary components:
FKD and TLBG. The FKD component decouples the feature
knowledge in the student into two fine-grained features: TRFs
and DFs. This process allows the student to focus more on
these two types of feature information separately, which deep-
ens the student’s comprehension of knowledge. Meanwhile,
the TLBG component corrects the student’s learning behavior
by mapping the teacher’s gradient changes. This promotes
more efficient knowledge acquisition and enhances flexibility
and adaptability to tasks. Extensive experiments confirm the
effectiveness and robustness of the FLB method.

In future work, we aim to enhance the student’s learn-
ing efficiency from two aspects. First, we will focus on
the inheritance and extension relationships in the dynamic
teacher–student learning processes. Second, we will investigate
how to provide guidance from the teacher’s knowledge for
initializing the student. In addition, we plan to explore KD
techniques that improve the student’s generalization capabil-
ities, enabling flexible handling of varied downstream tasks
and different types of graph structures.
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