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Abstract

Authors seeking to communicate with broader001
audiences often share their ideas in various doc-002
ument formats, such as slide decks, newsletters,003
reports, and posters. Prior work on document004
generation has generally tackled the creation of005
each separate format to be a different task, lead-006
ing to fragmented learning processes, redun-007
dancy in models and methods, and disjointed008
evaluation. We consider each of these docu-009
ments as templatic views of the same under-010
lying knowledge/content, and we aim to unify011
the generation and evaluation of these templatic012
views. We begin by showing that current LLMs013
are capable of generating various document014
formats with little to no supervision. Further,015
a simple augmentation involving a structured016
intermediate representation can improve per-017
formance, especially for smaller models. We018
then introduce a novel unified evaluation frame-019
work that can be adapted to measuring the qual-020
ity of document generators for heterogeneous021
downstream applications. This evaluation is022
adaptable to a range of user defined criteria023
and application scenarios, obviating the need024
for task specific evaluation metrics. Finally,025
we conduct a human evaluation, which shows026
that people prefer 82% of the documents gener-027
ated with our method, while correlating more028
highly with our unified evaluation framework029
than prior metrics in the literature.030

1 Introduction031

Sharing information is vital for communication and032

discourse across domains, as it allows for knowl-033

edge to be disseminated to a wider audience. This034

is often done by users through documents in multi-035

ple formats that nevertheless share some underlying036

knowledge. A product manager may need to cre-037

ate a requirements spec, a product pitch deck, and038

an announcement newsletter for the same project.039

Likewise, a person on the job market may create a040

resume, a cover letter, and a personal website. We041

consider these documents to be templatic views of 042

the same underlying knowledge. 043

This is equally true for the scientific domain, 044

in which researchers create documents in multiple 045

formats to effectively communicate and showcase 046

their work, – such as through academic papers, 047

conference talks, social media posts, poster pre- 048

sentations, and non-technical blog posts. Sharing 049

knowledge in multiple formats broadens the au- 050

dience and can help bridge the information gap 051

between domain experts, researchers in adjacent 052

fields, and even the general public, leading to 053

greater understanding, collaborations and acceler- 054

ated progress (Bornmann and Mutz, 2014). 055

Past work on document generation has focused 056

on developing generation and evaluation methods 057

specific to a single document type (Fu et al., 2021; 058

Qiang et al., 2016; Chandrasekaran et al., 2020). 059

Narrow, custom methods tailored to individual doc- 060

ument types are, nevertheless, time consuming to 061

engineer and manage over the long term. For exam- 062

ple, in an enterprise setting, it’s common to have 063

dozens of occupation- and task-specific documents, 064

each with their own template.Additionally, specific 065

trained methods require data that may be expensive 066

to acquire, or even be unavailable entirely. Mean- 067

while, LLMs have recently shown great success in 068

long document generation (Radford et al., 2019; 069

Brown et al., 2020), indicating that this fragmenta- 070

tion of methods may no longer be necessary. Thus, 071

our goal is to unify methods for both generating 072

and evaluating templatic views of documents, al- 073

lowing system designers and engineers to manage 074

and adapt to a range of document types and do- 075

mains easily and efficiently. 076

We begin by showing that LLMs are capable of 077

diverse, structured document generation, requiring 078

very little instructional guidance to do so effec- 079

tively. Additionally, a few minor augmentations 080

to the prompt – such as a structured, intermediate 081

representation, and simple stylistic descriptions – 082
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Figure 1: Visualization of our method to unify the generation and evaluation of templatic views of documents. Given an input
document, we prompt the LLM to generate an intermediate representation. We can use the representation to prompt the model to
generate a templatic view of the input document. We then evaluate the generations using our unified evaluation framework. The
LLM represented in the figure is the same model.

can further improve downstream performance, es-083

pecially for smaller, less resource intensive models.084

These findings have important implications on the085

deployment and scaling of unified, real-world AI-086

assisted document authoring systems.087

In similar vein, we then introduce Template088

Adaptable Evaluation (TAE), departing from prior089

work’s task specific evaluation methods (Zhang*090

et al., 2020; Qiang et al., 2016; Wang et al.,091

2015). TAE is a unified precision-recall style frame-092

work for automatic evaluation that is highly cus-093

tomizable, allowing users to easily integrate ex-094

isting text-based metrics from the literature into095

its formulation and tailor it to their specific use096

case.Additionally, this framework allows develop-097

ers to compare performance across document types,098

without needing to develop an evaluation metric099

for each individual template.100

We evaluate our unified approach for templatic101

view generation and evaluation on 3 types of doc-102

uments: slides, posters, and blog posts (Fu et al.,103

2021; Qiang et al., 2016; Chandrasekaran et al.,104

2020). Our experiments demonstrate that using105

a structured intermediate representation leads to106

improvements in performance across tasks, with107

greater gains for smaller language language models.108

In our human evaluation to validate both our uni-109

fied document generation method and evaluation110

metric, we show that annotators prefer the output111

yielded by the structure-aware generation process112

82% of the time and that our evaluation metric cor-113

relates more highly with human preference than114

other popular metrics. We release our code1 to115

support future research.116

1Link suppressed for review.

2 Related Work 117

There are several areas of related research in NLP 118

that are relevant to the problems of document trans- 119

formation and evaluation. 120

Document summarization has been explored in 121

a number of domains, including news (See et al., 122

2017), literature (Sciré et al., 2023), law (Deroy 123

et al., 2023), and dialogue (Chen et al., 2021). 124

In the scientific domain, summarization of scien- 125

tific papers has taken the form of long form sum- 126

maries (Chandrasekaran et al., 2020), abstract gen- 127

eration (Cohan and Goharian, 2015), conference 128

talks (Lev et al., 2019), and query based sum- 129

maries (Fok et al., 2023). These summaries can 130

be either extractive (Sefid and Giles, 2022) or ab- 131

stractive (Chandrasekaran et al., 2020). 132

Although the tasks of slide and poster genera- 133

tion have generally been considered separate from 134

scientific summarization, they are related in that 135

both tasks require taking an input article, then orga- 136

nizing and abstracting the information to generate 137

a new document. Past work has developed meth- 138

ods for slide generation from papers (Hu and Wan, 139

2015; Li et al., 2021; Hu and Wan, 2015; Fu et al., 140

2021), from code (Wang et al., 2023a), or based 141

on a query (Sun et al., 2021). Poster generation 142

has been explored in the form of content extraction 143

for posters (Xu and Wan, 2021), interactive genera- 144

tion (Wang et al., 2015), or full content generation 145

using graphical models (Qiang et al., 2016). To the 146

best of our knowledge, our work is the first to create 147

a unified method capable of generating a diverse 148

range of templatic views of a source document. 149

Large Language Models (LLMs), which are cen- 150

tral to our approach, have shown impressive capa- 151
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bilities in a variety of tasks (Radford et al., 2019;152

Brown et al., 2020). Based on the transformer archi-153

tecture (Vaswani et al., 2017), LLMs have shown154

emergent abilities in tasks such as arithmetic and155

question answering (Wei et al., 2022a). Similar to156

chain of thought prompting (Wei et al., 2022b) and157

content planning prompting (Wang et al., 2023b),158

we show that by generating an intermediate repre-159

sentation of an input document can improve perfor-160

mance over simply prompting the model to gener-161

ate the final document from the original input.162

As past work has tackled generation of templatic163

views as separate tasks, methods for automatic164

evaluation of different document types is frag-165

mented. LongSumm, the shared task introduced166

by Chandrasekaran et al. (2020), uses ROUGE167

to evaluate model performance (Lin, 2004). Fu168

et al. (2021) introduced Slide Level ROUGE to169

evaluate slide generation, a variant that contains170

a penalty for the number of slides. Qiang et al.171

(2016) used a trained regressor. For summarization,172

many automatic evaluation metrics have been in-173

troduced such as BERTScore (Zhang* et al., 2020),174

UniEval (Zhong et al., 2022), BARTScore (Yuan175

et al., 2021), BLANC (Vasilyev et al., 2020), and176

MoverScore (Zhao et al., 2019). However, these177

metrics are intended for a simple input document-178

summary setup, and do not take into account factors179

that affect the quality of other types of documents180

(e.g. structure). Our work is the first to introduce181

template adaptable evaluation, allowing uniform182

comparison of performance across template types.183

3 Data184

We begin by describing the data used in this paper.185

There is no existing dataset that includes multiple186

views of a single document. Instead, we evaluate187

our unified method, described in §4, on 3 existing188

datasets: DOC2PPT, LongSumm, and Paper-Poster189

(Fu et al., 2021; Chandrasekaran et al., 2020; Qiang190

et al., 2016). These datasets are chosen because191

they each involve generating a different view of a192

document. Although our method is not specific to193

the scientific domain, it is one of the few domains194

with abundantly available public data of multiple195

templatic views 2. The three datasets and their196

associated generation tasks are described below.197

2We acknowledge that scientific writing does have struc-
tural regularities that may influence unified document gener-
ation. Due to the lack of other available datasets we leave
exploration of other domains to future work.

Slide Generation. We use use the DOC2PPT 198

dataset (Fu et al., 2021), which contains 5.8K sci- 199

entific papers in Computer Science and their re- 200

spective slide decks. As Fu et al. (2021) do not 201

release data splits or code, we randomly sample 202

1K examples from this dataset for evaluation. The 203

slides are provided as an image for each slide. We 204

use the Azure OCR tool to extract the text from 205

each slide3. 206

Blog Generation. We use the LongSumm 207

dataset (Chandrasekaran et al., 2020), which in- 208

cludes blog posts of scientific papers in the Com- 209

puter Science domain. Since our approach requires 210

no training or supervision, we use the entire train- 211

ing split from Longsumm as our evaluation set. Of 212

the 531 publicly released blog posts in this set, we 213

could only access 505, with the other 26 including 214

broken links or being behind a paywall. 215

Notably, while Longsumm includes a blind test 216

set of 22 papers, this test set only consists of inputs 217

without their reference outputs, thus making it im- 218

possible to compute our custom evaluation metric 219

(see §5). In the interest of completeness and com- 220

parison to prior work, we do, however submit runs 221

from our systems to the leader board and report the 222

results of this blind test set in Appendix D. 223

Poster Generation. We use the Paper-Poster 224

dataset (Qiang et al., 2016), which consists of a 225

dataset of 85 papers in Computer Science and Bi- 226

ology, and their respective scientific posters; two 227

examples containing corrupted PDFs are excluded. 228

Although Qiang et al. (2016) release data splits, 229

they do not release code or results for comparison. 230

Given the small size of the dataset, we use it in its 231

entirety for more robust results. While the authors 232

uses the source files to extract the text of posters 233

for evaluation, they only release the PDF formats. 234

To preprocess the reference posters, we found that 235

automatic tools to extract text from documents did 236

not handle the visual layout of posters well, so we 237

manually extracted the text of the posters in this 238

dataset. Note that this process was only done to 239

obtain evaluation scores, and that our unsupervised 240

generation method is capable of creating target doc- 241

uments without the need for reference data. 242

For all 3 datasets, we use the Azure Document 243

Layout tool to extract the text of the input papers.4 244

3
https://learn.microsoft.com/en-us/azure/

ai-services/computer-vision/overview-ocr
4
https://learn.microsoft.com/en-us/azure/

ai-services/document-intelligence/concept-layout

3

https://learn.microsoft.com/en-us/azure/ai-services/computer-vision/overview-ocr
https://learn.microsoft.com/en-us/azure/ai-services/computer-vision/overview-ocr
https://learn.microsoft.com/en-us/azure/ai-services/document-intelligence/concept-layout
https://learn.microsoft.com/en-us/azure/ai-services/document-intelligence/concept-layout


4 Unified LLM-powered Generation of245

Templatic Views246

The most straightforward way to transform docu-247

ments between templatic views using LLMs, is to248

simply prompt the system to generate the target249

view given the input. However, similar to chain of250

thought prompting (Wei et al., 2022b), we hypothe-251

size that first generating a structured, intermediate252

representation of an input document and then rea-253

soning over that representation will result in better254

generations than directly prompting the model. Our255

goal is to evaluate the capabilites of LLMs to gen-256

erate long, structured documents, and experiment257

with how structured prompting can improve per-258

formance. We experiment with a simple general259

two-step process: first generate an intermediate260

representation, then generate the templatic view.261

These steps are described in greater detail below,262

and the process is visualized in Figure 1.263

Intermediate Representation Generation. In264

this work, we set the intermediate representation265

to be a JSON consisting of a structured layout of266

the most important parts of the input. We pro-267

vide the input document to the model along with a268

template of the representation and prompt it to ex-269

tract the most important information from the input270

document, and format it in the given JSON struc-271

ture. The exact prompts and JSON structure can be272

found in Appendix §A. While our experiments use273

a JSON intermediate representation, note that other274

formats that provide structure to the input text could275

be employed (e.g. XML or Markdown). Rather276

than trying to optimize for the best representation277

format, our goal is to show that this chain of extrac-278

tion approach along with structured augmentation279

to prompts can aid the quality of generations from280

LLMS. We leave exploration of different formats281

and other prompt optimization to future work.282

Templatic View Generation. We then feed the283

generated representation as input back into the284

LLM, prompting the model to generate the final out-285

put document, represented as a LaTeX document.286

For each templatic view, the prompt to generate287

the final LaTeX document takes a short description288

of the desired output, which we refer to as a style289

parameter. For example, the style parameter for290

slide generation is as follows: “Slides should in-291

clude a title page. Following slides should contain292

an informative slide title and short, concise bullet293

points. Longer slides should be broken up into mul-294

tiple slides.” The use of style parameters makes our 295

method adaptable to new templatic views; the user 296

only needs to write a short description of the tem- 297

plate style. Both the generation of the intermediate 298

representations and the final documents require lit- 299

tle to no prompt engineering. The prompts and 300

style parameters can be found in Appendix §A. 301

5 Template Adaptable Evaluation 302

Prior work on document generation has treated the 303

evaluation of different templatic views as separate 304

tasks. Thus, our goal is to develop a framework 305

of automatic evaluation that is template adaptable. 306

This not only allows us to compare performance 307

across diverse datasets, it also removes the require- 308

ment of designing and maintaining individual met- 309

rics for each template. In order to generalize to 310

multiple templates, we introduce the concept of 311

panels. A panel is a unit of organization within a 312

document type, for which the placement and order- 313

ing of the panel is important to the overall flow of 314

information in the document. 315

For example, we consider panels to be each slide 316

in a slide deck and each section on a poster. We 317

consider the entirety of a blog post to be a single 318

panel. Although we test our method on the tasks of 319

slide, blog, and poster generation, the concept of 320

panels is not limited to these document types. For 321

example, each post on a social media thread could 322

be considered a panel, or each page on a website. 323

We aim to unify the evaluation of templatic 324

views by integrating prior metrics into a template 325

adaptable precision-recall framework, which we 326

refer to as Template-Adaptable Evaluation (TAE). 327

TAE is not a new individual metric, but rather an 328

evaluation framework that allows generalization to 329

new templates. For example, TAE can even be used 330

with ROUGE to evaluate poster generation. 331

The general TAE formulation is as follows: 332

Precision = QP ×OP × L

Recall = QR ×OR × L
(1) 333

in which QP is the precision measure of quality 334

(§5.1), OP is the precision penalty for order (§5.2), 335

and L is the non-reflexive penalty for length (§5.3). 336

Similarly, QR is the recall quality measure and OR 337

is the recall penalty for order. The precision-recall 338

formulation allows evaluators to decide which mea- 339

sure is most important to them, or calculate an 340

overall F-measure score. 341
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5.1 Quality Measure342

For the TAE precision score, we calculate the av-343

erage similarity between the generated panels and344

their most similar reference panel as follows:345

QP =
1

|S̃|

∑
S̃

maxsim(S, S̃i) (2)346

in which S is the set of reference panels and S̃347

is the set of generated panels. For the similar-348

ity metric, the user can choose a metric that best349

matches their use case, such as ROUGE, BERT-350

Score, or a custom trained regressor (Lin, 2004;351

Zhang* et al., 2020). For example, a user might352

choose ROUGE if they want a similarity metric353

that focuses on exact word overlap, or BERTScore354

to measure broader semantic similarity.355

Similar to precision, the TAE recall score is cal-356

culated as the average similarity between the refer-357

ence panels and their most similar generated panel:358

QR =
1

|S|
∑
S

maxsim(S̃, Si) (3)359

By splitting the evaluation of quality into preci-360

sion and recall, we can evaluate both the content361

of the slides that were generated as well as the362

coverage of this content against some reference.363

5.2 Order Penalty364

Broadly, the goal of the ordering penalty is to mea-365

sure the similarity of the order of information in ref-366

erence and generated panels, independent of other367

factors. Unfortunately, because the cardinality of368

panels in the two outputs is not necessarily the369

same, a direct one-to-one mapping to compare or-370

dering is not feasible. Instead, a panel in one set371

can align to multiple references in the other, or372

none at all – as depicted in Figure 2. Intuitively,373

our solution is to virtually replicate (resp. drop)374

panels that have multiple (resp. zero) alignments375

in the reference set so that a one-to-one mapping376

of ordering, can in fact be computed.377

Formally, assume S and S̃ are sequences of ref-378

erence and generated panels respectively. We use379

the maximum similarity scores calculated in §5.1380

to align the panels across sets.381

For the precision ordering penalty, we define the382

following operation λP (s) =
∑

s̃ δP (s, s̃), where383

δP (s, s̃) =

{
1, iff s → s̃

0, otherwise
384

1S 5S2S 3S 4S

S~ 2S~ S~ S~ S~ S~6 S~7

1S
1S

5S
5S

5S2S 3S 4S

S~ 2S~ S~ S~ S~ S~6 S~7

1S 5S5S5S1S 3S 4S

S~ 2S~ S~ S~ S~ S~7S~6

1 3 4 5

S       = [1, 2, 4, 3, 5, 6, 7] ranking S       = [1, 2, 3, 4, 5, 6, 7] 

1 3 4 5

1 3 4 5

~

The inversion is represented 
in the ranking

P
ranking
P

Figure 2: Example of the process of obtaining the rankings
for the precision ordering penalty. We first use the similar-
ity measure to map each generated panel to its most similar
reference document. This mapping is used to calculate the pre-
cision quality score QP . We then use the mappings to create a
one-to-one alignment from the generated to the reference pan-
els, which we use to calculate the precision ordering penalty
(OP ). By creating a one-to-one alignment, we are able to
represent inversions in the ordering. This process is reflexive,
and panels not accounted for in the precision ordering penalty
are accounted for in the recall ordering penalty.

Intuitively, this captures the cardinality of the align- 385

ment of a panel in S with panels in S̃. Then, using 386

this operation we can replace every s ∈ S with 387

λP (s) copies, leading to an identical cardinality 388

for both S and S̃, and subsequent one-to-one map- 389

ping between their corresponding panels. 390

Then, to operationalize a penalty score for the 391

two sets of ordered panels we associate them with 392

ranks in both sets and use a rank correlation metric 393

to compute the degree of agreement. Specifically, 394

rank assignment is done as follows: panels in S̃ 395

are simply assigned ranks in order of appearance 396

1 through N – we call this S̃P
ranking; meanwhile 397

panels in S are assigned the identical rank to their 398

one-to-one aligned panel in S̃ and S̃P
ranking – we 399

refer to these rankings as SP
ranking. An example 400

of this process can be found in Figure 2. The final 401

ordering penalty is computed using Spearman’s 402

rank correlation (Szmidt and Kacprzyk, 2010): 403

OP =
Spearman(SP

ranking, S̃
P
ranking) + 1

2
(4) 404

where we perform a linear transformation to map 405

the original range of the correlation coefficient [-1, 406

1] to the desired range [0, 1]. 407

Similarly, for the recall ordering penalty, we map 408
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the reference panels to the generated panels, cal-409

culated as λR(s) =
∑

s δR(s̃, s). OR is calculated410

similar to OP , using the recall rankings.411

5.3 Length Penalty412

Finally, we compute a length penalty for both the413

recall and precision scores. Similar to Fu et al.414

(2021), this is done as follows:415

L = e
−abs(|S|−|S̃|)

|S| (5)416

We chose to keep L non-reflexive, because in the417

reverse case – as |S̃| → ∞, L → 1 – the metric418

could be cheated by over-generating.419

6 Results420

As mentioned in §3, past work on Doc2PPT and421

Paper-Posters do not release code, making it diffi-422

cult to do a direct comparison. They also do not423

report any baselines to compare against. Mean-424

while, Longsumm’s blind test does not allow us to425

compute our custom metric, although we do report426

the leaderboard results in Appendix D. Notably,427

with almost no prompt engineering our LLM-based428

system places second on this leaderboard. We ar-429

gue that for the investigation in this paper, direct430

comparison to prior non-LLM baselines is not only431

unfair to those approaches, but not particularly in-432

sightful. Therefore, similar to Wei et al. (2022b),433

we focus on variants of our LLM-based method434

and treat them as baselines. Example outputs of435

each template type can be found in Appendix E.436

We conduct experiments with the following set-437

tings: (1) No Representation – this is the default438

setting of going directly from the source document439

to the target document. We skip the intermediate440

generation step, passing the full paper as input. We441

experiment both with and without the style param-442

eters. (2) Own Representation – we do not pass443

a JSON structure to the intermediate generation444

step, and allow the model to choose its own struc-445

ture. (3) Text Representation – we extract the text446

from the intermediate representation, discarding447

the JSON structure. (4) JSON Representation –448

this is the full JSON structure for the intermedi-449

ate generation step. We experiment both with and450

without the style parameters.451

We use gpt35-16k in our main set of experi-452

ments. We truncate text that is too long for the input453

window and use a temperature of 0.0 as standard.5454

5A detailed evaluation of the temperature hyper-parameter
is included in Appendix §C

Similarity Measure
Rep. Style R-L M B BERTS

Sl
id

es

None × 5.0 6.4 0.3 31.6
None ✓ 5.1 6.0 0.4 31.7
Own ✓ 6.5 7.1 1.2 36.1
Text ✓ 7.3 8.0 1.4 36.4

JSON × 4.2 6.0 0.3 31.4
JSON ✓ 7.4 8.4 1.5 36.9

B
lo

gs

None × 26.6 19.6 3.0 82.5
None ✓ 25.1 17.7 2.3 82.8
Own ✓ 23.9 19.2 2.3 82.2
Text ✓ 25.4 19.3 2.5 82.5

JSON × 28.3 25.3 5.0 82.3
JSON ✓ 25.4 19.6 2.8 82.4

Po
st

er
s

None × 8.1 10.3 1.0 35.6
None ✓ 10.1 11.6 1.9 39.5
Own ✓ 12.8 12.6 2.9 52.8
Text ✓ 11.3 11.7 2.1 45.9

JSON × 14.2 16.8 4.0 52.8
JSON ✓ 15.5 14.5 15.3 53.3

Table 1: Evaluation results using GPT3.5 (gpt35-16k).
For each template, we experiment with different representa-
tions (Rep) and whether or not we include the style parameters
(Style). We report the TAE F1 scores as calculated in §5, using
ROUGE-L (R-L), METEOR (M), BLEU (B), and BERTScore
(BERTS) as the similarity metrics.

6.1 Results of automatic evaluation 455

In Table 1, we report the TAE F1 scores as de- 456

scribed in §5, using ROUGE-L (Lin, 2004), ME- 457

TEOR (Banerjee and Lavie, 2005), BLEU (Pap- 458

ineni et al., 2002), and BERTScore (Zhang* et al., 459

2020) for the similarity measure. As seen in the 460

results, by most measures, generating a JSON inter- 461

mediate representation yields the best performance. 462

We see that using the text representation gen- 463

erally degrades the performance over providing 464

the structured JSON representation, indicating that 465

structure is important for downstream performance 466

in addition to abstractive filtering of information. 467

Additionally, the text representation performs bet- 468

ter than skipping the intermediate step altogether 469

for both the poster and slide generation task, but 470

not the blog generation task. This is likely because 471

posters and slides have more inherent structure than 472

blog posts, which can be relatively free-form. 473

Finally, we see that allowing the model to choose 474

its own representation format degrades perfor- 475

mance over providing our pre-defined JSON struc- 476

ture. However, we see that in most cases, providing 477

a representation generated without a JSON struc- 478

ture still performs better than skipping the interme- 479

diate generation step altogether (while maintaining 480

the same style parameter setting). This indicates 481

that even without a pre-defined structure, the inter- 482

mediate step is still valuable for performance. 483
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Similarity Measure
Model Rep. R-L M B BERTS

Sl
id

es
MS × 0.6 0.4 0.0 28.6

✓ 4.4 4.6 0.4 30.5

MX × 4.8 7.3 0.5 31.8
✓ 6.7 7.9 1.0 34.0

GPT4 × 8.3 9.6 1.7 36.2
✓ 8.4 9.1 2.0 38.1

B
lo

g

MS × 2.7 1.7 0.1 73.5
✓ 21.7 16.2 1.7 81.3

MX × 22.8 15.7 2.1 82.6
✓ 25.6 20.5 3.2 82.5

GPT4 × 25.7 19.9 2.6 82.8
✓ 25.8 20.2 3.1 82.7

Po
st

er

MS × 3.2 1.8 0.2 32.2
✓ 6.0 6.5 1.2 38.1

MX × 10.5 11.4 1.7 40.9
✓ 10.4 11.0 1.5 50.7

GPT4 × 16.4 18.2 4.5 59.8
✓ 14.6 15.3 3.7 57.2

Table 2: TAE F1 scores using Mistral-7b (MS), Mixtral (MX),
and GPT4. We use ROUGE-L (R-L), METEOR (M), BLEU
(B) and BERTScore (BERTS) as our similarity measures. For
each template, we compare a JSON representation versus
skipping the intermediate generation step (Rep), maintaining
the same style parameters in both settings.

Do results generalize to other models? We484

conduct a subset of our experiments on Mistral-485

7B (Jiang et al., 2023), Mixtral (Jiang et al., 2024),486

and GPT4 (gpt4-32k), comparing the JSON rep-487

resentation to skipping the intermediate step. We488

maintain the same style parameters in both settings.489

In Table 2, we can see that by most measures, the490

documents generated with the intermediate repre-491

sentation score higher than the documents gener-492

ated without, particularly for blog posts and slides.493

The difference in performance is larger for Mistral494

than Mixtral and GPT4, indicating that our method495

particularly improves the performance of smaller496

models. Smaller models are generally cheaper, less497

resource intensive, and faster, but often operate at498

the cost of performance. The results indicate that499

for applications that are sensitive to cost or latency,500

this trade-off can be mitigated with a structured501

intermediate representation. The only experiment502

in which the documents generated with the rep-503

resentation do not strictly score higher on most504

measures is the posters generated with Mixtral and505

GPT4. Upon closer inspection, the references in506

this dataset are very verbose, averaging 391 to-507

kens. Our method produces generally less verbose508

posters, averaging 265 total tokens compared to509

345 tokens produced by the baseline. We hypothe-510

size that by editing the style parameters to include511

information about verbosity and length, we can512

improve performance on posters in the future.513
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Figure 3: Reasons annotators preferred each document.
While annotators largely preferred documents generated with
an intermediate representation, the most common reasons for
preference are better formatting and information content. We
exclude the “Other” count as it was only selected once.

6.2 Human evaluation 514

After showing that LLMs benefit from intermediate 515

structured representations in document transforma- 516

tions, we investigate whether our proposed evalua- 517

tion framework aligns better with human judgment 518

than previously proposed metrics. We sample 100 519

documents each from DOC2PPT and LongSumm, 520

and use the entirety of the Paper-Poster dataset in 521

this study. We present annotators with 2 versions of 522

each document, one generated with the intermedi- 523

ate representation and one without. Both versions 524

use gpt4-32k, as the best performing model. 525

The annotators are provided with the original 526

paper and the intended document type (blog, slide 527

deck, or poster), and are asked the following ques- 528

tions: (1) Which document do you prefer? (2) On 529

a scale of 1-3, to what degree do you prefer your 530

selection? (3) Why do you prefer your selection? 531

For question 3, annotators are also provided with 532

a multi-select checklist of reasons for their prefer- 533

ence: (1) quality of the content, (2) formatting, (3) 534

document style matching the intended document 535

types, (4) information represented in the document, 536

and (5) other (along with a free text box). The full 537

instructions, including the reasons provided and 538

examples, can be found in Appendix §B. 539

If the models do not produce LaTeX 540

and instead produce only text, we wrap 541

the text with \begin{document} and 542

\end{document}. We force the com- 543

pilation of the outputs with the command: 544

pdflatex --interaction=nonstopmode 545

<filename.tex>. Occasionally, this forced 546

compilation leads to oddly formatted documents, 547

but we consider this to be a part of the performance 548
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of the method and present the documents with no549

further changes. Each document is annotated by 3550

different annotators. We employed 4 annotators551

from India, sourced via a third-party agency, to552

carry out the human evaluation of our task based553

on a guideline document containing task-specific554

instructions, guidance, and annotated examples.555

They were compensated at a rate of $11.98 USD556

per hour for the total time spent working on the557

task, including a training round of annotation.558

Which method do humans prefer? The doc-559

uments generated with an intermediate represen-560

tation were preferred by 82%, based on majority561

vote (71% unanimously). The annotator agreement562

score was 0.51 with Krippendorff’s alpha, indicat-563

ing that while this is a subjective and specialized564

task, even non-expert annotators agree to a moder-565

ate degree. A visualization of the reasons the anno-566

tators preferred their selection can be found in Fig-567

ure 3. It can be seen that while annotators largely568

preferred the documents generated with an inter-569

mediate representation, the most common reasons570

for preference are better formatting and better in-571

formation content. This indicates that the structure572

provided by the intermediate representation makes573

it easier for the model to format the final document574

well. Additionally, the intermediate representation575

only includes the most salient information from576

the original text, resulting in higher quality of in-577

formation content. Finally, we see a fairly even578

distribution across different templatic views for the579

reasons of preference, indicating humans prefer the580

documents generated with the intermediate repre-581

sentation across different document types.582

Which metric correlates better with humans?583

We test whether our metric, as described in §5,584

correlates better with human preference compared585

to prior evaluation metrics in the literature. For586

each annotation, given the degree of the prefer-587

ence d (Appendix §B Q. 2) we convert value to a588

score P (d) → [1, 2, 3] if d is slight, moderate, or589

strong, respectively. If the annotator prefers the590

document generated without an intermediate repre-591

sentation, we take −P (d) instead. This allows us592

to measure if the metric captures directionality of593

preference along with degree. in parallel, we com-594

pute the automatic score m for each metric, then595

calculate S = m(with rep) − m(skip rep) where596

m is the metric we are evaluating (e.g ROUGE). If597

a human annotator prefers a document generated598

without the intermediate step, we’d expect a good599

Metric PearsonR
ROUGE-L 14.5

TAE ROUGE-L 19.7
METEOR 24.6

TAE METEOR 25.2
BLEU 13.6

TAE BLEU 13.8
BERTScore 10.6*

TAE BERTScore 5.4*

Table 3: Correlation of evaluation metrics with human judge-
ment. We compare each metric computed using the TAE
framework versus the standard computation. *Indicates the
correlation is not statistically significant (p > 0.01).

metric to assign a higher score to that document 600

as well, resulting in both S and P (d) being nega- 601

tive (and positive in the opposite case). Using this 602

intuition we assign an affinity score of a metric 603

with respect to human evaluation as the Pearson 604

correlation (Freedman et al., 2007) of S and P (d). 605

Since prior metrics are not designed to account 606

for the structure of documents, we compute them 607

by extracting only the text of both the generated 608

and reference documents. The correlations with 609

human judgement for each metric to its respective 610

TAE variants can be found in Table 3. As we can 611

see from the results, evaluations using our template 612

adaptable framework correlate more highly with hu- 613

man judgement, except in the case of BERTScore. 614

In the latter case the results are not statistically sig- 615

nificant, and we hypothesize that the open-domain 616

nature of BERT embeddings are poorly suited to 617

represent the semantic similarity of scientific text. 618

7 Conclusion 619

In many domains, people choose to disseminate in- 620

formation across different modalities and formats 621

for better communication to broader audiences. We 622

proposed a unified view of document transforma- 623

tion and evaluation. We showed that LLMs are ca- 624

pable of templatic document generation with mini- 625

mal supervision, and that a structured, intermediate 626

representation can improve performance, particu- 627

larly for smaller models. We also introduced a 628

flexible precision-recall framework for automatic 629

evaluation that easily integrates existing evaluation 630

metrics into a unified system and allows for com- 631

parison across diverse datasets without additional 632

task specific metric design. Finally, we conducted 633

a human evaluation and showed that annotators 634

prefer the documents generated using the interme- 635

diate representation 82% of the time and that our 636

evaluation framework correlates better with human 637

preference than standard evaluation metrics. 638
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8 Limitations639

Although our methods are not domain specific, we640

only evaluated them in the scientific domain, due641

to the availability of public data. Additionally, our642

framework is limited to textual content. In future643

work we plan to explore the application of our uni-644

fied framework for generation and evaluation on645

document views in other domains, as well as in-646

corporating multi-modal models and content gen-647

eration. Finally, it is possible that some of our test648

data has leaked into the training data of the models649

with which we experimented. This limitation is not650

unique to our work and exists for our baselines in651

addition to our methods.652

9 Ethics653

The potential risks of our work are similar to654

those of other work in downstream applications655

of LLMs. LLM generated documents can poten-656

tial generate copy-righted material (Carlini et al.,657

2020), personally-identifiable information (Lukas658

et al., 2023), or factually incorrect text (Manakul659

et al., 2023). The use of LLMs to generate docu-660

ments may violate some academic dishonesty poli-661

cies (Zdravkova et al., 2023). Our system is in-662

tended to be used in collaboration with human writ-663

ers. Users should edit the generations, checking664

for factual inconsistencies and other potential er-665

rors. Our work is intended to save users time that666

might be spent repeating information across mul-667

tiple documents, so they can focus on content cre-668

ation. Therefore, we believe the benefits of our669

work outweigh the potential risks.670
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A Prompt details891

The prompts and intermediate representation tem-892

plate used can be found in Table 4 and Figure 4,893

respectively. We note that the specific structure pro-894

vided to the prompt is not inherent to our method,895

and a different structure could be provided depend-896

ing on the input document and domain. For the897

tasks we evaluate in this paper, we use the follow-898

ing style parameters:899

• Slides: “Slides should include a title page.900

Following slides should contain an informa-901

tive slide title and short, concise bullet points.902

Longer slides should be broken up into multi-903

ple slides.”904

• Posters: “Posters should include a title sec-905

tion at the top. Each panel should include a906

heading and short, concise bullet points of the907

most important take-aways from that section.”908

• Blogs: “Blogs should include paragraphs in-909

troducing the topic, a summary of the input910

document, and important takeaways. The blog911

should be more readable to a general audience912

than the input document.”913

B Annotation Instructions914

B.1 Questions915

Question 1 – Which document do you prefer?916

In this question, you are asked to choose which917

document version you prefer. Some examples of918

qualities you may use to decide your preference919

include:920

• The quality of the content – The text is gram-921

matical and understandable. E.g. Document922

A contains major grammatical errors while923

Document B only contains minor errors.924

• The formatting – The formatting is reasonable925

and matches the formatting of the intended926

document type. E.g. A poster contains panels927

and each panel contains a header and body928

text.929

• The style – The document matches the style930

of the intended document type. E.g. Shorter,931

bulleted sentences in a slide deck.932

• Information represented in the document –933

The document contains sufficient information934

{
“Document Title": "TITLE",
"Document Authors: [
                    "AUTHOR 1", 
                    "AUTHOR2", 
                    ... 
                    "AUTHOR N"
                   ],
"SECTION TITLE 1": {
                    "Content": [
                                "SENTENCE 1",
                                "SENTENCE 2",
                                ...
                                "SENTENCE N"
                                ]
                    },
"SECTION TITLE 2": {
                    "Content": [
                                "SENTENCE 1",
                                "SENTENCE 2",
                                ...
                                "SENTENCE N"
                                ]
                    },
... 
"SECTION TITLE N": {
                    "Content": [
                                "SENTENCE 1",
                                "SENTENCE 2",
                                ...
                                "SENTENCE N"
                                ]
                    }
}

Figure 4: Template of the intermediate representation
provided to the prompts in Table 4.

to represent the input document. E.g. A blog 935

post represents the most important sections 936

from the input document. 937

The above criteria are non-exhaustive. Not all 938

criteria must be met, and you may use other rele- 939

vant criteria to make your decision. You are not 940

rating the document for factual correctness,6 and 941

only need to refer to the corresponding scientific 942

article if it will aid in making your preference. You 943

can answer this question with either Document A 944

or Document B. 945

Question 2 – On a scale of 1-3, to what degree 946

do you prefer your selection? 947

In this question you will rate the degree to which 948

you prefer your selection, on the following scale: 949

1. Small preference – The documents are similar 950

in quality and only contain minor differences 951

that affect my preference. 952

6The annotators are non-experts and do not have the back-
ground to determine factual correctness of scientific informa-
tion. Instead, they are encouraged to use the original paper
to understand if the information presented in the documents
represent the information in the paper, to the best of their
understanding.
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Prompt Function Prompt

Generate the intermediate representation

"Given the input text, extract the document title and authors.
For each section in the given input text, extract the most important sentences.
Format the output using the following JSON template:\n
<SURe STRUCTURE>\n\n
Input: <INPUT DOCUMENT>\n
Output:"

Generate LaTeX document

"Summarize the following input in a <TEMPLATE TYPE>style.
Style parameters: <STYLE PARAMETERS>
Format the output document as a latex file:\n
Input: <INPUT DOCUMENT>\n\n
Output:"

Table 4: Prompts used to generate the intermediate representation and final LaTeX document. The JSON structure
is pictured in Figure 4.

2. Moderate preference – I clearly prefer one953

document but the differences are not major.954

3. Strong preference – I have a strong preference955

for one document and the differences between956

the documents are major.957

Question 3 – Why do you prefer your selec-958

tion? (You may select more than one property)959

□ Formatting960

□ Information961

□ Quality962

□ Style963

□ Other (free text)964

B.2 Edge cases965

For most edge cases, it is up to your discretion on966

how to best handle the case. However, below are967

a few examples of how you could consider certain968

edge cases:969

Example 1: Slides 1-5 of Document A are970

higher quality but slides 6-10 of Document B971

are higher quality. You could reason that the first972

slides represent the most important information,973

and choose Document A. However, since Docu-974

ment B contained higher quality slides for another975

portion of the document, you could rate your de-976

gree of preference as “Small preference.”977

Example 2: Document A more closely978

matches the style of the intended document type,979

but Document B contains more relevant infor-980

mation to the source document. You could981

consider if Document A contains sufficient infor-982

mation to represent the input document, such as983

representing the most important sections. If yes,984

then you could prefer Document A. If not, then985

Simularity Measure
Temp R-L M B BERTS

Sl
id

es

0.0 7.3 8.2 1.6 35.1
0.25 7.2 8.3 1.5 35.4
0.5 7.0 8.3 1.5 36.4
0.75 7.0 8.0 1.2 35.5
1.0 7.4 8.2 1.4 35.8

B
lo

gs

0.0 25.3 19.9 2.7 82.7
0.25 25.5 19.8 2.7 82.6
0.5 26.2 20.9 3.2 82.8
0.75 25.4 19.9 2.7 82.6
1.0 24.8 19.9 2.6 82.7

Po
st

er
s

0.0 13.5 15.3 3.4 53.5
0.25 13.0 14.8 3.4 53.1
0.5 12.5 14.0 2.7 52.2
0.75 12.0 13.9 3.0 50.8
1.0 11.6 11.9 2.4 50.3

Table 5: Results of the temperature hyperparameter
experiments. We use ROUGE-L (R-L), METEOR (M),
BLEU (B) and BERTScore (BERTS) as our similarity
measures.

you could reason that information content is more 986

important than style, and prefer Document B. 987

Example 3: Document A contains more rel- 988

evant information than Document B, but also 989

contains major formatting errors, such as text 990

being cut off from the document. 991

You could reason that although Document A 992

contains more relevant information, the major for- 993

matting errors are significant enough to prefer Doc- 994

ument B. 995

Example 4: Neither document matches the 996

style or formatting of the intended document 997

type. Since neither document matches the style 998

or formatting of the intended document type, you 999

could consider other criteria, such as quality of 1000

content or the information represented. 1001

C Temperature Experiments 1002

We experiment with the temperature of the gen- 1003

erations to see how temperature affects perfor- 1004
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mance. We randomly sample 100 documents1005

each from LongSumm and Doc2PPT for the blog1006

and poster generation tasks, respectively. We1007

use the entirety of the Paper-Poster dataset, since1008

it contains less than 100 examples. We use1009

gpt35-16k and experiment with the tempera-1010

tures [0.0, 0.25, 0.5, 0.75, 1.0]. The results of this1011

experiment can be found in Table 5. As we can see1012

from the results, there seems to be little consistency1013

across the different types in which temperature per-1014

forms the best.1015

D Longsumm Blind Test Set Results1016

We submit the final documents from GPT4, the best1017

performing model overall, to the Longsumm blind1018

test set evaluation. We compare the documents1019

generated with and without the intermediate step.1020

We see that without the intermediate representation1021

we get a Rouge-1 score of 46.8 while the results1022

generated without the intermediate representation1023

received a Rouge-1 score of 46.4. We note that this1024

blind test set of 22 papers is significantly smaller1025

than the evaluation data (505 papers) we used in1026

the main body of this paper. Despite not designing1027

a task specific method, we place second on the1028

leaderboard, showing the powerful capabilities of1029

LLMs in long document generation.1030

E Example Outputs1031

We provide examples of the outputs generated with1032

and without the intermediate representation below.1033

The documents in all examples are generated with1034

GPT4 (gpt4-32k). Figure 5 includes example1035

slide generations, Figure 6 includes example blog1036

generations, and Figure 7 includes example poster1037

generations.1038

14



Title Page Gender in Danger? Evaluating Speech Translation Technology on the MuST-SHE Corpus
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Abstract
Translating from gender-neutral languages into gender-marked languages is a challenge for machines.
This difficulty is due to training data reflecting natural language asymmetries, including gender bias.
The study investigates if speech translation, where the input is an audio signal, can provide additional information to reduce gender bias.
The study presents the first thorough investigation of gender bias in speech translation, contributing with a benchmark for future studies and a comparison of different technologies.

Introduction
The need to address gender fairness and gender bias in natural language processing tasks is a growing concern.
Gender bias arises from the extent through which each language formally expresses the female or male gender of a referred human entity.
Machines tend to reproduce the linguistic asymmetries present in the real-world data they are trained on.
The study presents the first systematic analysis aimed to assess speech translation performance on gender translation.

The MuST-SHE benchmark
MuST-SHE is a multilingual, natural benchmark allowing for a fine-grained analysis of gender bias in machine translation and speech translation.
It comprises approximately 1,000 (audio, transcript, translation) triplets annotated with qualitatively differentiated and balanced gender-related phenomena.
The dataset was created and annotated by an expert linguist with a background in translation studies.

Experimental Setting
The study compares an End2End system with two cascade systems (Cascade and Cascade+tag).
The evaluation method acknowledges and adapts previous related works to go beyond them and make BLEU scores informative about gender.
The study implements a new evaluation method that removes unrelated factors that may affect the overall performance of a system to soundly estimate gender bias.

Conclusion
Translating gender is still an issue in speech translation and current technologies are affected by gender bias to variable extent.
The study encourages the community to start its rescue from MuST-SHE and the findings discussed in this paper.

(a) Document generated without intermediate representation.
This example is not cropped.

(b) Document generated with intermediate representation. This
example is cropped for space and includes an additional 4 slides
that are not included for space.

Figure 5: The above documents are example slides generated by GPT4 (gpt4-32k) with and without the
intermediate representation. We can see that without the intermediate step, the model did not generate a true slide
deck.
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’
Introduction Inverse Reinforcement Learning (IRL) is a method used in machine learning where an agent learns to perform tasks by observing a demonstrator. However, a significant limitation of existing IRL methods is their inability to outperform the demonstrator. This is because IRL typically seeks a reward function that makes the demonstrator appear near-optimal, rather than inferring the underlying intentions of the demonstrator that may have been poorly executed in practice.
Summary of the Input Document A recent paper by Daniel S. Brown and colleagues introduces a novel reward-learning-from-observation algorithm, Trajectory-ranked Reward EXtrapolation (T-REX), that extrapolates beyond a set of ranked demonstrations to infer high-quality reward functions from a set of potentially poor demonstrations. When combined with deep reinforcement learning, T-REX outperforms state-of-the-art imitation learning and IRL methods on multiple Atari and MuJoCo benchmark tasks and achieves performance that is often more than twice the performance of the best demonstration.
Important Takeaways T-REX has several advantages. First, rather than imitating suboptimal demonstrations, it allows us to identify features that are correlated with rankings, in a manner that can be extrapolated beyond the demonstrations. Second, when learning features directly from high-dimensional data, this regularizing effect can also help to prevent overfitting to the small fraction of state space visited by the demonstrator.
The authors evaluated T-REX on a variety of standard Atari and MuJoCo benchmark tasks. Their experiments show that T-REX can extrapolate well, achieving performance that is often more than twice as high as the best-performing demonstration, as well as outperforming state-of-the-art imitation learning algorithms.
Conclusion T-REX is a promising new approach to IRL that can significantly outperform the demonstrator without additional external knowledge. This makes it a valuable tool for tasks where the demonstrator is suboptimal, and the goal is to exceed the demonstrator’s performance.

(a) Document generated without the intermediate representation.
This example is not cropped.

Extrapolating Beyond Suboptimal

Demonstrations: A New Approach to Inverse

Reinforcement Learning

Daniel S. Brown, Wonjoon Goo, Prabhat Nagarajan, Scott Niekum

December 11, 2023

1 Introduction

In the world of robotics and artificial intelligence, one of the key challenges is
designing autonomous agents that can perform tasks with well-defined goals
and objectives. While computers and robots often outperform humans in tasks
requiring computational speed, precise manipulation, and exact timing, it can
be difficult to design reward functions and objectives that lead to desired be-
haviors. This is where inverse reinforcement learning (IRL) techniques come
into play. IRL techniques can infer the intrinsic reward function of a user from
demonstrations, which is particularly useful when goals or rewards are difficult
for a human to specify.

2 The Problem with Existing IRL Methods

However, a critical flaw of existing IRL methods is their inability to significantly
outperform the demonstrator. This is because IRL typically seeks a reward func-
tion that makes the demonstrator appear near-optimal, rather than inferring the
underlying intentions of the demonstrator that may have been poorly executed
in practice.

3 A New Approach: T-REX

In a recent paper, we introduced a novel reward-learning-from-observation al-
gorithm, Trajectory-ranked Reward EXtrapolation (T-REX), that extrapolates
beyond a set of (approximately) ranked demonstrations in order to infer high-
quality reward functions from a set of potentially poor demonstrations. The goal
of our work is to achieve improvements over a suboptimal demonstrator in high-
dimensional reinforcement learning tasks without requiring a hand-specified re-
ward function or supervision during policy learning.

1

(b) Document generated with the intermediate representation.
This example is cropped for space and includes an additional
page of text.

Figure 6: The above documents are example blog posts generated by GPT4 (gpt4-32k) with and without the
intermediate representation. We can see that without the intermediate representation, the model did not properly
format the LaTeX file for compilation.
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(a) Document generated without the intermediate representation.
This example is cropped for space and includes an additional 3
slides.

(b) Document generated with the intermediate representation.
This example is cropped for space and includes an additional 4
slides.

Figure 7: The above documents are example posters generated by GPT4 (gpt4-32k) with and without the
intermediate representation. We found that GPT4 often generates slide decks in place of posters. We can see that
the document generated without the intermediate representation contains more verbose panels and includes less
formatting.
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