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ABSTRACT

Vision Transformers have emerged as a powerful architecture that can outperform
convolutional neural networks (CNNs) in image classification tasks. Several at-
tempts have been made to understand robustness of Transformers against adver-
sarial attacks, but existing studies draw inconsistent results, i.e., some conclude
that Transformers are more robust than CNNs, while some others find that they
have similar degrees of robustness. In this paper, we address two issues unex-
plored in the existing studies examining adversarial robustness of Transformers.
First, we argue that the image quality should be simultaneously considered in
evaluating adversarial robustness. We find that the superiority of one architecture
to another in terms of robustness can change depending on the attack strength
expressed by the quality of the attacked images. Second, by noting that Trans-
formers and CNNs rely on different types of information in images, we formulate
an attack framework as a tool for implementing flexible attacks, where an image
can be attacked in the spectral domain as well as in the spatial domain. This attack
perturbs the magnitude and phase information of particular frequency components
selectively. Through extensive experiments, we find that Transformers tend to rely
more on phase information and low frequency information than CNNs, and thus
sometimes they are even more vulnerable under frequency-selective attacks. It is
our hope that this work provides new perspectives in understanding the properties
and adversarial robustness of Transformers.

1 INTRODUCTION

Convolution neural networks (CNNs) have been a dominant neural network architecture in computer
vision for a long time. However, Transformer-based structures have recently emerged as another
promising architecture (Dosovitskiy et al., 2021), achieving even better performance than CNNs
especially in image classification.

CNNs are known to be vulnerable to adversarial attacks, i.e., an imperceptible perturbation added to
an image can fool a trained CNN so that it misclassifies the attacked image (Akhtar & Mian, 2018).
Investigating robustness of a model against adversarial attacks is important because not only the
vulnerability issue is critical in security-sensitive applications but also such investigation can lead
to better understanding of the operating mechanism of the model. Then, a naturally arising question
is: how vulnerable are Transformers compared to CNNs?

The researches comparing adversarial robustness of CNNs and Transformers do not reach consistent
conclusions. One group of studies claims that Transformers are more robust to adversarial attacks
than CNNs (Naseer et al., 2021; Benz et al., 2021; Shao et al., 2021; Aldahdooh et al., 2021).
However, another group of studies claims that the two architectures have similar levels of robustness
(Bai et al., 2021; Mahmood et al., 2021; Bhojanapalli et al., 2021).

As an effort to further investigate the adversarial robustness of Transformers, we address two issues
that have been unexplored previously. First, we argue that the visual quality of the attacked images
needs to be considered properly when adversarial robustness is evaluated. We note that the existing
studies often consider only a limited number of conditions regarding the amount of adversarial
perturbation (i.e., attack strength). However, the superiority in terms of robustness between models
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may change depending on the amount of perturbation. In addition, different attack methods control
the amount of perturbation with different algorithmic parameters (e.g., L∞ norm), which makes
it difficult to compare their results. Moreover, the perturbations optimized for different models
by different attack methods may have different visual patterns, for which algorithmic parameters
may be inadequate to be a criterion of the amount of perturbation. Therefore, we suggest using
image quality to represent the amount of perturbation, and also considering a wide range of image
quality for comprehensive analysis. Second, noting that different models rely on different features in
images, we consider a flexible attack framework to effectively attack both CNNs and Transformers.
Previous studies identify that Transformers tend to rely more on low frequency features (Park &
Kim, 2022; Benz et al., 2021), while CNNs focus more on high frequency features (Wang et al.,
2020; Jo & Bengio, 2017). Popular gradient-based attack methods tend to perturb high frequency
features in images, which may make CNNs be fooled more easily than Transformers. We formulate
an attack framework, which can perturb images flexibly in both spatial and spectral domains.

Considering these issues, we conduct extensive experiments to compare adversarial robustness of
off-the-shelf CNN and Transformer models. Our contributions can be summarized as follows.

• We evaluate various models of CNN and Transformer over a wide range of image quality
of attacked images because the relative robustness between models sometimes changes
depending on the image quality.

• We formulate an attack framework that can perturb the magnitude and phase spectra in
the spectral domain and the pixel values in the spatial domain. In particular, examining
frequency-selective perturbations by the attacks is the key to deeper understanding of the
adversarial robustness of Transformers.

• We conduct in-depth analyses to investigate the frequency-dependent behaviours and im-
portance of spectral information in Transformers.

2 RELATED WORKS

2.1 VISION TRANSFORMERS

The vision Transformer (ViT) has appeared as a powerful neural architecture using the self-attention
mechanism (Dosovitskiy et al., 2021). Several variants of ViT have been also proposed. The Swin
Transformer (Liu et al., 2021) improves the efficiency over ViT using a shifted window scheme
for self-attention. To resolve the issue that Transformers require a large dataset for training, the
data-efficient image Transformer (DeiT) (Touvron et al., 2021) is trained through distillation from
a CNN teacher. Other variants include token-to-token ViT (Yuan et al., 2021), pyramid ViT (Wang
et al., 2021), Transformer in Transformer (Han et al., 2021), cross-covariance image Transformer
(Ali et al., 2021), etc.

2.2 ADVERSARIAL ATTACK METHODS

The goal of a typical adversarial attack is to change the classification result of a model by injecting
a noise-like perturbation to the image while the perturbation is kept imperceptible in order not to be
detected easily. The perturbation is usually found via gradient-based optimization. The fast gradient
sign method (FGSM) (Goodfellow et al., 2015) uses the sign of gradient of the classification loss.
The projected gradient descent (PGD) method (Madry et al., 2018) implements a stronger attack by
iteratively optimizing the perturbation. These attacks limit the Lp norm of the perturbation to control
the imperceptibility. The C&W attack (Carlini & Wagner, 2017) optimizes the weighted sum of the
amount of perturbation and the classification loss, which is known to be one of the strongest attacks.
Frequency-domain filtering can be use to constrain perturbations only in certain frequency regions
(Li et al., 2020; Guo et al., 2020; Sharma et al., 2019), which are still based on image-domain attacks.
Recently, direct perturbation in the frequency domain was also tried (Wen, 2022), which is different
from our method that can perturb the magnitude and phase components separately. Note that we do
not intend to develop a new stronger attack in the frequency domain, but aim to formulate a unified
attack framework that can perturb the pixel values, magnitude spectrum, and phase spectrum of an
image separately or simultaneously in a flexible manner.
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Figure 1: PSNR vs. attack success rate for CNNs and Transformers under the FGSM and PGD
attacks.

2.3 ADVERSARIAL ROBUSTNESS OF TRANSFORMERS

As mentioned in the introduction, two conflicting conclusions exist in the literature regarding the
relative adversarial robustness of CNNs and Transformers. In one group of studies, it is claimed that
Transformers are more robust than CNNs. Benz et al. (2021); Shao et al. (2021); Aldahdooh et al.
(2021); Paul & Chen (2022) commonly make a conclusion that Transformers are more robust against
gradient-based attacks including FGSM, PGD, and C&W because CNNs rely on high frequency
information while Transformers do not. In addition, Benz et al. (2021) claim that the shift-invariant
property of CNNs might be a reason for their lower robustness. Another group of studies argues that
Transformers are as vulnerable to attacks as CNNs. Mahmood et al. (2021) find that ViTs are not
advantageous over the ResNet and big transfer (BiT) models (Kolesnikov et al., 2020) in terms of
robustness against various attack methods such as FGSM, PGD, and C&W. Bhojanapalli et al. (2021)
show that CNNs and Transformers are similarly vulnerable against various natural and adversarial
perturbations. Bai et al. (2021) attempt to compare CNNs and Transformers on a common training
setup, from which it is concluded that they have similar adversarial robustness.

The aforementioned studies usually do not consider the trade-off characteristics between vulnera-
bility and attack strength in an extensive manner over a wide range of image quality degradation. In
addition, most of the studies consider only pixel-domain perturbations. These issues are dealt with
in our work.

3 METHOD

In this section, we present the two issues considered in our comparison of adversarial robustness of
CNNs and Transformers, and explain how we perform the comparison.

3.1 CONSIDERATION OF IMAGE QUALITY

In many popular attack methods, the attack strength can be controlled by certain parameters (e.g.,
L∞ norm of perturbation in FGSM, the balancing parameter between the amount of distortion and
the change of the classification loss in C&W). As an attack becomes strong, the target model be-
comes more vulnerable, but the image distortion may become perceptible. In the previous studies,
such a trade-off relationship has not been fully considered in benchmarking the adversarial robust-
ness of Transformers. However, depending on the considered attack strength, the superiority of one
model to another in terms of robustness may vary. Figure 1 shows an example of this issue, which
shows the attack success rate (ASR) on CNNs and Transformers with respect to the attack strength
(represented as the image quality in peak signal-to-noise ratio (PSNR)) for the FGSM and PGD
attacks (see Appendix for the experimental setup).

Overall, the ResNet models tend to be more vulnerable than the Transformers in both attacks by
showing higher ASR, which is consistent with the results in (Benz et al., 2021; Shao et al., 2021;
Aldahdooh et al., 2021). When we have a look at the details, additional observations can be also
made. For instance, in Figure 1a, DeiT-S is more robust than both ResNet models over 40 dB but
they show similar vulnerability at 30-35 dB.
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In addition, in Figure 1b, all models are similarly vulnerable showing almost 100% of ASR for low
PSNR values, but their vulnerability becomes different after about 40 dB. These results demonstrate
that it is important to examine a wide range of image quality in order to better understand the
vulnerability of different models.

Magntude
attack

ResNet50

ViT-B

Pixel
attack

Magntude
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Phase
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Pixel
attack

Phase
attack

Original

Figure 2: Example case of our attack perturbing
the magnitude, phase, and pixel values, respec-
tively, for ResNet50 and ViT-B.

While the attack strength and image quality
are generally compatible in the context of ad-
versarial attack, we consider the latter as a
more proper way due to the following reasons.
(1) The attack strength does not consider vi-
sual perception of the perturbation unlike image
quality. PSNR is defined in the signal point of
view but already shows moderately high corre-
lation with human perception (Athar & Wang,
2019), and thus has potential as an image qual-
ity metric for robustness evaluation. Further-
more, many perceptual image quality metrics
have been developed in literature, which can
be used to measure the perceptual amount of
perturbation. (2) At the same attack strength,
the perturbations optimized by different attack
methods on different models may have visually
different patterns, which need to be quantified
appropriately. As a hypothetical example of
an L∞ norm-constrained attack, consider that
a perturbation has a nonzero value at a single
pixel location, while another perturbation has
nonzero values at many pixel locations over the
whole image. Both cases satisfy the constraint,
but they should be treated differently, which can
be accomplished using an image quality metric.
(3) As aforementioned, different attack meth-
ods use different algorithmic parameters to con-
trol the attack strength, which cannot be eas-
ily compared with each other. This problem
is readily resolved if an image quality metric
is used. (4) We consider an attack framework
perturbing different components (i.e., magni-
tude, phase, and pixel). It is observed that the
perturbation patterns are significantly different
depending on the target component. An im-
age quality metric is required in order to com-
pare the attack strengths in different compo-
nents properly.

3.2 OUR ATTACK

Different from the existing works, we formulate a unified attack framework to attack images both
spatially and spectrally. The following considerations motivate us to use the framework. First, the
previous studies point out that CNNs tend to rely on high frequency information in images, which is
why they appear more vulnerable than Transformers (Benz et al., 2021; Shao et al., 2021). In other
words, the popular attack methods injecting high frequency noise are disadvantageous to CNNs.
Our attack framework tries to alleviate such an inherent bias by enabling to flexibly perturb im-
ages in both spatial location-selective and frequency-selective manners. Second, we aim to analyze
the mechanisms of Transformers in various viewpoints through the results of attacks in different
domains.

The Fourier transform of an image X can be written by

F{X} = M · ejϕ, (1)
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where M and ϕ are the magnitude and phase spectra, respectively. The image is attacked by the
combination of multiplicative magnitude perturbation1 δmag, additive phase perturbation δphase, and
additive pixel perturbation δpixel as follows:

X̃ ′ = F−1
{
clip0,∞(M ⊗ δmag) · ej(ϕ+δphase)

}
+ δpixel, (2)

X ′ = clip0,1(X̃
′), (3)

where F−1 is the inverse Fourier transform, ⊗ is the element-wise multiplication, and clipa,b(x)
clips each element of x within a and b. Here, we assume that the pixel values are normalized within
0 and 1. Note that δmag and δphase are kept to be symmetric in order to ensure the resulting image
after the inverse Fourier transform to have real-valued pixel values.

We consider various combinations of employed perturbations, i.e., single component attacks em-
ploying only one among δmag, δphase, and δpixel, denoted as “magnitude attack,” “phase attack,”
and “pixel attack,” respectively, the attack employing both δmag and δphase, denoted as “mag+phase
attack,” and the attack employing all perturbations, denoted as “mag+phase+pixel attack.”

The process to optimize the perturbations is inspired by the C&W attack (Carlini & Wagner, 2017).
In other words, we minimize the L2 difference (i.e., mean squared error (MSE)) between the original
and attacked images and maximize the cross-entropy (CE) loss. Thus, the loss function of our attack
is given by

Loss = λ ·MSE(X ′, X)− CE(f(X ′), y), (4)

where λ is a parameter balancing MSE and CE, f(·) is the model, and y is the ground truth.

Figure 2 shows an example case, where each of the magnitude, phase, and pixel components is
perturbed. It can be observed that attacking different components induce different distortion patterns
in the image. The distortion pattern also varies depending on the target model.

4 EXPERIMENTS

4.1 SETUP

We aim to benchmark the adversarial robustness of the pre-trained models that serve as off-the-
shelf solutions in general image classification applications. We consider ResNet50, ResNet152, and
BiT as CNNs, and ViT-B/16, ViT-L/16, DeiT-S, and Swin-B as Transformers. Here, S, B and L
mean small, base, and large, and /16 means the patch size. ResNet50 and ResNet152 are from the
torchvision models (Paszke et al., 2019) trained on ImageNet-1k (Russakovsky et al., 2015). BiT
based on ResNet152x4, ViT-B, ViT-L, DeiT-S, and Swin-B are from the timm module (Wightman,
2019), which are pretrained on ImageNet-21k (Deng et al., 2009) and finetuned on ImageNet-1k.
ViT trained on ImageNet-1k and DeiT-S without distillation are also considered.

To evaluate adversarial robustness of the models, the image dataset from the NeurIPS 2017 Adver-
sarial Challenge (Wightman, 2017) is used. For BiT, the images are resized to 480×480 to match
the input dimension.

To optimize the perturbations, we use the Adam optimizer with a fixed learning rate of 5×10−3 and
a weight decay parameter of 5×10−6. The maximum number of iterations is set to 1000. We also set
a termination condition that the optimization stops when the loss in Eq. (4) does not improve for five
consecutive iterations. We vary the value of λ as {1, 103, 5× 103, 104, 5× 104, 105, 5× 105, 106}.

We report the results using PSNR as the image quality metric. The results using other metrics,
mean deviation similarity index (MDSI) (Nafchi et al., 2016) and learned perceptual image patch
similarity (LPIPS) (Zhang et al., 2018), are shown in Appendix.

1We also tried an additive magnitude perturbation but it was not optimized well because the magnitude
spectrum has values over a wide range.
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(a) ResNet50 (b) ResNet152 (c) BiT

(d) ViT-B (e) ViT-B-1k (f) ViT-L

(g) Swin-B (h) DeiT-S (i) DeiT-S with no distillation

Figure 3: Comparison of different attacks for each model. The range for high attack success rates is
enlarged for better visualization.

4.2 RESULTS

4.2.1 COMPARISON OF ATTACKS

We first compare different attacks in our attack framework in order to show the effectiveness of
attacking in the spectral domain. Figure 3 shows the results in terms of ASR with respect to PSNR.
All the attacks can achieve (almost) 100% of ASR at the lower extremes of PSNR for all models.
However, their relative effectiveness varies depending on the model. For ResNet50 and ResNet152,
the pixel attack appears stronger than the magnitude attack and the phase attack, whereas the phase
attack is the strongest for ViTs and Swin-B. This shows that the flexible frequency domain attack
overcomes the limitation of the pixel attack perturbing mainly high frequency information, and
becomes a strong attack on the Transformers. DeiT-S is more vulnerable to the pixel attack as in
the ResNet models, probably because it is trained using distillation from the CNN teacher, which is
supported by the observation that DeiT-S without distillation is more vulnerable to the phase attack
as in ViTs and Swin-B. It is observed that the mag+phase attack tends to be similar to or weaker than
the single component attacks for ResNets or Transformers, respectively; it seems that using more
variables to be optimized makes optimization more challenging. And, perturbing all components
(i.e., the magnitude+phase+pixel attack) does not improve the attack performance compared to the
pixel attack for all models. Thus, we consider only the single component attacks in the following
analyses. Another observation is that the phase attack is mostly stronger than the magnitude attack.
Further analysis on this is presented later.

4.2.2 COMPARISON OF VULNERABILITY OF MODELS
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(a) Magnitude attack (b) Phase attack (c) Pixel attack

Figure 4: Comparison of different models for each attack type. The range for high attack success
rates is enlarged for better visualization.
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Figure 5: Example of the attacked image, dis-
tortion in the pixel domain (magnified by ×20),
and distribution of the distortion over different fre-
quency regions.

Figure 4 compares ASR of the models with
respect to PSNR for each attack type. Most
importantly, when ASR is relatively high, the
Transformers are similar to or more robust than
the ResNet models under the pixel attack (as in
the case of PGD in Figure 1b) but more vulnera-
ble to the magnitude and phase attacks. Again,
this is due to the flexible perturbations in the
frequency domain, which will be further ana-
lyzed later. When PSNR is high (over 45-50
dB), these trends do not hold any more, i.e.,
some Transformers (ViTs and DeiT-S) become
similarly robust to the ResNet models under the
magnitude and phase attacks, and the ResNet
models become more vulnerable to all Trans-
formers under the pixel attack. When Swin-
B is compared to ViT-B and ViT-L, the for-
mer shows higher vulnerability than the latter
for the magnitude and phase attacks. When the
model size is concerned, larger models (ViT-L
and ResNet152) are more robust than smaller
models (ViT-B and ResNet50) under all at-
tacks. While Bhojanapalli et al. (2021) also
observed a similar trend using pixel-domain at-
tacks (FGSM and PGD), we find that the same
also holds for the attacks in the spectral domain.
When ViT-B and ViT-B-1k are compared, ViT-
B is more robust than ViT-B-1k, but becomes
more vulnerable when PSNR becomes high, es-
pecially for the pixel attack. Bhojanapalli et al.
(2021) noted that training with a larger dataset
is beneficial for robustness; we additionally find
that the benefit of a larger dataset is even more
prominent for the magnitude and phase attacks
than for the pixel attack, but the benefit disap-
pears when the amount of perturbation is small.
DeiT-S behaves more like ResNet than the other
Transformers due to the distillation using CNN.
It is interesting to see that BiT, which has the
ResNet structure, shows the highest vulnerabil-
ity to the magnitude and phase attacks and is
one of the most vulnerable models under the pixel attack. Mahmood et al. (2021) experimented
the C&W attack, which can be considered to be similar to our pixel attack, but all models recorded
100% of ASR and thus no comparative conclusion could be made; in contrast, our result considering
a wide range of image quality for the pixel attack reveals the high vulnerability of BiT.
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Figure 6: Results of the phase attack when the perturbation is restricted to reside only in the low or
high frequency band. The case without restriction is also shown as ‘whole.’
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Figure 7: Classification accuracy with respect to the ratio of reduction in the magnitude or phase
spectrum.

4.3 ANALYSIS

We further investigate the particular vulnerability of the Transformers to the attacks in the spectral
domain.

4.3.1 FREQUENCY ANALYSIS OF PERTURBATIONS

We examine the distortion due to the attack in the spectral viewpoint. For this, the Fourier transform
is applied to the difference between the attacked image and the original image, and the magnitudes
in different frequency regions are obtained, where the frequency regions are defined as shown in
Figure 5b. Figures 5c to 5g show the attacked image, distortion in the pixel domain, and magnitude
distribution under the phase attack. The averaged results over images are shown in Appendix. In
the case of ResNet50, the distortion is concentrated on the high frequency regions, whereas low
frequency regions are mainly distorted in the other models. Since CNNs and Transformers rely
more on high and low frequency information, respectively (Park & Kim, 2022; Benz et al., 2021;
Wang et al., 2020; Jo & Bengio, 2017), the attack effectively injects perturbations in such vulnera-
ble frequency regions. Consequently, the distortion pattern significantly differs according to those
properties. Unlike ResNet50, the distortion in BiT is extremely concentrated in the low frequency
regions, which explains why BiT is the most vulnerable under the phase attack in Figure 4b.

4.3.2 FREQUENCY-RESTRICTED ATTACKS

We examine the case where the perturbation is applied to only a limited frequency band. Figure 6
compares the phase attack when the phase perturbation is only in the low frequency band (regions
1 and 2 in Figure 5b) or the high frequency band (region 10 in Figure 5b). For ResNet50, it is
more effective to perturb only the high frequency band because high frequency perturbations for
which ResNet50 becomes particularly vulnerable can be optimized more easily by the restriction.
However, for ViT-B, perturbing only the high frequency band is the least effective and the case
without restriction implements the strongest attack, because low-intermediate frequency regions
need to be perturbed for an effective attack as shown in Figure 5e.
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4.4 DEPENDENCE ON MAGNITUDE AND PHASE

In most results above, the magnitude attack appears to be weaker than the phase attack. We investi-
gate this phenomenon further.

4.4.1 SENSITIVITY TO REDUCED MAGNITUDE AND PHASE

We design an experiment where the magnitude or phase spectrum is reduced gradually, i.e., M ′ =
M × (1 − r) or ϕ′ = ϕ × (1 − r), where r ∈ {0, 0.1, ..., 0.9, 1}, and the classification accuracy
is measured. Note that no attack is applied in this experiment. The results are shown in Figure 7.
Both ResNet50 and ViT-B are more sensitive to phase reduction than magnitude reduction, and in
particular, ViT-B achieves 85.6% of accuracy even though the magnitude is reduced by 90%. These
imply that the corruption of the magnitude spectrum is less critical than that of the phase spectrum,
which explains the severer vulnerability of the models to the phase attack.

4.4.2 MAGNITUDE-PHASE RECOMBINATION

Table 1: Proportions of magnitude-phase-recombined im-
ages that are classified to the classes of the magnitude or
phase images, or some other classes.

Model Phase (%) Magnitude (%) Else (%)
ResNet50 2.04 0.11 97.85

ViT-B 33.92 0.26 65.82

Inspired by Chen et al. (2021), we
conduct an experiment where the
magnitude component of one image
and the phase component of another
image are recombined in the fre-
quency domain and the classification
result of this recombined image (af-
ter inverse Fourier transform) from a
model is tested. For all possible im-
age pairs, Table 1 shows the propor-
tion of the images that are classified as the class of the magnitude image or phase image, or none
of the two classes. For ResNet50, most of the cases (97.85%) do not follow either the classes of
the magnitude or the phase, while for the rest, more images follow the phase classes (2.04%) than
the magnitude classes (0.11%). For ViT-B, however, a considerable amount of recombined images
(33.92%) are classified as the class of the phase images, while only 0.26% of the images follow the
classes of the magnitude images. These results highlight the relative importance of the phase in-
formation, providing an explanation on the particular vulnerability of the Transformers to the phase
attack and the higher strength of the phase attack than the magnitude attack for the Transformers.

5 CONCLUSION

We comparatively investigated adversarial robustness of CNNs and Transformers using the unified
attack framework with consideration of the relationship between the image quality and ASR. Our
major findings can be summarized as follows.

• Different from the conclusions of the existing studies, we observed that Transformers can
become more vulnerable than CNNs. The Transformers are more robust than the ResNets
under the pixel attack, but more vulnerable under the magnitude and phase attacks. How-
ever, when the attack strength is low and the image quality becomes high, the ResNets tend
to become more vulnerable than the Transformers.

• Some models including DeiT and BiT sometimes do not follow the above trend. DeiT
trained by distillation from CNN behaves more similarly to ResNets. BiT appears to be
more vulnerable than the other models even under the magnitude and phase attacks.

• The ResNets are sensitive to the perturbation in high frequency regions, which can be
effectively injected by the pixel attack. On the other hand, the Transformers are sensitive to
the perturbation in low frequency regions, which can be optimized in the frequency domain
by the phase attack.

• The phase information plays more important role in classification for both ResNets and
Transformers than the magnitude information, and reliance on the phase information is
more prominent in Transformers.
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A EXPERIMENTAL ENVIRONMENTS

We run our experiments on an NVIDIA GeForce RTX 3090 GPU using CUDA 11.2. The software
modules are listed in the following table.

Table 2: Module environments used our experiments

Module Version
torch 1.11.0

torchvision 1.12.0
opencv-python 4.5.4.60

timm 0.5.4
piq 0.7.0

numpy 1.21.2
Pillow 8.4.0

seaborn 0.11.2
pandas 1.3.5

B EXPERIMENTAL SETUP FOR FGSM AND PGD

For both FGSM and PGD, the amount of perturbation is limited by the L∞ norm ϵ ∈
{0.1/255, 0.5/255, 1/255, 4/255, 8/255}. For PGD, the step size at each iteration is set to ϵ/T ,
where T is the number of iterations (T = 50).

C RESULTS USING OTHER IMAGE QUALITY METRICS

While we use PSNR as the image quality metric in the main paper, results using other perceptual
image quality metrics are shown here. We choose the mean deviation similarity index (MDSI)
(Nafchi et al., 2016), which was shown to perform the best in Kastryulin et al. (2019), and learned
perceptual image patch similarity (LPIPS) (Zhang et al., 2018), which uses the features from a pre-
trained network for classification. The results are shown in Figures 8-11. Note that a larger value of
MDSI or LPIPS indicates a lower quality level. Overall, the trends remain similar to those shown in
Figures 3 and 4 of the main paper.

D AVERAGE DISTRIBUTION OF DISTORTION

The distributions of the distortion by the phase attack over different frequency regions, averaged
over all images, are shown in Figure 12. The trends are the same to those observed in Figure 5 of
the main paper.
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(e) ViT-B-1k
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(f) ViT-L
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(i) DeiT-S with no distillation

Figure 8: Comparison of different attacks for each model using MDSI.
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(a) Magnitude attack
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(c) Pixel attack

Figure 9: Comparison of different models for each attack type using MDSI.
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(b) ResNet152
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(e) ViT-B-1k
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(i) DeiT-S with no distillation

Figure 10: Comparison of different attacks for each model using LPIPS.
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(a) Magnitude attack
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(b) Phase attack
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(c) Pixel attack

Figure 11: Comparison of different models for each attack type using LPIPS.

15



Under review as a conference paper at ICLR 2023

0 1 2 3 4 5 6 7 8 9 10
Frequency region

0.00

0.02

0.04

0.06

0.08

0.10

Pr
op

or
tio

n

(a) ResNet50

0 1 2 3 4 5 6 7 8 9 10
Frequency region

0.00

0.02

0.04

0.06

0.08

0.10

Pr
op

or
tio

n

(b) ResNet152

0 1 2 3 4 5 6 7 8 9 10
Frequency region

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Pr
op

or
tio

n

(c) BiT

0 1 2 3 4 5 6 7 8 9 10
Frequency region

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Pr
op

or
tio

n

(d) ViT-B
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Figure 12: Average distributions of distortion over different frequency regions.
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