
MeLLoC: Lossless Compression with High-order
Mechanism Learning

Xinyue Luo1 Jin Cheng1,2 Yu Chen2∗
1School of Mathematical Sciences, Fudan University

2School of Mathematics, Shanghai University of Finance and Economics
xinyueluo21@m.fudan.edu.cn jcheng@fudan.edu.cn yuchen@sufe.edu.cn

Abstract

Lossless compression of large-scale scientific floating-point data is critical yet chal-
lenging due to the presence of noise and high-order information that arises from
model truncation and discretization errors. Existing entropy coding techniques
fail to effectively leverage the mechanisms underlying the data generation process.
This paper introduces MeLLoC(Mechanism Learning for Lossless Compression),
a novel approach that combines high-order mechanism learning with classical
encoding to enhance lossless compression for scientific data. The key idea is to
treat the data as discrete samples from an underlying physical field described by
differential equations, and solve an inverse problem to identify the governing equa-
tion coefficients exhibiting more compressible numeric representations. Periodic
extension techniques are employed to accelerate the decompression. Through
extensive experiments on various scientific datasets, MeLLoC consistently outper-
forms state-of-the-art lossless compressors while offering compelling trade-offs
between compression ratios and computational costs. This work opens up new
avenues for exploiting domain knowledge and high-order information to improve
data compression in scientific computing.

1 Introduction

In the modern era, vast amounts of floating-point data are generated from large-scale simulations and
experiments, often reaching petabyte levels. Efficient compression of data is essential for reducing
storage costs and facilitating data transfer and analysis. Consequently, the compression of scientific
data has gained increasing attention.

Lossless compression aims to reduce the size of data while allowing perfect reconstruction of the
original data from its compressed representation. Classical lossless compression algorithms like Gzip
and Bzip2 employ entropy encoding techniques like Huffman coding and arithmetic coding to exploit
statistical redundancies in the data[1, 2]. While effective for general-purpose data, these methods
typically underperform when applied to scientific floating-point datasets, as they fail to capture the
distinct characteristics of such data. In contrast, specialized compression algorithms like FPZIP[3],
ZFP[4], zstd[5] and ALP[6] are designed to handle floating-point data more effectively by employing
predictive coding or customized entropy coders that account for the spatial correlations and value
distributions present in scientific datasets.

A common challenge in scientific data compression is the presence of high-order information and
randomness, or noise, which arises from roundoff errors during simulation, as well as model truncation
and discretization errors. This noise, termed as "false precision" by Zender[7], can significantly lower
the compression ratio. The reason is that lossless compression algorithms do not distinguish the
informative mechanism from the non-informative noise in data, thus leaving the level of meaningful
precision unassessed and failing to exploit the high-order information in the data. By leaving the

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

noisy components, the data is more likely to exhibit detectable patterns, indicating that their size can
be effectively reduced by a compressor[8].

To address this issue, Klöwer et al. propose a method of truncation based on evaluating the bitwise
dependence between adjacent grid points [9]. However, denoising by truncation on bit digits may not
be an optimal approach in practice due to the non-uniform distribution and varying levels of noise in
scientific data across different spatial and temporal contexts, which risks confounding the scientific
insights gleaned from the data. A recent work by Luo et al. [10] considers locally characterizing the
data’s spatial relationship with linear differential equations, then separating the noise instead of using
truncation. While this method offers a more nuanced approach to noise handling, it’s important to
note that both these techniques still constitute forms of lossy compression.

Scientific data typically conforms to well-defined model mechanisms, often characterized using
differential equations[11]. According to the theory of well-posedness for differential equations,
the solutions to the differential equations are determined by the initial and boundary conditions, as
well as the source terms[12]. This suggests that the entire physical field could be represented by a
smaller, compressed set of values that describe these mechanisms. However, most existing lossless
compression techniques do not exploit this inherent structure and high-order information in scientific
floating-point data.

In this paper, we aim to further enhance the effectiveness of lossless compression by learning the
inherent mechanisms underlying scientific data, building on previous near-lossless work[10]. The key
idea is to treat the data as samples from a discretized physical field and solve an inverse problem for
the governing differential equations to obtain the source terms, which exhibit a more compressible
numeric distribution.

Our main results can be summarized as follows:

1. We propose MeLLoC (Mechanism Learning for Lossless Compression), a novel approach
that combines high-order mechanism learning with classical encoding algorithms to achieve
efficient lossless compression of scientific floating-point data.

2. We implement periodic extension techniques to accelerate the solution of the large linear
systems arising in the parameter identification problem.

3. Through comprehensive numerical experiments, we demonstrate that MeLLoC consistently
outperforms the existing methods while offering compelling trade-offs between compression
ratios and computational requirements.

2 Background

Partial Differential Equations behind Scientific Data. Partial Differential Equations (PDEs) are
fundamental in modeling complex physical phenomena across various scientific disciplines. They
provide a mathematical framework for describing spatiotemporal changes in physical quantities. In
oceanography and climate science, PDEs are widely used to model phenomena such as heat transfer,
fluid dynamics, and wave propagation. Specifically in oceanography, these equations model ocean
circulation, temperature distribution, and salinity patterns, often involving multiple variables and
intricate interactions. While the specific equations can vary depending on the phenomenon being
studied, they generally capture the fundamental physical principles governing the system’s behavior.

The complexity of these PDEs and their numerical solutions often results in large-scale floating-point
datasets, which are the focus of our compression efforts. Understanding the underlying mathematical
structure of these datasets is crucial for developing effective compression techniques that can preserve
important physical features while reducing data volume.

Mechanism Learning of Scientific data Mechanism learning, or data-driven discovery of gov-
erning equations, has gained significant attention in scientific computing. This approach aims to
uncover the underlying physical laws from observational or simulation data. Key techniques in this
area include Sparse Identification of Nonlinear Dynamics(SINDy)[13] ,Physics-Informed Neural
Networks(PINNs)[14] . These methods provide a foundation for identifying compact representations
of complex systems, which can potentially be applied for data compression. However, SINDy requires
temporal evolution data to learn the underlying dynamics, while PINNs typically need large datasets
for training, making them less suitable for case-by-case data compression scenarios.

2

Entropy Encoding. Entropy encoding is a fundamental lossless data compression technique that
assigns shorter codes to frequently occurring symbols and longer codes to rare ones, based on the
statistical properties of the data. The encoding scheme is designed to minimize the overall bit
length of the encoded message. Shannon’s source coding theorem[15] provides the theoretical basis,
suggesting that the optimal code length for a symbol x is − logD(x), where the expected code length
is bounded by the entropy of the source distribution D.

Finite State Entropy (FSE)[16] is a notable entropy encoding method that offers competitive compres-
sion ratios and fast encoding and decoding speeds. FSE constructs a finite state machine to model the
probability of symbols, adapting to the changing statistics of the input data. This adaptability makes
FSE particularly effective for compressing data with non-uniform or unknown distributions.

3 Methodology

3.1 Overview of the MeLLoC Framework

Building upon PDE theory and mechanism learning concepts discussed earlier, we develop our
compression methodology specifically for scientific data. We demonstrate our approach using two-
dimensional (2D) scenarios, though the methodology can be extended to higher dimensions. Our
method takes advantage of the inherent mathematical structures present in scientific data to achieve
more effective compression.

Source Term 𝒇 Boundary 𝒖𝒃𝒅

Precision

Control

ത𝑢

Encoding and Decoding

Solve ℒ𝜃∗𝑢 = 𝑓
with 𝑢|𝜕𝐷 = 𝑢𝑏𝑑

Original Data 𝒖

Reconstructed Data ෝ𝒖

Local mechanism

𝐾ℒ𝑢𝑖𝑛 = 𝑏𝑢𝑏𝑑, 𝑓

Coefficient 𝜽∗

𝑣

ത𝑢

Figure 1: Overview of the proposed compression architecture.

We first exemplify the idea through the Laplace equation, a canonical PDE representing steady-state
conditions across various fields such as temperature distribution and electric potential

∆u = 0.

When the data represents the numerical solution of the aforementioned equation, derived from a
second-order central difference scheme applied to a grid with uniform spacing, it complies with the
following equation

ui,j =
1

4
(ui,j−1 + ui,j+1 + ui−1,j + ui+1,j).

This implies that the value at any central point is calculable based on the values of its immediate
neighboring points. Furthermore, in this scenario, the data is entirely determined by its boundary
values, suggesting that only the boundary data need be stored to fully reconstruct the original dataset.

In practice, data may exhibit non-homogeneous conditions, described by ∆u = f , where f denotes
the source term. In such cases, both the boundary values and the source f need to be stored.
Compression remains viable, provided the information entropy of f is subordinate to that of u, a
condition often satisfied when data exhibits elliptic properties or when the source term is of low
magnitude and sparse.

3

To address data governed by diverse mechanisms, our model is parameterized and calibrated through
learning from the data. We assume that a set of two-dimensional data satisfies a difference equation
Lui,j = fi,j , where L represents the difference operator. Globally, a linear system for the interior
unknowns uin can be constructed as follows

KLu
in = bubd,f . (1)

Here, KL is the stiffness matrix corresponding to the difference operator, while bubd,f comprises
boundary data and source term data and represents the ’data support’ which refers to the data needed
for the well-posedness of the equation.

Our goal is to learn the difference operator L by minimizing the source term |f |, thereby achieving
maximal sparsity and reduced information entropy. Consequently, only the boundary data ubd and
the sparse source term f are stored. During decompression, the data can be reconstructed using the
matrix KL.The proposed method is not limited to specific difference formats and can effectively
handle variable coefficient equations.

To facilitate the compression, the difference operator L is formulated in a compact 9-point form and
parameterized by θ = {Ci}9i=1. The coefficient template for the combination of neighboring points is
depicted in Figure 2(a), illustrating how local representation translates to global connectivity among
data points, as shown in Figure 2(b). Figure 2(c) provides some typical templates for differential
equations.

𝑪𝟒𝒖𝒊#𝟏,𝒋'𝟏 𝑪𝟖𝒖𝒊,𝒋'𝟏 𝑪𝟗𝒖𝒊'𝟏,𝒋'𝟏

𝑪𝟑𝒖𝒊#𝟏,𝒋 𝑪𝟓𝒖𝒊,𝒋 𝑪𝟕𝒖𝒊'𝟏,𝒋

𝑪𝟏𝒖𝒊#𝟏,𝒋#𝟏 𝑪𝟐𝒖𝒊,𝒋#𝟏 𝑪𝟔𝒖𝒊'𝟏,𝒋#𝟏

(a) Coefficient template. (b) Intra predictions.

-1/4

-1/4 1 -1/4

-1/4

1 -1

-1 1

1/2

-1/2 1 -1/2

-1/2

Elliptic Hyperbolic Parabolic
(c) Templates for some differential equations.

Figure 2: Local representation notations.

In the compression process, we need to determine the parameters θ = {Ci}9i=1 such that

C1ui−1,j−1 + · · ·+ C9ui+1,j+1 = fi,j ,

and minimize the magnitude of source term fi,j . Therefore, learning the operator (equivalently, the
corresponding stiffness matrix) transforms into solving an optimization problem formulated as

argmin
θ

F
(
θ;ubd

d , uin
d

)
,

where, by normalizing θ with C5 = −1, the loss function is defined by

F = ∥Lθud∥22 =
∑
i,j

(C1ui−1,j−1 + · · ·+ C9ui+1,j+1 − ui,j)
2
.

In applications, to reduce computational cost or to highlight local features, a strategic approach
involves selecting only a localized subset of the data to learn the difference operator Lθ. During
decompression, we obtain uin by solving the equation KLu

in = bubd,f .

Our approach is particularly suitable for compressing numerical solutions of differential equations.
Additionally, it performs well for data with explicit physical mechanisms, such as those encountered
in atmospheric and oceanic observational datasets or within the industrial sector. The learned nine-
point coefficient template Lθ (the difference operator) corresponds to the mechanism described by
a second-order differential equation and is generally applicable. Furthermore, the stability of both
the compression and decompression processes is assured by the well-posedness of the difference
equation.

4

3.2 Model identification and its well-posedness

Consider the underlying model of the data. For u ∈ C4(Ω), Ω ⊂ R2, the nine-point difference
template is related to the second order linear differential operator as

1∑
k,l=−1

Ck,lu(x+ kh, y + lh) =[(c3 +
1

2
c7 +

1

2
c8)h

2∂2
xx + (c4 +

1

2
c7 +

1

2
c8)h

2∂2
yy

+ (c7 − c8)h
2∂2

xy + 2(c1 + c5 − c6)h∂x + 2(c2 + c5 + c6)h∂y

+ c9]u(x, y) + o(h2).

Here Ck,l are the coefficients in Figure 2(a) and the subscripts k, l represent the relative position to
the data point (x, y). The relationship between Ck,l and cn can be expressed as

C = c1A1 + c2A2 + c3A3 + c4A4 + c5A5 + c6A6 + c7A7 + c8A8 + c9A9.

where C is the matrix of Ck,l, An are basis matrices, and cn are corresponding coefficients. The
matrices {An}9n=1 are defined as

A1 =

[
0 0 0
−1 0 1
0 0 0

]
,A2 =

[
0 1 0
0 0 0
0 −1 0

]
,A3 =

[
0 0 0
1 −2 1
0 0 0

]
,

A4 =

[
0 1 0
0 −2 0
0 1 0

]
,A5 =

[
0 0 1
0 0 0
−1 0 0

]
,A6 =

[
1 0 0
0 0 0
0 0 −1

]
,

A7 =

[
0 0 1
0 −2 0
1 0 0

]
,A8 =

[
1 0 0
0 −2 0
0 0 1

]
,A9 =

[
0 0 0
0 1 0
0 0 0

]
.

Based on this representation, encoding u becomes encoding the sparser high-order term o(h2), i.e.,
the source term f . Therefore, the optimization objective is to obtain a minimized high-order term,
which can be mathematically expressed as

{Ck,l}∗ = argmin
Ck,l

F (Ck,l;u) = argmin
Ck,l

∑
i,j

 1∑
k,l=−1

Ck,lu(i+ kh, j + lh)

2

.

Once the template θ := Ck,l is learned, one can calculate the coefficients of the differential operator,
allowing to classify the mechanism as elliptic, parabolic, or hyperbolic due to the reversibility of Ck,l

and cn, which provides interpretability of the model.

Next, we discuss the well-posedness of the model identification problem (compression process),
while that of the decompression process will be discussed in Section 3.5. The above minimization
problem is equivalent to solving the least square problem

Ac = 0,

where c = [C1, · · · , C9]
T , A ∈ RN×9, N is the number of data points in domain D, P : D → R,

and k = P(i, j), (i, j) ∈ D is the index after rearranging the data into 1-dimensional vector, with
(i, j) = P−1(k), k = 1, · · · , N , as its inverse mapping.

Ak,· = [ui−1,j−1, · · · , ui+1,j+1], (i, j) = P−1(k).

To find non-trivial solutions is to obtain the null space (kernel) of B = (ATA). If B is full-rank,
there is only trivial solution, while otherwise, there is no uniqueness. To address this issue, we set the
coefficient of ui,j to -1 (i.e. set C5 to -1 in Figure 2(a)), and fix the template size to 8. The problem
then becomes

Ãc̃ = b,

where c̃ ∈ R8, Ã ∈ RN×8, and b = [uP−1(1), · · · , uP−1(N)]
T ∈ RN . The problem has a unique

least squares solution c̃ = Ã†b, provided the data are not all degenerated. We assemble Ã and directly
solve the pseudo inverse, which serves as a fast solver for the compression process.

5

3.3 Data Composition

To illustrate the method’s capacity for lossless compression, consider the decomposition of data u
predicated upon linear superposition

u = L−1f + u0 + uerr.

This equation stratifies the dataset into three fundamental components:

• L−1f , representing G ∗ f , with G being the Green’s function for the domain. This part
corresponds to solution to the non-homogeneous equation with homogeneous boundary
conditions, determined by the source f (2D).

• u0(=
∂G
∂ν ∗ u

bd) denotes the solution to the homogeneous equation is determined only by
the boundary data (1D).

• uerr denotes the residual part (2D).

The precision control discussed in the following enables us to optimize the source term and retaining
sufficient significant figures based on data precision to nullify uerr, thereby yielding u = L−1f + u0.
This decomposition allows us to store only the boundary data ubd and the sparse source term f ,
achieving compression while preserving the essential information content of the original dataset.

3.4 Precision Control

Suppose the data u possesses a precision of m bits, expressed in decimal form, with a binary
equivalent exhibiting similar properties. This precision implies an accuracy to the order of 10−m,
as depicted in Figure 3(a). By analogy, the precision of the model coefficients Ci is quantified as n
bits, corresponding to 10−n. Consequently, when the source term f is computed via f = L(u) =∑9

i=1 Ciui, the precision of f is up to 10−m × 10−n = 10−(m+n).

The data can be losslessly recovered or decompressed once the error from solving the linear system
KLu

in = bubd,f is less than 10−(m+n), which is feasible with proper n. As n increases, the
admissible set for Ci enlarges, contributing to a lower absolute value for f but higher precision.
The optimal compression ratio is reached when significant digits of f are minimized. We optimize
n for coefficients Ci by starting with high precision and gradually reducing it while monitoring
reconstruction error and compression ratio. After several calibrations, n can be fixed for the remaining
dataset if the compression ratio for subsequent batches shows no significant fluctuation.

0 . 0 … 0 0 0 𝒃𝟏 𝒃𝟐 … … 𝒃𝒌𝟏

Case I: High precision digits.

0 . 0 … 0 0 𝒃𝟏 … … 𝒃𝒌𝟑

Case II: Large absolute value.

Case III: Optimal scenario.

0 . 0 … 0 𝒃𝟏 𝒃𝟏 … 𝒃𝒌𝟐

!𝒂𝒑 … !𝒂𝟏 . 𝒂𝟏 𝒂𝟐 … … 𝒂𝒎%𝟏 𝒂𝒎

𝒍 digits with true precision

𝒎 decimal places

Source	𝒇

Data 𝒖

0 . 0 … 0 𝒃𝟏 𝒃𝟐 … 𝒃𝒌%𝟏 𝒃𝒌

𝒎 + 𝒏 decimal places

𝒌 digits with true precision

(a) Precision digits and decimal places.

0 . 0 … 0 0 0 𝒃𝟏 𝒃𝟐 … … … 𝒃𝒌𝟏

Case I: High precision digits.

0 . 0 … 0 0 𝒃𝟏 … … 𝒃𝒌𝟑

Case II: Large absolute value.

Case III: Optimal scenario.

0 . 0 … 𝒃𝟏 𝒃𝟏 … … 𝒃𝒌𝟐

𝒂𝒑 … 𝒂𝟏 . 𝒂𝟏 𝒂𝟐 … … 𝒂𝒎−𝟏 𝒂𝒎

𝒍

𝒎

Source 𝒇

Data 𝒖

0 . 0 … 0 𝒃𝟏 𝒃𝟐 … 𝒃𝒌−𝟏 𝒃𝒌

𝒎

𝒌

0 . 0
…

0 0 0 𝒃𝟏 𝒃𝟐 … … … 𝒃𝒌𝟏

0 . 0 … 0 0 𝒃𝟏 … … 𝒃𝒌𝟑

0 . 0 … 𝒃𝟏 𝒃𝟐 … … 𝒃𝒌𝟐

(b) Trade-off between values and digits.

Figure 3: Illustration of precision control.

This approach considers different scenarios to balance significant digits and value magnitudes, as
illustrated in Figure 3(b). The trade-off between fewer effective digits of f compared to u contributes
to compression, while increasing precision in coefficient truncation expands the solution space, poten-
tially decreasing the absolute value of the optimized source term but increasing storage requirements.
Our method, MeLLoC, optimizes compression efficiency, balancing perfect reconstruction with
computational feasibility. The precision control is adaptive and can be tailored to different scientific
datasets, ensuring that the compression process is optimized for various types of atmospheric and
climate model data.

6

3.5 Fast Fourier-based Solver

The traditional approach to solving systems of equations (1) can be computationally intensive,
particularly when dealing with large datasets. To address this issue, we propose a Fourier-based
solver that accelerates computation while preserving data integrity.

We first extend the discrete field data periodically and expand it
using a 2D Fourier series

u(m,n) =

N2∑
k=1

N1∑
j=1

1

N1N2
ûjke

2πi
N1

(j−1)(m−1)e
2πi
N2

(k−1)(n−1)

where i =
√
−1 represents the imaginary unit, and ûj,k repre-

sents the Fourier coefficients. It is essential that the double-layer
boundary condition enables periodic extension for the source
field f . By substituting the Fourier series into the difference
equation, we obtain a system relating these coefficients

𝑖 = 0 1 𝑁 𝑁 + 1

Figure 4: Schematic representation
of periodic continuation.{

ûj,k =
f̂j,k
Bj,k

, Bj,k ̸= 0

ûj,k = 0, Bj,k = 0
, for j, k = 1, · · · , N1 and N2. (2)

Here, f̂j,k represents the Fourier coefficients of f . Bj,k is a coefficient involving the difference
operator and the Fourier basis functions. The specific form of Bj,k depends on the discretization
scheme used in the original differential equation[17]. In general cases, the double-layer boundary
values are necessary to determine the base frequency Fourier coefficients, ensuring the well-posedness.
For example, when n = 1,

u(m, 1) =

N2∑
k=1

N1∑
j=1

1

N1N2
ûjke

2πi
N1

(j−1)(m−1) =
1

N1

N1∑
j=1

(
1

N2

N2∑
k=1

ûjk

)
e

2πi
N1

(j−1)(m−1).

By applying DFT to u(m, 1), we obtain ũj satisfying u(m, 1) =
1

N1

N1∑
j=1

ũje
2π
N1

(j−1)(m−1). Utilizing

the orthogonality, we can derive ũj =
1

N2

N2∑
k=1

ûjk and therefore ûj1 = N2ũj −
N2∑
k=2

ûjk.

This approach allows for the efficient computation of û1k through similar reasoning. By employing
FFT and its inverse (iFFT), the algorithm accelerates the matrix approximation process during both
compression and decompression phases, with a computational complexity of O(N2 logN). This
Fourier-based approach significantly enhances computational efficiency compared to traditional
matrix computation methods, thereby ensuring the throughput of compression and decompression
operations while maintaining lossless reconstruction of the original data.

3.6 High-Order Mechanisms

While the proposed 9-point difference operator L is primarily designed to capture second-order PDE
dynamics, many real-world datasets may exhibit higher-order effects arising from more complex
governing equations or fine-scale features. These higher-order mechanisms can manifest in the source
term f , potentially limiting the compression performance if not properly addressed.

To better characterize these higher-order properties, a preprocessing step involving the introduction
of diffusive operators can be employed. Let D denote a diffusive operator, such as D = α∆2 + β∆,
where ∆ is the Laplacian and α, β are constants. We can apply this operator to the original data u to
obtain a smoothed version ũ = Du, which effectively filters out the fine-scale, high-order features.

The compression is then performed on ũ instead of u, yielding a sparse source term f̃ that encapsulates
the higher-order effects Lũ = f̃ . During decompression, the inverse diffusive operatorD−1 is applied
to recover the original data

u = D−1(ũ) = D−1(L−1f̃ + ũ0). (3)

7

This preprocessing strategy allows capturing high-order mechanisms by absorbing them into the
sparse source term f̃ , while the 9-point operator L focuses on representing the underlying second-
order dynamics in the smoothed data ũ. The diffusive operator approach maintains computational
efficiency, lossless compression/decompression, and enhances handling of complex, high-order data.
The diffusive operator D can be tailored to the dataset, potentially with learnable parameters for
optimized filtering. Iterative applications of D enable progressive extraction of high-order features at
multiple levels.

4 Algorithm

The algorithm uses an optimized 9-point template to achieve lossless compression and decompression
of data, which is mainly divided into two parts: compression and decompression.

Algorithm 1 Compression based on optimizing source term

Require: Data u and precision m
Ensure: Coefficients C, source term f , and boundary values ubd

1: Select initial template L0u (hyperbolic, elliptic, or other) and coefficient truncation precision n.
2: Set S1← 1, the adjustment count S2← 1, and the upper limit for the adjustment count S2∗.
3: while S1 > 0 and S2 < S2∗ do
4: if high-order mode is required then
5: Compute the source term u1 ← L0u using the initial template.
6: else
7: u1 ← u.
8: end if
9: Optimize the template coefficients C ← argminC ∥Lcu1∥.

10: Obtain the source term f ← Lcu1.
11: Truncate the source term to 10−(m+n) (or binary truncation): f ← truncated source term.
12: Encode f , increment S2, check the residual error, and verify the compression rate.
13: if the compression rate is unsatisfactory then
14: Adjust n, set S1← 1.
15: else
16: S1← 0.
17: end if
18: end while

The compression part includes selecting the initial template, setting the coefficient truncation precision,
and optimizing the template coefficients to minimize the residual error and information entropy of the
compressed data. The compression process also includes truncating the source term to the required
precision and encoding it using an appropriate encoding scheme. The compression part terminates
when the compression rate is satisfactory or when the maximum number of iterations is reached.

Algorithm 2 Decompression based on optimized source term

Require: Template coefficients C (preprocessing template C0, if any), source term f , boundary
values ubd (preprocessing boundary ubd

0 , if any), and data precision m.
Ensure: Data array u.

1: if high-order mode is required then
2: Assemble the stiffness matrix K0(C0).
3: Assemble the right-hand side d(ubd

0 , f).
4: Solve the equation K0f1 = d.
5: else
6: f1 ← f .
7: end if
8: Assemble the stiffness matrix K(C).
9: Assemble the right-hand side d(ubd, f1).

10: Solve the equation Ku = d.
11: Reconstruct u with the precision of original data.

8

The decompression part includes assembling the stiffness matrix and right-hand vector using the opti-
mized template coefficients, solving the linear system to obtain the compressed data, and truncating
it to the original precision. The decompression process also includes decoding the compressed source
term using the same encoding scheme and using it to reconstruct the original data.

5 Experimental Results

This section presents the experimental results of applying our proposed lossless compression algorithm
to the CESM-ATM and Hurricane datasets from the SDRBench[18]. The performance is evaluated
based on the original data, transformed data (source terms post-transformation), reconstruction error,
frequency distribution plots, compression ratio, throughput, and comparison with existing algorithms
such as Zstandard (zstd)[5] and fpzip[3]. All tests were conducted on a Mac with M1 Silicon, macOS
14.1.2, 16GB RAM.

5.1 Compression and Reconstruction

The original datasets were first transformed using our proposed method to generate source terms
suitable for encoding. The transformed data were then compressed, and the reconstruction error was
calculated by comparing the original data to the data reconstructed from the compressed representation.

(a)CESM-ATM. (b)Hurricane.

Figure 5: Demo of the proposed scheme on CESM-ATM and Hurricane datasets.

Figure 5 illustrates the results obtained by applying the proposed scheme to the CESM-ATM and
Hurricane datasets. For the CESM-ATM data, while the original data values span a range of
220 to 300, the source term exhibits a more compressed range of -0.1 to 0.1, indicating effective
compression. Notably, the reconstruction error was found to be around 10−11, which is smaller
than the least significant digit of single-precision floating-point representation. For the Hurricane
dataset, the reconstruction error is even smaller, on the order of 10−12. These results demonstrate
that the proposed method preserves the numerical precision essential for scientific computations.
The extremely low reconstruction errors ensure that the compressed data can be used reliably in
high-precision applications, maintaining the integrity of the original datasets for subsequent analyses
and simulations.

5.2 Frequency Distribution Analysis

To further illustrate the effectiveness of our compression method, we compared the frequency
distribution plots of the data before and after compression. The left represents the original data, while
the right represents the stored source terms. The histograms employ logarithmic binning for clarity,
demonstrating the reduced mean and standard deviation of the source term, which contributes to
decreased entropy and, consequently, a better compression rate.

240 260 280 300
Values

0

5

10

15

lo
g

2(C
ou

nt
)

0
Values

10

15

lo
g

2(C
ou

nt
)

5

0
-0.1 0.1 0 50 100 150 200 250 300

Values

0

5

10

15

lo
g

2(C
ou

nt
)

Values

10

15

lo
g

2(C
ou

nt
)

5

0
0 0.25-0.25-0.5 0.5

(a)CESM-ATM. (b)Hurricane.

Figure 6: Frequency distribution plots of data before and after compression.

9

5.3 Performance Evaluation

We evaluate MeLLoC against several state-of-the-art compression algorithms using two key metrics:
compression ratio and throughput. The compression ratio indicates the efficiency of data reduction,
with higher values representing more compact representations. Throughput measures the speed of
compression and decompression processes, which is crucial for handling large scientific datasets.
Table 1 presents a comprehensive comparison across CESM-ATM and Hurricane datasets.

Table 1: Performance comparison.
CESM-ATM Hurricane

Method Ratio Compression Decompression Method Ratio Compression Decompression
ALP 1.16 × 46.93 Mb/s 1054.95 Mb/s ALP 1.11 × 45.74 Mb/s 973.63 Mb/s

FPZIP 1.63 × 59.68 Mb/s 70.94Mb/s FPZIP 1.63 × 41.22Mb/s 53.95Mb/s
ZFP 1.02× 96.17 Mb/s 81.97 Mb/s ZFP 1.01 × 102.95 Mb/s 68.06 Mb/s

Blosc 1.30× 293.71 Mb/s 632.76 Mb/s Blosc 1.12 × 888.65 Mb/s 6516.29 Mb/s
Gzip 1.89 × 1.40 Mb/s 266.94 Mb/s Gzip 1.00 × 33.25 Mb/s 212.35 Mb/s

Zstandard 2.69 × 105.51Mb/s 152.81Mb/s Zstandard 2.78 × 69.51Mb/s 271.32Mb/s
MeLLoC 3.36 × 188.77 Mb/s 179.76Mb/s MeLLoC 3.29× 206.80Mb/s 190.35Mb/s

ALP and FPZIP are lossless floating-point compression algorithms, while ZFP is set to lossless mode
with zero error tolerance. Blosc, Gzip, and Zstandard are general-purpose lossless compression
algorithms. MeLLoC, the proposed method, consistently achieves the highest compression ratios
(3.36× for CESM-ATM and 3.29× for Hurricane) while maintaining competitive throughput.

5.4 Scalability Performance Analysis

Figure 7: Performance Metrics Across File Sizes.

In Figure 7,the compression ratio, represented by
the orange line, shows a slight decline as file size
increases, dropping from around 3.4 to just above
3.1 for the largest files. Compression and decom-
pression speeds, depicted by the blue and green
dashed lines respectively, remain relatively stable
across varying file sizes, with minimal fluctua-
tions. Compression speeds consistently outper-
form decompression speeds, both hovering within
a range of 150 to 200 MB/s across all file sizes.
This indicates a stable and efficient scalability
pattern in the data compression process.

6 Conclusion

In this paper, we present a novel mechanism-learning method for compressing scientific data. Our
proposed scheme effectively preserves the true precision of the data while enabling subsequent
lossless compression. Additionally, the approach offers flexibility by allowing the use of various
lossless encoding algorithms, which can be selected based on factors such as availability, speed, and
resulting file sizes, tailored to specific application requirements. Experiments demonstrate that the
proposed method has competitive reconstruction performance with the general-purpose methods,
while providing a novel perspective on scientific data compression. MeLLoC has several limitations.
As discussed in Section 3.1, its performance is contingent upon the accuracy of the differential
equation models representing the data. The method is particularly suitable for scientific data whose
order of magnitude aligns well with the assumed physical models. For datasets that do not fit these
criteria, the method may not be as effective. The precision control, crucial for optimizing compression,
also necessitates careful calibration, which might be challenging with diverse data characteristics.
Despite these constraints, MeLLoC presents a valuable approach for scientific data compression. In
future work, we intend to apply the ‘mechanism-learning’ concept to several pertinent real-world
domains, such as medical imaging, oceanography, and other related fields.

10

Acknowledgments and Disclosure of Funding

This work is supported by National Key Research and Development Programs of China (No.
2023YFA1009103), National Natural Science Foundation of China (Nos. 12201386, 12241103),
Science and Technology Commission of Shanghai Municipality (23JC1400501) and the Sino-German
Mobility Programme (M-0187) by Sino-German Center for Research Promotion.

References
[1] Khalid Sayood. Introduction to data compression. Morgan Kaufmann, 2017.

[2] David JC MacKay. Information theory, inference and learning algorithms. Cambridge university
press, 2003.

[3] Peter Lindstrom and Martin Isenburg. Fast and efficient compression of floating-point data.
IEEE transactions on visualization and computer graphics, 12(5):1245–1250, 2006.

[4] Peter Lindstrom. Fixed-rate compressed floating-point arrays. IEEE transactions on visualiza-
tion and computer graphics, 20(12):2674–2683, 2014.

[5] Yann Collet and Murray Kucherawy. Zstandard compression and the application/zstd media
type. Technical report, 2018.

[6] Azim Afroozeh, Leonardo X Kuffo, and Peter Boncz. Alp: Adaptive lossless floating-point
compression. Proceedings of the ACM on Management of Data, 1(4):1–26, 2023.

[7] Charles S Zender. Bit grooming: statistically accurate precision-preserving quantization with
compression, evaluated in the netcdf operators (nco, v4. 4.8+). Geoscientific Model Development,
9(9):3199–3211, 2016.

[8] Peter Lindstrom. Error distributions of lossy floating-point compressors. Technical report,
Lawrence Livermore National Lab.(LLNL), Livermore, CA (United States), 2017.

[9] Milan Klöwer, Miha Razinger, Juan J Dominguez, Peter D Düben, and Tim N Palmer. Com-
pressing atmospheric data into its real information content. Nature Computational Science, 1
(11):713–724, 2021.

[10] Xinyue Luo, Jin Cheng, Zhaoyi Sun, and Yu Chen. Precision-preserving compression of
scientific data: Learn mechanism from data. In 2024 Data Compression Conference (DCC),
page 572. IEEE, 2024.

[11] Jianhong Shen and Tony F Chan. Mathematical models for local nontexture inpaintings. SIAM
Journal on Applied Mathematics, 62(3):1019–1043, 2002.

[12] Lawrence C Evans. Partial differential equations, volume 19. American Mathematical Society,
2022.

[13] Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Discovering governing equations
from data by sparse identification of nonlinear dynamical systems. Proceedings of the national
academy of sciences, 113(15):3932–3937, 2016.

[14] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks:
A deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019.

[15] Claude Elwood Shannon. A mathematical theory of communication. The Bell system technical
journal, 27(3):379–423, 1948.

[16] Yann Collet. Finite state entropy. https://github.com/Cyan4973/FiniteStateEntropy,
2013.

[17] Xinyue Luo, Yu Chen, Jin Cheng, and Zhaoyi Sun. A mechanism-based method for image
inpainting. Applied Mathematics Letters, page 109113, 2024.

[18] Kai Zhao, Sheng Di, Xin Lian, Sihuan Li, Dingwen Tao, Julie Bessac, Zizhong Chen, and
Franck Cappello. Sdrbench: Scientific data reduction benchmark for lossy compressors. In
2020 IEEE international conference on big data (Big Data), pages 2716–2724. IEEE, 2020.

11

https://github.com/Cyan4973/FiniteStateEntropy

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly outline the novel approach of MeLLoC,
its application in lossless compression of scientific data, and the key idea of using high-order
mechanism learning. They set the stage for the paper’s contributions, such as the proposed
method’s effectiveness and the experiments conducted to validate its performance, which
are in line with the detailed content of the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The paper recognizes that MeLLoC’s performance is tied to accurate model
representation and highlights the computational challenges for large datasets. It also notes
the necessity for precision tuning, showing an awareness of the method’s limitations in
Section 6.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper focuses on presenting a novel method for lossless compression
of scientific data and does not explicitly present formal theoretical results or proofs. The
emphasis is on the practical application and empirical evaluation of the MeLLoC frame-
work, with performance demonstrated through experimental results. As for the theoretical
guarantees, we refer to the previous work in [17].

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper thoroughly details the MeLLoC framework, including the algo-
rithmic process and the datasets used for evaluation. It provides performance metrics and
comparative analysis with existing methods, which are crucial for replicating the study.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: The paper utilizes open-sourced data, the origins of which are clearly cited,
enabling the replication of experiments. However, the code is not publicly available due
to restrictions of an ongoing commercial project. Despite this, the authors are open to
academic collaboration, offering an avenue for interested researchers to engage in further
communications.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

12

Justification: Although the proposed method does not involve neural networks or a training
process, the paper thoroughly specifies the experimental framework. It includes comprehen-
sive details about the datasets utilized, the mechanism learning optimization process, and the
precision control strategy, which are pivotal for understanding and replicating the results.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper presents a clear reconstruction error measure and includes frequency
distribution plots, which support the statistical significance of the results.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper directs readers to section 5 for detailed experiment settings, and
execution times are specifically listed in Table 1.

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper is designed to comply with the NeurIPS
Code of Ethics, adhering to the principles of fairness, accountability, and transparency in
scientific research.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper does not explicitly discuss societal impacts as it focuses on a novel
lossless compression method for scientific data. The primary focus is on the technical
advancement and its application in scientific computing rather than on societal implications.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not discuss safeguards for data or model release as the focus is
on a lossless compression technique rather than on models or datasets that inherently carry
a high risk for misuse. The research does not involve pretrained language models, image
generators, or scraped datasets that would typically necessitate such precautions.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper ensures that all creators and original owners of the assets used are
properly credited, and it includes explicit mentions of the licenses and terms of use, which
are respected accordingly.

13. New Assets

13

https://neurips.cc/public/EthicsGuidelines

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not introduce new assets such as datasets, code, or models that
would require documentation to be provided alongside.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects,
as it focuses on a technical methodology for lossless data compression.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve research with human subjects, as it is centered on a
lossless compression technique for scientific data.

14

	Introduction
	Background
	Methodology
	Overview of the MeLLoC Framework
	Model identification and its well-posedness
	Data Composition
	Precision Control
	Fast Fourier-based Solver
	High-Order Mechanisms

	Algorithm
	Experimental Results
	Compression and Reconstruction
	Frequency Distribution Analysis
	Performance Evaluation
	Scalability Performance Analysis

	Conclusion

