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ABSTRACT

Automated knowledge graph (KG) construction is essential for navigating the
rapidly expanding body of scientific literature. However, existing approaches face
persistent challenges: they struggle to recognize long multi-word entities, often
fail to generalize across domains, and typically overlook the hierarchical and log-
ically constrained nature of scientific knowledge. While general-purpose large
language models (LLMs) offer some adaptability, they are computationally ex-
pensive and yield inconsistent accuracy on specialized, domain-heavy tasks such
as scientific knowledge graph construction. As a result, current KGs are shallow
and inconsistent, limiting their utility for exploration and synthesis. We propose
a two-stage framework for scalable, zero-shot scientific KG construction. The
first stage, Z-NERD, introduces (i) Orthogonal Semantic Decomposition (OSD),
which promotes domain-agnostic entity recognition by isolating semantic “turns”
in text, and (ii) a Multi-Scale TCQK attention mechanism that captures coher-
ent multi-word entities through n-gram–aware attention heads. The second stage,
HGNet, performs relation extraction with hierarchy-aware message passing, ex-
plicitly modeling parent, child, and peer relations. To enforce global consistency,
we introduce two complementary objectives: a Differentiable Hierarchy Loss to
discourage cycles and shortcut edges, and a Continuum Abstraction Field (CAF)
Loss that embeds abstraction levels along a learnable axis in Euclidean space. To
the best of our knowledge, this is the first approach to formalize hierarchical ab-
straction as a continuous property within standard Euclidean embeddings, offering
a simpler and more interpretable alternative to hyperbolic methods. To address
data scarcity, we also release SPHERE, a large-scale, multi-domain benchmark
for hierarchical relation extraction. Our framework establishes a new state of the
art on benchmarks such as SciERC, SciER and SPHERE benchmarks, improving
named entity recognition (NER) by 8.08% and relation extraction (RE) by 5.99%
on the official out-of-distrubtion test sets. In zero-shot settings, the gains are even
more pronounced, with improvements of 10.76% for NER and 26.2% for RE,
marking a significant step toward reliable and scalable scientific knowledge graph
construction.

1 INTRODUCTION

The exponential growth of scientific literature has created an overwhelming challenge: the pace of
publication now far exceeds human capacity for manual review and synthesis Taylor et al. (2022).
Automated systems that can distill unstructured text into structured, machine-readable representa-
tions are therefore essential. Knowledge Graphs (KGs) offer a compelling solution, representing
entities such as methods, datasets, or concepts as nodes and their semantic connections as edges
Wang et al. (2022a). Yet, constructing high-quality KGs from dense, jargon-rich scientific text re-
mains difficult, as complex terminology, long multi-word entities, and layered hierarchical structures
introduce challenges that current approaches fail to resolve.

Scientific KG construction is constrained by four interdependent challenges that limit both accuracy
and scalability. The first two concern node identification. Many scientific concepts are expressed
as long multi-word phrases, such as “in situ transmission electron microscopy”, which must be
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recognized as coherent units. This problem of multi-word entity recognition remains unresolved be-
cause most state-of-the-art models treat token boundaries as incidental rather than explicit objectives
Zhou et al. (2024); Zaratiana et al. (2023). A second challenge is domain generalization: systems
trained on one discipline must adapt to new fields without extensive retraining. Supervised models
often collapse out of distribution, while large language models (LLMs) with more than 10 billion
parameters offer broader adaptability but are computationally expensive, making them impractical
for routine KG construction. In contrast, our proposed model is lightweight, with only ∼300 million
parameters. Unlike general-purpose LLMs which require billions of parameters to achieve gener-
alization, HGNet matches the computational efficiency of specialized baselines while offering the
robust zero-shot capabilities of a foundation model.

Once entities are identified, the next task is to establish edges between them, introducing two fur-
ther challenges. Scientific knowledge is hierarchical, for instance, “Deep Learning” is a subfield of
“Machine Learning”. Capturing such relationships requires hierarchy-aware relation modeling Bai
et al. (2021), yet conventional models are largely hierarchy-blind, relying on shallow co-occurrence
statistics rather than deeper conceptual structures. Beyond hierarchy, graphs must also be logically
consistent: contradictions such as declaring A part of B and B part of A undermine integrity. Large
language models, while capable of performing both NER and RE in a single framework, are again
prohibitively expensive and yield inconsistent results on specialized, hierarchical scientific knowl-
edge (Refer table 3 of Zhang et al. (2024). Ensuring globally consistent structures is therefore
essential, but current methods lack mechanisms to guarantee that the graph forms a valid Directed
Acyclic Graph (DAG) Chami et al. (2020). Reliable KG construction thus requires not only accurate
entity recognition but also principled modeling of relational and structural dependencies.

To the best of our knowledge, we introduce the first end-to-end system designed to address all four
challenges by discovering latent hierarchical structures directly from text. Our framework oper-
ates in two stages. Stage one employs Z-NERD, a zero-shot recognizer that ensures robust domain
generalization via Orthogonal Semantic Decomposition (OSD) and captures complex entities with
a Multi-Scale TCQK attention mechanism. Stage two applies HGNet (Hierarchy Graph Network),
which builds a latent probabilistic graph, preserves hierarchical dependencies through specialized
message-passing, and enforces structural integrity via two objectives: Differentiable Hierarchy Loss
and Continuum Abstraction Field (CAF) Loss. To enable rigorous evaluation and mitigate data
scarcity, we contribute SPHERE, a large-scale, multi-domain benchmark. Across datasets such as
SciERC, SciER and SPHERE, our framework achieves new state-of-the-art results: average gains of
8.08% in NER and 5.99% in RE, with even larger improvements in zero-shot settings (10.76% for
NER and 26.2% for RE). Collectively, these contributions establish the first principled, empirically
validated solution for building robust, high-quality scientific KGs at scale. Our main contributions
include:

• Z-NERD: We propose a novel, domain-agnostic NER model that significantly outperforms all
state-of-the-art baselines on the most challenging scientific benchmarks (Refer table 1). Its core
innovations are the Multi-Scale TCQK mechanism, which enables coherent recognition of multi-
word entities by dedicating attention heads to n-gram patterns, and Orthogonal Semantic De-
composition (OSD), a new technique for zero-shot generalization that identifies domain-invariant
”semantic turn” signals.

• Hierarchy Graph Network (HGNet): We introduce a GNN architecture for relation extraction
that establishes a new state-of-the-art by a significant margin on complex hierarchical benchmarks
(Refer table 2, 3, 4). It learns and reasons over a latent, probabilistic conceptual graph and, unlike
standard GNNs, uses specialized message-passing channels (parent-to-child, child-to-parent, and
peer-to-peer) to preserve the directional flow of hierarchical information.

• A Geometric Theory of Abstraction: We introduce a novel paradigm for representing hierar-
chical knowledge. We are the first to formalize abstraction as an intrinsic geometric property
of standard Euclidean space, realized through a learnable Abstraction Field Vector that creates a
universal axis of generality. This approach, enforced by our Continuum Abstraction Field (CAF)
Loss, offers a more direct and interpretable alternative to complex methods like hyperbolic em-
beddings.

• The SPHERE Dataset: To address the critical bottleneck of data scarcity, we created and release
SPHERE, the first large-scale, multi-domain benchmark specifically designed for hierarchical re-
lation extraction. Generated via a novel methodology, it contains over 1 million paragraphs and
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111,000 annotated relations, enabling more robust training and evaluation of complex KG con-
struction models.

2 RELATED WORKS

The task of constructing a Knowledge Graph (KG) from scientific literature involves two primary
sub-tasks: Named Entity Recognition (NER) to identify conceptual nodes, and Relation Extraction
(RE) to identify the semantic edges between them. This section situates our work within existing
paradigms for these tasks, highlighting the persistent gaps that motivate our proposed framework.

2.1 ENTITY RECOGNITION IN SCIENTIFIC TEXT

High-performance scientific NER has been dominated by supervised transformer models such as
SciBERT Beltagy et al. (2019) and BioBERT Lee et al. (2019), pre-trained on large scientific corpora
and fine-tuned on task-specific data. This paradigm achieves state-of-the-art performance on in-
domain benchmarks and has been scaled to foundation models like BioMedLM Bolton et al. (2024),
yet it faces a critical architectural limitation. The ability to capture complex, multi-word entities
(e.g., ”in situ transmission electron microscopy”) arises only as an emergent property of contextual
embeddings rather than a dedicated feature, often resulting in fragmented or incomplete recognition.
Our Z-NERD framework addresses this gap through the Multi-Scale TCQK mechanism, which
intrinsically modifies attention to force heads to specialize in n-gram patterns of varying lengths,
offering a principled, structural solution.

A second limitation is poor domain generalization: supervised models degrade sharply on out-of-
domain text. Zero-shot methods such as GLiNER Zaratiana et al. (2023) and UniversalNER Zhou
et al. (2024) reformulate the task as span matching, while general-purpose LLMs like GPT-4 Ope-
nAI (2025) show impressive but inconsistent zero-shot performance Zhang et al. (2024). Yet these
approaches still depend on surface semantics or world knowledge. By contrast, our Orthogonal Se-
mantic Decomposition (OSD) trains the model to detect domain-agnostic semantic turns—points
where new concepts are introduced, shifting focus from vocabulary to discourse structure. This
enables Z-NERD to achieve robust zero-shot performance beyond the reach of semantic matching.

2.2 RELATION EXTRACTION AND HIERARCHICAL MODELING

Relation extraction (RE) has evolved from localized, sentence-level models to corpus-level systems
capable of multi-hop reasoning across documents. Early neural approaches relied on pipeline ar-
chitectures, but error propagation soon motivated joint models that simultaneously extract entities
and relations Zhong & Chen (2021); Yamada et al. (2020); Yan et al. (2023). Benchmarks such
as SciERC Luan et al. (2018) and SciER Zhang et al. (2024) have been instrumental in driv-
ing progress, enabling transformer-based methods that achieve state-of-the-art performance on fine-
grained scientific relations. However, these methods remain confined to sentence-level reasoning
and fail to capture the long-range dependencies and cross-sentence evidence chains that are central
to scientific literature.

To address this limitation, recent work has shifted toward cross-document relation extraction, em-
ploying graph neural networks (GNNs) and multi-hop retrieval to link entity mentions across docu-
ments and aggregate distributed evidence Wang et al. (2022b); Lu et al. (2023). Yet such methods
typically rely on surface features like co-occurrence or syntactic proximity, conflating textual adja-
cency with genuine conceptual relatedness and yielding noisy graphs. Meanwhile, hierarchy-aware
approaches such as hierarchical attention Han et al. (2018) and reinforcement learning frameworks
Takanobu et al. (2019) show promise but are tailored to shallow taxonomies, limiting their applica-
bility to the deep, nested, and implicit hierarchies of scientific knowledge. We therefore introduce
HGNet, the first GNN architecture explicitly designed for hierarchical relation extraction in scientific
literature. HGNet builds a latent conceptual graph and leverages parent, child, and peer message-
passing channels to model the directional flow of information, disentangling textual proximity from
conceptual hierarchy and enabling the capture of both local and global dependencies while preserv-
ing the layered structure of scientific knowledge.
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2.3 GEOMETRIC AND LOGICAL REPRESENTATIONS OF HIERARCHY

A key challenge in learning hierarchical structures is ensuring they are both logically and geomet-
rically sound. Our HGNet captures directional information flow and disentangles textual proximity
from conceptual hierarchy, but still requires a principled embedding space for global consistency. To
address this, we introduce a geometric perspective: instead of merely extracting relations, we learn
a hierarchy representation that respects logical constraints and abstraction levels. While hyperbolic
geometry is often used for low-distortion tree embeddings Nickel & Kiela (2017), our approach de-
fines a new paradigm, learning a globally consistent abstraction ordering directly in Euclidean space.
This is achieved via the Continuum Abstraction Field (CAF) Loss, which orients the embedding
space along a learnable universal ”axis of abstraction.” Simpler and more interpretable, this prior
integrates with our Differentiable Hierarchy Loss, enforcing logical constraints such as acyclicity.
Together, these losses ensure the learned KG is both geometrically organized and logically coherent.

3 METHODOLOGY

Our framework consists of a unified, co-trained architecture utilizing a shared SciBERT encoder.
First, Z-NERD processes raw scientific text to identify and extract entity mentions. Second, HGNet
takes the contextualized entity embeddings from this shared encoder as input, which maintains the
document-level context, and learns their hierarchical and peer relationships, constructing a globally
consistent knowledge graph.

3.1 Z-NERD: ZERO-SHOT ENTITY RECOGNITION

Z-NERD is an efficient tagging model that addresses two key challenges in NER: recognizing multi-
word entities and generalizing to new domains. Its architecture first applies Orthogonal Semantic
Decomposition to the input embeddings to extract domain-agnostic features, then feeds these en-
riched representations into a transformer encoder modified with our Multi-Scale TCQK mechanism.

3.1.1 DOMAIN GENERALIZATION VIA ORTHOGONAL SEMANTIC DECOMPOSITION (OSD)

To overcome domain overfitting, a model must learn to recognize abstract linguistic patterns rather
than memorizing domain-specific vocabulary. This requires identifying features that are invariant
across different scientific fields.

We therefore hypothesize that Hypothesis 3.1 : robust domain generalization can be achieved by
training a model to rely on features that explicitly isolate the introduction of new semantic concepts,
rather than simply tracking the overall semantic flow. By providing the model with a ”semantic
turn” signal (a measure of how much the meaning deviates from the preceding context), we can
make it sensitive to the underlying logical structure of the text instead of overfitting to vocabulary.

We achieve this by decomposing the change vector between consecutive word embeddings, ∆Et =
Etextt−Etextt−1 , into two orthogonal components. The sustaining component is the projection of this
change onto the previous word’s embedding, representing elaboration. The divergent component,
which is orthogonal to the previous word’s direction, captures the introduction of a new concept.

vsustainingt =
∆Et · Etextt−1

∥Etextt−1∥2
Etextt−1

(1)

vdivergentt = ∆Et − vsustainingt (2)

We concatenate the divergent vector vdivergentt with the original contextual embedding Etextt (Re-
fer figure 6). This enriched representation provides the model with the domain-invariant signal of
conceptual shifts necessary for robust zero-shot generalization.

3.1.2 COHERENT MULTI-WORD ENTITIES VIA MULTI-SCALE TCQK ATTENTION

Standard self-attention mechanisms lack a strong architectural bias for word adjacency, often failing
to identify the precise boundaries of long entities. This leads to fragmented predictions and an
incomplete understanding of complex concepts.
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Our guiding hypothesis is that Hypothesis 3.2 : robust, variable-length entity detection can be
achieved by designing a self-attention mechanism where different heads are architecturally special-
ized to capture n-gram patterns of different lengths. By fusing the global reach of attention with the
local sequence awareness of convolutions at multiple scales, the model can learn to recognize single
tokens, short phrases, and long entities in parallel.

We introduce the Multi-Scale Temporal Convolutional Queries & Keys (TCQK) mechanism to re-
alize this. Before computing attention scores, we modify the Query (Q) and Key (K) vectors using
1D convolutions. We partition the H attention heads into G groups, assigning each group g a con-
volutional kernel Cg with a specific size kg (e.g., 1, 3, 5). For each head h in group g, we compute:

Qconv,h = Cg(Qh); Kconv,h = Cg(Kh) (3)

This modification intrinsically alters the self-attention mechanism, compelling different heads to
specialize in n-gram patterns of varying lengths. This allows the model to capture both short
acronyms and long chemical names as single, coherent concepts. Note: We apply Multi-Scale
TCQK mechanism over the concatenated embeddings from orthogonal semantic decomposition.
(Refer figure 6 for more details)

3.2 HGNET: HIERARCHY GRAPH NETWORK

Given the entities extracted by Z-NERD, the goal of the Hierarchy Graph Network (HGNet) is to
estimate the conditional distribution P (Tlocal | D,GK). The input entities (hu,hv) are the con-
textualized output embeddings from the SciBERT encoder, ensuring the document-level context is
maintained for relationship prediction, a standard procedure for efficiency in SOTA RE models.
where each local relation triplet (start entity, relation, end entity) is constrained by a global Hierar-
chical Knowledge Graph (HKG) GK . Since GK is unobserved, HGNet must jointly infer its structure
and leverage it for reasoning. The model is organized around three core components, each grounded
in a specific hypothesis about hierarchical consistency.

3.2.1 PROBABILISTIC HIERARCHICAL MESSAGE PASSING

Traditional Graph Neural Networks (GNNs) are fundamentally ”hierarchy-blind.” They operate on
a single, undifferentiated graph, propagating messages uniformly across all connections. This ap-
proach is flawed as it cannot distinguish between information flowing ”up” from a specific child,
”down” from an abstract parent, or ”sideways” from a peer, thereby corrupting the learned repre-
sentations. To address this, our work is guided by the hypothesis that Hypothesis 3.3 : a GNN
can preserve and leverage hierarchical structure if its message-passing architecture is explicitly de-
signed to respect it. By creating distinct, parallel channels for information flowing along different
axes of the hierarchy, the model can learn specialized, context-aware update functions, leading to
richer and more robust entity embeddings.

To realize this, our architecture operates on a probabilistic graph where relations are treated as
learnable variables. First, a Latent Relation Predictor (MLP) estimates the probability distribution
over relation types R = {parent-of, peer-of, no-edge} for every pair of entity nodes (u, v):

Puv = softmax(MLP([hu||hv])) (4)

These probabilities serve as soft edge weights for a three-channel message passing scheme. For a
given node v at layer k, we compute aggregated messages, each with a separate, learnable weight
matrix (Wup,Wdown,Wpeer) to capture the unique semantics of each relational direction:

1. Parental (Upstream) Aggregation: mparents
v =

∑
u∈V P parent

uv · (Wuph
(k)
u )

2. Child (Downstream) Aggregation: mchildren
v =

∑
u∈V P parent

vu · (Wdownh
(k)
u )

3. Peer Aggregation: mpeers
v =

∑
u∈V P peer

uv · (Wpeerh
(k)
u )

Finally, these three context-specific messages are concatenated with the node’s previous state and
passed through an update MLP to produce the final, structure-aware embedding for the next layer:

h(k+1)
v = UpdateMLP([h(k)

v ||mparents
v ||mchildren

v ||mpeers
v ]) (5)
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3.2.2 LOGICAL COHERENCE VIA DIFFERENTIABLE HIERARCHY LOSS (DHL)

A critical challenge in learning a latent graph is that, without explicit constraints, the model has no
incentive to ensure its structure is globally coherent. During training, it might predict logically im-
possible structures, such as cycles (e.g., A is a part of B, and B is a part of A) or shortcuts that skip
hierarchical levels (e.g., mistaking a grandparent for a parent). These structural inconsistencies cor-
rupt the message-passing process and lead to semantically invalid graphs. We therefore hypothesize
that Hypothesis 3.4 : we can enforce a logically sound latent hierarchy by explicitly and differen-
tiably penalizing these structural impossibilities. In particular, by introducing a composite loss that
punishes cycles and invalid shortcuts, we guide the model toward a parameter space where the latent
graph forms a valid Directed Acyclic Graph (DAG) with a strict parent-child hierarchy.

This is achieved with the Differentiable Hierarchy Loss (Lhierarchy), a regularizer operating on the
predicted parent-of adjacency matrix, Aparent. It is a weighted sum of two components:

Lhierarchy = λacyclicLacyclic + λseparationLseparation (6)

The first component is an Acyclicity Loss, which uses the trace of a matrix exponential to differen-
tiably ensure the graph is a DAG (Refer appendix A.7, for accelerated calculation using Krylov’s
subspace) Here, d is the number of nodes (entities) in the graph. For proof of why this function
pushes our graph structure to be DAG, refer appendix A.11.

Lacyclic = tr(eAparent◦Aparent)− d (7)

The second component is a Hierarchical Separation Loss, which penalizes shortcut edges that skip
intermediate hierarchical levels (Refer appendix A.7 for efficient computation). Formally, it is de-
fined as:

Lseparation =
∑
u,w

(A2
parent)uw · (Aparent)uw (8)

Here, (A2
parent)uw counts the number of length-2 paths from node u to node w, and the elementwise

product with (Aparent)uw selects only direct edges that skip an intermediate node. This encourages
the model to maintain a strict parent-child hierarchy by discouraging shortcuts.

3.2.3 GEOMETRIC COHERENCE VIA CONTINUUM ABSTRACTION FIELD (CAF) LOSS

A model’s embedding space is typically geometrically ”flat,” lacking an intrinsic structure for ab-
straction. While a model might learn that ”RNN” and ”LSTM” are related, it fails to encode that
an RNN is a more general concept, leaving embeddings as a disorganized cloud of points. Our
approach is founded on the hypothesis that Hypothesis 3.5 : hierarchical understanding is a fun-
damental geometric property of the embedding space. By organizing all concepts along a single,
universal ”axis of abstraction,” the model can embed hierarchical information directly into the vec-
tor representations, making the abstraction level of a concept an intrinsic property of its learned
embedding.

We introduce the Continuum Abstraction Field (CAF) Loss (Lcaf) to impose this geometric structure.
It introduces a learnable unit vector, the Abstraction Field Vector wabs, that defines this universal
axis (Refer appendix A.5 for more details on the unit abstraction field vector). An entity v’s abstrac-
tion score is defined as its projection onto this axis: ŷabs(v) = hv · wabs. This abstraction score is
a continuous, real-valued number, ensuring the model learns a fluid continuum rather than a limited
number of fixed, discrete levels. The composite loss, Lcaf = Lranking + γ1Lanchor + γ2Lregression,
shapes this structure using three distinct objectives:

• Ranking Component: Enforces relative parent-child ordering with a margin δ.

Lranking =
1

|Epart-of|
∑

(c,p)∈Epart-of

max(0, (hc − hp) ·wabs + δ) (9)
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• Anchoring Component: Pins known root (Vs) and leaf (Vt) nodes to scores of 1 and 0.

Lanchor =
1

|Vs|
∑

vs∈Vs

(hvs ·wabs − 1)2 +
1

|Vt|
∑
vt∈Vt

(hvt ·wabs − 0)2 (10)

• Regression Component: Pulls predicted scores towards ground-truth topological depth
scores ytopo(v), which are derived for all benchmarks by performing a topological sort on
the ground truth hierarchical relations.

Lregression =
1

|Vtrain|
∑

v∈Vtrain

((hv ·wabs)− ytopo(v))
2 (11)

This transforms abstraction from a simple regression target into an organizing principle of the entire
embedding space.

3.2.4 FINAL RELATION PREDICTION

The relations {parent-of, peer-of, no-edge} described in Section 3.2.1 are an internal mechanism
used solely for structure regulation. The h(k+1) embedding produced by HGNet represents
the final, optimized structure-aware representation. The extraction of the actual, task-specific
⟨head, relation, tail⟩ triplets is then performed by a standard downstream classification head (the
same type utilized by models such as HGERE or PL-Marker) operating on this refined represen-
tation. This head takes the structure-aware h(k+1) embedding as input and predicts the full set of
fine-grained relations required by the benchmarks. The loss from this external task, LRE, constitutes
the primary task objective of the entire framework.

3.2.5 COHERENT ARCHITECTURE AND JOINT OPTIMIZATION

While Sections 3.2.1–3.2.4 define the modular components of HGNet, the system operates as a
single, unified framework, where all elements are simultaneously optimized in one end-to-end for-
ward pass. This co-training mechanism ensures the learned structure is globally consistent, logi-
cally sound, and geometrically coherent. The entity embeddings (hu,hv) are the contextualized
outputs from the shared SciBERT encoder of the Z-NERD stage. The Latent Relation Predictor
estimates the initial probability distribution Puv over relations, which immediately initiates two par-
allel paths: Logical Regularization and Message Passing. The predicted parent matrix (Aparent) feeds
directly into the Differentiable Hierarchy Loss (Lhierarchy), which penalizes structural errors like cy-
cles (Lacyclic) and shortcut edges (Lseparation). Concurrently, the probabilities Puv are used as soft
edge weights to guide the three-channel Probabilistic Message Passing GNN, which produces the
enhanced, structure-aware entity embeddings (h(k+1)

v ).

These final embeddings h
(k+1)
v are then used to compute the Continuum Abstraction Field (CAF)

Loss (Lcaf). This loss enforces geometric ordering, shaping the embedding space along the universal
axis of abstraction. The embeddings are also passed to a final classification head, which predicts the
task-specific ⟨head, relation, tail⟩ triplets (LRE). The total loss for the model is a weighted composite
sum of the primary task objective and the two structural regularizers:

LTotal = LRE + λ1Lhierarchy + λ2Lcaf

This joint optimization is the core of HGNet: Lhierarchy forces the graph structure to be logically
sound, while Lcaf forces the node embeddings to be geometrically sound.

VALIDATION OF STRUCTURAL LOSSES

The efficacy of enforcing structural and geometric coherence is confirmed through targeted ablation
studies. Ablating the Differentiable Hierarchy Loss (DHL) led to a notable drop in performance,
confirming the necessity of penalizing logical inconsistencies like cycles and shortcut edges. Sim-
ilarly, removing the Continuum Abstraction Field (CAF) Loss resulted in a significant degradation
in Rel+ F1 score, validating that embedding generality as an intrinsic geometric property is critical
for hierarchical reasoning. (For detailed empirical results, refer to the 4 section.)
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Refer figure 7 for detailed visualization of all components of HGNet. Refer appendix A.12 for
a short proof sketch of HGNet as a generalized attention mechanism. For a short discussion on
convergence of HGNet, refer appendix A.13

4 EXPERIMENTS

In this section, we present a comprehensive empirical evaluation of our proposed Z-NERD and
HGNet frameworks. We first detail the experimental setup, then present the main performance
results against strong baselines, and finally conduct a series of ablation studies and analyses to
validate our core hypotheses.

4.1 EXPERIMENTAL SETUP

Datasets We evaluate our models on a diverse set of scientific information extraction benchmarks.
This includes four established datasets: SciERC Luan et al. (2018), SciER Zhang et al. (2024),
BioRED, and SemEval-2017 Task 10 Augenstein et al. (2017). These datasets span multiple sci-
entific domains, feature complex entity and relation types, and are standard benchmarks for this
task. For fair comparison we report all the metrics on the Out of Distribution official test sets. To
address the scarcity of large-scale annotated data, we also introduce SPHERE, a new, large-scale
dataset created via a novel LLM-based generate-and-annotate methodology. SPHERE contains four
distinct scientific domains (Computer Science, Physics, Biology, and Material Science), enabling
robust evaluation of both in-domain and zero-shot performance.

Evaluation Metrics For Named Entity Recognition (NER), we report the standard micro F1 score.
For the more complex end-to-end Relation Extraction (RE) task, we use the strict Rel+ F1 metric
Zhong & Chen (2021), which requires the model to correctly predict the boundaries and types for
both entities in a relation, as well as the relation type itself.

Baselines Our frameworks are benchmarked against a comprehensive suite of strong models.
For NER, we compare Z-NERD against state-of-the-art supervised models (SciBERT, PL-Marker,
HGERE), a powerful specialized model (UniversalNER-7b), and several general-purpose LLMs in a
zero-shot setting. For RE, we compare HGNet against top-performing end-to-end supervised models
(PL-Marker, HGERE), standard GNN architectures (GCN, GAT), and LLMs.(Refer table 1 for ref-
erences). Additional experiments comparing HGNet against Hyperbolic Baselines and Few-Shot
CoT LLMs are detailed in A.8 and A.9, respectively.

For implementation details, hyperparameters and SPHERE dataset generation process, refer appen-
dices A.2 and A.3.1.

4.2 MAIN RESULTS

Z-NERD for Entity Recognition As shown in Table 1, our Z-NERD framework sets a new state-
of-the-art across all benchmark datasets, achieving an 8.08% average F1 improvement over previous
supervised models. The gains are even higher in the zero-shot SPHERE domains, with a 10.76%
average improvement. In contrast, general-purpose LLMs evaluated directly in zero-shot mode
without task-specific fine tuning failed to produce meaningful results, mainly due to difficulties in
identifying multi-word entity boundaries. These LLMs are also much larger, highlighting Z-NERD’s
efficiency at under 1B parameters.

HGNet for Relation Extraction The central goal of HGNet is to learn a globally coherent rep-
resentation of scientific knowledge that respects its inherent hierarchical structure. We divide the
relations in each dataset into two classes, hierarchical and peer, and report the macro F1 for these
two classes separately. As shown in Table 2, 3 and 4, HGNet consistently outperforms all baseline
models, with an average improvement of 5.99% on the benchmark datasets and 26.20% on the zero-
shot SPHERE dataset. This demonstrates a distinct advantage on datasets characterized by complex
hierarchical relations, driven by its hierarchy-aware multi-channel message-passing architecture.
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4.3 ABLATION STUDIES AND ANALYSIS

Analysis of Z-NERD Architecture To validate our architectural contributions to Z-NERD,
we performed targeted ablation studies. First, removing the Multi-Scale TCQK mechanism re-
sults in a severe degradation of performance across every dataset. This sharp decline confirms
Hypothesis 3.1 , validating that standard attention mechanisms are ill-equipped to handle the co-

herent identification of complex, multi-word entities and that an explicit architectural bias for n-
gram patterns is fundamental to success. Second, removing the features from Orthogonal Semantic
Decomposition (OSD) also leads to a consistent drop in F1 scores. The true significance of this
component becomes most apparent in the zero-shot domain generalization task, where the perfor-
mance drop is particularly pronounced. This provides compelling evidence for Hypothesis 3.2 ,
confirming that isolating ”semantic turns” is the key to learning abstract, domain-agnostic patterns
for robust generalization. (Refer table 1) For evidence of how Orthogonal Semantic Decomposition
affects the learned embeddings to improve zero-shot inference, refer appendix A.4.

Analysis of HGNet Architecture The superior performance of HGNet is driven by its unique
design, which we validate through ablations. The model’s overall strong performance across
all datasets, particularly those with deep hierarchies, provides strong empirical support for
Hypothesis 3.3 . This confirms that an explicitly hierarchy-aware GNN architecture with special-

ized parent, child, and peer message-passing channels produces richer and more accurate entity rep-
resentations than standard GNNs. Furthermore, removing the Continuum Abstraction Field (CAF)
Loss resulted in a significant degradation in Rel+ F1 score, validating Hypothesis 3.5 by demon-
strating that embedding generality as an intrinsic geometric property of the space is critical for
hierarchical reasoning. Similarly, ablating the Differentiable Hierarchy Loss also led to a notable
drop in performance, which confirms Hypothesis 3.4 and underscores the necessity of enforcing
logical constraints like acyclicity. (Refer table 2 and 3) For learned abstraction score analysis and
qualitative error analysis, refer appendices A.10 and A.6.

Table 1: F1 scores (%) of different models on NER benchmarks. SPHERE: CS, Physics, Bio,
MS report both supervised (Sup) and zero-shot (ZS) results. OSD refers to orthogonal semantic
decomposition. Z-NERD w/o OSD and w/o TCQK refer to ablations.

Models SciERC SciER BioRED SemEval CS Physics Bio MS
Sup ZS Sup ZS Sup ZS Sup ZS

Supervised Baselines
SciBERT Ye et al. (2022) 67.52 70.71 89.15 49.14 68.19 57.02 72.90 61.22 75.83 68.45 67.29 57.14
PL-Marker Yan et al. (2023) 70.32 74.04 86.41 47.69 68.64 56.39 72.83 60.51 75.78 66.17 66.72 57.92
HGERE Yan et al. (2023) 75.92 81.19 89.43 48.25 69.82 58.95 72.46 60.67 76.42 68.51 67.24 58.03
UniversalNER-7b Zhou et al. (2024) 66.09 73.13 88.46 47.60 OOM

Zero-Shot LLM Baselines
llama-3.3-70b Touvron et al. (2023) 46.20 49.57 54.82 30.16 OOM
qwen3-32b Qwen et al. (2025) 41.63 46.52 31.71 26.48 OOM
llama-3.1-8b-instant Touvron et al. (2023) 33.96 31.21 33.58 21.70 OOM

Proposed Approach (Z-NERD)
Z-NERD w/o TCQK 73.43 75.12 84.43 47.85 68.47 59.35 74.92 61.74 73.92 68.30 69.48 57.73
Z-NERD w/o OSD 74.39 80.27 90.12 50.98 76.93 62.04 76.68 65.17 82.40 73.29 78.24 63.45
Z-NERD 78.84 82.71 91.05 52.26 80.47 69.52 82.39 73.19 84.35 74.21 83.96 72.28

5 CONCLUSION AND FUTURE WORK

We present a novel two-stage framework for automated knowledge graph construction in the sci-
entific domain. The first stage, Z-NERD, combines Orthogonal Semantic Decomposition with a
Multi-Scale TCQK attention mechanism for robust, domain-agnostic recognition of complex enti-
ties. The second stage, HGNet, employs a probabilistic graphical model with specialized message-
passing channels, regularized by Differentiable Hierarchy and Continuum Abstraction Field losses.
The latter introduces a learnable Abstraction Field Vector, ensuring logical coherence and geometric
structuring around a universal abstraction axis. We also introduce SPHERE, a large-scale bench-
mark for scientific KG construction. Experiments show gains of up to 10.76% for NER and 26.2%
for RE in zero-shot scenarios, validating our hypotheses and the efficacy of a structurally-aware
approach to knowledge extraction.

Future work could extend this framework to incorporate multimodal information from figures and
tables, and explore its application in dynamic, continuously updated knowledge graphs that reflect

9
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Table 2: Rel+ F1 scores (%) of different models on SciERC, SciER, BioRED, and SemEval 2017
for two relation types (Hierarchical and Peer), along with overall F1 across all relation types. For
BioRED, which only has Peer relations, the overall score equals the peer score. The same entity
prediction method is used across models for fair comparison. All values are rounded to two decimals.

Models SciERC SciER BioRED SemEval 2017
Hier. Peer Overall Hier. Peer Overall Overall Hier. Peer Overall

Supervised Models
PL-Marker Ye et al. (2022) 35.60 44.97 41.63 40.25 61.84 56.78 29.87 32.96 43.40 37.19
HGERE Yan et al. (2023) 37.72 47.35 43.86 43.79 64.35 58.47 32.39 33.81 45.73 38.63
PURE Zhong & Chen (2021) 34.39 38.46 36.78 38.53 56.21 49.35 29.41 28.94 41.35 34.92

Zero-Shot LLM Models
GPT-3.5 Turbo Ye et al. (2023) 14.97 15.02 14.98 8.35 8.91 8.58 6.36 16.30 17.13 16.74
openai/gpt-oss-120b Ye et al. (2023) 19.68 21.27 20.45 27.93 27.52 27.64 7.15 23.59 24.16 23.88
llama-3.3-70b-versatile Touvron et al. (2023) 22.15 22.53 22.39 23.97 25.06 24.59 7.29 23.65 25.38 24.12
qwen/qwen3-32b Qwen et al. (2025) 16.57 19.33 18.20 24.02 24.45 24.28 6.71 20.92 21.38 21.09
llama-3.1-8b-instant Touvron et al. (2023) 13.30 14.27 13.92 17.15 17.69 17.43 5.48 14.11 14.46 14.24

Supervised GNN-based Models
GCN 40.13 48.78 45.62 47.37 63.89 57.35 31.93 34.08 45.92 38.96
GCN w/o LDHL 38.46 48.51 44.98 46.85 64.22 56.89 32.28 32.82 45.72 37.99
GAT 40.37 49.11 46.21 47.35 64.29 57.64 32.40 34.47 46.19 39.25
GAT w/o LDHL 38.96 49.25 45.48 47.03 64.23 57.30 32.74 33.52 45.88 38.43

Proposed Approaches
HGNet w/o LDHL 48.52 55.37 51.68 59.10 65.95 62.79 34.31 42.16 49.42 45.05
HGNet w/o LCAF Loss 42.70 52.14 47.33 54.75 61.21 58.67 33.09 38.58 43.28 41.19
HGNet 50.96 55.41 53.19 62.36 67.02 65.38 33.85 45.37 50.64 47.03

Table 3: Rel+ F1 scores (%) on SPHERE dataset variants (Computer Science, Physics, Biology,
Material Science) for two relation types (Hier., Peer). We also report overall F1 across all relation
types. All models use the same entity prediction method for a fair comparison. Subscripts indicate
improvement over SOTA model HGERE.

Models Comp. Sci. Physics Biology Mat. Sci.
Hier. Peer All Hier. Peer All Hier. Peer All Hier. Peer All

Supervised Models
PL-Marker Ye et al. (2022) 51.98 57.04 55.29 50.22 56.48 53.51 52.35 53.76 53.03 52.96 53.27 53.12
HGERE Yan et al. (2023) 54.20 59.86 57.93 53.17 58.90 56.28 54.52 56.47 55.21 55.84 55.86 55.43

Proposed Approaches
HGNet (ours) 77.40 81.36 79.51 76.93 83.47 80.60 82.53 84.29 83.74 81.91 85.64 83.65
w/o LDHL 73.62 74.83 74.17 74.01 75.30 74.66 79.15 78.64 78.90 77.43 76.92 77.28
w/o LCAF 67.14 65.89 66.50 64.51 66.24 65.96 75.17 73.29 74.13 75.95 77.38 76.32

Table 4: Zero-shot Rel+ F1 (%) when trained on Physics+Biology and evaluated on Comp. Sci. and
Mat. Sci. datasets. Due to the expensive nature of these experiments, we only tested our zero-shot
performance on the best performing state-of-the-art models in our previous experiments.

Models Comp. Sci. Mat. Sci.
Hier. Peer All Hier. Peer All

PL-Marker Ye et al. (2022) 28.72 28.41 28.56 33.10 34.22 33.85
HGERE Yan et al. (2023) 29.93 29.63 29.81 36.27 39.41 37.97
HGNet (ours) 59.36 64.07 62.60 69.92 71.33 70.62

the real-time evolution of scientific fields. Furthermore, leveraging these structured KGs for down-
stream reasoning tasks, such as automated hypothesis generation, presents an exciting avenue for
further research.

6 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, all source code for the Z-NERD and HGNet models,
the newly introduced SPHERE dataset, and all experiment scripts will be made publicly available in
the final version of this paper. We have provided comprehensive details of our experimental setup,
including datasets, evaluation metrics (Section 4.1), implementation, software/hardware configura-
tions, and training hyperparameters (Appendix A.2). The methodology for generating the SPHERE
dataset is further detailed in Appendix A.3.1, and all baseline models are described in Section 4.1 to
facilitate fair comparison.
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A APPENDIX

A.1 STATEMENT ON THE USE OF LARGE LANGUAGE MODELS (LLMS)

In adherence to the ICLR 2026 policy, we disclose the use of Large Language Models (LLMs) in
the preparation of this manuscript and in our research methodology.

1. Role in Dataset Generation As detailed in Appendix A.3.1, LLMs (specifically, a mixture of
models from the GPT and Gemini families) were a core component of our research. They were
programmatically used to generate and self-annotate the SPHERE dataset, which was crucial for
training and evaluating our proposed models. The entire process, from KG scaffolding to sentence
generation and annotation, was designed and supervised by the authors to ensure the quality and
validity of the dataset.

2. Role in Manuscript Preparation Beyond their role in the research itself, LLMs were also
utilized as tools to aid in the preparation of this paper in the following ways:

• Writing and Polishing: We used LLMs (e.g., GPT-4) as advanced writing assistants. Their
use was primarily focused on improving the clarity, precision, and readability of the text.
This included tasks such as rephrasing sentences for better flow, correcting grammatical
errors, ensuring consistent terminology, and polishing the overall prose. The core scientific
ideas, arguments, and the structure of the paper were conceived and written entirely by the
authors.

• Literature Retrieval and Discovery: LLMs were used as a supplementary tool to augment
our traditional literature review process. We used them to summarize abstracts of known
papers and to help identify potential related work based on keyword and concept queries.
This assisted in broadening our search, but the final selection, critical reading, analysis, and
citation of all literature were performed by the authors to ensure academic rigor.

Figure 1: Continuous axis of abstraction for topics in physics.

A.2 IMPLEMENTATION DETAILS

Hardware and Software All experiments were conducted on a high-performance computing clus-
ter equipped with NVIDIA A30 24GB GPUs. Our frameworks were implemented using PyTorch
2.1 and the Hugging Face Transformers library. For baseline models, we used their official public
implementations and recommended hyperparameters to ensure fair comparison.

Training Hyperparameters To ensure reproducibility, we detail the key hyperparameters for our
proposed models in Table 5. We used the AdamW optimizer for all training runs and employed a
linear learning rate scheduler with a warm-up phase. The optimal hyperparameters were determined
via a grid search on the validation sets of the respective datasets.
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Table 5: Key hyperparameters for Z-NERD and HGNet.

Hyperparameter Z-NERD HGNet
Encoder Base Model SciBERT-base SciBERT-base
Learning Rate 2× 10−5 1× 10−5

Batch Size 16 8
Optimizer AdamW AdamW
Dropout Rate 0.1 0.2
Max Sequence Length 512 512
TCQK Kernel Sizes [1, 3, 5, 7] N/A
HGNet Layers N/A 3
CAF Loss Margin (δ) N/A 0.5
CAF Weights (γ1, γ2) N/A (1.0, 0.5)
DHL Weights (λacyclic, λseparation) N/A (1.0, 0.1)

A.3 SPHERE DATASET

A.3.1 GENERATION METHODOLOGY

The SPHERE (Scientific Multidomain Large Entity and Relation Extraction) dataset was created to
overcome the critical bottleneck of data scarcity in scientific RE. We employed a novel, three-phase
generate-and-annotate methodology driven by a Large Language Model (in our case, mixture of
GPT (OpenAI) and Gemini (Google DeepMind) models).

1. Phase 1: Programmatic KG Scaffolding. We first constructed a ground-truth knowledge
graph to serve as a structured backbone. This was done by prompting the LLM with a high-
level field (e.g., ”Computer Science”) and asking it to recursively expand it into more gran-
ular, interconnected sub-fields, methods, and concepts. This foundational step produced a
deep and logically consistent taxonomy of over 40,000 entities across four domains before
any text was generated.

2. Phase 2: High-Throughput Sentence Generation. With the KG as a scaffold, a high-
throughput pipeline generated annotated sentences. This involved sampling small, con-
textually related sets of concepts from the graph (e.g., a parent, child, and peer concept)
and prompting the LLM, acting as an expert technical writer, to compose a long, complex,
academic-style paragraph describing their relationships.

3. Phase 3: LLM Self-Annotation. The newly created sentences were immediately passed
back to the same LLM for self-annotation within the original context. The model performed
Named Entity Recognition and Relation Extraction, linking the identified concepts back
to their permanent IDs in the ground-truth KG. We observed that the LLM’s annotation
performance is drastically higher on text it has generated itself, enabling the creation of a
large-scale (10,000 documents, 111,000 relations), high-quality corpus.

A.3.2 STRUCTURAL COMPLEXITY AND SCALE ANALYSIS

To validate the necessity of SPHERE as a foundation benchmark, we compare its structural proper-
ties against existing gold-standard datasets in Table 6.

Scale and Diversity. Existing benchmarks like SciERC and BioRED are constrained by the high
cost of human annotation, typically limited to roughly 500 abstracts and a single domain. In contrast,
SPHERE leverages the generative scaffolding approach to scale to 10,000 documents across four
distinct domains (Computer Science, Physics, Biology, Material Science). This scale is critical for
pre-training ”foundation” extraction models that can generalize zero-shot.

Taxonomic Depth. Most standard datasets utilize ”flat” entity ontologies (e.g., broad categories
like Method or Material). SPHERE, being generated from a deep Knowledge Graph scaffold, con-
tains nested hierarchical definitions (e.g., Adam Optimizer → Stochastic Optimization → Optimiza-
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tion Method). This distinct structural depth forces models to learn fine-grained hierarchical reason-
ing (tested via HGNet) rather than simple surface-level pattern matching.

Structural Consistency and Global Scope. A critical distinction of SPHERE is the scope of its
graph topology. Standard benchmarks like SciERC are annotated at the document level, meaning
the hierarchical relationships are locally inferred and often inconsistent (e.g., an entity may be a root
in one document but a leaf in another). In contrast, SPHERE is generated from a Global Knowledge
Graph Scaffold containing over 40,000 entities. This ensures that the hierarchical position of a
concept remains globally consistent across the entire corpus, preventing the ”inflated structure” or
hallucinated loops often associated with unconstrained LLM generation.

Table 6: Comparison of SPHERE against standard scientific IE benchmarks. A key distinction is
Graph Scope: standard datasets define hierarchies locally within isolated documents (fragmented),
whereas SPHERE is generated from a single Global Knowledge Graph, ensuring hierarchical con-
sistency across the entire corpus.

Dataset Domain Docs Relations Graph Scope Hierarchy Source

SciERC CS (AI) 500 ∼4.6k Local (Doc-Level) Inferred from Text
BioRED Biomed 600 ∼38k Local (Doc-Level) Inferred from Text
SciER CS 106 ∼12k Local (Doc-Level) Inferred from Text

SPHERE 4 Domains 10,000 111,000 Global (Corpus-Level) Pre-defined Scaffold

The fidelity of the SPHERE dataset is evidenced by its surprising zero-shot efficacy. When trained
only on SPHERE, our model generalizes to the human-annotated SciERC and SciER benchmarks
with scores of 46.55% and 59.17% respectively, outperforming the previous fully supervised state-
of-the-art (HGERE). This confirms that SPHERE faithfully models the complex entity-relation de-
pendencies of scientific text, validating our constrained generation pipeline.

Table 7: Performance comparison on SciERC and SciER datasets.

Metric Training Source SciERC (Test) SciER (Test)
HGERE Yan et al. (2023) Full Supervised Training 43.86% 56.28%
HGERE (Zero-shot transfer) SPHERE-CS Training Only 25.62% 28.34%
HGNet (Zero-shot transfer) SPHERE-CS Training Only 46.55% 59.17%

Manual Quality Audit. To quantitatively assess the fidelity of the SPHERE dataset and ensure
minimal hallucination, we conducted a manual verification study on a randomly sampled subset
of the corpus. We analyzed 1,000 entity spans and 500 relation triples against the ground-truth
topological scaffold. The audit yielded an entity precision of 96.5% (measuring correct boundary
and type) and a relation precision of 94.2% (measuring correct edge classification). These high
precision scores confirm that our constrained “generate-from-graph” pipeline effectively enforces
structural consistency while maintaining textual fluency.

A.4 VISUAL EVIDENCE FOR ORTHOGONAL SEMANTIC DECOMPOSITION

To further validate the premise of OSD, Figures 2 illustrate the average Orthogonal Semantic Ve-
locity Norm for tokens at entity boundaries versus non-entity tokens. The plots provide compelling
visual support for Hypothesis 3.2 . A clear and substantial gap emerges between the high velocity
norms of boundary tokens and the low norms of non-entity tokens. This demonstrates that our en-
gineered feature effectively captures the sharp ”semantic turns” that occur when a new concept is
introduced, providing a robust, domain-agnostic indicator of entity boundaries.

A.5 GEOMETRIC REALIZATION VIA AN ABSTRACTION FIELD

Instead of treating abstraction score as an external label to be predicted, our central hypothesis is
that the abstraction score should be an intrinsic geometric property of the learned embedding space
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Figure 2: Average Orthogonal Semantic Velocity for tokens at entity boundaries (’Start’/’End’) vs.
’Non-entity’ tokens for SPHERE-CS (left) and SciER (right). The clear separation provides visual
evidence for Hypothesis 4.2.

itself. We propose that the entire high-dimensional space can be oriented along a single, universal
direction that represents a continuum from specificity to generality. We formalize this concept as
the Abstraction Field Vector.

Definition A.1 (Abstraction Field Vector) a learnable unit vector wabs ∈ Rd. This vector de-
fines the primary axis of abstraction within the embedding space. The predicted abstraction score,
ŷabs(v), for any concept v with embedding hv is then simply its orthogonal projection onto this
vector:

ŷabs(v) := hv ·wabs (12)

Justification for a Single Universal Axis: The choice to model abstraction with a single unit vector
is a deliberate application of simplicity and a method for imposing a strong, beneficial inductive bias.
While one could model abstraction using multiple orthogonal vectors or a more complex non-linear
function, such approaches would implicitly assume the existence of multiple, independent ”types”
of abstraction. Our formulation, by contrast, hypothesizes that the dominant organizing principle of
a scientific knowledge hierarchy is a single, primary dimension of generality versus specificity. This
constraint forces the model to discover the most salient and universal axis of abstraction that is con-
sistent across all entities, rather than overfitting to spurious, domain-specific hierarchical patterns.
This mirrors findings in other areas of representation learning, where simple linear axes have been
shown to capture profound semantic relationships (e.g., the famous ‘king - man + woman‘ analogy
in word embeddings). By reducing abstraction to a single, interpretable dimension, we ensure the
learned geometric structure is not only robust but also directly analyzable. The empirical success of
this method across multiple domains serves as strong validation for this simplifying, yet powerful,
geometric assumption.

This formulation is powerful because it transforms the abstract notion of “generality” into a concrete,
measurable geometric arrangement. A concept’s position along this axis directly reflects its level of
abstraction. This approach ensures that the learned hierarchy is not an afterthought but the primary
organizing principle of the entire embedding space, making the learned representations globally
coherent and interpretable. Refer figure 1 for visualization of continuum of abstraction in physics
domain.

A.6 LEARNED ABSTRACTION SCORE ANALYSIS

To qualitatively assess the geometric structure learned by HGNet, we visualized the distribution of
the final abstraction scores for entities within each domain of the SPHERE dataset, as shown in
Figure 3. Based on the programmatic, recursive generation of the underlying knowledge graph, the
ideal distribution would exhibit an exponential decay, with a high density of concrete entities at low
abstraction scores and a progressively smaller number of entities at higher levels of abstraction. The
analysis reveals distinct, domain-specific patterns that reflect the inherent structure learned from
each field.
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The Computer Science domain (d) aligns most closely with this expected pattern, showing a clear
concentration of entities at lower abstraction values and a long tail of increasingly abstract concepts.
In contrast, the Material Science data (a) shows a distribution heavily clustered at lower scores,
while the Biology data (c) displays a more gradual decline, likely reflecting a flatter hierarchy in
its source text. It is crucial to note, however, that even the Computer Science distribution is not a
perfect match for the ground-truth hierarchy. The visible deviations from an ideal curve highlight
that some concepts are still misplaced along the abstraction axis. These imperfections in the learned
geometric structure are precisely what lead to a non-perfect Rel+ F1 score, highlighting the tight
coupling between representational geometry and task performance.

(a) Material Science Dataset (b) Physics Dataset

(c) Biology Dataset (d) Computer Science Dataset

Figure 3: Distribution of abstraction scores across different scientific domains, showing distinct
patterns for each field.

A.7 SCALABLE ACYCLICITY REGULARIZATION VIA KRYLOV SUBSPACE METHODS

A potential computational bottleneck in our framework is the Differentiable Hierarchy Loss (Eq. 7),
which involves the calculation of a matrix exponential. For a graph with n entities, the parent-
of adjacency matrix Aparent is of size n × n. A direct computation of the matrix exponential,
exp(Aparent ◦ Aparent), scales with a time complexity of O(n3), which can become prohibitive for
the large-scale knowledge graphs targeted by our work.

To ensure the scalability of our approach, this term can be efficiently approximated using Krylov
subspace methods (Saad, 2003). Instead of explicitly forming the dense n × n matrix exponential,
these iterative methods approximate its action on a vector by projecting the matrix onto a low-
dimensional Krylov subspace, Km, of dimension m ≪ n.

The computational cost of this approach is dominated by two steps. First, the construction of an
orthonormal basis for the subspace, typically via the Arnoldi iteration, requires m matrix-vector
products. Since the learned adjacency matrix Aparent is inherently sparse, with a number of non-
zero entries denoted by nnz(Aparent), this step has a complexity of O(m · nnz(Aparent)). Second,
the exponential of the small m × m projected matrix is computed directly, which incurs a cost of
O(m3).
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Therefore, the total time complexity for the approximation is O(m·nnz(Aparent)+m3). Furthermore,
to compute the trace required by our loss function, Krylov methods is combined with stochastic trace
estimators, Hutchinson method (Avron & Toledo, 2011), to approximate tr(exp(A)) without ever
forming the full matrix.

Hierarchical Separation Loss The second component, the Hierarchical Separation Loss (Eq. 8),
is defined as Lseparation =

∑
u,w(A

2
parent)uw · (Aparent)uw. A direct computation would first involve

squaring the matrix Aparent, an operation that, even for sparse matrices, can be costly as the resulting
matrix A2

parent may be significantly denser. However, we can reinterpret this loss as a sum over
specific graph structures. The term (A2

parent)uw represents the sum of weights of all paths of length
two from entity u to w. The loss thus penalizes the existence of a direct ”shortcut” edge (u,w)
when such two-step paths exist. This structure allows for a far more efficient calculation. Instead
of matrix multiplication, we can compute the sum by iterating through all 2-paths in the graph. An
efficient algorithm involves iterating through each node v and considering all pairs of its incoming
edges (u, v) and outgoing edges (v, w). For each such 2-path u → v → w, we perform a sparse
lookup to check for the existence of the direct edge (u,w). The total complexity of this approach
is approximately O(

∑
v∈V in-degree(v) · out-degree(v)), which is directly proportional to the local

sparsity of the graph and avoids the costly formation of A2
parent.

This analysis demonstrates that both components of the Differentiable Hierarchy Loss can be com-
puted efficiently, ensuring that the enforcement of a globally consistent DAG structure remains com-
putationally feasible even for knowledge graphs containing thousands of entities.

A.8 EXTENDED GEOMETRIC BASELINE ANALYSIS

To validate the efficacy of the Continuum Abstraction Field (CAF) against non-Euclidean ap-
proaches, we compare HGNet against two strong geometric baselines using the same SciBERT
backbone:

• HGCN (Hyperbolic GCN) Chami et al. (2019): Maps embeddings to the Poincaré ball
manifold, theoretically optimized for hierarchical trees.

• Order-Embeddings Vendrov et al. (2015): Enforces partial order constraints via cone
geometry (E = ||max(0, v − u)||2).

Table 8 presents the results. HGNet outperforms both baselines. We observe that HGCN requires
extensive tuning of the Riemannian Adam optimizer and often struggles with ”Peer” relations that
violate strict tree geometries, whereas HGNet’s Euclidean CAF objective remains stable and accu-
rate.

Table 8: Comparison against Geometric Baselines (Rel+ F1 %). HGNet outperforms non-Euclidean
methods on both standard and large-scale hierarchical datasets.

Model Geometry SciERC (Overall) SPHERE-CS (Overall)

HGCN Chami et al. (2019) Hyperbolic (Dn) 45.82 66.35
Order-Embeddings Vendrov et al. (2015) Cone (Rn

+) 44.27 67.97
HGNet (Ours) Euclidean + CAF 53.19 79.51

A.9 FEW-SHOT LLM EVALUATION

To ensure a fair comparison regarding reasoning capabilities, we evaluated Llama-3-8B using a 3-
Shot Chain-of-Thought (CoT) strategy. We provided the model with three context-response pairs
demonstrating step-by-step relation extraction before querying the target sentence.

As shown in Table 9, while CoT provides a notable performance boost over the zero-shot setting
(+5.73% on SciERC), the model still significantly underperforms compared to HGNet. Qualitative
error analysis reveals that while CoT helps identifying relation types, the LLM continues to strug-
gle with precise entity boundary detection (e.g., including determiners or punctuation in the span),
which is penalized by the strict Rel+ metric.
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Table 9: Impact of Prompting Strategy on Llama-3-8B Performance (Rel+ F1 %).

Model Prompting Strategy SciERC SciER

Llama-3-8B Zero-Shot 13.72 14.95
3-Shot CoT 19.45 25.18

HGNet Supervised 53.19 62.36

A.10 QUALITATIVE ERROR ANALYSIS

CORRECTED ERROR: PREVENTING HIERARCHICAL SHORTCUTS

A significant advantage of HGNet is its ability to maintain a strict, multi-level hierarchy by penal-
izing ”shortcut” edges that skip intermediate levels. This corrects errors where a local model might
conflate a grandparent relationship with a direct parent one. Consider a biology paper discussing
genetics:

• Sentence 1: The SRY gene is responsible for encoding the Testis-determining factor protein.

• Sentence 2: A conserved motif within the Testis-determining factor protein is the High-
mobility group (HMG) box, which binds to DNA.

From these sentences, a correct hierarchy is established: (HMG box → Testis-determining factor
protein → SRY gene). However, another sentence might state: ”The DNA-binding function of the
SRY gene is conferred by its HMG box.” A local model, seeing this direct functional link, could
incorrectly infer a direct compositional relation: (HMG box, Part-Of, SRY gene). This creates a
flawed, flattened hierarchy.

HGNet corrects this error. Its Hierarchical Separation Loss (Lseparation) is explicitly designed to
prevent this. Once the model identifies the valid two-step path from ”HMG box” to ”SRY gene”, the
loss function penalizes the prediction of a direct edge between them. This forces the model to respect
the intermediate entity (”Testis-determining factor protein”), ensuring the final graph accurately
reflects the nested biological structure.

Robustness to Non-Hierarchical Structures. Here, we explain how HGNet behaves when the
underlying structure is not a strict tree (e.g., multiple inheritance or cross-links). We observe that
the Peer message-passing channel is critical in these scenarios. In cases of multiple inheritance
(e.g., ”Reinforcement Learning” being a child of both ”Machine Learning” and ”Control Theory”),
HGNet successfully assigns high probability to both parent edges because the DAG constraint
(Lacyclic) permits multiple parents, only forbidding cycles. However, we note a failure mode in
”loopy” citations where definitions are circular (A defines B, B defines A). In such rare cases, the
acyclicity loss forces the model to arbitrarily break the loop, potentially dropping a valid semantic
link.

A.11 JUSTIFICATION FOR THE DIFFERENTIABLE ACYCLICITY LOSS

To enforce a Directed Acyclic Graph (DAG) structure, we require a differentiable function that pe-
nalizes the presence of cycles within the graph represented by the learned adjacency matrix Aparent.
Our loss function is built upon a well-established connection between the algebraic properties of a
graph’s adjacency matrix and its topological structure.

The foundation of this approach lies in the observation that the number of distinct walks of length
k from a node i to a node j is given by the entry (i, j) of the matrix power Ak. Consequently, a
cycle, which is a walk from a node back to itself, is captured by the diagonal entries. The sum of
these diagonal elements, or the trace tr(Ak), therefore counts the total number of cycles of length k
across the entire graph.

A graph is a DAG if and only if it contains no cycles of any length k ≥ 1, which implies
that tr(Ak) = 0 for all k ≥ 1. To aggregate this condition over all possible cycle lengths
into a single, smooth function, we leverage the matrix exponential, defined by its Taylor series
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exp(A) =
∑∞

k=0
1
k!A

k. Due to the linearity of the trace operator, we have:

tr(exp(A)) =

∞∑
k=0

tr(Ak)

k!
= tr(I) + tr(A) +

tr(A2)

2!
+ . . .

For a graph with d nodes that is a perfect DAG, all trace terms for k ≥ 1 vanish, causing the
expression to simplify elegantly to tr(exp(A)) = tr(I) = d.

Based on this property, our loss function, Lacyclic = tr(exp(Aparent)) − d, is formulated. This ob-
jective function is non-negative and equals zero only when the graph is perfectly acyclic. By mini-
mizing this loss during training, a computation made efficient by modern numerical libraries such as
PyTorch’s ‘torch.linalg.matrix exp‘, we guide the model to learn an adjacency matrix Aparent whose
corresponding graph structure satisfies the DAG constraint.

A.12 PERSPECTIVE: HGNET AS A GENERALIZED ATTENTION MECHANISM

At its core, the self-attention mechanism, which powers modern Transformers, can be understood
as a form of message passing on a fully connected graph. Each token in a sequence acts as a node,
and it updates its representation by aggregating information from every other token. This is very
powerful, as it allows the model to capture long-range dependencies. However, it is also a brute-
force approach. It operates under the assumption that any token could be relevant to any other,
leading to two major limitations:

1. Computational Inefficiency: The number of connections grows quadratically with the
sequence length, making it computationally expensive for long documents.

2. Semantic Noise: In a scientific document, the relationship between the vast majority of
token pairs is meaningless. Forcing a token like ”LSTM” to attend to every instance of
”the” or ”is” introduces significant noise and forces the model to expend capacity learning
to ignore these irrelevant connections.

The fundamental insight of our work is that we can create a far more powerful and efficient reason-
ing mechanism by moving from a dense, token-level graph to a sparse, entity-level graph. Instead
of every word attending to every other word, we want key scientific concepts to attend only to other
relevant scientific concepts. By ”skipping the middle tokens” and operating directly on the meaning-
ful entities, we can focus the model’s capacity on learning the true global structure of knowledge.
Our Hierarchical GNN is the formal embodiment of this principle, representing a more advanced
and generalized form of attention.

PROOF SKETCH: FROM FULL ATTENTION TO STRUCTURED, HIERARCHICAL ATTENTION

To prove this, let us first formulate the standard self-attention mechanism in the language of Graph
Neural Networks.

1. Self-Attention as a GNN on a Fully Connected Graph The update rule for a single token
embedding hi in a self-attention layer is:

h′
i =

∑
j∈Vall

αij(hjWV ) (13)

where Vall is the set of all tokens in the sequence, and αij is the attention weight between token i and
token j. This is precisely a GNN message-passing step where the graph is fully connected, meaning
every token is a neighbor of every other token. The message from node j to node i is its transformed
value, mj→i = hjWV , and the aggregation is a weighted sum, with attention scores serving as
the weights. This is a powerful but unstructured mechanism. It treats all potential connections as
equally plausible a priori.

2. The Hierarchical GNN as a Generalized, Structured Attention Our Hierarchical GNN intro-
duces a powerful inductive bias by replacing the fully connected graph with a sparse, semantically
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meaningful graph, one based on the learned hierarchy. The update rule for an entity embedding hv

is:
h(k+1)
v = UpdateMLP([h(k)

v |mparents
v |mchildren

v |mpeers
v ]) (14)

Let’s analyze one of these components, the message from parents:

mparents
v =

∑
u∈N parents

v

αparent
vu (Wparenth

(k)
u ) (15)

This is also an attention mechanism, but with three crucial generalizations. First, through Graph
Sparsification, the aggregation is no longer over all possible nodes Vall but is instead over a small,
semantically relevant subset, N parents

v . This prunes the vast majority of noisy, irrelevant connec-
tions, focusing the model’s attention on the relationships that truly matter and directly addressing
both the computational and semantic noise problems. Second, instead of a single, monolithic atten-
tion mechanism, our GNN employs Multi-Channel Attention with multiple, specialized channels. It
learns separate projection matrices (Wparent,Wchild,Wpeer) and attention mechanisms for each type
of hierarchical relationship, allowing the model to learn different ”types” of attention. For example,
learning to ”inherit” abstract properties from parents while ”aggregating” specific evidence from
children. Third, through Entity-Level Reasoning, the nodes in our graph are not tokens but aggre-
gated entity concepts representing stable ideas across the entire corpus. This provides a much more
robust and global context for reasoning than the ephemeral, document-specific context of individual
tokens.

Conclusion of Proof The standard self-attention mechanism is a special case of our Hierarchical
GNN framework under a specific set of simplifying assumptions. These assumptions are that the
graph is fully connected (Nv = Vall for all v), that there is only one message-passing channel (e.g.,
only a ”peer” channel), and that the nodes represent tokens, not global entities. By relaxing these
assumptions, our Hierarchical GNN generalizes the attention mechanism to operate on a sparse,
structured, multi-channel graph of global concepts. This is not merely an incremental improvement;
it is a fundamental shift from brute-force pattern matching to structured, hierarchical reasoning. It
allows the model to capture the kind of radial, layered knowledge depicted in the conceptual image
4 of the scientific domain, making it a far more powerful and efficient architecture for understanding
complex, interconnected information.

Figure 4: Example of physics domain hierarchical knowledge graph. Hierarchy radially extends
outward.

A.13 DISCUSSION ON CONVERGENCE OF HGNET

Given that HGNet is a probabilistic model, it’s important to understand why its predicted proba-
bilities converge toward a consistent graph structure rather than fluctuating randomly. The primary
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Figure 5: Loss plot of HGNet on computer science SPHERE dataset.

reason is that the model is not initialized from scratch. Instead, it uses a standard MLP classifier to
generate the initial edge probabilities between entities.

As demonstrated by the baseline models in our experiments, which rely on an MLP for classification,
these approaches are reasonably effective, often achieving Rel+ F1 scores exceeding 30-40% on
their own. By using this as a starting point, HGNet’s probabilistic message-passing begins with a
well-informed ”draft” of the graph. This process is far more efficient than random initialization; it’s
like solving a jigsaw puzzle where a significant portion of the pieces are already in their approximate
correct locations, allowing the model to focus on refining the details rather than building the entire
structure from scratch. Refer loss plot 5.

A.14 COMPUTATIONAL COMPLEXITY AND EFFICIENCY ANALYSIS

We conduct a comprehensive analysis of parameter efficiency, computational cost (FLOPs), and
inference throughput to validate our lightweight claims.

Efficiency vs. Generalization Landscape. Table 10 benchmarks HGNet against General-purpose
LLMs, Specialized SOTA methods (PL-Marker, HGERE), and lightweight Graph Neural Networks
(GCN, GAT). HGNet occupies a unique ”sweet spot”: it matches the generalization of LLMs while
maintaining the throughput of specialized models.

Component-Wise Parameter Breakdown. Table 11 details the parameter distribution of the full
HGNet pipeline. We employ a two-stage architecture (Z-NERD and HGNet) where decoupling im-
plies the worst case parameter setting. Notably, the Z-NERD stage is architecturally heavier (42.4M
trainable params) due to the Multi-Scale TCQK mechanism, which employs 8 parallel convolutional
heads with wide projection matrices (dproj = 2048) to capture dense n-gram contexts. The HGNet
stage utilizes a lighter, structure-aware GNN (31.6M trainable params) to reason over the sparse
entity graph.

Training Overhead. Structural losses (DHL/CAF) are not computed during inference. During
training, the Krylov subspace approximation reduces the exact matrix exponential calculation time
from ∼150ms to ∼12ms per batch, rendering the overhead negligible (< 5% total training time).
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Figure 6: Main figure explaining the proposed Z-NERD algorithm. For TCQK, multi-head for each
convolution has been shown as single head for simplicity. B refers to begin entity, I refers to inside
entity and O refers to outside entity.
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Figure 7: Main figure of proposed HGNet illustrating all proposed components. For clarity, we omit
Lregression, since it is simply a regression loss applied over the graph topology, similar in nature to
standard losses such as mean squared error or binary cross entropy.
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Table 10: Efficiency Landscape on SciERC (A30 GPU, Batch=8). GFLOPs are estimated per input
instance. HGNet (Full Pipeline) provides superior throughput compared to pipeline-based SOTA
models despite robust parameter capacity.

Model Params GFLOPs Speed (doc/s) Mem (GB) Zero-Shot Gen.

Large Language Models
Llama-3-70B ∼70B >140k ∼0.5 OOM High
Llama-3-8B ∼8B >16k ∼4.2 16.0+ Moderate

Specialized SOTA
PL-Marker ∼220M 44.0 12.4 7.2 Low
HGERE ∼220M 22.5 14.1 9.5 Low

Graph Baselines
SciBERT+GCN ∼110M 22.0 48.2 6.1 Low
SciBERT+GAT ∼110M 22.1 46.8 6.3 Low

Proposed
HGNet ∼293M 44.7 14.6 10.5 High

Table 11: Detailed parameter breakdown of the HGNet framework (Two-Stage Configuration, worst
case parameters). The Z-NERD stage incorporates high-capacity TCQK attention (8 Heads) to
resolve complex multi-word boundaries, while HGNet utilizes specialized message-passing layers.

Stage Component Params (M) % of Total

Stage 1: Z-NERD Specialized SciBERT Encoder 109.5 37.4%
Multi-Scale TCQK (8 Heads) 42.4 14.5%

Stage 2: HGNet Specialized SciBERT Encoder 109.5 37.4%
Hierarchical GNN Layers 31.6 10.7%

Total Full Two-Stage Pipeline ∼293.0 100%
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