

000 HGNet: SCALABLE FOUNDATION MODEL FOR AUTO- 001 MATED KNOWLEDGE GRAPH GENERATION FROM SCI- 002 ENTIFIC LITERATURE

003 **Anonymous authors**

004 Paper under double-blind review

011 ABSTRACT

012 Automated knowledge graph (KG) construction is essential for navigating the
013 rapidly expanding body of scientific literature. However, existing approaches face
014 persistent challenges: they struggle to recognize long multi-word entities, often
015 fail to generalize across domains, and typically overlook the hierarchical and log-
016 ically constrained nature of scientific knowledge. While general-purpose large
017 language models (LLMs) offer some adaptability, they are computationally ex-
018 pensive and yield inconsistent accuracy on specialized, domain-heavy tasks such
019 as scientific knowledge graph construction. As a result, current KGs are shallow
020 and inconsistent, limiting their utility for exploration and synthesis. We propose
021 a two-stage framework for scalable, zero-shot scientific KG construction. The
022 first stage, Z-NERD, introduces (i) Orthogonal Semantic Decomposition (OSD),
023 which promotes domain-agnostic entity recognition by isolating semantic “turns”
024 in text, and (ii) a Multi-Scale TCQK attention mechanism that captures coher-
025 ent multi-word entities through n-gram-aware attention heads. The second stage,
026 HGNet, performs relation extraction with hierarchy-aware message passing, ex-
027 plicitly modeling parent, child, and peer relations. To enforce global consistency,
028 we introduce two complementary objectives: a Differentiable Hierarchy Loss to
029 discourage cycles and shortcut edges, and a Continuum Abstraction Field (CAF)
030 Loss that embeds abstraction levels along a learnable axis in Euclidean space. To
031 the best of our knowledge, this is the first approach to formalize hierarchical ab-
032 straction as a continuous property within standard Euclidean embeddings, offering
033 a simpler and more interpretable alternative to hyperbolic methods. To address
034 data scarcity, we also release SPHERE, a large-scale, multi-domain benchmark
035 for hierarchical relation extraction. Our framework establishes a new state of the
036 art on benchmarks such as SciERC, SciER and SPHERE benchmarks, improving
037 named entity recognition (NER) by 8.08% and relation extraction (RE) by 5.99%
038 on the official out-of-distrubtion test sets. In zero-shot settings, the gains are even
039 more pronounced, with improvements of 10.76% for NER and 26.2% for RE,
040 marking a significant step toward reliable and scalable scientific knowledge graph
041 construction.

042 1 INTRODUCTION

043 The exponential growth of scientific literature has created an overwhelming challenge: the pace of
044 publication now far exceeds human capacity for manual review and synthesis Taylor et al. (2022).
045 Automated systems that can distill unstructured text into structured, machine-readable representa-
046 tions are therefore essential. Knowledge Graphs (KGs) offer a compelling solution, representing
047 entities such as methods, datasets, or concepts as nodes and their semantic connections as edges
048 Wang et al. (2022a). Yet, constructing high-quality KGs from dense, jargon-rich scientific text re-
049 mains difficult, as complex terminology, long multi-word entities, and layered hierarchical structures
050 introduce challenges that current approaches fail to resolve.

051 Scientific KG construction is constrained by four interdependent challenges that limit both accuracy
052 and scalability. The first two concern node identification. Many scientific concepts are expressed
053 as long multi-word phrases, such as “*in situ transmission electron microscopy*”, which must be

054 recognized as coherent units. This problem of *multi-word entity recognition* remains unresolved be-
 055 cause most state-of-the-art models treat token boundaries as incidental rather than explicit objectives
 056 Zhou et al. (2024); Zaratiana et al. (2023). A second challenge is *domain generalization*: systems
 057 trained on one discipline must adapt to new fields without extensive retraining. Supervised models
 058 often collapse out of distribution, while large language models (LLMs) with more than 10 billion
 059 parameters offer broader adaptability but are computationally expensive, making them impractical
 060 for routine KG construction. **In contrast, our proposed model is lightweight, with only \sim 300 million
 061 parameters. Unlike general-purpose LLMs which require billions of parameters to achieve general-
 062 alization, HGNet matches the computational efficiency of specialized baselines while offering the
 063 robust zero-shot capabilities of a foundation model.**

064 Once entities are identified, the next task is to establish edges between them, introducing two fur-
 065 ther challenges. Scientific knowledge is hierarchical, for instance, “*Deep Learning*” is a subfield of
 066 “*Machine Learning*”. Capturing such relationships requires *hierarchy-aware relation modeling* Bai
 067 et al. (2021), yet conventional models are largely *hierarchy-blind*, relying on shallow co-occurrence
 068 statistics rather than deeper conceptual structures. Beyond hierarchy, graphs must also be logically
 069 consistent: contradictions such as declaring A part of B and B part of A undermine integrity. Large
 070 language models, while capable of performing both NER and RE in a single framework, are again
 071 prohibitively expensive and yield inconsistent results on specialized, hierarchical scientific knowl-
 072 edge (Refer table 3 of Zhang et al. (2024)). Ensuring *globally consistent structures* is therefore
 073 essential, but current methods lack mechanisms to guarantee that the graph forms a valid Directed
 074 Acyclic Graph (DAG) Chami et al. (2020). Reliable KG construction thus requires not only accurate
 075 entity recognition but also principled modeling of relational and structural dependencies.

076 To the best of our knowledge, we introduce the first end-to-end system designed to address all four
 077 challenges by discovering latent hierarchical structures directly from text. Our framework oper-
 078 ates in two stages. Stage one employs *Z-NERD*, a zero-shot recognizer that ensures robust domain
 079 generalization via Orthogonal Semantic Decomposition (OSD) and captures complex entities with
 080 a Multi-Scale TCQK attention mechanism. Stage two applies *HGNet* (Hierarchy Graph Network),
 081 which builds a latent probabilistic graph, preserves hierarchical dependencies through specialized
 082 message-passing, and enforces structural integrity via two objectives: Differentiable Hierarchy Loss
 083 and Continuum Abstraction Field (CAF) Loss. To enable rigorous evaluation and mitigate data
 084 scarcity, we contribute *SPHERE*, a large-scale, multi-domain benchmark. Across datasets such as
 085 SciERC, SciER and SPHERE, our framework achieves new state-of-the-art results: average gains of
 086 8.08% in NER and 5.99% in RE, with even larger improvements in zero-shot settings (10.76% for
 087 NER and 26.2% for RE). Collectively, these contributions establish the first principled, empirically
 088 validated solution for building robust, high-quality scientific KGs at scale. Our main contributions
 089 include:

- 090 • **Z-NERD:** We propose a novel, domain-agnostic NER model that significantly *outperforms all*
 091 *state-of-the-art baselines* on the most challenging scientific benchmarks (Refer table 1). Its core
 092 innovations are the *Multi-Scale TCQK* mechanism, which enables coherent recognition of multi-
 093 word entities by dedicating attention heads to n-gram patterns, and *Orthogonal Semantic De-
 094 composition (OSD)*, a new technique for zero-shot generalization that identifies domain-invariant
 095 “semantic turn” signals.
- 096 • **Hierarchy Graph Network (HGNet):** We introduce a GNN architecture for relation extraction
 097 that establishes a *new state-of-the-art* by a significant margin on complex hierarchical benchmarks
 098 (Refer table 2, 3, 4). It learns and reasons over a latent, probabilistic conceptual graph and, unlike
 099 standard GNNs, uses *specialized message-passing channels* (parent-to-child, child-to-parent, and
 peer-to-peer) to preserve the directional flow of hierarchical information.
- 100 • **A Geometric Theory of Abstraction:** We introduce a novel paradigm for representing hierar-
 101 chical knowledge. We are the first to formalize abstraction as an intrinsic geometric property
 102 of standard Euclidean space, realized through a learnable *Abstraction Field Vector* that creates a
 103 universal axis of generality. This approach, enforced by our *Continuum Abstraction Field (CAF)*
 104 *Loss*, offers a more direct and interpretable alternative to complex methods like hyperbolic em-
 105 beddings.
- 106 • **The SPHERE Dataset:** To address the critical bottleneck of data scarcity, we created and release
 107 *SPHERE*, the first large-scale, multi-domain benchmark specifically designed for hierarchical re-
 lation extraction. Generated via a novel methodology, it contains over 1 million paragraphs and

108 111,000 annotated relations, enabling more robust training and evaluation of complex KG con-
 109 struction models.
 110

111

112 2 RELATED WORKS

113

114 The task of constructing a Knowledge Graph (KG) from scientific literature involves two primary
 115 sub-tasks: Named Entity Recognition (NER) to identify conceptual nodes, and Relation Extraction
 116 (RE) to identify the semantic edges between them. This section situates our work within existing
 117 paradigms for these tasks, highlighting the persistent gaps that motivate our proposed framework.
 118

119

120 2.1 ENTITY RECOGNITION IN SCIENTIFIC TEXT

121

122 High-performance scientific NER has been dominated by supervised transformer models such as
 123 SciBERT Beltagy et al. (2019) and BioBERT Lee et al. (2019), pre-trained on large scientific corpora
 124 and fine-tuned on task-specific data. This paradigm achieves state-of-the-art performance on in-
 125 domain benchmarks and has been scaled to foundation models like BioMedLM Bolton et al. (2024),
 126 yet it faces a critical architectural limitation. The ability to capture complex, multi-word entities
 127 (e.g., "in situ transmission electron microscopy") arises only as an emergent property of contextual
 128 embeddings rather than a dedicated feature, often resulting in fragmented or incomplete recognition.
 129 Our Z-NERD framework addresses this gap through the Multi-Scale TCQK mechanism, which
 130 intrinsically modifies attention to force heads to specialize in n-gram patterns of varying lengths,
 offering a principled, structural solution.

131

132 A second limitation is poor domain generalization: supervised models degrade sharply on out-of-
 133 domain text. Zero-shot methods such as GLiNER Zaratiana et al. (2023) and UniversalNER Zhou
 134 et al. (2024) reformulate the task as span matching, while general-purpose LLMs like GPT-4 Open-
 135 AI (2025) show impressive but inconsistent zero-shot performance Zhang et al. (2024). Yet these
 136 approaches still depend on surface semantics or world knowledge. By contrast, our Orthogonal Se-
 137 mantic Decomposition (OSD) trains the model to detect domain-agnostic *semantic turns*—points
 138 where new concepts are introduced, shifting focus from vocabulary to discourse structure. This
 139 enables Z-NERD to achieve robust zero-shot performance beyond the reach of semantic matching.

140

141 2.2 RELATION EXTRACTION AND HIERARCHICAL MODELING

142

143 Relation extraction (RE) has evolved from localized, sentence-level models to corpus-level systems
 144 capable of multi-hop reasoning across documents. Early neural approaches relied on pipeline ar-
 145 chitectures, but error propagation soon motivated joint models that simultaneously extract entities
 146 and relations Zhong & Chen (2021); Yamada et al. (2020); Yan et al. (2023). Benchmarks such
 147 as SciERC Luan et al. (2018) and SciER Zhang et al. (2024) have been instrumental in driv-
 148 ing progress, enabling transformer-based methods that achieve state-of-the-art performance on fine-
 149 grained scientific relations. However, these methods remain confined to sentence-level reasoning
 150 and fail to capture the long-range dependencies and cross-sentence evidence chains that are central
 to scientific literature.

151

152 To address this limitation, recent work has shifted toward cross-document relation extraction, em-
 153 ploying graph neural networks (GNNs) and multi-hop retrieval to link entity mentions across docu-
 154 ments and aggregate distributed evidence Wang et al. (2022b); Lu et al. (2023). Yet such methods
 155 typically rely on surface features like co-occurrence or syntactic proximity, conflating textual adja-
 156 cency with genuine conceptual relatedness and yielding noisy graphs. Meanwhile, hierarchy-aware
 157 approaches such as hierarchical attention Han et al. (2018) and reinforcement learning frameworks
 158 Takanobu et al. (2019) show promise but are tailored to shallow taxonomies, limiting their applica-
 159 bility to the deep, nested, and implicit hierarchies of scientific knowledge. We therefore introduce
 160 *HGNet*, the first GNN architecture explicitly designed for hierarchical relation extraction in scientific
 161 literature. HGNet builds a latent conceptual graph and leverages parent, child, and peer message-
 162 passing channels to model the directional flow of information, disentangling textual proximity from
 163 conceptual hierarchy and enabling the capture of both local and global dependencies while preserv-
 164 ing the layered structure of scientific knowledge.

162
163

2.3 GEOMETRIC AND LOGICAL REPRESENTATIONS OF HIERARCHY

164
165
166
167
168
169
170
171
172
173
174

A key challenge in learning hierarchical structures is ensuring they are both logically and geometrically sound. Our HGNet captures directional information flow and disentangles textual proximity from conceptual hierarchy, but still requires a principled embedding space for global consistency. To address this, we introduce a geometric perspective: instead of merely extracting relations, we learn a hierarchy representation that respects logical constraints and abstraction levels. While hyperbolic geometry is often used for low-distortion tree embeddings Nickel & Kiela (2017), our approach defines a new paradigm, learning a globally consistent abstraction ordering directly in Euclidean space. This is achieved via the Continuum Abstraction Field (CAF) Loss, which orients the embedding space along a learnable universal "axis of abstraction." Simpler and more interpretable, this prior integrates with our Differentiable Hierarchy Loss, enforcing logical constraints such as acyclicity. Together, these losses ensure the learned KG is both geometrically organized and logically coherent.

175
176

3 METHODOLOGY

177
178
179
180
181
182

Our framework consists of a unified, co-trained architecture utilizing a shared SciBERT encoder. First, Z-NERD processes raw scientific text to identify and extract entity mentions. Second, HGNet takes the contextualized entity embeddings from this shared encoder as input, which maintains the document-level context, and learns their hierarchical and peer relationships, constructing a globally consistent knowledge graph.

183
184

3.1 Z-NERD: ZERO-SHOT ENTITY RECOGNITION

185
186
187
188
189

Z-NERD is an efficient tagging model that addresses two key challenges in NER: recognizing multi-word entities and generalizing to new domains. Its architecture first applies Orthogonal Semantic Decomposition to the input embeddings to extract domain-agnostic features, then feeds these enriched representations into a transformer encoder modified with our Multi-Scale TCQK mechanism.

190
191
192
193
194

3.1.1 DOMAIN GENERALIZATION VIA ORTHOGONAL SEMANTIC DECOMPOSITION (OSD)

To overcome domain overfitting, a model must learn to recognize abstract linguistic patterns rather than memorizing domain-specific vocabulary. This requires identifying features that are invariant across different scientific fields.

195
196
197
198
199

We therefore hypothesize that **Hypothesis 3.1** : *robust domain generalization can be achieved by training a model to rely on features that explicitly isolate the introduction of new semantic concepts, rather than simply tracking the overall semantic flow.* By providing the model with a "semantic turn" signal (a measure of how much the meaning deviates from the preceding context), we can make it sensitive to the underlying logical structure of the text instead of overfitting to vocabulary.

200
201
202
203

We achieve this by decomposing the change vector between consecutive word embeddings, $\Delta E_t = E_{\text{text}_t} - E_{\text{text}_{t-1}}$, into two orthogonal components. The *sustaining component* is the projection of this change onto the previous word's embedding, representing elaboration. The *divergent component*, which is orthogonal to the previous word's direction, captures the introduction of a new concept.

204
205
206

$$v_{\text{sustaining}_t} = \frac{\Delta E_t \cdot E_{\text{text}_{t-1}}}{\|E_{\text{text}_{t-1}}\|^2} E_{\text{text}_{t-1}} \quad (1)$$

207
208
209
210
211

$$v_{\text{divergent}_t} = \Delta E_t - v_{\text{sustaining}_t} \quad (2)$$

We concatenate the divergent vector $v_{\text{divergent}_t}$ with the original contextual embedding E_{text_t} (Refer figure 6). This enriched representation provides the model with the domain-invariant signal of conceptual shifts necessary for robust zero-shot generalization.

212
213

3.1.2 COHERENT MULTI-WORD ENTITIES VIA MULTI-SCALE TCQK ATTENTION

214
215

Standard self-attention mechanisms lack a strong architectural bias for word adjacency, often failing to identify the precise boundaries of long entities. This leads to fragmented predictions and an incomplete understanding of complex concepts.

Our guiding hypothesis is that **Hypothesis 3.2** : *robust, variable-length entity detection can be achieved by designing a self-attention mechanism where different heads are architecturally specialized to capture n-gram patterns of different lengths.* By fusing the global reach of attention with the local sequence awareness of convolutions at multiple scales, the model can learn to recognize single tokens, short phrases, and long entities in parallel.

We introduce the Multi-Scale Temporal Convolutional Queries & Keys (TCQK) mechanism to realize this. Before computing attention scores, we modify the Query (\mathbf{Q}) and Key (\mathbf{K}) vectors using 1D convolutions. We partition the H attention heads into G groups, assigning each group g a convolutional kernel C_g with a specific size k_g (e.g., 1, 3, 5). For each head h in group g , we compute:

$$\mathbf{Q}_{\text{conv},h} = C_g(\mathbf{Q}_h); \quad \mathbf{K}_{\text{conv},h} = C_g(\mathbf{K}_h) \quad (3)$$

This modification intrinsically alters the self-attention mechanism, compelling different heads to specialize in n-gram patterns of varying lengths. This allows the model to capture both short acronyms and long chemical names as single, coherent concepts. Note: We apply Multi-Scale TCQK mechanism over the concatenated embeddings from orthogonal semantic decomposition. (Refer figure 6 for more details)

3.2 HGNET: HIERARCHY GRAPH NETWORK

Given the entities extracted by Z-NERD, the goal of the Hierarchy Graph Network (HGNet) is to estimate the conditional distribution $P(T_{\text{local}} \mid D, \mathcal{G}_K)$. The input entities ($\mathbf{h}_u, \mathbf{h}_v$) are the **contextualized output embeddings** from the **SciBERT** encoder, ensuring the document-level context is **maintained for relationship prediction, a standard procedure for efficiency in SOTA RE models.** where each local relation triplet (start entity, relation, end entity) is constrained by a global Hierarchical Knowledge Graph (HKG) \mathcal{G}_K . Since \mathcal{G}_K is unobserved, HGNet must jointly infer its structure and leverage it for reasoning. The model is organized around three core components, each grounded in a specific hypothesis about hierarchical consistency.

3.2.1 PROBABILISTIC HIERARCHICAL MESSAGE PASSING

Traditional Graph Neural Networks (GNNs) are fundamentally "hierarchy-blind." They operate on a single, undifferentiated graph, propagating messages uniformly across all connections. This approach is flawed as it cannot distinguish between information flowing "up" from a specific child, "down" from an abstract parent, or "sideways" from a peer, thereby corrupting the learned representations. To address this, our work is guided by the hypothesis that **Hypothesis 3.3** : *a GNN can preserve and leverage hierarchical structure if its message-passing architecture is explicitly designed to respect it.* By creating distinct, parallel channels for information flowing along different axes of the hierarchy, the model can learn specialized, context-aware update functions, leading to richer and more robust entity embeddings.

To realize this, our architecture operates on a probabilistic graph where relations are treated as learnable variables. First, a *Latent Relation Predictor* (MLP) estimates the probability distribution over relation types $\mathcal{R} = \{\text{parent-of}, \text{peer-of}, \text{no-edge}\}$ for every pair of entity nodes (u, v) :

$$P_{uv} = \text{softmax}(\text{MLP}([\mathbf{h}_u \parallel \mathbf{h}_v])) \quad (4)$$

These probabilities serve as soft edge weights for a three-channel message passing scheme. For a given node v at layer k , we compute aggregated messages, each with a separate, learnable weight matrix ($W_{\text{up}}, W_{\text{down}}, W_{\text{peer}}$) to capture the unique semantics of each relational direction:

- 1. Parental (Upstream) Aggregation:** $\mathbf{m}_v^{\text{parents}} = \sum_{u \in V} P_{uv}^{\text{parent}} \cdot (W_{\text{up}} \mathbf{h}_u^{(k)})$
- 2. Child (Downstream) Aggregation:** $\mathbf{m}_v^{\text{children}} = \sum_{u \in V} P_{vu}^{\text{parent}} \cdot (W_{\text{down}} \mathbf{h}_u^{(k)})$
- 3. Peer Aggregation:** $\mathbf{m}_v^{\text{peers}} = \sum_{u \in V} P_{uv}^{\text{peer}} \cdot (W_{\text{peer}} \mathbf{h}_u^{(k)})$

Finally, these three context-specific messages are concatenated with the node's previous state and passed through an update MLP to produce the final, structure-aware embedding for the next layer:

$$\mathbf{h}_v^{(k+1)} = \text{UpdateMLP}([\mathbf{h}_v^{(k)} \parallel \mathbf{m}_v^{\text{parents}} \parallel \mathbf{m}_v^{\text{children}} \parallel \mathbf{m}_v^{\text{peers}}]) \quad (5)$$

270 3.2.2 LOGICAL COHERENCE VIA DIFFERENTIABLE HIERARCHY LOSS (DHL)
271

272 A critical challenge in learning a latent graph is that, without explicit constraints, the model has no
273 incentive to ensure its structure is globally coherent. During training, it might predict logically im-
274 possible structures, such as cycles (e.g., A is a part of B, and B is a part of A) or shortcuts that skip
275 hierarchical levels (e.g., mistaking a grandparent for a parent). These structural inconsistencies cor-
276 rupt the message-passing process and lead to semantically invalid graphs. We therefore hypothesize
277 that **Hypothesis 3.4** : *we can enforce a logically sound latent hierarchy by explicitly and differen-
278 tiably penalizing these structural impossibilities*. In particular, by introducing a composite loss that
279 punishes cycles and invalid shortcuts, we guide the model toward a parameter space where the latent
280 graph forms a valid Directed Acyclic Graph (DAG) with a strict parent-child hierarchy.

281 This is achieved with the *Differentiable Hierarchy Loss* ($\mathcal{L}_{\text{hierarchy}}$), a regularizer operating on the
282 predicted parent-of adjacency matrix, A_{parent} . It is a weighted sum of two components:
283

$$284 \quad \mathcal{L}_{\text{hierarchy}} = \lambda_{\text{acyclic}} \mathcal{L}_{\text{acyclic}} + \lambda_{\text{separation}} \mathcal{L}_{\text{separation}} \quad (6)$$

286 The first component is an *Acyclicity Loss*, which uses the trace of a matrix exponential to differen-
287 tiably ensure the graph is a DAG (Refer appendix A.7, for accelerated calculation using Krylov’s
288 subspace) **Here, d is the number of nodes (entities) in the graph**. For proof of why this function
289 pushes our graph structure to be DAG, refer appendix A.11.

$$291 \quad \mathcal{L}_{\text{acyclic}} = \text{tr}(e^{A_{\text{parent}} \circ A_{\text{parent}}}) - d \quad (7)$$

293 The second component is a *Hierarchical Separation Loss*, which penalizes shortcut edges that skip
294 intermediate hierarchical levels (Refer appendix A.7 for efficient computation). Formally, it is de-
295 fined as:

$$297 \quad \mathcal{L}_{\text{separation}} = \sum_{u,w} (A_{\text{parent}}^2)_{uw} \cdot (A_{\text{parent}})_{uw} \quad (8)$$

300 Here, $(A_{\text{parent}}^2)_{uw}$ counts the number of length-2 paths from node u to node w , and the elementwise
301 product with $(A_{\text{parent}})_{uw}$ selects only direct edges that skip an intermediate node. This encourages
302 the model to maintain a strict parent-child hierarchy by discouraging shortcuts.

304 3.2.3 GEOMETRIC COHERENCE VIA CONTINUUM ABSTRACTION FIELD (CAF) LOSS

305 A model’s embedding space is typically geometrically “flat,” lacking an intrinsic structure for ab-
306 straction. While a model might learn that “RNN” and “LSTM” are related, it fails to encode that
307 an RNN is a more general concept, leaving embeddings as a disorganized cloud of points. Our
308 approach is founded on the hypothesis that **Hypothesis 3.5** : *hierarchical understanding is a fun-
309 damental geometric property of the embedding space*. By organizing all concepts along a single,
310 universal “axis of abstraction,” the model can embed hierarchical information directly into the vec-
311 tor representations, making the abstraction level of a concept an intrinsic property of its learned
312 embedding.

314 We introduce the *Continuum Abstraction Field (CAF) Loss* (\mathcal{L}_{caf}) to impose this geometric structure.
315 It introduces a *learnable unit vector*, the *Abstraction Field Vector* \mathbf{w}_{abs} , that defines this universal
316 axis (Refer appendix A.5 for more details on the unit abstraction field vector). An entity v ’s abstrac-
317 tion score is defined as its projection onto this axis: $\hat{y}_{\text{abs}}(v) = \mathbf{h}_v \cdot \mathbf{w}_{\text{abs}}$. **This abstraction score is**
318 **a continuous, real-valued number, ensuring the model learns a fluid continuum rather than a limited**
319 **number of fixed, discrete levels**. The composite loss, $\mathcal{L}_{\text{caf}} = \mathcal{L}_{\text{ranking}} + \gamma_1 \mathcal{L}_{\text{anchor}} + \gamma_2 \mathcal{L}_{\text{regression}}$,
320 shapes this structure using three distinct objectives:

321 • **Ranking Component:** Enforces relative parent-child ordering with a margin δ .

$$323 \quad \mathcal{L}_{\text{ranking}} = \frac{1}{|\mathcal{E}_{\text{part-of}}|} \sum_{(c,p) \in \mathcal{E}_{\text{part-of}}} \max(0, (\mathbf{h}_c - \mathbf{h}_p) \cdot \mathbf{w}_{\text{abs}} + \delta) \quad (9)$$

324 • **Anchoring Component:** Pins known root (\mathcal{V}_s) and leaf (\mathcal{V}_t) nodes to scores of 1 and 0.
 325

326
$$\mathcal{L}_{\text{anchor}} = \frac{1}{|\mathcal{V}_s|} \sum_{v_s \in \mathcal{V}_s} (\mathbf{h}_{v_s} \cdot \mathbf{w}_{\text{abs}} - 1)^2 + \frac{1}{|\mathcal{V}_t|} \sum_{v_t \in \mathcal{V}_t} (\mathbf{h}_{v_t} \cdot \mathbf{w}_{\text{abs}} - 0)^2 \quad (10)$$

 327

328 • **Regression Component:** Pulls predicted scores towards ground-truth topological depth
 329 scores $y_{\text{topo}}(v)$, which are derived for all benchmarks by performing a topological sort on
 330 the ground truth hierarchical relations.
 331

332
$$\mathcal{L}_{\text{regression}} = \frac{1}{|\mathcal{V}_{\text{train}}|} \sum_{v \in \mathcal{V}_{\text{train}}} ((\mathbf{h}_v \cdot \mathbf{w}_{\text{abs}}) - y_{\text{topo}}(v))^2 \quad (11)$$

 333

335 This transforms abstraction from a simple regression target into an organizing principle of the entire
 336 embedding space.
 337

338 **3.2.4 FINAL RELATION PREDICTION**
 339

340 The relations {parent-of, peer-of, no-edge} described in Section 3.2.1 are an internal mechanism
 341 used solely for structure regulation. The $\mathbf{h}^{(k+1)}$ embedding produced by HGNet represents
 342 the final, optimized structure-aware representation. The extraction of the actual, task-specific
 343 $\langle \text{head}, \text{relation}, \text{tail} \rangle$ triplets is then performed by a standard downstream classification head (the
 344 same type utilized by models such as HGGERE or PL-Marker) operating on this refined represen-
 345 tation. This head takes the structure-aware $\mathbf{h}^{(k+1)}$ embedding as input and predicts the full set of
 346 fine-grained relations required by the benchmarks. The loss from this external task, \mathcal{L}_{RE} , constitutes
 347 the primary task objective of the entire framework.
 348

349 **3.2.5 COHERENT ARCHITECTURE AND JOINT OPTIMIZATION**
 350

351 While Sections 3.2.1–3.2.4 define the modular components of HGNet, the system operates as a
 352 single, unified framework, where all elements are simultaneously optimized in one end-to-end for-
 353 ward pass. This co-training mechanism ensures the learned structure is globally consistent, logi-
 354 cally sound, and geometrically coherent. The entity embeddings ($\mathbf{h}_u, \mathbf{h}_v$) are the contextualized
 355 outputs from the shared SciBERT encoder of the Z-NERD stage. The *Latent Relation Predictor*
 356 estimates the initial probability distribution P_{uv} over relations, which immediately initiates two par-
 357 allel paths: Logical Regularization and Message Passing. The predicted parent matrix ($\mathbf{A}_{\text{parent}}$) feeds
 358 directly into the Differentiable Hierarchy Loss ($\mathcal{L}_{\text{hierarchy}}$), which penalizes structural errors like cy-
 359 cles ($\mathcal{L}_{\text{acyclic}}$) and shortcut edges ($\mathcal{L}_{\text{separation}}$). Concurrently, the probabilities P_{uv} are used as soft
 360 edge weights to guide the three-channel Probabilistic Message Passing GNN, which produces the
 361 enhanced, structure-aware entity embeddings ($\mathbf{h}_v^{(k+1)}$).
 362

363 These final embeddings $\mathbf{h}_v^{(k+1)}$ are then used to compute the Continuum Abstraction Field (CAF)
 364 Loss (\mathcal{L}_{caf}). This loss enforces geometric ordering, shaping the embedding space along the universal
 365 axis of abstraction. The embeddings are also passed to a final classification head, which predicts the
 366 task-specific $\langle \text{head}, \text{relation}, \text{tail} \rangle$ triplets (\mathcal{L}_{RE}). The total loss for the model is a weighted composite
 367 sum of the primary task objective and the two structural regularizers:
 368

$$\mathcal{L}_{\text{Total}} = \mathcal{L}_{\text{RE}} + \lambda_1 \mathcal{L}_{\text{hierarchy}} + \lambda_2 \mathcal{L}_{\text{caf}}$$

369 This joint optimization is the core of HGNet: $\mathcal{L}_{\text{hierarchy}}$ forces the graph structure to be logically
 370 sound, while \mathcal{L}_{caf} forces the node embeddings to be geometrically sound.
 371

372 **VALIDATION OF STRUCTURAL LOSSES**
 373

374 The efficacy of enforcing structural and geometric coherence is confirmed through targeted ablation
 375 studies. Ablating the Differentiable Hierarchy Loss (DHL) led to a notable drop in performance,
 376 confirming the necessity of penalizing logical inconsistencies like cycles and shortcut edges. Simi-
 377 larly, removing the Continuum Abstraction Field (CAF) Loss resulted in a significant degradation
 378 in Rel+ F1 score, validating that embedding generality as an intrinsic geometric property is critical
 379 for hierarchical reasoning. (For detailed empirical results, refer to the 4 section.)
 380

378 Refer figure 7 for detailed visualization of all components of HGNet. Refer appendix A.12 for
 379 a short proof sketch of HGNet as a generalized attention mechanism. For a short discussion on
 380 convergence of HGNet, refer appendix A.13

382 4 EXPERIMENTS

385 In this section, we present a comprehensive empirical evaluation of our proposed Z-NERD and
 386 HGNet frameworks. We first detail the experimental setup, then present the main performance
 387 results against strong baselines, and finally conduct a series of ablation studies and analyses to
 388 validate our core hypotheses.

390 4.1 EXPERIMENTAL SETUP

392 **Datasets** We evaluate our models on a diverse set of scientific information extraction benchmarks.
 393 This includes four established datasets: SciERC Luan et al. (2018), SciER Zhang et al. (2024),
 394 BioRED, and SemEval-2017 Task 10 Augenstein et al. (2017). These datasets span multiple sci-
 395 entific domains, feature complex entity and relation types, and are standard benchmarks for this
 396 task. For fair comparison we report all the metrics on the Out of Distribution official test sets. To
 397 address the scarcity of large-scale annotated data, we also introduce SPHERE, a new, large-scale
 398 dataset created via a novel LLM-based generate-and-annotate methodology. SPHERE contains four
 399 distinct scientific domains (Computer Science, Physics, Biology, and Material Science), enabling
 400 robust evaluation of both in-domain and zero-shot performance.

401 **Evaluation Metrics** For Named Entity Recognition (NER), we report the standard micro F1 score.
 402 For the more complex end-to-end Relation Extraction (RE) task, we use the strict Rel+ F1 metric
 403 Zhong & Chen (2021), which requires the model to correctly predict the boundaries and types for
 404 both entities in a relation, as well as the relation type itself.

406 **Baselines** Our frameworks are benchmarked against a comprehensive suite of strong models.
 407 For NER, we compare Z-NERD against state-of-the-art supervised models (SciBERT, PL-Marker,
 408 HGGERE), a powerful specialized model (UniversalNER-7b), and several general-purpose LLMs in a
 409 zero-shot setting. For RE, we compare HGNet against top-performing end-to-end supervised models
 410 (PL-Marker, HGGERE), standard GNN architectures (GCN, GAT), and LLMs.(Refer table 1 for ref-
 411 erences). Additional experiments comparing HGNet against **Hyperbolic Baselines** and **Few-Shot**
 412 **CoT LLMs** are detailed in A.8 and A.9, respectively.

413 For implementation details, hyperparameters and SPHERE dataset generation process, refer appen-
 414 dices A.2 and A.3.1.

416 4.2 MAIN RESULTS

418 **Z-NERD for Entity Recognition** As shown in Table 1, our Z-NERD framework sets a new state-
 419 of-the-art across all benchmark datasets, achieving an 8.08% average F1 improvement over previous
 420 supervised models. The gains are even higher in the zero-shot SPHERE domains, with a 10.76%
 421 average improvement. In contrast, general-purpose LLMs evaluated directly in zero-shot mode
 422 without task-specific fine tuning failed to produce meaningful results, mainly due to difficulties in
 423 identifying multi-word entity boundaries. These LLMs are also much larger, highlighting Z-NERD’s
 424 efficiency at under 1B parameters.

426 **HGNet for Relation Extraction** The central goal of HGNet is to learn a globally coherent rep-
 427 resentation of scientific knowledge that respects its inherent hierarchical structure. We divide the
 428 relations in each dataset into two classes, hierarchical and peer, and report the macro F1 for these
 429 two classes separately. As shown in Table 2, 3 and 4, HGNet consistently outperforms all baseline
 430 models, with an average improvement of **5.99%** on the benchmark datasets and **26.20%** on the zero-
 431 shot SPHERE dataset. This demonstrates a distinct advantage on datasets characterized by complex
 hierarchical relations, driven by its hierarchy-aware multi-channel message-passing architecture.

432 4.3 ABLATION STUDIES AND ANALYSIS
433

434 **Analysis of Z-NERD Architecture** To validate our architectural contributions to Z-NERD,
435 we performed targeted ablation studies. First, removing the Multi-Scale TCQK mechanism re-
436 sults in a severe degradation of performance across every dataset. This sharp decline confirms
437 **Hypothesis 3.1**, validating that standard attention mechanisms are ill-equipped to handle the co-
438 herent identification of complex, multi-word entities and that an explicit architectural bias for n-
439 gram patterns is fundamental to success. Second, removing the features from Orthogonal Semantic
440 Decomposition (OSD) also leads to a consistent drop in F1 scores. The true significance of this
441 component becomes most apparent in the zero-shot domain generalization task, where the per-
442 formance drop is particularly pronounced. This provides compelling evidence for **Hypothesis 3.2**,
443 confirming that isolating "semantic turns" is the key to learning abstract, domain-agnostic patterns
444 for robust generalization. (Refer table 1) For evidence of how Orthogonal Semantic Decomposition
445 affects the learned embeddings to improve zero-shot inference, refer appendix A.4.

446 **Analysis of HGNet Architecture** The superior performance of HGNet is driven by its unique
447 design, which we validate through ablations. The model's overall strong performance across
448 all datasets, particularly those with deep hierarchies, provides strong empirical support for
449 **Hypothesis 3.3**. This confirms that an explicitly hierarchy-aware GNN architecture with special-
450 ized parent, child, and peer message-passing channels produces richer and more accurate entity rep-
451 resentations than standard GNNs. Furthermore, removing the Continuum Abstraction Field (CAF)
452 Loss resulted in a significant degradation in Rel+ F1 score, validating **Hypothesis 3.5** by demon-
453 strating that embedding generality as an intrinsic geometric property of the space is critical for
454 hierarchical reasoning. Similarly, ablating the Differentiable Hierarchy Loss also led to a notable
455 drop in performance, which confirms **Hypothesis 3.4** and underscores the necessity of enforcing
456 logical constraints like acyclicity. (Refer table 2 and 3) For learned abstraction score analysis and
457 qualitative error analysis, refer appendices A.10 and A.6.

458
459 Table 1: F1 scores (%) of different models on NER benchmarks. SPHERE: CS, Physics, Bio,
460 MS report both supervised (Sup) and zero-shot (ZS) results. OSD refers to orthogonal semantic
461 decomposition. Z-NERD w/o OSD and w/o TCQK refer to ablations.
462

Models	SciERC	SciER	BioRED	SemEval	CS		Physics		Bio		MS	
					Sup	ZS	Sup	ZS	Sup	ZS	Sup	ZS
<i>Supervised Baselines</i>												
SciBERT Ye et al. (2022)	67.52	70.71	89.15	49.14	68.19	57.02	72.90	61.22	75.83	68.45	67.29	57.14
PL-Marker Yan et al. (2023)	70.32	74.04	86.41	47.69	68.64	56.39	72.83	60.51	75.78	66.17	66.72	57.92
HGERE Yan et al. (2023)	75.92	81.19	89.43	48.25	69.82	58.95	72.46	60.67	76.42	68.51	67.24	58.03
UniversalNER-7b Zhou et al. (2024)	66.09	73.13	88.46	47.60	OOM							
<i>Zero-Shot LLM Baselines</i>												
llama-3.3-70b Touvron et al. (2023)	46.20	49.57	54.82	30.16	OOM							
qwen3-32b Qwen et al. (2025)	41.63	46.52	31.71	26.48	OOM							
llama-3.1-8b-instant Touvron et al. (2023)	33.96	31.21	33.58	21.70	OOM							
<i>Proposed Approach (Z-NERD)</i>												
Z-NERD w/o TCQK	73.43	75.12	84.43	47.85	68.47	59.35	74.92	61.74	73.92	68.30	69.48	57.73
Z-NERD w/o OSD	74.39	80.27	90.12	50.98	76.93	62.04	76.68	65.17	82.40	73.29	78.24	63.45
Z-NERD	78.84	82.71	91.05	52.26	80.47	69.52	82.39	73.19	84.35	74.21	83.96	72.28

473 5 CONCLUSION AND FUTURE WORK
474

475 We present a novel two-stage framework for automated knowledge graph construction in the sci-
476 entific domain. The first stage, Z-NERD, combines Orthogonal Semantic Decomposition with a
477 Multi-Scale TCQK attention mechanism for robust, domain-agnostic recognition of complex enti-
478 ties. The second stage, HGNet, employs a probabilistic graphical model with specialized message-
479 passing channels, regularized by Differentiable Hierarchy and Continuum Abstraction Field losses.
480 The latter introduces a learnable Abstraction Field Vector, ensuring logical coherence and geometric
481 structuring around a universal abstraction axis. We also introduce SPHERE, a large-scale bench-
482 mark for scientific KG construction. Experiments show gains of up to 10.76% for NER and 26.2%
483 for RE in zero-shot scenarios, validating our hypotheses and the efficacy of a structurally-aware
484 approach to knowledge extraction.

485 Future work could extend this framework to incorporate multimodal information from figures and
tables, and explore its application in dynamic, continuously updated knowledge graphs that reflect

486
 487 Table 2: Rel+ F1 scores (%) of different models on SciERC, SciER, BioRED, and SemEval 2017
 488 for two relation types (*Hierarchical* and *Peer*), along with overall F1 across all relation types. For
 489 BioRED, which only has *Peer* relations, the overall score equals the peer score. The same entity
 490 prediction method is used across models for fair comparison. All values are rounded to two decimals.
 491

Models	SciERC			SciER			BioRED Overall	SemEval 2017		
	Hier.	Peer	Overall	Hier.	Peer	Overall		Hier.	Peer	Overall
<i>Supervised Models</i>										
PL-Marker Ye et al. (2022)	35.60	44.97	41.63	40.25	61.84	56.78	29.87	32.96	43.40	37.19
HGERE Yan et al. (2023)	37.72	47.35	43.86	43.79	64.35	58.47	32.39	33.81	45.73	38.63
PURE Zhong & Chen (2021)	34.39	38.46	36.78	38.53	56.21	49.35	29.41	28.94	41.35	34.92
<i>Zero-Shot LLM Models</i>										
GPT-3.5 Turbo Ye et al. (2023)	14.97	15.02	14.98	8.35	8.91	8.58	6.36	16.30	17.13	16.74
openai/gpt-oss-120b Ye et al. (2023)	19.68	21.27	20.45	27.93	27.52	27.64	7.15	23.59	24.16	23.88
llama-3.3-70b-versatile Touvron et al. (2023)	22.15	22.53	22.39	23.97	25.06	24.59	7.29	23.65	25.38	24.12
qwen/qwen3-32b Qwen et al. (2025)	16.57	19.33	18.20	24.02	24.45	24.28	6.71	20.92	21.38	21.09
llama-3.1-8b-instant Touvron et al. (2023)	13.30	14.27	13.92	17.15	17.69	17.43	5.48	14.11	14.46	14.24
<i>Supervised GNN-based Models</i>										
GCN	40.13	48.78	45.62	47.37	63.89	57.35	31.93	34.08	45.92	38.96
GCN w/o \mathcal{L}_{DHL}	38.46	48.51	44.98	46.85	64.22	56.89	32.28	32.82	45.72	37.99
GAT	40.37	49.11	46.21	47.35	64.29	57.64	32.40	34.47	46.19	39.25
GAT w/o \mathcal{L}_{DHL}	38.96	49.25	45.48	47.03	64.23	57.30	32.74	33.52	45.88	38.43
<i>Proposed Approaches</i>										
HGNet w/o \mathcal{L}_{DHL}	48.52	55.37	51.68	59.10	65.95	62.79	34.31	42.16	49.42	45.05
HGNet w/o \mathcal{L}_{CAF} Loss	42.70	52.14	47.33	54.75	61.21	58.67	33.09	38.58	43.28	41.19
HGNet	50.96	55.41	53.19	62.36	67.02	65.38	33.85	45.37	50.64	47.03

505
 506 Table 3: Rel+ F1 scores (%) on SPHERE dataset variants (Computer Science, Physics, Biology,
 507 Material Science) for two relation types (*Hier.*, *Peer*). We also report overall F1 across all relation
 508 types. *All models use the same entity prediction method for a fair comparison*. Subscripts indicate
 509 improvement over SOTA model HGERE.

Models	Comp. Sci.			Physics			Biology			Mat. Sci.		
	Hier.	Peer	All									
<i>Supervised Models</i>												
PL-Marker Ye et al. (2022)	51.98	57.04	55.29	50.22	56.48	53.51	52.35	53.76	53.03	52.96	53.27	53.12
HGERE Yan et al. (2023)	54.20	59.86	57.93	53.17	58.90	56.28	54.52	56.47	55.21	55.84	55.86	55.43
<i>Proposed Approaches</i>												
HGNet (ours)	77.40	81.36	79.51	76.93	83.47	80.60	82.53	84.29	83.74	81.91	85.64	83.65
w/o \mathcal{L}_{DHL}	73.62	74.83	74.17	74.01	75.30	74.66	79.15	78.64	78.90	77.43	76.92	77.28
w/o \mathcal{L}_{CAF}	67.14	65.89	66.50	64.51	66.24	65.96	75.17	73.29	74.13	75.95	77.38	76.32

514 Table 4: Zero-shot Rel+ F1 (%) when trained on Physics+Biology and evaluated on Comp. Sci. and
 515 Mat. Sci. datasets. Due to the expensive nature of these experiments, we only tested our zero-shot
 516 performance on the best performing state-of-the-art models in our previous experiments.

Models	Comp. Sci.			Mat. Sci.		
	Hier.	Peer	All	Hier.	Peer	All
PL-Marker Ye et al. (2022)	28.72	28.41	28.56	33.10	34.22	33.85
HGERE Yan et al. (2023)	29.93	29.63	29.81	36.27	39.41	37.97
HGNet (ours)	59.36	64.07	62.60	69.92	71.33	70.62

527 the real-time evolution of scientific fields. Furthermore, leveraging these structured KGs for down-
 528 stream reasoning tasks, such as automated hypothesis generation, presents an exciting avenue for
 529 further research.

6 REPRODUCIBILITY STATEMENT

531
 532 To ensure the reproducibility of our results, all source code for the Z-NERD and HGNet models,
 533 the newly introduced SPHERE dataset, and all experiment scripts will be made publicly available in
 534 the final version of this paper. We have provided comprehensive details of our experimental setup,
 535 including datasets, evaluation metrics (Section 4.1), implementation, software/hardware configura-
 536 tions, and training hyperparameters (Appendix A.2). The methodology for generating the SPHERE
 537 dataset is further detailed in Appendix A.3.1, and all baseline models are described in Section 4.1 to
 538 facilitate fair comparison.

540 REFERENCES
541

542 Isabelle Augenstein, Mrinal Das, Sebastian Riedel, Lakshmi Vikraman, and Andrew McCallum.
543 SemEval 2017 task 10: ScienceIE - extracting keyphrases and relations from scientific publica-
544 tions. In Steven Bethard, Marine Carpuat, Marianna Apidianaki, Saif M. Mohammad, Daniel
545 Cer, and David Jurgens (eds.), *Proceedings of the 11th International Workshop on Semantic Eval-
546 uation (SemEval-2017)*, pp. 546–555, Vancouver, Canada, August 2017. Association for Com-
547 putational Linguistics. doi: 10.18653/v1/S17-2091. URL <https://aclanthology.org/S17-2091/>.

548 Haim Avron and Sivan Toledo. Randomized algorithms for the trace of an implicit symmetric
549 positive semi-definite matrix. *Journal of the ACM*, 58(2):1–34, 2011. doi: 10.1145/1944345.
550 1944349.

552 Yushi Bai, Zhitao Ying, Hongyu Ren, and Jure Leskovec. Modeling heterogeneous hierarchies with
553 relation-specific hyperbolic cones. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman
554 Vaughan (eds.), *Advances in Neural Information Processing Systems*, 2021. URL <https://openreview.net/forum?id=chuGnZMuye>.

556 Iz Beltagy, Kyle Lo, and Arman Cohan. Scibert: A pretrained language model for scientific text,
557 2019. URL <https://arxiv.org/abs/1903.10676>.

559 Elliot Bolton, Abhinav Venigalla, Michihiro Yasunaga, David Hall, Betty Xiong, Tony Lee, Rox-
560 ana Daneshjou, Jonathan Frankle, Percy Liang, Michael Carbin, and Christopher D. Man-
561 ning. Biomedlm: A 2.7b parameter language model trained on biomedical text, 2024. URL
562 <https://arxiv.org/abs/2403.18421>.

563 Ines Chami, Rex Ying, Christopher Ré, and Jure Leskovec. Hyperbolic graph convolutional neural
564 networks, 2019. URL <https://arxiv.org/abs/1910.12933>.

566 Ines Chami, Adva Wolf, Da-Cheng Juan, Frederic Sala, Sujith Ravi, and Christopher Ré. Low-
567 dimensional hyperbolic knowledge graph embeddings, 2020. URL <https://arxiv.org/abs/2005.00545>.

569 Xu Han, Pengfei Yu, Zhiyuan Liu, Maosong Sun, and Peng Li. Hierarchical relation extraction with
570 coarse-to-fine grained attention. In Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi
571 Tsujii (eds.), *Proceedings of the 2018 Conference on Empirical Methods in Natural Language
572 Processing*, pp. 2236–2245, Brussels, Belgium, October–November 2018. Association for Com-
573 putational Linguistics. doi: 10.18653/v1/D18-1247. URL <https://aclanthology.org/D18-1247/>.

575 Jinyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon Kim, Sunkyu Kim, Chan Ho So, and
576 Jaewoo Kang. Biobert: a pre-trained biomedical language representation model for biomedical
577 text mining. *Bioinformatics*, 36(4):1234–1240, 09 2019. ISSN 1367-4803. doi:
578 10.1093/bioinformatics/btz682. URL <https://doi.org/10.1093/bioinformatics/btz682>.

580 Keming Lu, I-Hung Hsu, Wenxuan Zhou, Mingyu Derek Ma, and Muhan Chen. Multi-hop ev-
581 idence retrieval for cross-document relation extraction. In Anna Rogers, Jordan Boyd-Graber,
582 and Naoaki Okazaki (eds.), *Findings of the Association for Computational Linguistics: ACL
583 2023*, pp. 10336–10351, Toronto, Canada, July 2023. Association for Computational Linguis-
584 tics. doi: 10.18653/v1/2023.findings-acl.657. URL <https://aclanthology.org/2023.findings-acl.657/>.

587 Yi Luan, Luheng He, Mari Ostendorf, and Hannaneh Hajishirzi. Multi-task identification of entities,
588 relations, and coreference for scientific knowledge graph construction. In Ellen Riloff, David Chiang,
589 Julia Hockenmaier, and Jun’ichi Tsujii (eds.), *Proceedings of the 2018 Conference on Em-
590 pirical Methods in Natural Language Processing*, pp. 3219–3232, Brussels, Belgium, October–
591 November 2018. Association for Computational Linguistics. doi: 10.18653/v1/D18-1360. URL
592 <https://aclanthology.org/D18-1360/>.

593 Maximilian Nickel and Douwe Kiela. Poincaré embeddings for learning hierarchical representa-
594 tions, 2017. URL <https://arxiv.org/abs/1705.08039>.

594 OpenAI. Chatgpt. <https://chat.openai.com/>, 2025. Large language model (March 2025
 595 version).

596

597 Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
 598 Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
 599 Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
 600 Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
 601 Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
 602 Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025.
 603 URL <https://arxiv.org/abs/2412.15115>.

604 Yousef Saad. *Iterative Methods for Sparse Linear Systems*. SIAM, 2 edition, 2003. doi: 10.1137/1.
 605 9780898718003.

606 Ryuichi Takanobu, Tianyang Zhang, Jiexi Liu, and Minlie Huang. A hierarchical framework for
 607 relation extraction with reinforcement learning. *Proceedings of the AAAI Conference on Artificial
 608 Intelligence*, 33(01):7072–7079, Jul. 2019. doi: 10.1609/aaai.v33i01.33017072. URL <https://ojs.aaai.org/index.php/AAAI/article/view/4688>.

609

610 Ross Taylor, Marcin Kardas, Guillem Cucurull, Thomas Scialom, Anthony Hartshorn, Elvis Saravia,
 611 Andrew Poulton, Viktor Kerkez, and Robert Stojnic. Galactica: A large language model for
 612 science, 2022. URL <https://arxiv.org/abs/2211.09085>.

613

614 Hugo Touvron, Thibaut Lavrille, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 615 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
 616 mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
 617 language models, 2023. URL <https://arxiv.org/abs/2302.13971>.

618

619 Ivan Vendrov, Ryan Kiros, Sanja Fidler, and Raquel Urtasun. Order-embeddings of images and
 620 language. *arXiv preprint arXiv:1511.06361*, 2015.

621

622 Chenglin Wang, Yucheng Zhou, Guodong Long, Xiaodong Wang, and Xiaowei Xu. Unsupervised
 623 knowledge graph construction and event-centric knowledge infusion for scientific nli, 2022a.
 624 URL <https://arxiv.org/abs/2210.15248>.

625

626 Fengqi Wang, Fei Li, Hao Fei, Jingye Li, Shengqiong Wu, Fangfang Su, Wenxuan Shi, Donghong
 627 Ji, and Bo Cai. Entity-centered cross-document relation extraction. In Yoav Goldberg, Zornitsa
 628 Kozareva, and Yue Zhang (eds.), *Proceedings of the 2022 Conference on Empirical Methods
 629 in Natural Language Processing*, pp. 9871–9881, Abu Dhabi, United Arab Emirates, December
 630 2022b. Association for Computational Linguistics. doi: 10.18653/v1/2022.emnlp-main.671.
 631 URL [https://aclanthology.org/2022.emnlp-main.671/](https://aclanthology.org/2022.emnlp-main.671).

632

633 Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, and Yuji Matsumoto. Luke: Deep
 634 contextualized entity representations with entity-aware self-attention. In *Proceedings of the 2020
 635 Conference on Empirical Methods in Natural Language Processing (EMNLP)*, pp. 6442–6454,
 636 Online, November 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.
 637 emnlp-main.523. URL <https://aclanthology.org/2020.emnlp-main.523>.

638

639 Zhaohui Yan, Songlin Yang, Wei Liu, and Kewei Tu. Joint entity and relation extraction with
 640 span pruning and hypergraph neural networks. In Houda Bouamor, Juan Pino, and Kalika Bali
 641 (eds.), *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Pro-
 642 cessing*, pp. 7512–7526, Singapore, December 2023. Association for Computational Linguis-
 643 tics. doi: 10.18653/v1/2023.emnlp-main.467. URL [https://aclanthology.org/2023.emnlp-main.467/](https://aclanthology.org/2023.emnlp-main.467).

644

645 Deming Ye, Yankai Lin, Peng Li, and Maosong Sun. Packed levitated marker for entity and relation
 646 extraction. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.), *Proceedings
 647 of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
 648 Papers)*, pp. 4904–4917, Dublin, Ireland, May 2022. Association for Computational Linguis-
 649 tics. doi: 10.18653/v1/2022.acl-long.337. URL [https://aclanthology.org/2022.acl-long.337/](https://aclanthology.org/2022.acl-long.337).

Junjie Ye, Xuanting Chen, Nuo Xu, Can Zu, Zekai Shao, Shichun Liu, Yuhan Cui, Zeyang Zhou, Chao Gong, Yang Shen, Jie Zhou, Siming Chen, Tao Gui, Qi Zhang, and Xuanjing Huang. A comprehensive capability analysis of gpt-3 and gpt-3.5 series models, 2023. URL <https://arxiv.org/abs/2303.10420>.

Urchade Zaratiana, Nadi Tomeh, Pierre Holat, and Thierry Charnois. Gliner: Generalist model for named entity recognition using bidirectional transformer, 2023. URL <https://arxiv.org/abs/2311.08526>.

Qi Zhang, Zhijia Chen, Huitong Pan, Cornelia Caragea, Longin Jan Latecki, and Eduard Dragut. SciER: An entity and relation extraction dataset for datasets, methods, and tasks in scientific documents. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pp. 13083–13100, Miami, Florida, USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.726. URL <https://aclanthology.org/2024.emnlp-main.726>.

Zexuan Zhong and Danqi Chen. A frustratingly easy approach for entity and relation extraction. In Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek Hakkani-Tur, Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy Chakraborty, and Yichao Zhou (eds.), *Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies*, pp. 50–61, Online, June 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.5. URL <https://aclanthology.org/2021.naacl-main.5>.

Wenxuan Zhou, Sheng Zhang, Yu Gu, Muhan Chen, and Hoifung Poon. Universalner: Targeted distillation from large language models for open named entity recognition, 2024. URL <https://arxiv.org/abs/2308.03279>.

702 A APPENDIX

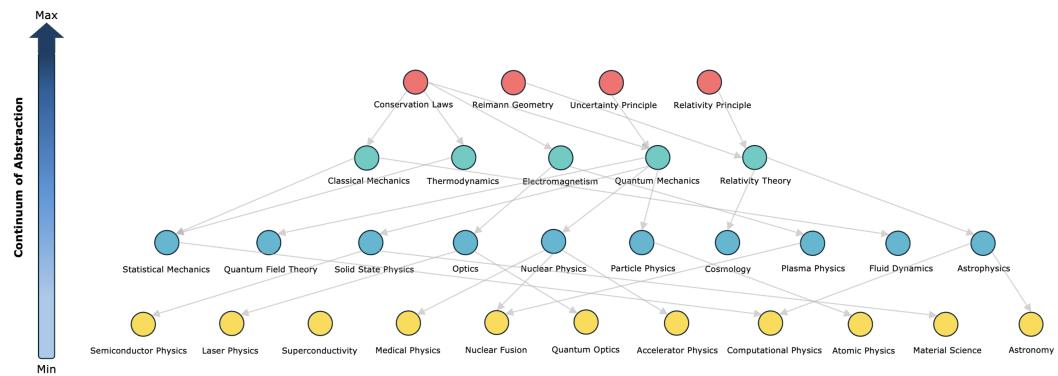
704 A.1 STATEMENT ON THE USE OF LARGE LANGUAGE MODELS (LLMs)

706 In adherence to the ICLR 2026 policy, we disclose the use of Large Language Models (LLMs) in
 707 the preparation of this manuscript and in our research methodology.

709 **1. Role in Dataset Generation** As detailed in Appendix A.3.1, LLMs (specifically, a mixture of
 710 models from the GPT and Gemini families) were a core component of our research. They were
 711 programmatically used to generate and self-annotate the SPHERE dataset, which was crucial for
 712 training and evaluating our proposed models. The entire process, from KG scaffolding to sentence
 713 generation and annotation, was designed and supervised by the authors to ensure the quality and
 714 validity of the dataset.

715 **2. Role in Manuscript Preparation** Beyond their role in the research itself, LLMs were also
 716 utilized as tools to aid in the preparation of this paper in the following ways:

- 718 • **Writing and Polishing:** We used LLMs (e.g., GPT-4) as advanced writing assistants. Their
 719 use was primarily focused on improving the clarity, precision, and readability of the text.
 720 This included tasks such as rephrasing sentences for better flow, correcting grammatical
 721 errors, ensuring consistent terminology, and polishing the overall prose. The core scientific
 722 ideas, arguments, and the structure of the paper were conceived and written entirely by the
 723 authors.
- 724 • **Literature Retrieval and Discovery:** LLMs were used as a supplementary tool to augment
 725 our traditional literature review process. We used them to summarize abstracts of known
 726 papers and to help identify potential related work based on keyword and concept queries.
 727 This assisted in broadening our search, but the final selection, critical reading, analysis, and
 728 citation of all literature were performed by the authors to ensure academic rigor.



743 Figure 1: Continuous axis of abstraction for topics in physics.

746 A.2 IMPLEMENTATION DETAILS

748 **Hardware and Software** All experiments were conducted on a high-performance computing cluster
 749 equipped with NVIDIA A30 24GB GPUs. Our frameworks were implemented using PyTorch
 750 2.1 and the Hugging Face Transformers library. For baseline models, we used their official public
 751 implementations and recommended hyperparameters to ensure fair comparison.

752 **Training Hyperparameters** To ensure reproducibility, we detail the key hyperparameters for our
 753 proposed models in Table 5. We used the AdamW optimizer for all training runs and employed a
 754 linear learning rate scheduler with a warm-up phase. The optimal hyperparameters were determined
 755 via a grid search on the validation sets of the respective datasets.

756
757
758 Table 5: Key hyperparameters for Z-NERD and HGNet.
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779

Hyperparameter	Z-NERD	HGNet
Encoder Base Model	SciBERT-base	SciBERT-base
Learning Rate	2×10^{-5}	1×10^{-5}
Batch Size	16	8
Optimizer	AdamW	AdamW
Dropout Rate	0.1	0.2
Max Sequence Length	512	512
TCQK Kernel Sizes	[1, 3, 5, 7]	N/A
HGNet Layers	N/A	3
CAF Loss Margin (δ)	N/A	0.5
CAF Weights (γ_1, γ_2)	N/A	(1.0, 0.5)
DHL Weights ($\lambda_{\text{acyclic}}, \lambda_{\text{separation}}$)	N/A	(1.0, 0.1)

771
772 A.3 SPHERE DATASET
773
774
775

776 The SPHERE (Scientific Multidomain Large Entity and Relation Extraction) dataset was created to
777 overcome the critical bottleneck of data scarcity in scientific RE. We employed a novel, three-phase
778 generate-and-annotate methodology driven by a Large Language Model (in our case, mixture of
779 GPT (OpenAI) and Gemini (Google DeepMind) models).

780 1. **Phase 1: Programmatic KG Scaffolding.** We first constructed a ground-truth knowledge
781 graph to serve as a structured backbone. This was done by prompting the LLM with a high-
782 level field (e.g., "Computer Science") and asking it to recursively expand it into more gran-
783 ular, interconnected sub-fields, methods, and concepts. This foundational step produced a
784 deep and logically consistent taxonomy of over 40,000 entities across four domains before
785 any text was generated.

786 2. **Phase 2: High-Throughput Sentence Generation.** With the KG as a scaffold, a high-
787 throughput pipeline generated annotated sentences. This involved sampling small, con-
788 textually related sets of concepts from the graph (e.g., a parent, child, and peer concept)
789 and prompting the LLM, acting as an expert technical writer, to compose a long, complex,
790 academic-style paragraph describing their relationships.

791 3. **Phase 3: LLM Self-Annotation.** The newly created sentences were immediately passed
792 back to the same LLM for self-annotation within the original context. The model performed
793 Named Entity Recognition and Relation Extraction, linking the identified concepts back
794 to their permanent IDs in the ground-truth KG. We observed that the LLM's annotation
795 performance is drastically higher on text it has generated itself, enabling the creation of a
796 large-scale (10,000 documents, 111,000 relations), high-quality corpus.

797
798 A.3.2 STRUCTURAL COMPLEXITY AND SCALE ANALYSIS
799
800

801 To validate the necessity of SPHERE as a foundation benchmark, we compare its structural proper-
802 ties against existing gold-standard datasets in Table 6.

803 **Scale and Diversity.** Existing benchmarks like SciERC and BioRED are constrained by the high
804 cost of human annotation, typically limited to roughly 500 abstracts and a single domain. In contrast,
805 SPHERE leverages the generative scaffolding approach to scale to 10,000 documents across four
806 distinct domains (Computer Science, Physics, Biology, Material Science). This scale is critical for
807 pre-training "foundation" extraction models that can generalize zero-shot.

808 **Taxonomic Depth.** Most standard datasets utilize "flat" entity ontologies (e.g., broad categories
809 like *Method* or *Material*). SPHERE, being generated from a deep Knowledge Graph scaffold, con-
810 tains nested hierarchical definitions (e.g., *Adam Optimizer* → *Stochastic Optimization* → *Optimiza-*

810 *tion Method*). This distinct structural depth forces models to learn fine-grained hierarchical reasoning
 811 (tested via HGNet) rather than simple surface-level pattern matching.
 812

813 **Structural Consistency and Global Scope.** A critical distinction of SPHERE is the scope of its
 814 graph topology. Standard benchmarks like SciERC are annotated at the document level, meaning
 815 the hierarchical relationships are locally inferred and often inconsistent (e.g., an entity may be a root
 816 in one document but a leaf in another). In contrast, SPHERE is generated from a Global Knowledge
 817 Graph Scaffold containing over 40,000 entities. This ensures that the hierarchical position of a
 818 concept remains globally consistent across the entire corpus, preventing the “inflated structure” or
 819 hallucinated loops often associated with unconstrained LLM generation.
 820

821 **Table 6: Comparison of SPHERE against standard scientific IE benchmarks.** A key distinction is
 822 **Graph Scope:** standard datasets define hierarchies locally within isolated documents (fragmented),
 823 whereas SPHERE is generated from a single Global Knowledge Graph, ensuring hierarchical con-
 824 sistency across the entire corpus.
 825

Dataset	Domain	Docs	Relations	Graph Scope	Hierarchy Source
SciERC	CS (AI)	500	~4.6k	Local (Doc-Level)	Inferred from Text
BioRED	Biomed	600	~38k	Local (Doc-Level)	Inferred from Text
SciER	CS	106	~12k	Local (Doc-Level)	Inferred from Text
SPHERE	4 Domains	10,000	111,000	Global (Corpus-Level)	Pre-defined Scaffold

831 The fidelity of the SPHERE dataset is evidenced by its surprising zero-shot efficacy. When trained
 832 only on SPHERE, our model generalizes to the human-annotated SciERC and SciER benchmarks
 833 with scores of 46.55% and 59.17% respectively, outperforming the previous fully supervised state-
 834 of-the-art (HGERE). This confirms that SPHERE faithfully models the complex entity-relation de-
 835 pendencies of scientific text, validating our constrained generation pipeline.
 836

837 **Table 7: Performance comparison on SciERC and SciER datasets.**

Metric	Training Source	SciERC (Test)	SciER (Test)
HGERE Yan et al. (2023)	Full Supervised Training	43.86%	56.28%
HGERE (Zero-shot transfer)	SPHERE-CS Training Only	25.62%	28.34%
HGNet (Zero-shot transfer)	SPHERE-CS Training Only	46.55%	59.17%

844 **Manual Quality Audit.** To quantitatively assess the fidelity of the SPHERE dataset and ensure
 845 minimal hallucination, we conducted a manual verification study on a randomly sampled subset
 846 of the corpus. We analyzed 1,000 entity spans and 500 relation triples against the ground-truth
 847 topological scaffold. The audit yielded an entity precision of 96.5% (measuring correct boundary
 848 and type) and a relation precision of 94.2% (measuring correct edge classification). These high
 849 precision scores confirm that our constrained “generate-from-graph” pipeline effectively enforces
 850 structural consistency while maintaining textual fluency.
 851

852 A.4 VISUAL EVIDENCE FOR ORTHOGONAL SEMANTIC DECOMPOSITION

854 To further validate the premise of OSD, Figures 2 illustrate the average Orthogonal Semantic Ve-
 855 locity Norm for tokens at entity boundaries versus non-entity tokens. The plots provide compelling
 856 visual support for Hypothesis 3.2. A clear and substantial gap emerges between the high velocity
 857 norms of boundary tokens and the low norms of non-entity tokens. This demonstrates that our
 858 engineered feature effectively captures the sharp “semantic turns” that occur when a new concept is
 859 introduced, providing a robust, domain-agnostic indicator of entity boundaries.
 860

861 A.5 GEOMETRIC REALIZATION VIA AN ABSTRACTION FIELD

863 Instead of treating abstraction score as an external label to be predicted, our central hypothesis is
 864 that the abstraction score should be an *intrinsic geometric property* of the learned embedding space

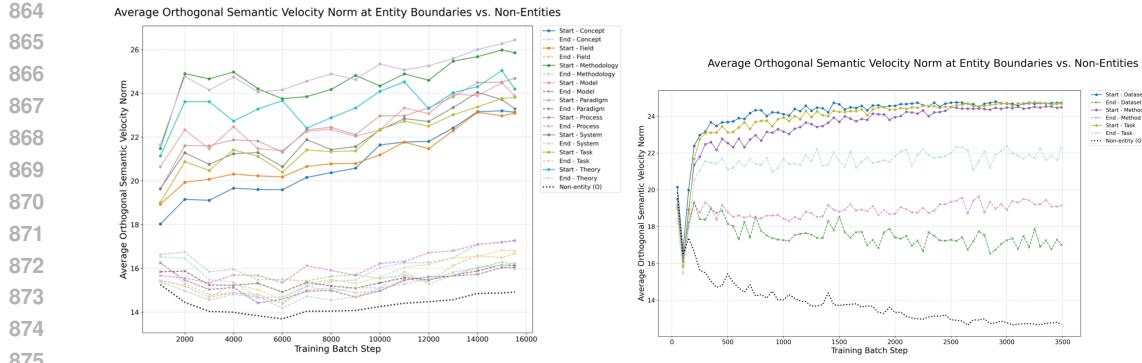


Figure 2: Average Orthogonal Semantic Velocity for tokens at entity boundaries ('Start'/'End') vs. 'Non-entity' tokens for SPHERE-CS (left) and SciER (right). The clear separation provides visual evidence for Hypothesis 4.2.

We propose that the entire high-dimensional space can be oriented along a single, universal direction that represents a continuum from specificity to generality. We formalize this concept as the *Abstraction Field Vector*.

Definition A.1 (Abstraction Field Vector) *a learnable unit vector $\mathbf{w}_{abs} \in \mathbb{R}^d$. This vector defines the primary axis of abstraction within the embedding space. The predicted abstraction score, $\hat{y}_{abs}(v)$, for any concept v with embedding \mathbf{h}_v is then simply its orthogonal projection onto this vector:*

$$\hat{y}_{abs}(v) := \mathbf{h}_v \cdot \mathbf{w}_{abs} \quad (12)$$

Justification for a Single Universal Axis: The choice to model abstraction with a single unit vector is a deliberate application of simplicity and a method for imposing a strong, beneficial inductive bias. While one could model abstraction using multiple orthogonal vectors or a more complex non-linear function, such approaches would implicitly assume the existence of multiple, independent "types" of abstraction. Our formulation, by contrast, hypothesizes that the dominant organizing principle of a scientific knowledge hierarchy is a single, primary dimension of generality versus specificity. This constraint forces the model to discover the most salient and universal axis of abstraction that is consistent across all entities, rather than overfitting to spurious, domain-specific hierarchical patterns. This mirrors findings in other areas of representation learning, where simple linear axes have been shown to capture profound semantic relationships (e.g., the famous 'king - man + woman' analogy in word embeddings). By reducing abstraction to a single, interpretable dimension, we ensure the learned geometric structure is not only robust but also directly analyzable. The empirical success of this method across multiple domains serves as strong validation for this simplifying, yet powerful, geometric assumption.

This formulation is powerful because it transforms the abstract notion of "generality" into a concrete, measurable geometric arrangement. A concept's position along this axis directly reflects its level of abstraction. This approach ensures that the learned hierarchy is not an afterthought but the primary organizing principle of the entire embedding space, making the learned representations globally coherent and interpretable. Refer figure 1 for visualization of continuum of abstraction in physics domain.

A.6 LEARNED ABSTRACTION SCORE ANALYSIS

To qualitatively assess the geometric structure learned by HGNet, we visualized the distribution of the final abstraction scores for entities within each domain of the SPHERE dataset, as shown in Figure 3. Based on the programmatic, recursive generation of the underlying knowledge graph, the ideal distribution would exhibit an exponential decay, with a high density of concrete entities at low abstraction scores and a progressively smaller number of entities at higher levels of abstraction. The analysis reveals distinct, domain-specific patterns that reflect the inherent structure learned from each field.

The Computer Science domain (d) aligns most closely with this expected pattern, showing a clear concentration of entities at lower abstraction values and a long tail of increasingly abstract concepts. In contrast, the Material Science data (a) shows a distribution heavily clustered at lower scores, while the Biology data (c) displays a more gradual decline, likely reflecting a flatter hierarchy in its source text. It is crucial to note, however, that even the Computer Science distribution is not a perfect match for the ground-truth hierarchy. The visible deviations from an ideal curve highlight that some concepts are still misplaced along the abstraction axis. These imperfections in the learned geometric structure are precisely what lead to a non-perfect Rel+ F1 score, highlighting the tight coupling between representational geometry and task performance.

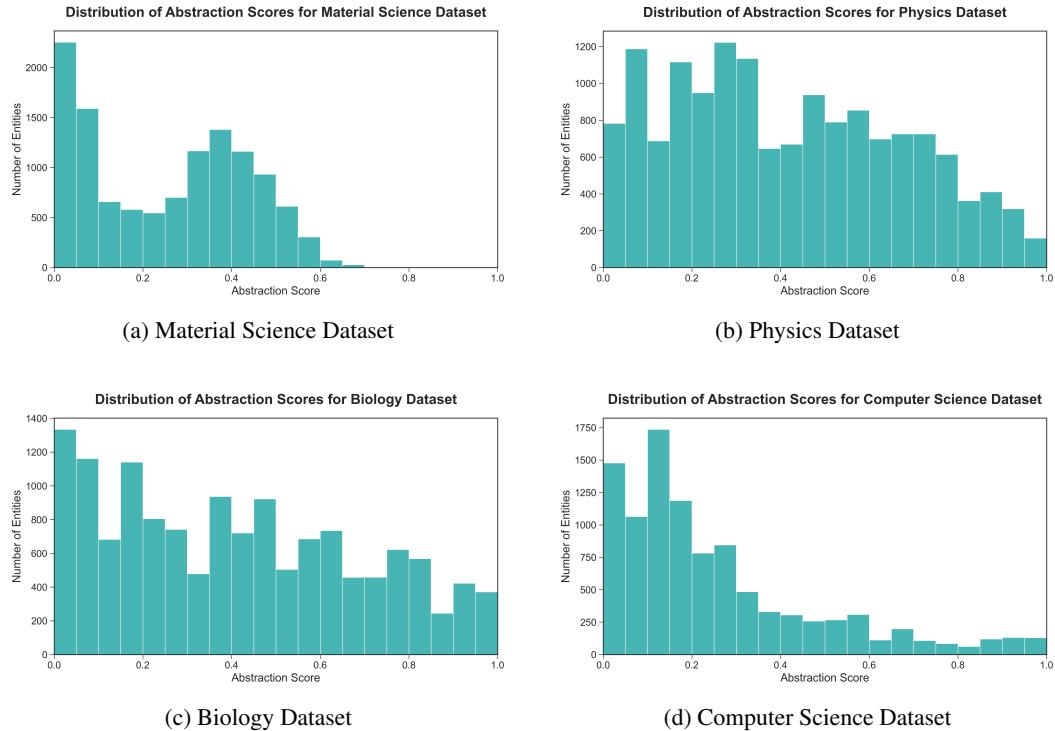


Figure 3: Distribution of abstraction scores across different scientific domains, showing distinct patterns for each field.

A.7 SCALABLE ACYCLICITY REGULARIZATION VIA KRYLOV SUBSPACE METHODS

A potential computational bottleneck in our framework is the *Differentiable Hierarchy Loss* (Eq. 7), which involves the calculation of a matrix exponential. For a graph with n entities, the parent-of adjacency matrix $\mathbf{A}_{\text{parent}}$ is of size $n \times n$. A direct computation of the matrix exponential, $\exp(\mathbf{A}_{\text{parent}} \circ \mathbf{A}_{\text{parent}})$, scales with a time complexity of $\mathcal{O}(n^3)$, which can become prohibitive for the large-scale knowledge graphs targeted by our work.

To ensure the scalability of our approach, this term can be efficiently approximated using Krylov subspace methods (Saad, 2003). Instead of explicitly forming the dense $n \times n$ matrix exponential, these iterative methods approximate its action on a vector by projecting the matrix onto a low-dimensional Krylov subspace, \mathcal{K}_m , of dimension $m \ll n$.

The computational cost of this approach is dominated by two steps. First, the construction of an orthonormal basis for the subspace, typically via the Arnoldi iteration, requires m matrix-vector products. Since the learned adjacency matrix $\mathbf{A}_{\text{parent}}$ is inherently sparse, with a number of non-zero entries denoted by $\text{nnz}(\mathbf{A}_{\text{parent}})$, this step has a complexity of $\mathcal{O}(m \cdot \text{nnz}(\mathbf{A}_{\text{parent}}))$. Second, the exponential of the small $m \times m$ projected matrix is computed directly, which incurs a cost of $\mathcal{O}(m^3)$.

972 Therefore, the total time complexity for the approximation is $\mathcal{O}(m \cdot \text{nnz}(\mathbf{A}_{\text{parent}}) + m^3)$. Furthermore,
 973 to compute the trace required by our loss function, Krylov methods is combined with stochastic trace
 974 estimators, Hutchinson method (Avron & Toledo, 2011), to approximate $\text{tr}(\exp(\mathbf{A}))$ without ever
 975 forming the full matrix.
 976

977 **Hierarchical Separation Loss** The second component, the *Hierarchical Separation Loss* (Eq. 8),
 978 is defined as $\mathcal{L}_{\text{separation}} = \sum_{u,w} (\mathbf{A}_{\text{parent}}^2)_{uw} \cdot (\mathbf{A}_{\text{parent}})_{uw}$. A direct computation would first involve
 979 squaring the matrix $\mathbf{A}_{\text{parent}}$, an operation that, even for sparse matrices, can be costly as the resulting
 980 matrix $\mathbf{A}_{\text{parent}}^2$ may be significantly denser. However, we can reinterpret this loss as a sum over
 981 specific graph structures. The term $(\mathbf{A}_{\text{parent}}^2)_{uw}$ represents the sum of weights of all paths of length
 982 two from entity u to w . The loss thus penalizes the existence of a direct "shortcut" edge (u, w) when such two-step paths exist. This structure allows for a far more efficient calculation. Instead
 983 of matrix multiplication, we can compute the sum by iterating through all 2-paths in the graph. An
 984 efficient algorithm involves iterating through each node v and considering all pairs of its incoming
 985 edges (u, v) and outgoing edges (v, w) . For each such 2-path $u \rightarrow v \rightarrow w$, we perform a sparse
 986 lookup to check for the existence of the direct edge (u, w) . The total complexity of this approach
 987 is approximately $\mathcal{O}(\sum_{v \in V} \text{in-degree}(v) \cdot \text{out-degree}(v))$, which is directly proportional to the local
 988 sparsity of the graph and avoids the costly formation of $\mathbf{A}_{\text{parent}}^2$.
 989

990 This analysis demonstrates that both components of the Differentiable Hierarchy Loss can be com-
 991 puted efficiently, ensuring that the enforcement of a globally consistent DAG structure remains com-
 992 putationally feasible even for knowledge graphs containing thousands of entities.
 993

A.8 EXTENDED GEOMETRIC BASELINE ANALYSIS

995 To validate the efficacy of the Continuum Abstraction Field (CAF) against non-Euclidean ap-
 996 proaches, we compare HGNet against two strong geometric baselines using the same SciBERT
 997 backbone:
 998

- 999 • **HGCN (Hyperbolic GCN)** Chami et al. (2019): Maps embeddings to the Poincaré ball
 1000 manifold, theoretically optimized for hierarchical trees.
- 1001 • **Order-Embeddings** Vendrov et al. (2015): Enforces partial order constraints via cone
 1002 geometry ($E = \|\max(0, v - u)\|^2$).

1004 Table 8 presents the results. HGNet outperforms both baselines. We observe that HGCN requires
 1005 extensive tuning of the Riemannian Adam optimizer and often struggles with "Peer" relations that
 1006 violate strict tree geometries, whereas HGNet's Euclidean CAF objective remains stable and accu-
 1007 rate.

1008 Table 8: Comparison against Geometric Baselines (Rel+ F1 %). HGNet outperforms non-Euclidean
 1009 methods on both standard and large-scale hierarchical datasets.
 1010

1011 Model	1012 Geometry	1013 SciERC (Overall)	1014 SPHERE-CS (Overall)
1012 HGCN Chami et al. (2019)	1013 Hyperbolic (\mathbb{D}^n)	1014 45.82	1015 66.35
1013 Order-Embeddings Vendrov et al. (2015)	1014 Cone (\mathbb{R}_+^n)	1015 44.27	1016 67.97
1014 HGNet (Ours)	1015 Euclidean + CAF	1016 53.19	1017 79.51

A.9 FEW-SHOT LLM EVALUATION

1018 To ensure a fair comparison regarding reasoning capabilities, we evaluated Llama-3-8B using a 3-
 1019 Shot Chain-of-Thought (CoT) strategy. We provided the model with three context-response pairs
 1020 demonstrating step-by-step relation extraction before querying the target sentence.
 1021

1022 As shown in Table 9, while CoT provides a notable performance boost over the zero-shot setting
 1023 (+5.73% on SciERC), the model still significantly underperforms compared to HGNet. Qualitative
 1024 error analysis reveals that while CoT helps identifying relation types, the LLM continues to strug-
 1025 gle with precise entity boundary detection (e.g., including determiners or punctuation in the span),
 1026 which is penalized by the strict Rel+ metric.
 1027

1026 Table 9: Impact of Prompting Strategy on Llama-3-8B Performance (Rel+ F1 %).
1027

1028 Model	1029 Prompting Strategy	1030 SciERC	1031 SciER
1030 Llama-3-8B	1031 Zero-Shot 3-Shot CoT	1032 13.72 19.45	1033 14.95 25.18
1032 HGNet	1033 Supervised	1034 53.19	1035 62.36

1036 A.10 QUALITATIVE ERROR ANALYSIS
10371038 CORRECTED ERROR: PREVENTING HIERARCHICAL SHORTCUTS
10391040 A significant advantage of HGNet is its ability to maintain a strict, multi-level hierarchy by penal-
1041 izing "shortcut" edges that skip intermediate levels. This corrects errors where a local model might
1042 conflate a grandparent relationship with a direct parent one. Consider a biology paper discussing
1043 genetics:1044

- 1045 Sentence 1: The *SRY* gene is responsible for encoding the Testis-determining factor protein.
- 1046 Sentence 2: A conserved motif within the Testis-determining factor protein is the High-
1047 mobility group (HMG) box, which binds to DNA.

1048 From these sentences, a correct hierarchy is established: (HMG box → Testis-determining factor
1049 protein → *SRY* gene). However, another sentence might state: "The DNA-binding function of the
1050 *SRY* gene is conferred by its HMG box." A local model, seeing this direct functional link, could
1051 incorrectly infer a direct compositional relation: (HMG box, Part-Of, *SRY* gene). This creates a
1052 flawed, flattened hierarchy.1053 **HGNet corrects this error.** Its *Hierarchical Separation Loss* ($\mathcal{L}_{\text{separation}}$) is explicitly designed to
1054 prevent this. Once the model identifies the valid two-step path from "HMG box" to "*SRY* gene", the
1055 loss function penalizes the prediction of a direct edge between them. This forces the model to respect
1056 the intermediate entity ("Testis-determining factor protein"), ensuring the final graph accurately
1057 reflects the nested biological structure.1058 **Robustness to Non-Hierarchical Structures.** Here, we explain how HGNet behaves when the
1059 underlying structure is not a strict tree (e.g., multiple inheritance or cross-links). We observe that
1060 the *Peer* message-passing channel is critical in these scenarios. In cases of multiple inheritance
1061 (e.g., "Reinforcement Learning" being a child of both "Machine Learning" and "Control Theory"),
1062 HGNet successfully assigns high probability to both parent edges because the DAG constraint
1063 ($\mathcal{L}_{\text{acyclic}}$) permits multiple parents, only forbidding cycles. However, we note a failure mode in
1064 "loopy" citations where definitions are circular (A defines B, B defines A). In such rare cases, the
1065 acyclicity loss forces the model to arbitrarily break the loop, potentially dropping a valid semantic
1066 link.1067 A.11 JUSTIFICATION FOR THE DIFFERENTIABLE ACYCLICITY LOSS
10681069 To enforce a Directed Acyclic Graph (DAG) structure, we require a differentiable function that
1070 penalizes the presence of cycles within the graph represented by the learned adjacency matrix $\mathbf{A}_{\text{parent}}$.
1071 Our loss function is built upon a well-established connection between the algebraic properties of a
1072 graph's adjacency matrix and its topological structure.1073 The foundation of this approach lies in the observation that the number of distinct walks of length
1074 k from a node i to a node j is given by the entry (i, j) of the matrix power \mathbf{A}^k . Consequently, a
1075 cycle, which is a walk from a node back to itself, is captured by the diagonal entries. The sum of
1076 these diagonal elements, or the trace $\text{tr}(\mathbf{A}^k)$, therefore counts the total number of cycles of length k
1077 across the entire graph.1078 A graph is a DAG if and only if it contains no cycles of any length $k \geq 1$, which implies
1079 that $\text{tr}(\mathbf{A}^k) = 0$ for all $k \geq 1$. To aggregate this condition over all possible cycle lengths
1080 into a single, smooth function, we leverage the matrix exponential, defined by its Taylor series

1080 $\exp(\mathbf{A}) = \sum_{k=0}^{\infty} \frac{1}{k!} \mathbf{A}^k$. Due to the linearity of the trace operator, we have:
 1081

1082 $\text{tr}(\exp(\mathbf{A})) = \sum_{k=0}^{\infty} \frac{\text{tr}(\mathbf{A}^k)}{k!} = \text{tr}(\mathbf{I}) + \text{tr}(\mathbf{A}) + \frac{\text{tr}(\mathbf{A}^2)}{2!} + \dots$
 1083
 1084

1085 For a graph with d nodes that is a perfect DAG, all trace terms for $k \geq 1$ vanish, causing the
 1086 expression to simplify elegantly to $\text{tr}(\exp(\mathbf{A})) = \text{tr}(\mathbf{I}) = d$.
 1087

1088 Based on this property, our loss function, $\mathcal{L}_{\text{acyclic}} = \text{tr}(\exp(\mathbf{A}_{\text{parent}})) - d$, is formulated. This
 1089 objective function is non-negative and equals zero only when the graph is perfectly acyclic. By mini-
 1090 mizing this loss during training, a computation made efficient by modern numerical libraries such as
 1091 PyTorch’s ‘`torch.linalg.matrix_exp`’, we guide the model to learn an adjacency matrix $\mathbf{A}_{\text{parent}}$ whose
 1092 corresponding graph structure satisfies the DAG constraint.
 1093

1093 A.12 PERSPECTIVE: HGNET AS A GENERALIZED ATTENTION MECHANISM

1094
 1095 At its core, the self-attention mechanism, which powers modern Transformers, can be understood
 1096 as a form of message passing on a fully connected graph. Each token in a sequence acts as a node,
 1097 and it updates its representation by aggregating information from every other token. This is very
 1098 powerful, as it allows the model to capture long-range dependencies. However, it is also a brute-
 1099 force approach. It operates under the assumption that any token could be relevant to any other,
 1100 leading to two major limitations:
 1101

- 1102 1. **Computational Inefficiency:** The number of connections grows quadratically with the
 1103 sequence length, making it computationally expensive for long documents.
 1104
2. **Semantic Noise:** In a scientific document, the relationship between the vast majority of
 1105 token pairs is meaningless. Forcing a token like “LSTM” to attend to every instance of
 1106 “the” or “is” introduces significant noise and forces the model to expend capacity learning
 1107 to ignore these irrelevant connections.
 1108

1109 The fundamental insight of our work is that we can create a far more powerful and efficient reason-
 1110 ing mechanism by moving from a dense, token-level graph to a sparse, *entity-level graph*. Instead
 1111 of every word attending to every other word, we want key scientific concepts to attend only to other
 1112 relevant scientific concepts. By “skipping the middle tokens” and operating directly on the meaning-
 1113 ful entities, we can focus the model’s capacity on learning the true global structure of knowledge.
 1114 Our Hierarchical GNN is the formal embodiment of this principle, representing a more advanced
 1115 and generalized form of attention.
 1116

1116 PROOF SKETCH: FROM FULL ATTENTION TO STRUCTURED, HIERARCHICAL ATTENTION

1117 To prove this, let us first formulate the standard self-attention mechanism in the language of Graph
 1118 Neural Networks.
 1119

1120 1. **Self-Attention as a GNN on a Fully Connected Graph** The update rule for a single token
 1121 embedding \mathbf{h}_i in a self-attention layer is:
 1122

1123
$$\mathbf{h}'_i = \sum_{j \in \mathcal{V}_{\text{all}}} \alpha_{ij} (\mathbf{h}_j W_V) \quad (13)$$

 1124
 1125

1126 where \mathcal{V}_{all} is the set of *all* tokens in the sequence, and α_{ij} is the attention weight between token i and
 1127 token j . This is precisely a GNN message-passing step where the graph is **fully connected**, meaning
 1128 every token is a neighbor of every other token. The message from node j to node i is its transformed
 1129 value, $\mathbf{m}_{j \rightarrow i} = \mathbf{h}_j W_V$, and the aggregation is a weighted sum, with attention scores serving as
 1130 the weights. This is a powerful but unstructured mechanism. It treats all potential connections as
 1131 equally plausible *a priori*.
 1132

1133 2. **The Hierarchical GNN as a Generalized, Structured Attention** Our Hierarchical GNN intro-
 1134 duces a powerful inductive bias by replacing the fully connected graph with a sparse, semantically

1134 meaningful graph, one based on the learned hierarchy. The update rule for an entity embedding \mathbf{h}_v
 1135 is:

$$\mathbf{h}_v^{(k+1)} = \text{UpdateMLP}([\mathbf{h}_v^{(k)} | \mathbf{m}_v^{\text{parents}} | \mathbf{m}_v^{\text{children}} | \mathbf{m}_v^{\text{peers}}]) \quad (14)$$

1136 Let's analyze one of these components, the message from parents:

$$\mathbf{m}_v^{\text{parents}} = \sum_{u \in \mathcal{N}_v^{\text{parents}}} \alpha_{vu}^{\text{parent}} (W_{\text{parent}} \mathbf{h}_u^{(k)}) \quad (15)$$

1141 This is also an attention mechanism, but with three crucial generalizations. First, through *Graph*
 1142 *Sparsification*, the aggregation is no longer over all possible nodes \mathcal{V}_{all} but is instead over a small,
 1143 semantically relevant subset, $\mathcal{N}_v^{\text{parents}}$. This prunes the vast majority of noisy, irrelevant connec-
 1144 tions, focusing the model's attention on the relationships that truly matter and directly addressing
 1145 both the computational and semantic noise problems. Second, instead of a single, monolithic attention
 1146 mechanism, our GNN employs *Multi-Channel Attention* with multiple, specialized channels. It
 1147 learns separate projection matrices (W_{parent} , W_{child} , W_{peer}) and attention mechanisms for each type
 1148 of hierarchical relationship, allowing the model to learn different "types" of attention. For example,
 1149 learning to "inherit" abstract properties from parents while "aggregating" specific evidence from
 1150 children. Third, through *Entity-Level Reasoning*, the nodes in our graph are not tokens but aggregated
 1151 entity concepts representing stable ideas across the entire corpus. This provides a much more robust
 1152 and global context for reasoning than the ephemeral, document-specific context of individual
 1153 tokens.

1154 **Conclusion of Proof** The standard self-attention mechanism is a special case of our Hierarchical
 1155 GNN framework under a specific set of simplifying assumptions. These assumptions are that the
 1156 graph is fully connected ($\mathcal{N}_v = \mathcal{V}_{\text{all}}$ for all v), that there is only one message-passing channel (e.g.,
 1157 only a "peer" channel), and that the nodes represent tokens, not global entities. By relaxing these
 1158 assumptions, our Hierarchical GNN generalizes the attention mechanism to operate on a sparse,
 1159 structured, multi-channel graph of global concepts. This is not merely an incremental improvement;
 1160 it is a fundamental shift from brute-force pattern matching to structured, hierarchical reasoning. It
 1161 allows the model to capture the kind of radial, layered knowledge depicted in the conceptual image
 1162 4 of the scientific domain, making it a far more powerful and efficient architecture for understanding
 1163 complex, interconnected information.

1181 Figure 4: Example of physics domain hierarchical knowledge graph. Hierarchy radially extends
 1182 outward.

1183 A.13 DISCUSSION ON CONVERGENCE OF HGNET

1184 Given that HGNet is a probabilistic model, it's important to understand why its predicted proba-
 1185 bilities converge toward a consistent graph structure rather than fluctuating randomly. The primary

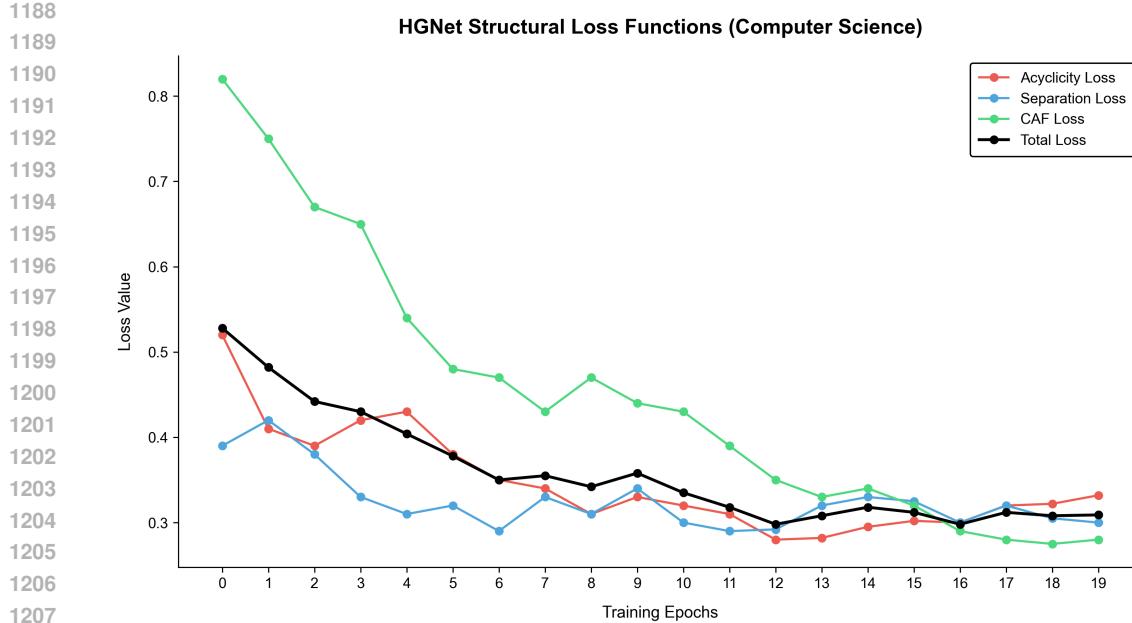


Figure 5: Loss plot of HGNet on computer science SPHERE dataset.

reason is that the model is not initialized from scratch. Instead, it uses a standard MLP classifier to generate the initial edge probabilities between entities.

As demonstrated by the baseline models in our experiments, which rely on an MLP for classification, these approaches are reasonably effective, often achieving Rel+ F1 scores exceeding 30-40% on their own. By using this as a starting point, HGNet’s probabilistic message-passing begins with a well-informed “draft” of the graph. This process is far more efficient than random initialization; it’s like solving a jigsaw puzzle where a significant portion of the pieces are already in their approximate correct locations, allowing the model to focus on refining the details rather than building the entire structure from scratch. Refer loss plot 5.

A.14 COMPUTATIONAL COMPLEXITY AND EFFICIENCY ANALYSIS

We conduct a comprehensive analysis of parameter efficiency, computational cost (FLOPs), and inference throughput to validate our lightweight claims.

Efficiency vs. Generalization Landscape. Table 10 benchmarks HGNet against General-purpose LLMs, Specialized SOTA methods (PL-Marker, HGGERE), and lightweight Graph Neural Networks (GCN, GAT). HGNet occupies a unique “sweet spot”: it matches the generalization of LLMs while maintaining the throughput of specialized models.

Component-Wise Parameter Breakdown. Table 11 details the parameter distribution of the full HGNet pipeline. We employ a two-stage architecture (Z-NERD and HGNet) where decoupling implies the worst case parameter setting. Notably, the Z-NERD stage is architecturally heavier (42.4M trainable params) due to the Multi-Scale TCQK mechanism, which employs 8 parallel convolutional heads with wide projection matrices ($d_{proj} = 2048$) to capture dense n-gram contexts. The HGNet stage utilizes a lighter, structure-aware GNN (31.6M trainable params) to reason over the sparse entity graph.

Training Overhead. Structural losses (DHL/CAF) are not computed during inference. During training, the Krylov subspace approximation reduces the exact matrix exponential calculation time from ~ 150 ms to ~ 12 ms per batch, rendering the overhead negligible (< 5% total training time).

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251 General relativity provides explanatory principles that many researchers argue quantum mechanics is employed to refine, within the geometry of spacetime.

1252

1253 SciBERT Encoder

1254

1255

1256 SciBERT Embedding

1257

1258 Orthogonal Semantic Decomposition

1259

$$\Delta E_t = E_{text_t} - E_{text_{t-1}}$$

1260

$$v_{sustaining_t} = \frac{\Delta E_t \cdot E_{text_{t-1}}}{\|E_{text_{t-1}}\|^2} E_{text_{t-1}}$$

1261

$$v_{divergent_t} = \Delta E_t - v_{sustaining_t}$$

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

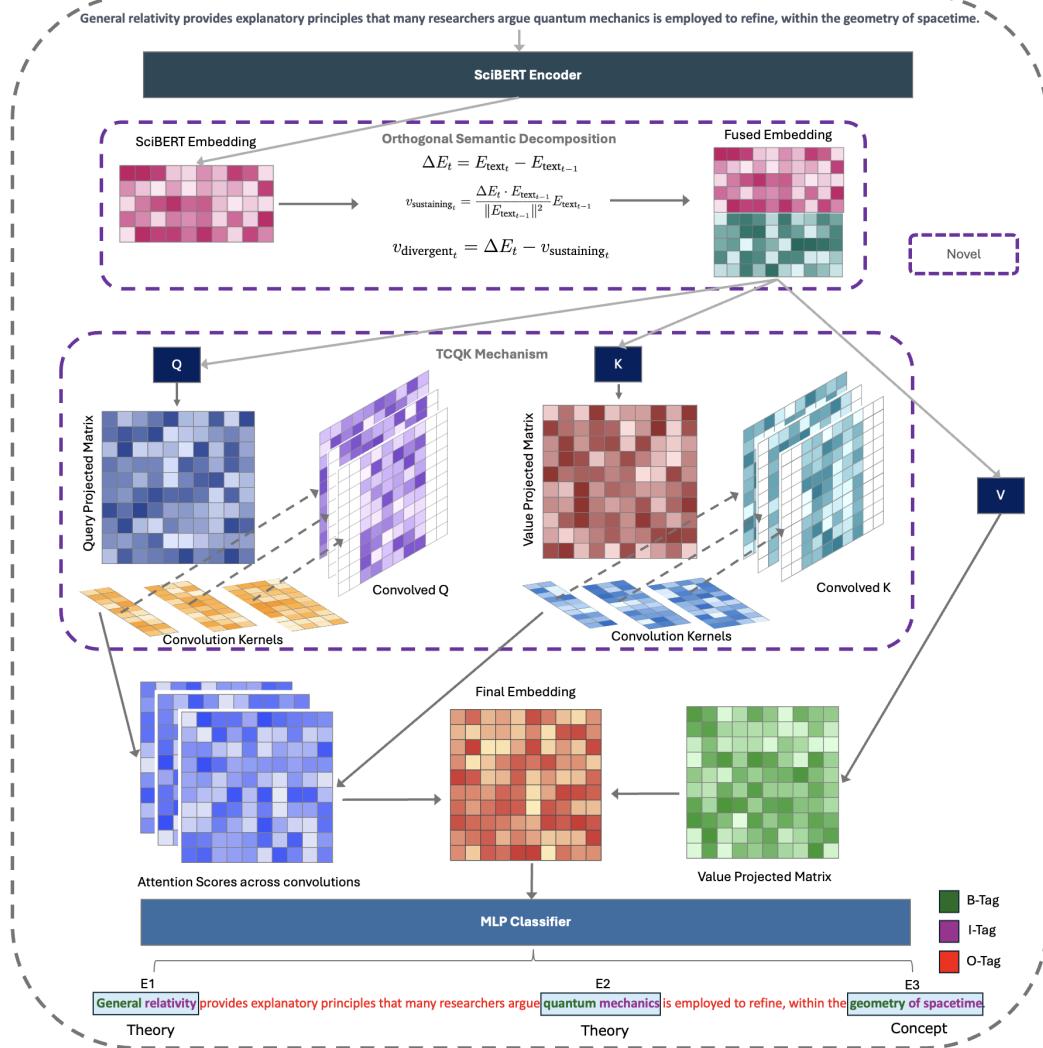


Figure 6: Main figure explaining the proposed Z-NERD algorithm. For TCQK, multi-head for each convolution has been shown as single head for simplicity. B refers to begin entity, I refers to inside entity and O refers to outside entity.

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

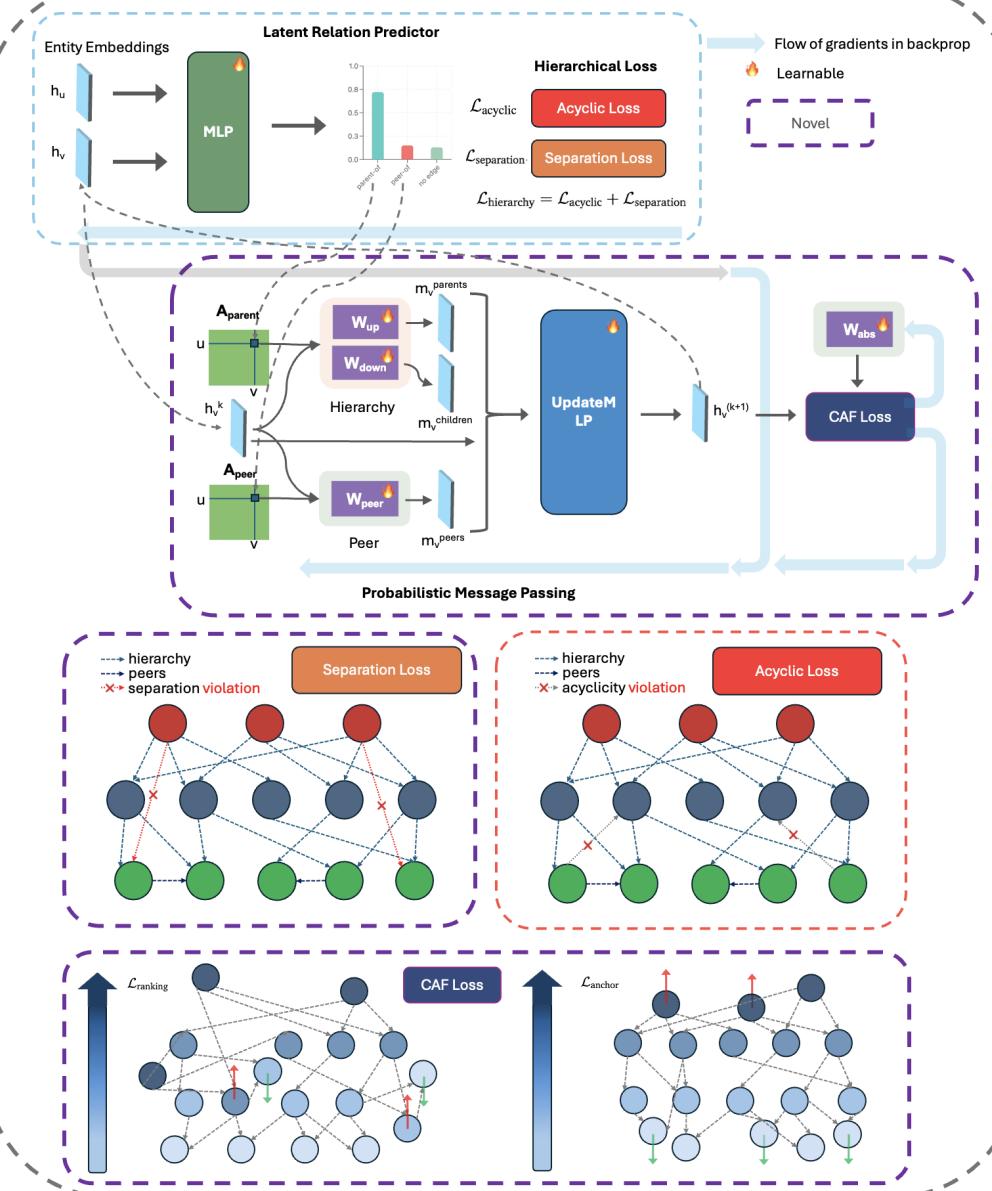


Figure 7: Main figure of proposed HGNet illustrating all proposed components. For clarity, we omit $\mathcal{L}_{\text{regression}}$, since it is simply a regression loss applied over the graph topology, similar in nature to standard losses such as mean squared error or binary cross entropy.

1350
1351
1352
1353
1354
1355
13561357 Table 10: Efficiency Landscape on SciERC (A30 GPU, Batch=8). GFLOPs are estimated per input
1358 instance. HGNet (Full Pipeline) provides superior throughput compared to pipeline-based SOTA
1359 models despite robust parameter capacity.

Model	Params	GFLOPs	Speed (doc/s)	Mem (GB)	Zero-Shot Gen.
<i>Large Language Models</i>					
Llama-3-70B	~70B	>140k	~0.5	OOM	High
Llama-3-8B	~8B	>16k	~4.2	16.0+	Moderate
<i>Specialized SOTA</i>					
PL-Marker	~220M	44.0	12.4	7.2	Low
HGERE	~220M	22.5	14.1	9.5	Low
<i>Graph Baselines</i>					
SciBERT+GCN	~110M	22.0	48.2	6.1	Low
SciBERT+GAT	~110M	22.1	46.8	6.3	Low
<i>Proposed</i>					
HGNet	~293M	44.7	14.6	10.5	High

1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
13861387 Table 11: Detailed parameter breakdown of the HGNet framework (Two-Stage Configuration, worst
1388 case parameters). The Z-NERD stage incorporates high-capacity TCQK attention (8 Heads) to
1389 resolve complex multi-word boundaries, while HGNet utilizes specialized message-passing layers.

Stage	Component	Params (M)	% of Total
Stage 1: Z-NERD	Specialized SciBERT Encoder	109.5	37.4%
	Multi-Scale TCQK (8 Heads)	42.4	14.5%
Stage 2: HGNet	Specialized SciBERT Encoder	109.5	37.4%
	Hierarchical GNN Layers	31.6	10.7%
Total	Full Two-Stage Pipeline	~293.0	100%

1398
1399
1400
1401
1402
1403