
PMLF: A Physics-Guided Multiscale Loss Framework for Structurally Heterogeneous Time Series

Xinghong Chen, Weilin Wu *, Kungping Yang, Guannan Chen *

Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education

Fujian Normal university

qbx20220087@yjs.fjnu.edu.cn; weilin_wu1990@163.com;

kungpingyang@fjnu.edu.cn; edado@fjnu.edu.cn

Abstract

Forecasting real-world time series requires modeling both short-term fluctuations and long-term evolutions, as these signals typically exhibit multiscale temporal structures. A core challenge lies in reconciling such dynamics: high-frequency seasonality demands local precision, while low-frequency trends require global robustness. However, most existing methods adopt a unified loss function across all temporal components, overlooking their structural differences. This misalignment often causes overfitting to seasonal noise or underfitting of long-term trends, leading to suboptimal forecasting performance. To address this issue, we propose a Physics-guided Multiscale Loss Framework (PMLF) that decomposes time series into seasonal and trend components and assigns component-specific objectives grounded in the distinct energy responses of oscillatory and drift dynamics. Specifically, we assign a quadratic loss to seasonal components, reflecting the quadratic potential energy profile of molecular vibration, while a logarithmic loss is used for trend components to capture the sublinear energy profile of molecular drift under sustained external forces. Furthermore, we introduce a softmax-based strategy that adaptively balances the unequal energetic responses of these two physical processes. Experiments on different public benchmarks show that PMLF improves the performance of diverse baselines, demonstrating the effectiveness of physics-guided loss design in modeling structural heterogeneity in time series forecasting.

1 Introduction

Time series forecasting is widely used across a range of scientific and industrial domains[34], including energy consumption [35], climate change [40, 43], financial exchange [24], and traffic flow [20]. Real-world time series inherently exhibit complex multiscale behavior, combining high-frequency seasonal variation with low-frequency trend dynamics. This multiscale characteristic introduces conflicting demands on forecasting models, as short-term and long-term patterns evolve at different temporal resolutions, making accurate forecasting particularly challenging[30]. Recent methods address multiscale forecasting primarily through architectural-level innovations, such as hierarchical attention[22], multi-resolution convolutions [29], seasonal-trend decomposition[39, 38], and frequency-aware representations [45, 41, 5, 28]. While these approaches improve the model’s ability to represent multiscale signals, they apply a uniform loss functions during optimization, with limited attention paid to how different temporal structures are supervised [3, 15, 10].

Figure 1 illustrates the divergent error behaviors of seasonal and trend components. Seasonal components are highly sensitive to minor phase shifts or amplitude distortions, which rapidly accumulate over time and significantly degrade predictive accuracy. In contrast, trend components

*Corresponding Author: Guannan Chen, Weilin Wu

are more tolerant to local errors but may suffer from long-term drift when trained under overly strict constraints. These differences indicate that seasonal and trend components respond to supervision in fundamentally different ways and thus require structurally distinct loss formulations [36, 33]. However, most existing approaches adopt a single loss, such as MSE or MAE, applied indiscriminately across the entire sequence [13, 17, 2]. This uniform treatment implicitly assumes that all temporal components contribute equally to forecasting error. As a result, the model fails to distinguish between structurally different error patterns, which limits its ability to adapt supervision to each component and ultimately impairs forecasting accuracy and long-term stability.

To resolve the mismatch in optimization objectives between seasonal and trend components in multiscale time series, we draw inspiration from structural response mechanisms in molecular systems [37]. Specifically, we design loss functions based on the energy profiles characteristic of each component. Molecular vibrations follow harmonic dynamics around equilibrium, where small displacements lead to rapid increases in potential energy [7]. In contrast, molecular structures under sustained external influence exhibit nonlinear relaxation, with weakening restoring forces and sublinear energy accumulation[25]. These two physical responses closely parallel the behaviors of seasonal and trend components in time series.

Motivated by this analogy, we propose a Physics-guided Multiscale Loss Framework (PMLF) that supervises each component using a loss function grounded in its corresponding physical dynamics. As illustrated in Figure 2, once the model produces the output sequence, both the prediction and the ground truth are decomposed during loss computation into seasonal and trend components, each supervised by a structurally consistent objective. The seasonal branch is optimized using a quadratic loss, consistent with harmonic energy, while the trend branch adopts a logarithmic loss that reflects sublinear stress accumulation under long-term drift. To ensure balanced training across heterogeneous error profiles, we further incorporate a softmax-based weighting mechanism that dynamically adjusts the relative contributions of seasonal and trend losses. This loss design yields the following contributions:

- We reveal that seasonal and trend components exhibit fundamentally heterogeneous structural characteristics, analogous to harmonic oscillations and irreversible structural drift in physical systems.
- Based on this insight, we formulate a physics-guided loss framework that assigns quadratic penalties to seasonal errors and logarithmic potentials to trend deviations, reflecting their distinct structural behaviors. We further integrate a softmax-based weighting mechanism to dynamically balance their learning contributions during training.
- Experiments on different public benchmarks show that PMLF improves the performance of diverse baselines, demonstrating the effectiveness of physics-guided loss design in modeling structural heterogeneity in time series forecasting.

2 Related Work

2.1 Multiscale Modeling in Time Series Forecasting

Due to the inherent decomposability of time series, many recent forecasting models have taken multiscale modeling strategies, including explicit temporal decomposition, frequency-domain decomposition, and hierarchical temporal abstraction. Explicit decomposition methods, such as Autoformer [38], extract trend signals via moving-average filtering and treat seasonal variations as residual components. TimeMixer [29] extends this idea by operating over multiple temporal resolutions to better capture fine-grained temporal structures. Frequency-domain approaches model signals in the spectral domain to identify dominant periodicities and multiscale frequency structures, as

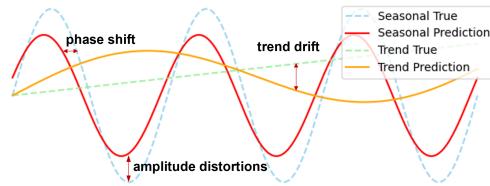


Figure 1: Illustration of distinct error patterns arising from different structural components in time series. Seasonal components are particularly sensitive to phase shifts and amplitude distortions, whereas trend components are more susceptible to long-term drift.

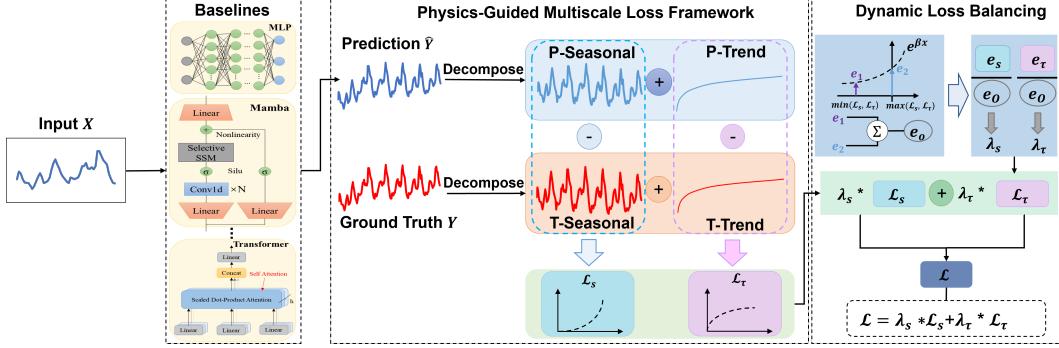


Figure 2: Overview of the proposed Physics-Guided Multiscale Loss Framework. Given an input time series, the model predicts future values, and both predictions and ground truths are decomposed into seasonal and trend components. Each component is supervised by a physically grounded loss aligned with its structural behavior. Finally, a softmax-based dynamic weighting mechanism then balances their contributions to form the final optimization objective.

demonstrated by FEDformer [45], FreTS[42], and WPMixer[21]. Hierarchical models [17, 18, 8] instead organize inputs into layered or patch-wise representations to capture dependencies across temporal scales. PatchTST[22], for example, achieves strong performance by applying self-attention to fixed-length patches, enabling joint modeling of short- and long-term dynamics. Although these models incorporate multiscale structures at the architectural level, they typically adopt uniform loss functions across all components. This mismatch between representation and supervision may limit the model’s ability to learn the distinct dynamics of trend and seasonal signals.

2.2 Loss Function Design in Time Series Forecasting

Beyond point-wise error minimization, recent work has explored shape-aware loss functions designed to improve sequence-level accuracy. These approaches can be broadly categorized into alignment-based and structure-aware objectives. Alignment-based losses, including DTW [1], Soft-DTW [3], DILATE [15], and TIDLE-Q [16], enable elastic matching between predictions and targets, improving robustness to temporal misalignment and phase variation. Structure-aware losses, in contrast, aim to preserve internal signal characteristics such as frequency, locality, and temporal coherence. For example, FreDF [27] compares signals in the frequency domain to preserve spectral energy distributions. Patch-wise structural loss [11] learns local correlation, variance, and mean patterns by decomposing sequences into overlapping patches, enabling finer-grained structural supervision.

3 Methodology

3.1 Overview and Motivation

While recent forecasting models incorporate structural decomposition to isolate trend and seasonal components, their training objectives typically remain uniform, applying loss functions such as MSE over the full output sequence. However, this uniform supervision fails to reflect the divergent dynamic sensitivities of multiscale components. Localized seasonal oscillations require fine-grained alignment, whereas long-term trends benefit from stable, drift-aware objectives.

To address this mismatch between representation and supervision, we propose a physics-guided multiscale loss framework. As illustrated in Figure 2, both predictions and ground truths are decomposed into seasonal and trend components using a shared operator. Each component is then supervised by a loss function aligned with its temporal dynamics. This structure-aware supervision allows the model to optimize multiscale representations more effectively, leading to improved long-range forecasting performance.

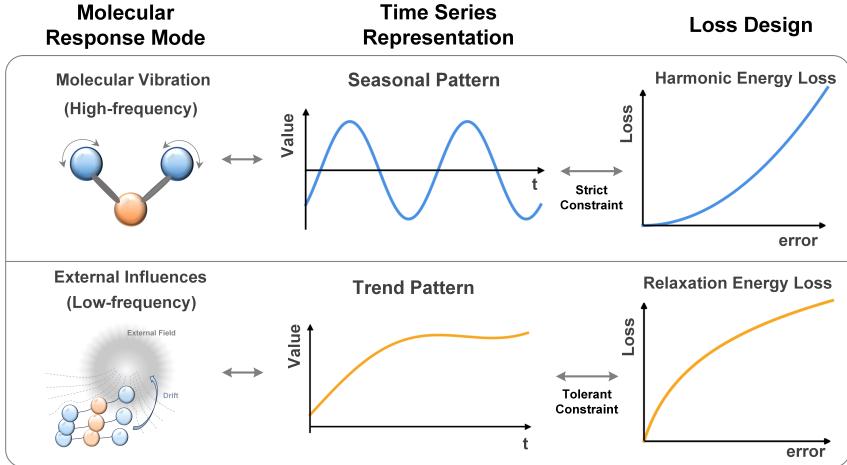


Figure 3: Conceptual illustration of our physics-guided loss design. Seasonal components are analogous to high-frequency molecular vibrations and are penalized using harmonic energy loss, which imposes strict local alignment. Trend components resemble structural drift under external fields and are optimized via a relaxation energy loss that enforces tolerant, sublinear correction.

3.2 Problem Formulation

Given a multivariate time series $X = \{x_1, x_2, \dots, x_T\} \in \mathbb{R}^{T \times C}$, the model f_θ aims to predict the next H time steps conditioned on a historical window of length L :

$$\hat{Y} = \{\hat{y}_{T+1}, \dots, \hat{y}_{T+H}\} = f_\theta(x_{T-L+1}, \dots, x_T) \quad (1)$$

To capture multiscale temporal structure, the prediction and ground truth sequences are decomposed into two components via seasonal-trend decomposition:

$$Y = Y_\tau + Y_s, \quad \hat{Y} = \hat{Y}_\tau + \hat{Y}_s \quad (2)$$

where Y_τ and Y_s denote the trend and seasonal component, respectively. This decomposition is performed using a shared low-pass filter \mathcal{D} to extract the trend, while the seasonal component is defined as the residual. We omit the stochastic noise term in this work, as it lacks structured patterns and thus cannot be effectively supervised.

3.3 Physics-Inspired Structural Supervision

In molecular systems, physical responses to perturbations generally fall into two categories: intrinsic vibrations and externally induced structural drift [37, 23, 9]. As shown in Figure 3, the former corresponds to reversible, high-frequency oscillations of atomic bonds around equilibrium, exhibiting strong sensitivity to small displacements. The latter arises from persistent external forces such as thermal gradients or mechanical stress, leading to irreversible, low-frequency drift with gradually diminishing resistance. These two physical response modes naturally correspond to the structural decomposition of time series. Seasonal components exhibit periodic fluctuations and are highly sensitive to phase and amplitude deviations, similar to molecular vibrations. In contrast, trend components evolve gradually under long-term influence and resemble structural drift observed in dissipative systems. To supervise these components in a structure-consistent manner, we replace uniform loss penalties with energy-based objectives whose growth profiles align with the dynamic behavior of each component.

Energy-Based Loss for Seasonal Oscillation. In molecular systems, small displacements from equilibrium are governed by harmonic motion, where the potential energy increases quadratically with deviation:

$$U_{vib}(x) = \frac{1}{2}k(x - x_0)^2 \quad (3)$$

where x is the system state, x_0 the equilibrium position, and k the stiffness constant. This response structure reflects the behavior of seasonal time series components, which exhibit high-frequency, reversible oscillations and are sensitive to phase or amplitude shifts.

Given predicted and target seasonal values $\hat{s}(t)$ and $s(t)$, the potential energy difference is:

$$\Delta U_{vib}(t) = U_{vib}(\hat{s}(t)) - U_{vib}(s(t)) = \frac{k}{2} [\hat{s}(t)^2 - s(t)^2 - 2x_0(\hat{s}(t) - s(t))] \quad (4)$$

By expanding the square and reorganizing terms, the energy difference can be rewritten as:

$$\Delta U_{vib}(t) = \frac{k}{2} [(\hat{s}(t) - s(t))^2 - 2(s(t) - x_0)(\hat{s}(t) - s(t))] \quad (5)$$

Due to the symmetric oscillation of $s(t)$ around its equilibrium, the coupling term $(s(t) - x_0)(\hat{s}(t) - s(t))$ has an expected value close to zero across a complete seasonal cycle:

$$\mathbb{E}_t [(s(t) - x_0)(\hat{s}(t) - s(t))] \approx 0 \quad (6)$$

Consequently, the expected energy difference simplifies to a dominant quadratic penalty, which defines the seasonal loss as:

$$\mathcal{L}_s = \frac{1}{CH} \sum_{c,h} \left(\hat{s}_{T+h}^{(c)} - s_{T+h}^{(c)} \right)^2 \quad (7)$$

Relaxation Energy Loss for Trend Components. In contrast to the symmetric and reversible oscillations of seasonal dynamics, trend components reflect irreversible structural drift induced by persistent external influences. Similar dynamics occur in dissipative physical systems under sustained forces, such as thermal gradients, where deformation accumulates progressively and the system's internal opposition to change gradually saturates. To capture this non-restorative response, we introduce a diminishing structural force model:

$$r(e) = \frac{ke}{1 + \alpha e}, \quad \text{where } e = \hat{\tau} - \tau \quad (8)$$

which captures the saturation of structural resistance under persistent displacement.

The integral of this response yields the effective structural energy potential:

$$U_{rel}(e) = \frac{k}{\alpha^2} (1 + \alpha e - \log(1 + \alpha e)) \quad (9)$$

which reflects the sublinear accumulation of internal structural energy associated with irreversible drift. Linear and constant terms are omitted as they yield non-informative or structurally insensitive gradients. We retain only the logarithmic penalty, which preserves structural sensitivity and yields the final trend loss:

$$\mathcal{L}_\tau = \frac{1}{CH} \sum_{c,h} \log \left(1 + \left| \hat{\tau}_{T+h}^{(c)} - \tau_{T+h}^{(c)} \right| \right) \quad (10)$$

3.4 Dynamic Loss Balancing

Seasonal and trend components originate from distinct physical mechanisms: harmonic oscillation and structural relaxation, respectively. When supervised jointly, their associated energy responses evolve at different rates. As training proceeds, the trend-related loss often grows several orders of magnitude larger than the seasonal loss due to its slow but persistent accumulation. This numerical imbalance distorts the force equilibrium between the two components, causing the trend branch to dominate gradient updates and suppressing high-frequency corrections. To address this, we adopt a softmax-based dynamic weighting scheme that adjusts the influence of each component based on its current energy level. Instead of static weights, we compute adaptive coefficients from the exponentially scaled differences between the detached losses. This strategy maintains structural balance during optimization and avoids second-order effects.

The total loss is defined as a weighted sum:

$$\mathcal{L} = \lambda_s \mathcal{L}_s + \lambda_\tau \mathcal{L}_\tau \quad (11)$$

Table 1: Multivariate long-term forecasting results across diverse real-world datasets. The table reports MSE and MAE across four prediction horizon $H \in \{96, 192, 336, 720\}$, with a fixed input sequence length of 96. The better results for each setting are highlighted in bold.

Method	Amplifier[5](2025)				TimeXer[31](2024)				S-Mamba(2024)[32]				iTransformer[19](2024)				TimeMixer[29](2024)				
	Loss Functions		MSE	MAE	PMLF	MSE	MAE	PMLF	MSE	MAE	PMLF	MSE	MAE	PMLF	MSE	MAE	MSE	MAE			
Metrics	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MSE	MAE	MSE	MSE	MAE	PMLF	MSE	MAE	MSE	MAE				
ETTh1	96	0.385	0.398	0.375	0.394	0.390	0.402	0.380	0.402	0.387	0.406	0.386	0.404	0.390	0.407	0.387	0.403	0.385	0.397	0.365	0.392
	192	0.448	0.44	0.423	0.425	0.443	0.433	0.424	0.430	0.445	0.441	0.437	0.433	0.448	0.441	0.438	0.434	0.435	0.426	0.416	0.422
	336	0.484	0.45	0.499	0.461	0.475	0.452	0.462	0.443	0.495	0.470	0.477	0.452	0.485	0.459	0.479	0.453	0.49	0.455	0.464	0.445
	720	0.539	0.499	0.484	0.467	0.488	0.479	0.480	0.481	0.505	0.496	0.479	0.477	0.494	0.484	0.486	0.478	0.512	0.493	0.471	0.464
	Avg	0.464	0.447	0.443	0.436	0.449	0.442	0.437	0.439	0.458	0.453	0.445	0.442	0.454	0.448	0.448	0.442	0.456	0.443	0.429	0.431
ETTh2	96	0.303	0.355	0.283	0.332	0.285	0.336	0.283	0.332	0.294	0.346	0.290	0.337	0.300	0.351	0.296	0.340	0.297	0.346	0.297	0.337
	192	0.369	0.397	0.353	0.379	0.368	0.392	0.361	0.381	0.378	0.397	0.375	0.391	0.381	0.399	0.372	0.390	0.375	0.395	0.365	0.381
	336	0.412	0.428	0.385	0.405	0.419	0.428	0.392	0.409	0.419	0.432	0.399	0.411	0.408	0.425	0.414	0.421	0.426	0.428	0.383	0.403
	720	0.446	0.455	0.403	0.423	0.423	0.441	0.415	0.431	0.433	0.451	0.402	0.424	0.422	0.442	0.412	0.430	0.432	0.445	0.402	0.427
	Avg	0.383	0.409	0.356	0.385	0.374	0.399	0.363	0.388	0.381	0.407	0.367	0.391	0.378	0.404	0.374	0.395	0.383	0.404	0.362	0.387
ETTm1	96	0.316	0.355	0.311	0.342	0.324	0.361	0.321	0.349	0.370	0.391	0.329	0.356	0.344	0.377	0.326	0.353	0.334	0.367	0.316	0.349
	192	0.364	0.385	0.371	0.372	0.376	0.389	0.369	0.373	0.384	0.399	0.379	0.351	0.382	0.393	0.378	0.378	0.368	0.384	0.367	0.378
	336	0.390	0.406	0.399	0.395	0.409	0.411	0.405	0.399	0.45	0.435	0.420	0.411	0.419	0.417	0.412	0.402	0.396	0.405	0.395	0.401
	720	0.460	0.446	0.481	0.436	0.467	0.443	0.463	0.432	0.523	0.478	0.473	0.441	0.487	0.455	0.477	0.439	0.452	0.44	0.453	0.436
	Avg	0.384	0.398	0.390	0.386	0.394	0.401	0.390	0.388	0.432	0.426	0.400	0.390	0.408	0.411	0.398	0.393	0.388	0.399	0.383	0.391
ETTm2	96	0.180	0.262	0.172	0.25	0.172	0.258	0.168	0.246	0.195	0.278	0.180	0.260	0.188	0.274	0.175	0.252	0.176	0.259	0.170	0.249
	192	0.241	0.301	0.237	0.293	0.237	0.300	0.233	0.290	0.256	0.314	0.243	0.299	0.252	0.312	0.243	0.296	0.238	0.299	0.236	0.293
	336	0.303	0.344	0.299	0.324	0.298	0.339	0.294	0.329	0.327	0.356	0.303	0.337	0.314	0.351	0.303	0.336	0.301	0.341	0.302	0.335
	720	0.399	0.399	0.391	0.387	0.394	0.396	0.394	0.388	0.416	0.407	0.401	0.394	0.413	0.406	0.402	0.393	0.393	0.395	0.390	0.388
	Avg	0.281	0.327	0.275	0.316	0.275	0.323	0.272	0.313	0.299	0.339	0.282	0.323	0.292	0.336	0.281	0.319	0.277	0.324	0.275	0.316
Weather	96	0.164	0.209	0.156	0.193	0.157	0.205	0.156	0.195	0.165	0.210	0.161	0.199	0.174	0.214	0.168	0.202	0.163	0.209	0.162	0.198
	192	0.213	0.253	0.209	0.243	0.204	0.247	0.202	0.237	0.214	0.252	0.208	0.242	0.221	0.254	0.219	0.247	0.208	0.25	0.208	0.242
	336	0.268	0.292	0.262	0.283	0.261	0.290	0.260	0.280	0.274	0.297	0.263	0.284	0.278	0.296	0.272	0.289	0.251	0.287	0.263	0.284
	720	0.344	0.342	0.339	0.334	0.340	0.341	0.336	0.332	0.350	0.345	0.342	0.335	0.358	0.347	0.351	0.341	0.339	0.341	0.339	0.336
	Avg	0.247	0.274	0.242	0.263	0.241	0.271	0.239	0.261	0.251	0.276	0.244	0.265	0.258	0.278	0.253	0.270	0.240	0.272	0.243	0.265
ECL	96	0.152	0.248	0.148	0.242	0.140	0.242	0.138	0.236	0.139	0.235	0.137	0.232	0.148	0.240	0.146	0.236	0.158	0.251	0.158	0.245
	192	0.162	0.256	0.161	0.243	0.157	0.256	0.155	0.251	0.159	0.255	0.161	0.254	0.162	0.253	0.163	0.252	0.171	0.260	0.170	0.259
	336	0.174	0.269	0.170	0.263	0.176	0.275	0.171	0.269	0.176	0.272	0.175	0.268	0.178	0.269	0.173	0.264	0.188	0.280	0.187	0.275
	720	0.203	0.294	0.199	0.288	0.211	0.306	0.201	0.293	0.204	0.298	0.203	0.293	0.225	0.317	0.204	0.292	0.228	0.314	0.227	0.308
	Avg	0.172	0.267	0.170	0.259	0.171	0.270	0.166	0.262	0.170	0.265	0.169	0.262	0.178	0.270	0.172	0.261	0.186	0.277	0.185	0.272
Traffic	96	0.455	0.298	0.451	0.298	0.428	0.271	0.429	0.268	0.382	0.261	0.385	0.258	0.395	0.268	0.393	0.255	0.462	0.285	0.470	0.297
	192	0.470	0.316	0.467	0.296	0.448	0.282	0.453	0.279	0.396	0.267	0.394	0.265	0.417	0.276	0.412	0.263	0.473	0.296	0.491	0.304
	336	0.479	0.316	0.472	0.314	0.473	0.289	0.483	0.286	0.417	0.276	0.419	0.274	0.433	0.283	0.428	0.270	0.498	0.296	0.506	0.314
	720	0.523	0.328	0.511	0.331	0.516	0.307	0.521	0.503	0.460	0.300	0.450	0.295	0.467	0.302	0.461	0.288	0.506	0.313	0.531	0.278
	Avg	0.482	0.315	0.475	0.310	0.466	0.287	0.472	0.284	0.414	0.276	0.412	0.273	0.428	0.282	0.424	0.269	0.485	0.298	0.499	0.31
Solar	96	0.189	0.222	0.188	0.214	0.189	0.276	0.187	0.241	0.205	0.244	0.202	0.212	0.203	0.237	0.199	0.218	0.189	0.259	0.2	0.232
	192	0.225	0.256	0.221	0.231	0.210	0.295	0.201	0.257	0.237	0.270	0.235	0.239	0.231	0.238	0.244	0.222	0.283	0.224	0.254	
	336	0.245	0.265	0.245	0.248	0.215	0.299	0.213	0.267	0.258	0.288	0.248	0.255	0.274	0.273	0.258	0.258	0.231	0.292	0.243	0.266
	720	0.253	0.278	0.251	0.230	0.313	0.220	0.272	0.260	0.288	0.251	0.256	0.249	0.275	0.256	0.255	0.223	0.285	0.243	0.278</	

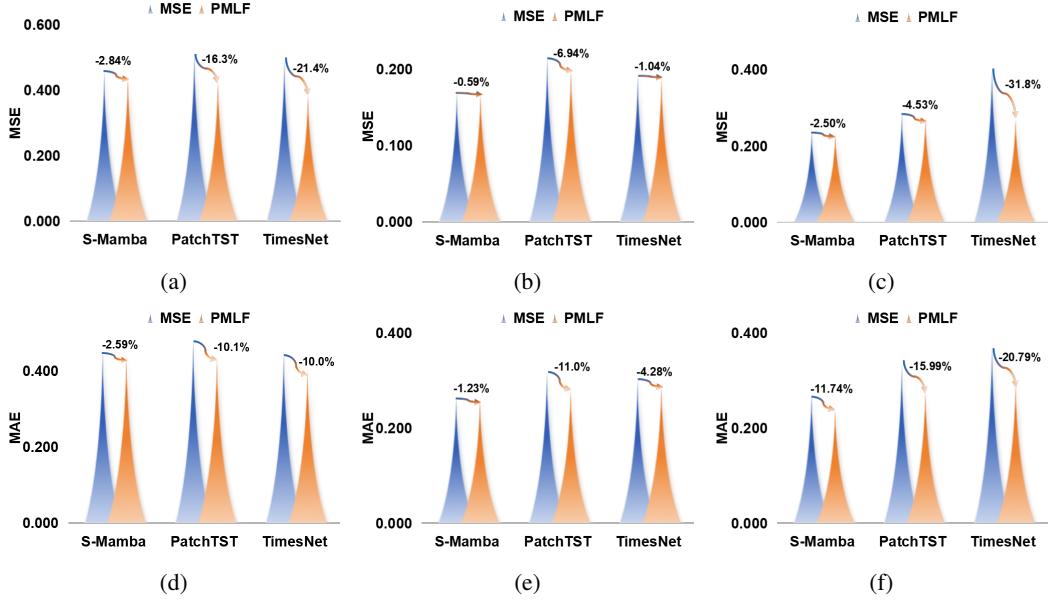


Figure 4: Forecasting performance of three backbone models (S-Mamba, PatchTST, and TimesNet) on the ETTh1, ECL, and Solar datasets. Subplots (a–c) show MSE and (d–f) show MAE, averaged over four forecasting horizons $H \in \{96, 192, 336, 720\}$. Each pair of bars compares standard MSE loss with the proposed PMLF.

Implementation Detail All models were trained from scratch using PMLF as the loss function, ensuring a consistent evaluation of its effectiveness. During training, seasonal and trend components are extracted via a fixed moving average filter with kernel size 25, and we also support an optional learnable version implemented as a plug-in module. Our loss framework is model-agnostic and can be seamlessly integrated into a wide range of forecasting backbones, including MLPs [5], Transformers [26], and Mamba [6, 4], thereby supporting universal applicability to multiscale prediction tasks. To ensure fair comparison, we ensure the consistency of the parameters of the comparison loss, only by adjusting the learning rate to adapt to the gradient dynamics caused by our loss design. All experiments are conducted using PyTorch with four NVIDIA RTX 4090 GPUs.

4.2 Main Results

We evaluate the proposed PMLF loss across a set of state-of-the-art forecasting models on eight benchmark datasets covering diverse application domains. The standard MSE loss is used as the baseline for comparison. As shown in Table 1, the proposed model-agnostic loss framework yields consistent improvements over the standard MSE baseline across five recent state-of-the-art models. This demonstrates that PMLF effectively guides the optimization of both short-term seasonal patterns and long-term trends, which frequently coexist in real-world time series. Especially, the performance improvement of the model on the MAE index is often higher than that on the MSE index, mainly due to the long-term control of trend. For example, among a total of 64 comparisons in iTransformer, the PMLF improvement item accounted for 93.75% (60/64). In addition, the improvement in the MAE metric is often more substantial than that in MSE, suggesting that the trend-aware loss contributes significantly to long-term stability. To further assess the generalizability of our framework, Figure 4 reports the average forecasting performance of three representative architectures: S-Mamba, PatchTST, and TimesNet, across multiple prediction horizons. On typical datasets including ETTh1, ECL, and Solar-Energy, PMLF achieves significant improvements in both MSE and MAE. Additional results covering all models and datasets are provided in the appendix.

4.3 Comparison with Other Loss Functions

We compare PMLF with traditional loss function and specially designed objectives proposed for time series forecasting. These approaches typically enhance standard objectives by introducing additional

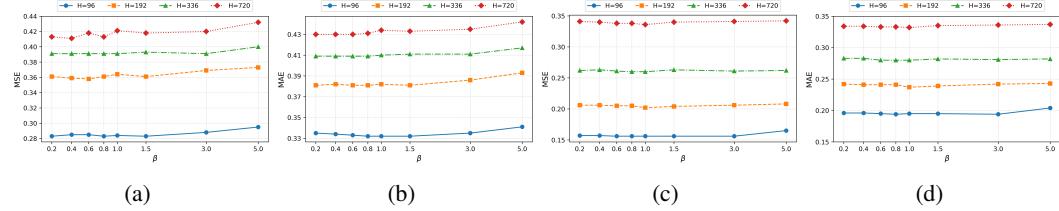


Figure 5: Robustness analysis of the dynamic weighting parameter β on the ETTh2 (a-b) and Weather (c-d) datasets based on TimeXer.

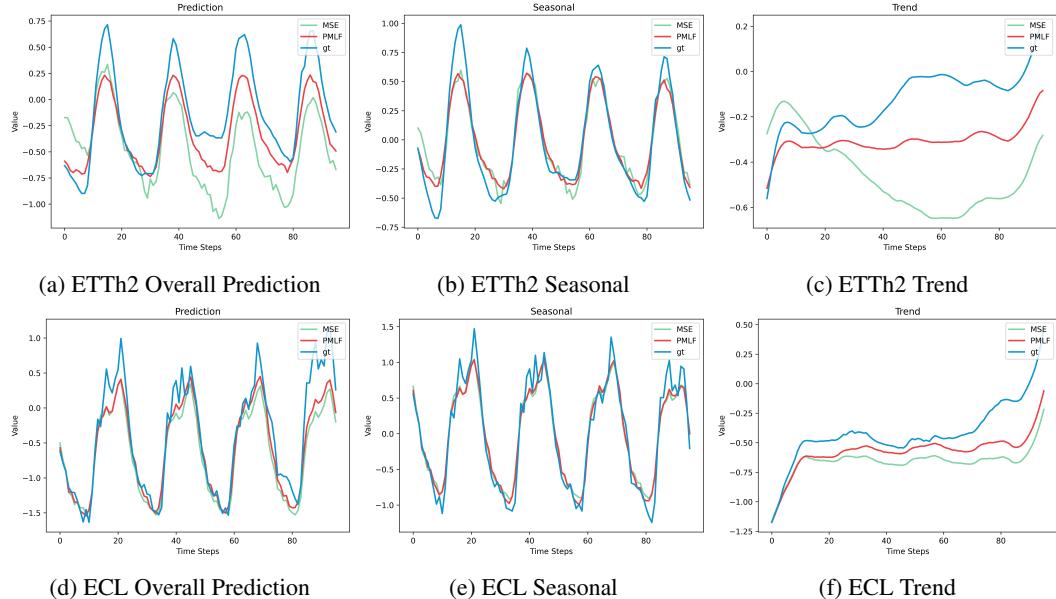


Figure 6: **Overall and Component-wise Prediction Visualization on ETTh2 and ECL.** Comparison between MSE and PMLF losses on ETTh2 ((a)–(c)) and ECL ((d)–(f)). Each row presents the overall prediction, trend component, and seasonal component. PMLF exhibits closer alignment with the ground truth in both local seasonal and global trends.

terms to emphasize specific learning characteristics. For instance, TILDE-Q [16] introduces penalties on phase and amplitude shifts to improve temporal alignment, while FreDF strengthens label-wise consistency through frequency-domain comparisons. In contrast, PMLF [27] supervises decomposed seasonal and trend components individually at the loss level, aiming to guide structural learning rather than refining a unified temporal loss. As shown in Table 2, PMLF achieves better overall performance on three datasets in both MSE and MAE metrics. These results demonstrate that structural supervision introduced solely through the loss function can effectively improve forecasting accuracy.

4.4 Visualization

To assess the structural impact of our loss function, we visualize predictions on ETTh2 and ECL using Amplifier as the backbone model. As shown in Figure 6, compared to the standard MSE loss, our proposed PMLF loss produces forecasts that are more closely aligned with the ground truth. To further analyze the effect of structural supervision, we decompose both predicted and true sequences into seasonal and trend components. In both dimensions, the PMLF-based predictions exhibit improved alignment with their respective ground truth counterparts, demonstrating enhanced fidelity in modeling high-frequency oscillations as well as long-term drift.

Table 2: Comparison of PMLF with standard and structure-aware loss functions on ETTh2, ETTm2, and Weather datasets using Amplifier as the backbone model.

Dataset		ETTh2				ETTm2				Weather			
horizon		96	192	336	720	96	192	336	720	96	192	336	720
MSE	MSE	0.303	0.369	0.412	0.446	0.180	0.241	0.303	0.399	0.164	0.213	0.268	0.344
	MAE	0.355	0.397	0.428	0.455	0.262	0.301	0.344	0.399	0.209	0.268	0.292	0.342
Soft-DTW	MSE	0.292	0.371	0.413	0.436	0.177	0.242	0.302	0.407	0.164	0.214	0.268	0.344
	MAE	0.346	0.396	0.429	0.450	0.259	0.303	0.344	0.406	0.209	0.252	0.291	0.341
Huber	MSE	0.298	0.360	0.399	0.432	0.174	0.238	0.299	0.397	0.159	0.209	0.265	0.342
	MAE	0.345	0.388	0.420	0.444	0.255	0.299	0.339	0.396	0.201	0.246	0.287	0.338
TILDE-Q [16]	MSE	0.286	0.364	0.394	0.420	0.177	0.236	0.296	0.390	0.169	0.214	0.267	0.345
	MAE	0.334	0.384	0.419	0.438	0.254	0.293	0.333	0.390	0.213	0.250	0.291	0.341
FreDF [27]	MSE	0.285	0.355	0.392	0.422	0.173	0.235	0.296	0.388	0.167	0.212	0.269	0.345
	MAE	0.334	0.381	0.412	0.436	0.253	0.294	0.334	0.388	0.210	0.254	0.297	0.348
PMLF	MSE	0.283	0.353	0.39	0.403	0.172	0.237	0.299	0.391	0.156	0.209	0.262	0.339
	MAE	0.332	0.379	0.417	0.423	0.251	0.293	0.332	0.387	0.193	0.243	0.283	0.334

Table 3: Ablation study of the components of PMLF loss on the ETTh2, ETTm2 and Weather datasets using Amplifier as a backbone.

Method	PMLF		w/o \mathcal{L}_s		w/o \mathcal{L}_τ		w/o Balancing		w/ LMA		
	Metirc	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
ETTh2	96	0.283	0.332	0.330	0.361	0.375	0.391	0.292	0.335	0.289	0.332
	192	0.353	0.379	0.487	0.468	0.428	0.423	0.357	0.382	0.357	0.379
	336	0.385	0.405	0.670	0.588	0.421	0.429	0.392	0.409	0.391	0.406
	720	0.403	0.423	0.592	0.548	0.434	0.446	0.406	0.425	0.406	0.425
ETTm2	96	0.172	0.251	0.206	0.277	0.208	0.282	0.175	0.256	0.171	0.250
	192	0.237	0.293	0.301	0.345	0.249	0.303	0.239	0.297	0.239	0.295
	336	0.299	0.332	0.348	0.369	0.308	0.340	0.301	0.338	0.296	0.331
	720	0.391	0.387	0.433	0.414	0.405	0.396	0.400	0.392	0.393	0.390
Weather	96	0.156	0.193	0.21	0.262	0.180	0.223	0.158	0.197	0.155	0.194
	192	0.209	0.243	0.259	0.292	0.217	0.254	0.212	0.249	0.209	0.243
	336	0.262	0.283	0.306	0.323	0.271	0.292	0.265	0.286	0.264	0.283
	720	0.339	0.334	0.367	0.360	0.346	0.341	0.343	0.335	0.342	0.334

4.5 Ablation Studies

As shown in Table 3, we conduct ablation studies on the ETTh2, ETTm2, and Weather datasets using Amplifier as the backbone. The results show that removing either the seasonal or trend component from the loss formulation leads to a significant drop in forecasting accuracy, confirming the necessity of jointly modeling both temporal structures. Additionally, eliminating the dynamic weighting mechanism by fixing the loss coefficients also degrades performance, highlighting the importance of adaptive balancing between the two structural modes. Furthermore, we implement a learnable moving average (LMA) module with trainable kernels. Its performance remains comparable to the fixed-kernel version, suggesting that the proposed loss is compatible with both static and adaptive decomposition strategies. Finally, as illustrated in Figure 7, we assess the robustness of the hyperparameter β on the ETTh1 and Weather datasets using the TimeXer model. The results indicate that the performance remains stable across a wide range of β values, from 0.2 to 5, demonstrating that our loss design is insensitive to this choice.

5 Conclusion

We introduce a Physics-Guided Multiscale Loss Framework (PMLF) for time series forecasting, which decouples seasonal and trend supervision by grounding each in distinct physical dynamics. Inspired by molecular systems, the framework models short-term oscillations through harmonic potentials and long-term drift via relaxation energy. Furthermore, a softmax-based dynamic weighting mechanism balances the contributions of each component during training, enabling adaptive optimization across structural error profiles. Experimental results across multiple datasets and model backbones show that PMLF consistently improves forecasting accuracy.

Limitation and Future Works. However, PMLF assumes that multiscale structures are present and separable. Although this assumption holds for many real-world signals, the benefits of structural decoupling may diminish in settings dominated by abrupt transitions or highly regular periodic signals, such as regime shifts or physiological rhythms like heartbeat and respiration. These signals lack the multi scale heterogeneity that PMLF is designed to exploit. A promising direction for future work is to explore adaptive decomposition mechanisms or hybrid supervision strategies that enhance the framework’s applicability to structure-invariant or single-scale time series.

Acknowledgements

This study was supported by the Natural Science Foundation of Fujian Province under Grant 2024J01063 and Grant 2024Y4017.

References

- [1] Donald J Berndt and James Clifford. Using dynamic time warping to find patterns in time series. In *Proceedings of the 3rd international conference on knowledge discovery and data mining*, pages 359–370, 1994.
- [2] Peng Chen, Yingying Zhang, Yunyao Cheng, Yang Shu, Yihang Wang, Qingsong Wen, Bin Yang, and Chenjuan Guo. Multi-scale transformers with adaptive pathways for time series forecasting. In *International Conference on Learning Representations*, 2024.
- [3] Marco Cuturi and Mathieu Blondel. Soft-dtw: a differentiable loss function for time-series. In *International conference on machine learning*, pages 894–903. PMLR, 2017.
- [4] Tri Dao and Albert Gu. Transformers are SSMs: Generalized models and efficient algorithms through structured state space duality. In *International Conference on Machine Learning (ICML)*, 2024.
- [5] Jingru Fei, Kun Yi, Wei Fan, Qi Zhang, and Zhendong Niu. Amplifier: Bringing attention to neglected low-energy components in time series forecasting. 2025.
- [6] Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. *arXiv preprint arXiv:2312.00752*, 2023.
- [7] Justin R Gullingsrud, Rosemary Braun, and Klaus Schulten. Reconstructing potentials of mean force through time series analysis of steered molecular dynamics simulations. *Journal of Computational Physics*, 151(1):190–211, 1999. ISSN 0021-9991.
- [8] Qihe Huang, Lei Shen, Ruixin Zhang, Jiahuan Cheng, Shouhong Ding, Zhengyang Zhou, and Yang Wang. Hdmixer: Hierarchical dependency with extendable patch for multivariate time series forecasting. In *Proceedings of the AAAI conference on artificial intelligence*, volume 38, pages 12608–12616, 2024.
- [9] Michael E Kellman and Vivian Tyng. The dance of molecules: New dynamical perspectives on highly excited molecular vibrations. *Accounts of chemical research*, 40(4):243–250, 2007.
- [10] Taesung Kim, Jinhee Kim, Yunwon Tae, Cheonbok Park, Jang-Ho Choi, and Jaegul Choo. Reversible instance normalization for accurate time-series forecasting against distribution shift. In *International Conference on Learning Representations*, 2022.

- [11] Dilfira Kudrat, Zongxia Xie, Yanru Sun, Tianyu Jia, and Qinghua Hu. Patch-wise structural loss for time series forecasting. *arXiv preprint arXiv:2503.00877*, 2025.
- [12] Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long-and short-term temporal patterns with deep neural networks. In *The 41st international ACM SIGIR conference on research & development in information retrieval*, pages 95–104, 2018.
- [13] Henning Lange, Steven L Brunton, and J Nathan Kutz. From fourier to koopman: Spectral methods for long-term time series prediction. *Journal of Machine Learning Research*, 22(41):1–38, 2021.
- [14] Vincent Le Guen and Nicolas Thome. Shape and time distortion loss for training deep time series forecasting models. *Advances in neural information processing systems*, 32, 2019.
- [15] Vincent Le Guen and Nicolas Thome. Shape and time distortion loss for training deep time series forecasting models. In *Advances in Neural Information Processing Systems*, pages 4191–4203. 2019.
- [16] Hyunwook Lee, Chunggi Lee, Hongkyu Lim, and Sungahn Ko. Tilde-q: a transformation invariant loss function for time-series forecasting. *arXiv preprint arXiv:2210.15050*, 2022.
- [17] Minhao Liu, Ailing Zeng, Muxi Chen, Zhijian Xu, Qiuxia Lai, Lingna Ma, and Qiang Xu. Scinet: Time series modeling and forecasting with sample convolution and interaction. *Advances in Neural Information Processing Systems*, 35:5816–5828, 2022.
- [18] Shizhan Liu, Hang Yu, Cong Liao, Jianguo Li, Weiyao Lin, Alex X. Liu, and Schahram Dustdar. Pyraformer: Low-complexity pyramidal attention for long-range time series modeling and forecasting. In *International Conference on Learning Representations*, 2022.
- [19] Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long. itransformer: Inverted transformers are effective for time series forecasting. In *The Twelfth International Conference on Learning Representations*, 2024.
- [20] Yisheng Lv, Yanjie Duan, Wenwen Kang, Zhengxi Li, and Fei-Yue Wang. Traffic flow prediction with big data: A deep learning approach. *Ieee transactions on intelligent transportation systems*, 16(2):865–873, 2014.
- [21] Md Mahmuddun Nabi Murad, Mehmet Aktukmak, and Yasin Yilmaz. Wpmixer: Efficient multi-resolution mixing for long-term time series forecasting. *Proceedings of the AAAI Conference on Artificial Intelligence*, 39(18):19581–19588, Apr. 2025.
- [22] Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64 words: Long-term forecasting with transformers. In *International Conference on Learning Representations*, 2023.
- [23] Tamar Schlick and Charles S Peskin. Can classical equations simulate quantum-mechanical behavior? a molecular dynamics investigation of a diatomic molecule with a morse potential. *Communications on pure and applied mathematics*, 42(8):1141–1163, 1989.
- [24] Omer Berat Sezer, Mehmet Ugur Gudelek, and Ahmet Murat Ozbayoglu. Financial time series forecasting with deep learning : A systematic literature review: 2005–2019. *Applied Soft Computing*, 90:106181, 2020. ISSN 1568-4946. doi: <https://doi.org/10.1016/j.asoc.2020.106181>.
- [25] Yuichi Togashi and Alexander S Mikhailov. Nonlinear relaxation dynamics in elastic networks and design principles of molecular machines. *Proceedings of the National Academy of Sciences*, 104(21):8697–8702, 2007.
- [26] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing systems*, 30, 2017.
- [27] Hao Wang, Licheng Pan, Zhichao Chen, Degui Yang, Sen Zhang, Yifei Yang, Xinggao Liu, Haoxuan Li, and Dacheng Tao. Fredf: Learning to forecast in the frequency domain. In *ICLR*, 2025.

[28] Jingyuan Wang, Ze Wang, Jianfeng Li, and Junjie Wu. Multilevel wavelet decomposition network for interpretable time series analysis. In *Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining*, pages 2437–2446, 2018.

[29] Shiyu Wang, Haixu Wu, Xiaoming Shi, Tengge Hu, Huakun Luo, Lintao Ma, James Y Zhang, and JUN ZHOU. Timemixer: Decomposable multiscale mixing for time series forecasting. In *International Conference on Learning Representations (ICLR)*, 2024.

[30] Yuxuan Wang, Haixu Wu, Jiaxiang Dong, Yong Liu, Mingsheng Long, and Jianmin Wang. Deep time series models: A comprehensive survey and benchmark. 2024.

[31] Yuxuan Wang, Haixu Wu, Jiaxiang Dong, Yong Liu, Yunzhong Qiu, Haoran Zhang, Jianmin Wang, and Mingsheng Long. Timexer: Empowering transformers for time series forecasting with exogenous variables. *Advances in Neural Information Processing Systems*, 2024.

[32] Zihan Wang, Fanheng Kong, Shi Feng, Ming Wang, Xiaocui Yang, Han Zhao, Daling Wang, and Yifei Zhang. Is mamba effective for time series forecasting? *Neurocomputing*, page 129178, 2024.

[33] Qingsong Wen, Jingkun Gao, Xiaomin Song, Liang Sun, Huan Xu, and Shenghuo Zhu. Robust-stl: A robust seasonal-trend decomposition algorithm for long time series. In *Proceedings of the AAAI conference on artificial intelligence*, volume 33, pages 5409–5416, 2019.

[34] Qingsong Wen, Linxiao Yang, Tian Zhou, and Liang Sun. Robust time series analysis and applications: An industrial perspective. In *Proceedings of the 28th ACM SIGKDD conference on knowledge discovery and data mining*, pages 4836–4837, 2022.

[35] Rafał Weron. Electricity price forecasting: A review of the state-of-the-art with a look into the future. *International journal of forecasting*, 30(4):1030–1081, 2014.

[36] Mike West. Time series decomposition. *Biometrika*, 84(2):489–494, 1997.

[37] Jordan J Winetrot, Krishan Kanhaiya, Joshua Kempainen, Pieter J in ‘t Veld, Geeta Sachdeva, Ravindra Pandey, Behzad Damirchi, Adri van Duin, Gregory M Odegard, and Hendrik Heinz. Implementing reactivity in molecular dynamics simulations with harmonic force fields. *Nature communications*, 15(1):7945, 2024.

[38] Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition transformers with auto-correlation for long-term series forecasting. *Advances in neural information processing systems*, 34:22419–22430, 2021.

[39] Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet: Temporal 2d-variation modeling for general time series analysis. In *International Conference on Learning Representations*, 2023.

[40] Haixu Wu, Hang Zhou, Mingsheng Long, and Jianmin Wang. Interpretable weather forecasting for worldwide stations with a unified deep model. *Nature Machine Intelligence*, 5(6):602–611, 2023.

[41] Kun Yi, Qi Zhang, Wei Fan, Shoujin Wang, Pengyang Wang, Hui He, Ning An, Defu Lian, Longbing Cao, and Zhendong Niu. Frequency-domain mlps are more effective learners in time series forecasting. *Advances in Neural Information Processing Systems*, 36:76656–76679, 2023.

[42] Kun Yi, Qi Zhang, Wei Fan, Shoujin Wang, Pengyang Wang, Hui He, Ning An, Defu Lian, Longbing Cao, and Zhendong Niu. Frequency-domain MLPs are more effective learners in time series forecasting. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023.

[43] Yuchen Zhang, Mingsheng Long, Kaiyuan Chen, Lanxiang Xing, Ronghua Jin, Michael I Jordan, and Jianmin Wang. Skilful nowcasting of extreme precipitation with nowcastnet. *Nature*, 619(7970):526–532, 2023.

- [44] Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang. Informer: Beyond efficient transformer for long sequence time-series forecasting. In *The Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Conference*, volume 35, pages 11106–11115. AAAI Press, 2021.
- [45] Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. FEDformer: Frequency enhanced decomposed transformer for long-term series forecasting. In *Proc. 39th International Conference on Machine Learning (ICML 2022)*, 2022.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [\[Yes\]](#)

Justification: The abstract and section 1 have clearly claimed the contributions made in the paper.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [\[Yes\]](#)

Justification: please refer the limitation discussion part 5

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [\[Yes\]](#)

Justification: Please refer to Section 3

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: **[Yes]**

Justification: The loss designed have been described clearly in main text

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
 - (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
 - (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
 - (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [\[Yes\]](#)

Justification: Please refer to the implementation details listed in the appendix of the supplementary materials. The code can be found in supplementary materials.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [\[Yes\]](#)

Justification: All implement detail please refer to Appendix in the supplementary materials.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [\[Yes\]](#)

Justification: please refer to Appendix in the supplementary materials.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).

- It should be clear whether the error bar is the standard deviation or the standard error of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [\[Yes\]](#)

Justification: All implement detail please refer to Appendix in the supplementary materials.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics <https://neurips.cc/public/EthicsGuidelines>?

Answer: [\[Yes\]](#)

Justification: We have reviewed and the research conforms with the NeurIPS Code of Ethics.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [\[Yes\]](#)

Justification: Please refer to the case study in the Section 4.4

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.

- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper does not constitute such a risk.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: All creators of datasets are properly credited by citations.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.

- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets. The code and training details are provided in supplementary materials.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The article uses the LLM for grammar checking and polishing.

Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (<https://neurips.cc/Conferences/2025/LLM>) for what should or should not be described.

A Datasets and Implementation

A.1 Datasets

We conducted experiments on 8 real-world datasets to evaluate the effectiveness of the our proposed PMLF loss functions across various domains. The detailed dateset information are depicted in Figure 4

- **ETT**(Electricity Transformer Temperature): The ETT dataset contains 7 variables of electricity transformer temperature from July 2016 to july 2018. There are 4 sub datasets: ETTh1, ETTh2, ETTm1, ETTm2, where ETTh recorded hourly and ETTm recorded every 15 minutes.
- **Weather**: Weather contains 21 meteorological variables collected every 10 minutes from the Weather Station of the Max Planck Biogeochemistry Institute in 2020.
- **ECL** : ECL records the hourly electricity consumption data of 321 clients from 2012 to 2014.
- **Traffic**: Traffic collects hourly road occupancy rates measured by 862 sensors of San Francisco Bay area freeways from January 2015 to December 2016.
- **Solar-Energy**: Solar records the solar power production of 137 PV plants in 2006, which are sampled every 10 minutes.

We follow the same data processing and train-validation-test set split protocol used in TimesNet, where the train, validation, and test datasets are strictly divided according to chronological order to make sure there are no data leakage issues. As for the forecasting settings, we fix the length of the lookback series as 96 and the prediction length varies in {96, 192, 336, 720}.

Table 4: Detailed Dataset Descriptions. Dim denotes the variable number of each dataset. Prediction Length denotes the future time steps to be predicted and four prediction setting are included in each dataset. Dataset Size denotes the total number of time steps in (Train, Validation, Test) split respectively. Frequency denotes the sampling interval of time steps.

Dataset	Dim	Prediction Length	Dataset Size	Frequency	Domain
ETTh1	7	{96, 192, 336, 720}	(8545, 2881, 2881)	1 hour	Electricity
ETTh2	7	{96, 192, 336, 720}	(8545, 2881, 2881)	1 hour	Electricity
ETTm1	7	{96, 192, 336, 720}	(34465, 11521, 11521)	15 min	Electricity
ETTm2	7	{96, 192, 336, 720}	(34465, 11521, 11521)	15 min	Electricity
Weather	21	{96, 192, 336, 720}	(36792, 5271, 10540)	10 min	Weather
ECL	321	{96, 192, 336, 720}	(18317, 2633, 5261)	1 hour	Electricity
Traffic	862	{96, 192, 336, 720}	(12185, 1757, 3509)	1 hour	Transportation
Solar-Energy	137	{96, 192, 336, 720}	(36601, 5161, 10417)	10 min	Energy

A.2 Implementation Details

All the experiments are implemented in PyTorch and conducted on four NVIDIA 4090 24GB GPU. For fair comparison, we set the input size for all models to be uniform, with the batchsize for ETT and Weather datasets set to 64 and the ECL, Traffic, and Solar datasets set to 16. Except for changing the learning rate to fully learn new structures, do not change other parameters related to the model.

Before calculating the loss, the time series is decomposed into seasonal and trend components using the moving average method. The kernel size refers to the setting in Autoformer, which is 25. But in order to avoid fixed kernel sizes affecting time series with different sampling frequencies, we designed a hybrid expert decomposition mechanism that uses a set of average pooling layers to extract trends and combines them with learnable weights. The kernel sizes {7, 13, 15, 25, 49} represent the corresponding periods at different frequencies.

B Baselines

To evaluate the general applicability of PMLF, we compare it with a varied collection of leading time-series forecasters that span the principal architectural families: state-space (S-Mamba), Transformer (iTransformer, TimeXer, PatchTST), multilayer perceptron (Amplifier, TimeMixer), and convolutional neural network (TimesNet). The core ideas of these baselines are outlined below.

- Amplifier: An energy-amplification block heightens weak spectral bands, the spectrum is re-normalised, and parallel seasonal and trend heads with a lightweight channel-interaction module enhance performance on low-signal datasets.
- TimeXer: Targets mixed endogenous and exogenous forecasting. Patch-wise self-attention models the target series, variate-wise cross-attention injects exogenous cues, and global endogenous tokens integrate the two streams, improving robustness to abrupt external shocks.
- S-Mamba: Represents each time step with a single per-channel token and applies a bidirectional Mamba state-space layer along the channel axis to capture inter-variable dependencies. This near-linear-time design surpasses Transformer baselines while greatly reducing computational cost.
- iTransformer: Reassigns Transformer roles by applying attention across variables to learn cross-channel links, while the feed-forward block operates along time to model nonlinear temporal dynamics. This rearrangement lowers memory usage for long horizons and yields interpretable variable-level attention.
- TimeMixer: A pure-MLP predictor. Depth-wise convolutions extract multi-scale bands, linear layers mix these components, and a parallel head simultaneously outputs all future steps. The absence of attention provides GPU-friendly speed without sacrificing accuracy.
- PatchTST: Divides long sequences into fixed-length temporal patches that serve as Transformer tokens and shares encoder parameters among channels. This strategy reduces attention complexity from $\mathcal{O}(L^2)$ to $\mathcal{O}((L/P)^2)$ while retaining local semantics.
- TimesNet: Converts a one-dimensional series into a two-dimensional time-period grid and employs heterogeneous CNN kernels to capture intra-period seasonality as well as inter-period trends. This representation enables direct transfer from vision backbones and delivers strong results in forecasting, anomaly detection, and classification.

These heterogeneous baselines ensure that any improvements attributed to PMLF are not limited to a single modelling philosophy but instead reflect a broad enhancement of time-series learning.

C More Experimental Results

C.1 Robustness Assessment

To examine the robustness of our framework, the Amplifier baseline was trained five times with independent random seeds. Table 5 reports the mean performance together with the corresponding standard deviations. The consistently small variances confirm that the Amplifier yields repeatable results, underscoring the robustness of the proposed approach.

C.2 Parameter Sensitivity

To examine how the dynamic-weighting coefficient β influences forecasting accuracy, we conducted a grid search over $\beta \in \{0.2, 0.4, 0.6, 0.8, 1, 1.5, 3, 5\}$ for two representative networks: TimeXer and TimeMixer. Figure 7 reports the resulting MSE and MAE on the ETTh2 and Weather datasets. For TimeXer (top row) and TimeMixer (bottom row), the error curves remain nearly flat across the entire range, and the optimal β values cluster around 1.0 on both datasets. The maximum deviation from the best MSE and MAE is below 2.5%, indicating that the proposed dynamic weighting scheme is insensitive to the precise choice of β . These results confirm the robustness of our framework with respect to this hyper-parameter.

Table 5: Robustness of PMLF performance. The results are obtained from five random seeds using the Amplifier as backbone.

Dataset	ETTh1		ETTh2		Weather	
Horizon	MSE	MAE	MSE	MAE	MSE	MAE
96	0.375±0.002	0.394±0.001	0.283±0.000	0.332±0.000	0.156±0.001	0.193±0.001
192	0.423±0.003	0.425±0.002	0.353±0.002	0.379±0.001	0.209±0.002	0.243±0.004
336	0.490±0.003	0.456±0.002	0.385±0.000	0.405±0.001	0.262±0.002	0.283±0.004
720	0.484±0.003	0.467±0.002	0.403±0.002	0.423±0.001	0.339±0.002	0.334±0.004
Dataset	ETTm1		ETTm2		ECL	
Horizon	MSE	MAE	MSE	MAE	MSE	MAE
96	0.311±0.002	0.342±0.002	0.172±0.002	0.250±0.001	0.148±0.000	0.242±0.000
192	0.371±0.004	0.372±0.003	0.237±0.001	0.293±0.002	0.161±0.001	0.243±0.000
336	0.399±0.003	0.395±0.003	0.299±0.002	0.332±0.002	0.170±0.000	0.263±0.001
720	0.481±0.005	0.436±0.004	0.391±0.003	0.387±0.004	0.199±0.001	0.288±0.001

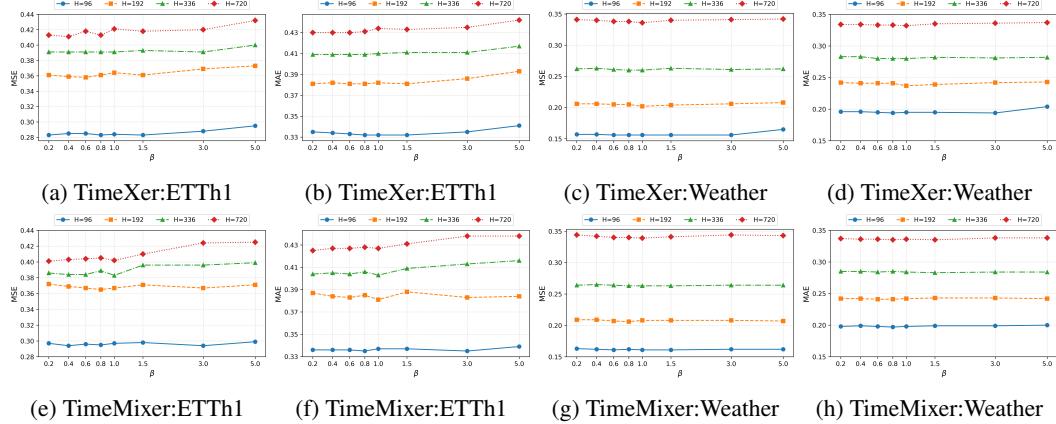


Figure 7: Sensitivity of the dynamic-weighting coefficient β . The first row shows TimeXer performance on ETTh2 (a, b) and Weather (c, d) as β varies, and the second row gives the corresponding results for TimeMixer.

C.3 Additional Evaluation on Classical Forecasting Networks

Additionally, we assesses the architecture-independent effectiveness of PMLF on three widely used forecasting models: the Transformer-based PatchTST, the selective state-space model S Mamba, and the convolutional network TimesNet. For each architecture, the original MSE objective was replaced with PMLF and the models were evaluated on the ETT, Weather, ECL, and Solar datasets under four prediction horizons $\{96, 192, 336, 720\}$. As shown in Figure 8, across all datasets and horizons, the substitution of MSE with PMLF consistently reduced the error metrics (MAE, MSE), confirming that PMLF improves forecasting accuracy and robustness even in classical network settings that are not covered by the main set of state-of-the-art architectures.

D Visualization

As shown in Figure 9 and 10, we provide a visual comparison between PMLF and MSE on six benchmark datasets: ETTh2, ETTm2, Weather, ECL, Traffic, and Solar. Each row corresponds to one dataset, where the first column presents the overall forecast, and the second and third columns show the decomposed seasonal and trend components, respectively. Across all datasets, the forecasts

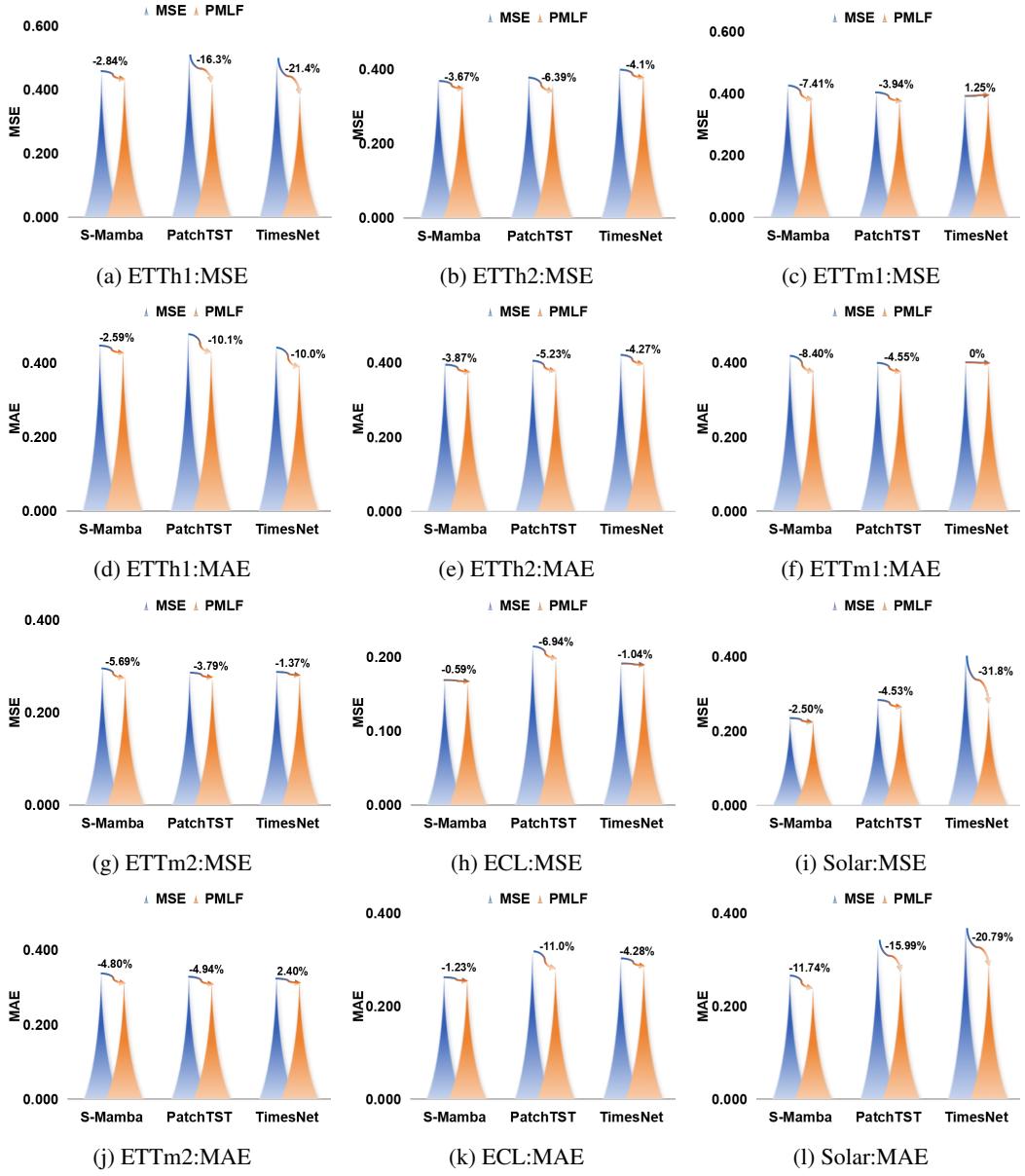


Figure 8: Average forecasting performance of PatchTST, S-Mamba, and TimesNet under four prediction horizons (96, 192, 336, 720) on the ETT (4 subsets), Weather, ECL, and Solar datasets. Models trained with PMLF are contrasted with their original MSE counterparts. Across all horizons and datasets, PMLF consistently reduces MAE, MSE, and RMSE, illustrating its effectiveness on these classical architectures.

generated using PMLF exhibit closer alignment with the ground-truth signals, capturing long-term trends and periodic patterns with higher fidelity compared to those produced with MSE.

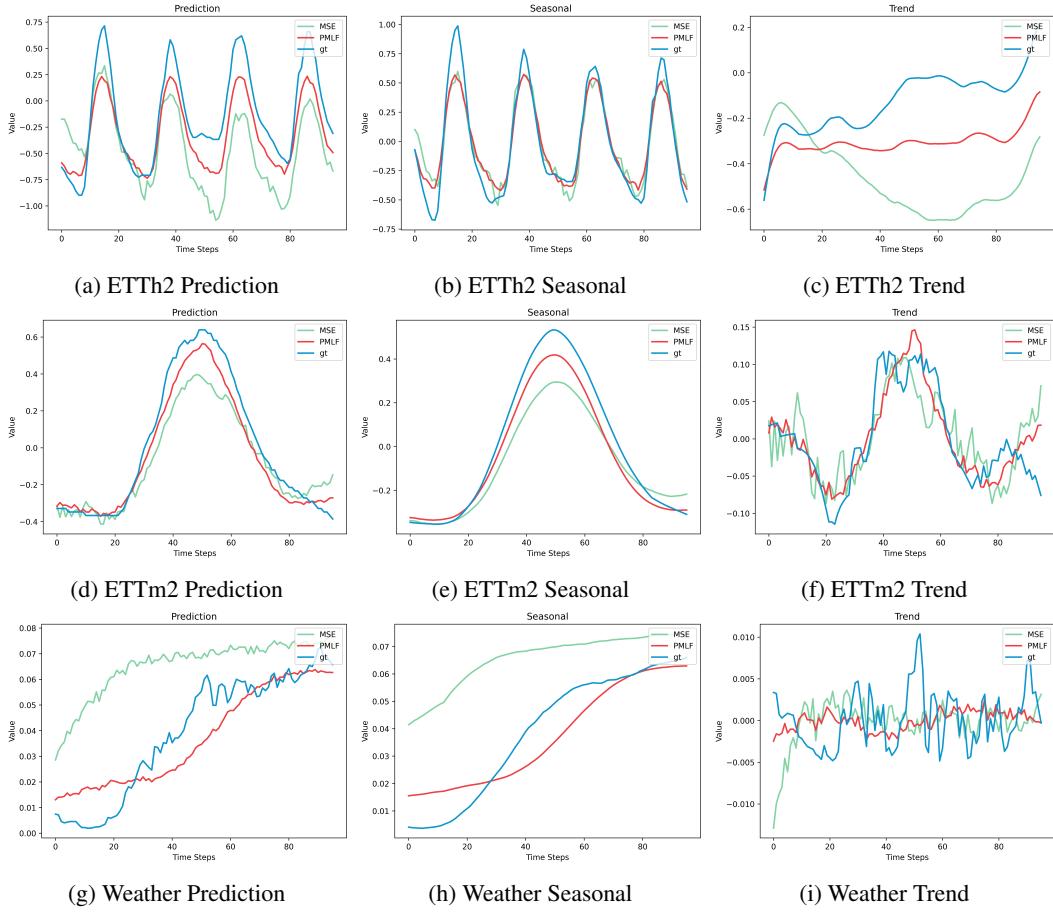


Figure 9: Visual comparison of Amplifier forecasts trained with PMLF and MSE across six benchmark datasets. Each row corresponds to one dataset (ETTh2, ETTm2, Weather), with three columns showing the overall prediction (left), seasonal component (middle), and trend component (right).

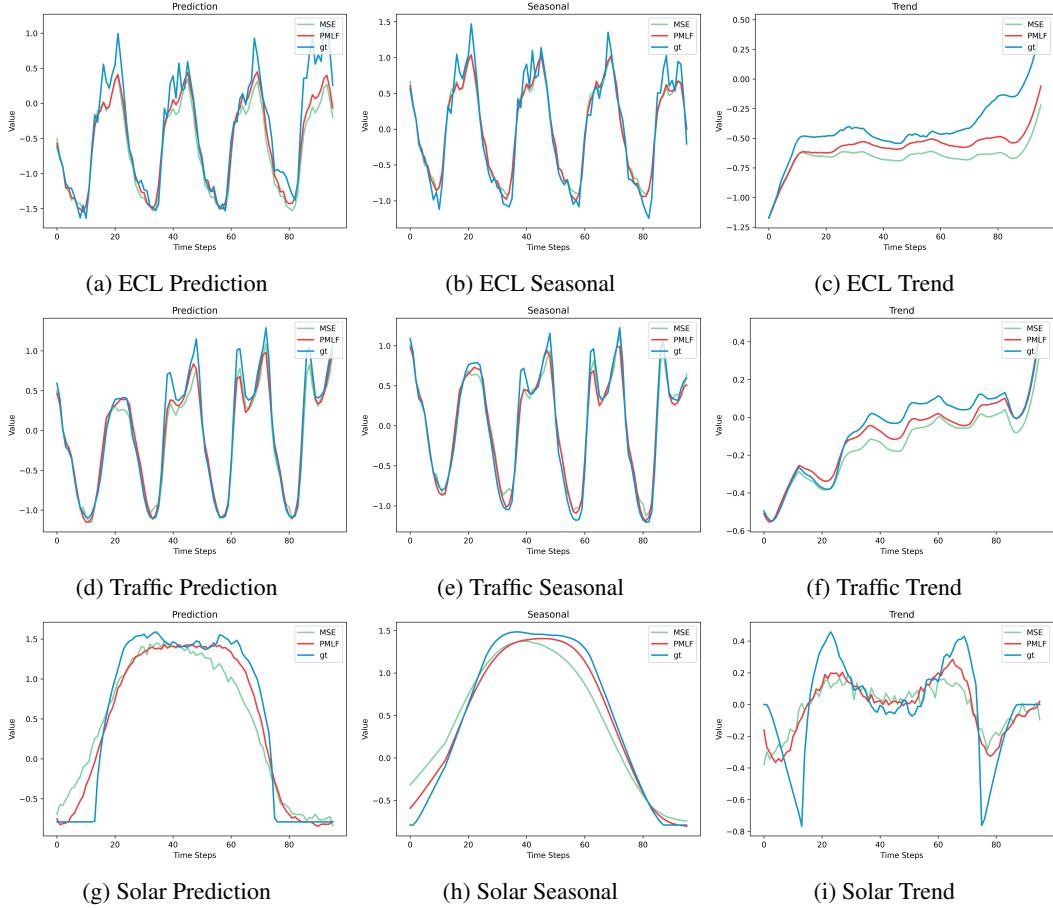


Figure 10: Visual comparison of Amplifier forecasts trained with PMLF and MSE across six benchmark datasets. Each row corresponds to one dataset (ECL, Traffic, and Solar), with three columns showing the overall prediction (left), seasonal component (middle), and trend component (right).