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Abstract

Forecasting real-world time series requires modeling both short-term fluctuations
and long-term evolutions, as these signals typically exhibit multiscale temporal
structures. A core challenge lies in reconciling such dynamics: high-frequency
seasonality demands local precision, while low-frequency trends require global
robustness. However, most existing methods adopt a unified loss function across
all temporal components, overlooking their structural differences. This misalign-
ment often causes overfitting to seasonal noise or underfitting of long-term trends,
leading to suboptimal forecasting performance. To address this issue, we propose a
Physics-guided Multiscale Loss Framework (PMLF) that decomposes time series
into seasonal and trend components and assigns component-specific objectives
grounded in the distinct energy responses of oscillatory and drift dynamics. Specif-
ically, we assign a quadratic loss to seasonal components, reflecting the quadratic
potential energy profile of molecular vibration, while a logarithmic loss is used for
trend components to capture the sublinear energy profile of molecular drift under
sustained external forces. Furthermore, we introduce a softmax-based strategy that
adaptively balances the unequal energetic responses of these two physical processes.
Experiments on different public benchmarks show that PMLF improves the perfor-
mance of diverse baselines, demonstrating the effectiveness of physics-guided loss
design in modeling structural heterogeneity in time series forecasting.

1 Introduction

Time series forecasting is widely used across a range of scientific and industrial domains[34],
including energy consumption [35], climate change [40, 43], financial exchange [24], and traffic
flow [20]. Real-world time series inherently exhibit complex multiscale behavior, combining high-
frequency seasonal variation with low-frequency trend dynamics. This multiscale characteristic
introduces conflicting demands on forecasting models, as short-term and long-term patterns evolve
at different temporal resolutions, making accurate forecasting particularly challenging[30]. Recent
methods address multiscale forecasting primarily through architectural-level innovations, such as
hierarchical attention[22], multi-resolution convolutions [29], seasonal-trend decomposition[39, 38],
and frequency-aware representations [45, 41, 5, 28]. While these approaches improve the model’s
ability to represent multiscale signals, they apply a uniform loss functions during optimization, with
limited attention paid to how different temporal structures are supervised [3, 15, 10].

Figure 1 illustrates the divergent error behaviors of seasonal and trend components. Seasonal
components are highly sensitive to minor phase shifts or amplitude distortions, which rapidly
accumulate over time and significantly degrade predictive accuracy. In contrast, trend components
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are more tolerant to local errors but may suffer from long-term drift when trained under overly strict
constraints. These differences indicate that seasonal and trend components respond to supervision
in fundamentally different ways and thus require structurally distinct loss formulations [36, 33].
However, most existing approaches adopt a single loss, such as MSE or MAE, applied indiscriminately
across the entire sequence [13, 17, 2]. This uniform treatment implicitly assumes that all temporal
components contribute equally to forecasting error. As a result, the model fails to distinguish between
structurally different error patterns, which limits its ability to adapt supervision to each component
and ultimately impairs forecasting accuracy and long-term stability.

Figure 1: Illustration of distinct error patterns aris-
ing from different structural components in time
series. Seasonal components are particularly sen-
sitive to phase shifts and amplitude distortions,
whereas trend components are more susceptible to
long-term drift.

To resolve the mismatch in optimization ob-
jectives between seasonal and trend compo-
nents in multiscale time series, we draw inspi-
ration from structural response mechanisms in
molecular systems [37]. Specifically, we de-
sign loss functions based on the energy profiles
characteristic of each component. Molecular
vibrations follow harmonic dynamics around
equilibrium, where small displacements lead
to rapid increases in potential energy [7]. In
contrast, molecular structures under sustained
external influence exhibit nonlinear relaxation,
with weakening restoring forces and sublinear
energy accumulation[25]. These two physical
responses closely parallel the behaviors of sea-
sonal and trend components in time series.

Motivated by this analogy, we propose a Physics-guided Multiscale Loss Framework (PMLF) that
supervises each component using a loss function grounded in its corresponding physical dynamics.
As illustrated in Figure 2, once the model produces the output sequence, both the prediction and
the ground truth are decomposed during loss computation into seasonal and trend components,
each supervised by a structurally consistent objective. The seasonal branch is optimized using a
quadratic loss, consistent with harmonic energy, while the trend branch adopts a logarithmic loss
that reflects sublinear stress accumulation under long-term drift. To ensure balanced training across
heterogeneous error profiles, we further incorporate a softmax-based weighting mechanism that
dynamically adjusts the relative contributions of seasonal and trend losses. This loss design yields
the following contributions:

• We reveal that seasonal and trend components exhibit fundamentally heterogeneous structural
characteristics, analogous to harmonic oscillations and irreversible structural drift in physical
systems.

• Based on this insight, we formulate a physics-guided loss framework that assigns quadratic
penalties to seasonal errors and logarithmic potentials to trend deviations, reflecting their distinct
structural behaviors. We further integrate a softmax-based weighting mechanism to dynamically
balance their learning contributions during training.

• Experiments on different public benchmarks show that PMLF improves the performance of
diverse baselines, demonstrating the effectiveness of physics-guided loss design in modeling
structural heterogeneity in time series forecasting.

2 Related Work

2.1 Multiscale Modeling in Time Series Forecasting

Due to the inherent decomposability of time series, many recent forecasting models have taken
multiscale modeling strategies, including explicit temporal decomposition, frequency-domain decom-
position, and hierarchical temporal abstraction. Explicit decomposition methods, such as Autoformer
[38], extract trend signals via moving-average filtering and treat seasonal variations as residual
components. TimeMixer [29] extends this idea by operating over multiple temporal resolutions
to better capture fine-grained temporal structures. Frequency-domain approaches model signals
in the spectral domain to identify dominant periodicities and multiscale frequency structures, as
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Figure 2: Overview of the proposed Physical-Guided Multiscale Loss Framework. Given an input
time series, the model predicts future values, and both predictions and ground truths are decomposed
into seasonal and trend components. Each component is supervised by a physically grounded loss
aligned with its structural behavior. Finally, a softmax-based dynamic weighting mechanism then
balances their contributions to form the final optimization objective.

demonstrated by FEDformer [45], FreTS[42], and WPMixer[21]. Hierarchical models [17, 18, 8]
instead organize inputs into layered or patch-wise representations to capture dependencies across
temporal scales. PatchTST[22], for example, achieves strong performance by applying self-attention
to fixed-length patches, enabling joint modeling of short- and long-term dynamics. Although these
models incorporate multiscale structures at the architectural level, they typically adopt uniform loss
functions across all components. This mismatch between representation and supervision may limit
the model’s ability to learn the distinct dynamics of trend and seasonal signals.

2.2 Loss Function Design in Time Series Forecasting

Beyond point-wise error minimization, recent work has explored shape-aware loss functions designed
to improve sequence-level accuracy. These approaches can be broadly categorized into alignment-
based and structure-aware objectives. Alignment-based losses, including DTW [1], Soft-DTW
[3], DILATE [15], and TIDLE-Q [16], enable elastic matching between predictions and targets,
improving robustness to temporal misalignment and phase variation. Structure-aware losses, in
contrast, aim to preserve internal signal characteristics such as frequency, locality, and temporal
coherence. For example, FreDF [27] compares signals in the frequency domain to preserve spectral
energy distributions. Patch-wise structural loss [11] learns local correlation, variance, and mean
patterns by decomposing sequences into overlapping patches, enabling finer-grained structural
supervision.

3 Methodology

3.1 Overview and Motivation

While recent forecasting models incorporate structural decomposition to isolate trend and seasonal
components, their training objectives typically remain uniform, applying loss functions such as MSE
over the full output sequence. However, this uniform supervision fails to reflect the divergent dynamic
sensitivities of multiscale components. Localized seasonal oscillations require fine-grained alignment,
whereas long-term trends benefit from stable, drift-aware objectives.

To address this mismatch between representation and supervision, we propose a physics-guided
multiscale loss framework. As illustrated in Figure 2, both predictions and ground truths are
decomposed into seasonal and trend components using a shared operator. Each component is then
supervised by a loss function aligned with its temporal dynamics. This structure-aware supervision
allows the model to optimize multiscale representations more effectively, leading to improved long-
range forecasting performance.
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Figure 3: Conceptual illustration of our physics-guided loss design. Seasonal components are
analogous to high-frequency molecular vibrations and are penalized using harmonic energy loss,
which imposes strict local alignment. Trend components resemble structural drift under external
fields and are optimized via a relaxation energy loss that enforces tolerant, sublinear correction.

3.2 Problem Formulation

Given a multivariate time series X = {x1, x2, ..., xT } ∈ RT×C , the model fθ aims to predict the
next H time steps conditioned on a historical window of length L:

Ŷ = {ŷT+1, ..., ŷT+H} = fθ(xT−L+1, ..., xT ) (1)

To capture multiscale temporal structure, the prediction and ground truth sequences are decomposed
into two components via seasonal-trend decomposition:

Y = Yτ + Ys, Ŷ = Ŷτ + Ŷs (2)

where Yτ and Ys denote the trend and seasonal component, respectively. This decomposition is
performed using a shared low-pass filter D to extract the trend, while the seasonal component is
defined as the residual. We omit the stochastic noise term in this work, as it lacks structured patterns
and thus cannot be effectively supervised.

3.3 Physics-Inspired Structural Supervision

In molecular systems, physical responses to perturbations generally fall into two categories: intrinsic
vibrations and externally induced structural drift [37, 23, 9]. As shown in Figure 3, the former
corresponds to reversible, high-frequency oscillations of atomic bonds around equilibrium, exhibiting
strong sensitivity to small displacements. The latter arises from persistent external forces such as
thermal gradients or mechanical stress, leading to irreversible, low-frequency drift with gradually
diminishing resistance. These two physical response modes naturally correspond to the structural
decomposition of time series. Seasonal components exhibit periodic fluctuations and are highly
sensitive to phase and amplitude deviations, similar to molecular vibrations. In contrast, trend
components evolve gradually under long-term influence and resemble structural drift observed in
dissipative systems. To supervise these components in a structure-consistent manner, we replace
uniform loss penalties with energy-based objectives whose growth profiles align with the dynamic
behavior of each component.

Energy-Based Loss for Seasonal Oscillation. In molecular systems, small displacements from
equilibrium are governed by harmonic motion, where the potential energy increases quadratically
with deviation:

Uvib(x) =
1

2
k(x− x0)

2 (3)
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where x is the system state, x0 the equilibrium position, and k the stiffness constant. This response
structure reflects the behavior of seasonal time series components, which exhibit high-frequency,
reversible oscillations and are sensitive to phase or amplitude shifts.

Given predicted and target seasonal values ŝ(t) and s(t), the potential energy difference is:

∆Uvib(t) = Uvib(ŝ(t))− Uvib(s(t)) =
k

2

[
ŝ(t)2 − s(t)2 − 2x0(ŝ(t)− s(t))

]
(4)

By expanding the square and reorganizing terms, the energy difference can be rewritten as:

∆Uvib(t) =
k

2

[
(ŝ(t)− s(t))2 − 2(s(t)− x0)(ŝ(t)− s(t))

]
(5)

Due to the symmetric oscillation of s(t) around its equilibrium, the coupling term (s(t)− x0)(ŝ(t)−
s(t)) has an expected value close to zero across a complete seasonal cycle:

Et [(s(t)− x0)(ŝ(t)− s(t))] ≈ 0 (6)

Consequently, the expected energy difference simplifies to a dominant quadratic penality, which
defines the seasonal loss as:

Ls =
1

CH

∑
c,h

(
ŝ
(c)
T+h − s

(c)
T+h

)2

(7)

Relaxation Energy Loss for Trend Components. In contrast to the symmetric and reversible
oscillations of seasonal dynamics, trend components reflect irreversible structural drift induced by
persistent external influences. Similar dynamics occur in dissipative physical systems under sustained
forces, such as thermal gradients, where deformation accumulates progressively and the system’s
internal opposition to change gradually saturates. To capture this non-restorative response, we
introduce a diminishing structural force model:

r(e) =
ke

1 + αe
, where e = τ̂ − τ (8)

which captures the saturation of structural resistance under persistent displacement.

The integral of this response yields the effective structural energy potential:

Urel(e) =
k

α2
(1 + αe− log(1 + αe)) (9)

which reflects the sublinear accumulation of internal structural energy associated with irreversible
drift. Linear and constant terms are omitted as they yield non-informative or structurally insensitive
gradients. We retain only the logarithmic penalty, which preserves structural sensitivity and yields
the final trend loss:

Lτ =
1

CH

∑
c,h

log
(
1 +

∣∣∣τ̂ (c)T+h − τ
(c)
T+h

∣∣∣) (10)

3.4 Dynamic Loss Balancing

Seasonal and trend components originate from distinct physical mechanisms: harmonic oscillation
and structural relaxation, respectively. When supervised jointly, their associated energy responses
evolve at different rates. As training proceeds, the trend-related loss often grows several orders of
magnitude larger than the seasonal loss due to its slow but persistent accumulation. This numerical
imbalance distorts the force equilibrium between the two components, causing the trend branch to
dominate gradient updates and suppressing high-frequency corrections. To address this, we adopt
a softmax-based dynamic weighting scheme that adjusts the influence of each component based
on its current energy level. Instead of static weights, we compute adaptive coefficients from the
exponentially scaled differences between the detached losses. This strategy maintains structural
balance during optimization and avoids second-order effects.

The total loss is defined as a weighted sum:

L = λsLs + λτLτ (11)
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Table 1: Multivariate long-term forecasting results across diverse real-world datasets. The table
reports MSE and MAE across four prediction horizon H∈ {96, 192, 336, 720}, with a fixed input
sequence length of 96. The better results for each setting are highlighted in bold.

Method Amplifier[5](2025) TimeXer[31](2024) S-Mamba(2024)[32] iTransformer[19](2024) TimeMixer[29](2024)

Loss Functions MSE PMLF MSE PMLF MSE PMLF MSE PMLF MSE PMLF

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.385 0.398 0.375 0.394 0.390 0.402 0.380 0.402 0.387 0.406 0.386 0.404 0.390 0.407 0.387 0.403 0.385 0.397 0.365 0.392
192 0.448 0.44 0.423 0.425 0.443 0.433 0.424 0.430 0.445 0.441 0.437 0.433 0.448 0.441 0.438 0.434 0.435 0.426 0.416 0.422
336 0.484 0.45 0.499 0.461 0.475 0.452 0.462 0.443 0.495 0.470 0.477 0.452 0.485 0.459 0.479 0.453 0.49 0.455 0.464 0.445
720 0.539 0.499 0.484 0.467 0.488 0.479 0.480 0.481 0.505 0.496 0.479 0.477 0.494 0.484 0.486 0.478 0.512 0.493 0.471 0.464

Avg 0.464 0.447 0.443 0.436 0.449 0.442 0.437 0.439 0.458 0.453 0.445 0.442 0.454 0.448 0.448 0.442 0.456 0.443 0.429 0.431

E
T

T
h2

96 0.303 0.355 0.283 0.332 0.285 0.336 0.283 0.332 0.294 0.346 0.290 0.337 0.300 0.351 0.296 0.340 0.297 0.346 0.297 0.337
192 0.369 0.397 0.353 0.379 0.368 0.392 0.361 0.381 0.378 0.397 0.375 0.391 0.381 0.399 0.372 0.390 0.375 0.395 0.365 0.381
336 0.412 0.428 0.385 0.405 0.419 0.428 0.392 0.409 0.419 0.432 0.399 0.411 0.408 0.425 0.414 0.421 0.426 0.428 0.383 0.403
720 0.446 0.455 0.403 0.423 0.423 0.441 0.415 0.431 0.433 0.451 0.402 0.424 0.422 0.442 0.412 0.430 0.432 0.445 0.402 0.427

Avg 0.383 0.409 0.356 0.385 0.374 0.399 0.363 0.388 0.381 0.407 0.367 0.391 0.378 0.404 0.374 0.395 0.383 0.404 0.362 0.387

E
T

T
m

1

96 0.316 0.355 0.311 0.342 0.324 0.361 0.321 0.349 0.370 0.391 0.329 0.356 0.344 0.377 0.326 0.353 0.334 0.367 0.316 0.349
192 0.364 0.385 0.371 0.372 0.376 0.389 0.369 0.373 0.384 0.398 0.379 0.351 0.382 0.393 0.378 0.378 0.368 0.384 0.367 0.378
336 0.396 0.406 0.399 0.395 0.409 0.411 0.405 0.399 0.45 0.435 0.420 0.411 0.419 0.417 0.412 0.402 0.398 0.405 0.395 0.401
720 0.460 0.446 0.481 0.436 0.467 0.443 0.463 0.432 0.523 0.478 0.473 0.441 0.487 0.455 0.477 0.439 0.452 0.44 0.453 0.436

Avg 0.384 0.398 0.390 0.386 0.394 0.401 0.390 0.388 0.432 0.426 0.400 0.390 0.408 0.411 0.398 0.393 0.388 0.399 0.383 0.391

E
T

T
m

2

96 0.180 0.262 0.172 0.25 0.172 0.258 0.168 0.246 0.195 0.278 0.180 0.260 0.188 0.274 0.175 0.252 0.176 0.259 0.170 0.249
192 0.241 0.301 0.237 0.293 0.237 0.300 0.233 0.290 0.256 0.314 0.243 0.299 0.252 0.312 0.243 0.296 0.238 0.299 0.236 0.293
336 0.303 0.344 0.299 0.332 0.298 0.339 0.294 0.329 0.327 0.356 0.303 0.337 0.314 0.351 0.305 0.336 0.301 0.341 0.302 0.335
720 0.399 0.399 0.391 0.387 0.394 0.396 0.394 0.388 0.416 0.407 0.401 0.394 0.413 0.406 0.402 0.393 0.393 0.395 0.390 0.388

Avg 0.281 0.327 0.275 0.316 0.275 0.323 0.272 0.313 0.299 0.339 0.282 0.323 0.292 0.336 0.281 0.319 0.277 0.324 0.275 0.316

W
ea

th
er

96 0.164 0.209 0.156 0.193 0.157 0.205 0.156 0.195 0.165 0.210 0.161 0.199 0.174 0.214 0.168 0.202 0.163 0.209 0.162 0.198
192 0.213 0.253 0.209 0.243 0.204 0.247 0.202 0.237 0.214 0.252 0.208 0.242 0.221 0.254 0.219 0.247 0.208 0.25 0.208 0.242
336 0.268 0.292 0.262 0.283 0.261 0.290 0.260 0.280 0.274 0.297 0.263 0.284 0.278 0.296 0.272 0.289 0.251 0.287 0.263 0.284
720 0.344 0.342 0.339 0.334 0.340 0.341 0.336 0.332 0.350 0.345 0.342 0.335 0.358 0.347 0.351 0.341 0.339 0.341 0.339 0.336

Avg 0.247 0.274 0.242 0.263 0.241 0.271 0.239 0.261 0.251 0.276 0.244 0.265 0.258 0.278 0.253 0.270 0.240 0.272 0.243 0.265

E
C

L

96 0.152 0.248 0.148 0.242 0.140 0.242 0.138 0.236 0.139 0.235 0.137 0.232 0.148 0.240 0.146 0.236 0.158 0.251 0.158 0.245
192 0.162 0.256 0.161 0.243 0.157 0.256 0.155 0.251 0.159 0.255 0.161 0.254 0.162 0.253 0.163 0.252 0.171 0.260 0.170 0.259
336 0.174 0.269 0.170 0.263 0.176 0.275 0.171 0.269 0.176 0.272 0.175 0.268 0.178 0.269 0.173 0.264 0.188 0.280 0.187 0.275
720 0.203 0.294 0.199 0.288 0.211 0.306 0.201 0.293 0.204 0.298 0.203 0.293 0.225 0.317 0.204 0.292 0.228 0.314 0.227 0.308

Avg 0.172 0.267 0.170 0.259 0.171 0.270 0.166 0.262 0.170 0.265 0.169 0.262 0.178 0.270 0.172 0.261 0.186 0.277 0.185 0.272

Tr
af

fic

96 0.455 0.298 0.451 0.298 0.428 0.271 0.429 0.268 0.382 0.261 0.385 0.258 0.395 0.268 0.393 0.255 0.462 0.285 0.470 0.297
192 0.470 0.316 0.467 0.296 0.448 0.282 0.453 0.279 0.396 0.267 0.394 0.265 0.417 0.276 0.412 0.263 0.473 0.296 0.491 0.304
336 0.479 0.316 0.472 0.314 0.473 0.289 0.483 0.286 0.417 0.276 0.419 0.274 0.433 0.283 0.428 0.270 0.498 0.296 0.506 0.314
720 0.523 0.328 0.511 0.331 0.516 0.307 0.521 0.303 0.460 0.300 0.450 0.295 0.467 0.302 0.461 0.288 0.506 0.313 0.531 0.328

Avg 0.482 0.315 0.475 0.310 0.466 0.287 0.472 0.284 0.414 0.276 0.412 0.273 0.428 0.282 0.424 0.269 0.485 0.298 0.499 0.31

So
la

r

96 0.189 0.222 0.188 0.214 0.189 0.276 0.187 0.241 0.205 0.244 0.202 0.212 0.203 0.237 0.199 0.218 0.189 0.259 0.2 0.232
192 0.225 0.256 0.221 0.231 0.210 0.295 0.201 0.257 0.237 0.270 0.235 0.239 0.233 0.261 0.238 0.244 0.222 0.283 0.224 0.254
336 0.245 0.265 0.245 0.248 0.215 0.299 0.213 0.267 0.258 0.288 0.248 0.255 0.248 0.273 0.258 0.258 0.231 0.292 0.243 0.266
720 0.253 0.278 0.253 0.251 0.230 0.313 0.220 0.272 0.260 0.288 0.251 0.256 0.249 0.275 0.256 0.255 0.223 0.285 0.243 0.278

Avg 0.228 0.255 0.227 0.236 0.211 0.296 0.205 0.259 0.240 0.273 0.234 0.241 0.233 0.262 0.238 0.244 0.216 0.280 0.228 0.256

where the adaptive weights λs and λτ are computed as:

λs =
exp

(
β(L†

s −m)
)

exp
(
β(L†

s −m)
)
+ exp

(
β(L†

τ −m)
) , λτ =

exp
(
β(L†

τ −m)
)

exp
(
β(L†

s −m)
)
+ exp

(
β(L†

τ −m)
) (12)

Here, L† = SG(L) denotes the gradient-detached loss to avoid backpropagating through the weighting
mechanism. The scalar m = max(L†

s,L†
τ ) ensures numerical stability, and the parameter β = 1

unless otherwise specified.

4 Experiments

4.1 Setup

Datasets To comprehensively evaluate the effectiveness of PMLF on real datasets, we conducted
experiments on eight multivariate time series datasets, including ETT (4 sub-datasets) [44], Weather,
Electricity, Traffic, and Solar-Energy [12]. Detailed dataset descriptions are provided in Appendix.

Baselines To evaluate the ability of PMLF on different baselines, we extensively selected Trans-
former, Mamba, MLP, CNN, and their hybrid methods, including Amplifier [5], TimeXer [31],
S-Mamba [32], iTransformer [19], TimeMixer [29], PatchTST [22], and TimesNet [39].
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(a) (b) (c)

(d) (e) (f)

Figure 4: Forecasting performance of three backbone models (S-Mamba, PatchTST, and TimesNet)
on the ETTh1, ECL, and Solar datasets. Subplots (a–c) show MSE and (d–f) show MAE, averaged
over four forecasting horizons H∈ {96, 192, 336, 720}. Each pair of bars compares standard MSE
loss with the proposed PMLF.

Implementation Detail All models were trained from scratch using PMLF as the loss function,
ensuring a consistent evaluation of its effectiveness. During training, seasonal and trend components
are extracted via a fixed moving average filter with kernel size 25, and we also support an optional
learnable version implemented as a plug-in module. Our loss framework is model-agnostic and can be
seamlessly integrated into a wide range of forecasting backbones, including MLPs [5], Transformers
[26], and Mamba [6, 4], thereby supporting universal applicability to multiscale prediction tasks.
To ensure fair comparison, we ensure the consistency of the parameters of the comparison loss,
only by adjusting the learning rate to adapt to the gradient dynamics caused by our loss design. All
experiments are conducted using PyTorch with four NVIDIA RTX 4090 GPUs.

4.2 Main Results

We evaluate the proposed PMLF loss across a set of state-of-the-art forecasting models on eight
benchmark datasets covering diverse application domains. The standard MSE loss is used as the
baseline for comparison. As shown in Table 1, the proposed model-agnostic loss framework yields
consistent improvements over the standard MSE baseline across five recent state-of-the-art models.
This demonstrates that PMLF effectively guides the optimization of both short-term seasonal patterns
and long-term trends, which frequently coexist in real-world time series. Especially, the performance
improvement of the model on the MAE index is often higher than that on the MSE index, mainly due
to the long-term control of trend. For example, among a total of 64 comparisons in iTransformer,
the PMLF improvement item accounted for 93.75% (60/64). In addition, the improvement in
the MAE metric is often more substantial than that in MSE, suggesting that the trend-aware loss
contributes significantly to long-term stability. To further assess the generalizability of our framework,
Figure 4 reports the average forecasting performance of three representative architectures: S-Mamba,
PatchTST, and TimesNet, across multiple prediction horizons. On typical datasets including ETTh1,
ECL, and Solar-Energy, PMLF achieves significant improvements in both MSE and MAE. Additional
results covering all models and datasets are provided in the appendix.

4.3 Comparison with Other Loss Functions

We compare PMLF with traditional loss function and specially designed objectives proposed for time
series forecasting. These approaches typically enhance standard objectives by introducing additional
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(a) (b) (c) (d)

Figure 5: Robustness analysis of the dynamic weighting parameter β on the ETTh2 (a-b) and Weather
(c-d) datasets based on TimeXer.

(a) ETTh2 Overall Prediction (b) ETTh2 Seasonal (c) ETTh2 Trend

(d) ECL Overall Prediction (e) ECL Seasonal (f) ECL Trend

Figure 6: Overall and Component-wise Prediction Visualization on ETTh2 and ECL. Comparison
between MSE and PMLF losses on ETTh2 ((a)–(c)) and ECL ((d)–(f)). Each row presents the overall
prediction, trend component, and seasonal component. PMLF exhibits closer alignment with the
ground truth in both local seasonal and global trends.

terms to emphasize specific learning characteristics. For instance, TILDE-Q [16] introduces penalties
on phase and amplitude shifts to improve temporal alignment, while FreDF strengthens label-wise
consistency through frequency-domain comparisons. In contrast, PMLF [27] supervises decomposed
seasonal and trend components individually at the loss level, aiming to guide structural learning rather
than refining a unified temporal loss. As shown in Table 2, PMLF achieves better overall performance
on three datasets in both MSE and MAE metrics. These results demonstrate that structural supervision
introduced solely through the loss function can effectively improve forecasting accuracy.

4.4 Visualization

To assess the structural impact of our loss function, we visualize predictions on ETTh2 and ECL
using Amplifier as the backbone model. As shown in Figure 6, compared to the standard MSE
loss, our proposed PMLF loss produces forecasts that are more closely aligned with the ground
truth. To further analyze the effect of structural supervision, we decompose both predicted and true
sequences into seasonal and trend components. In both dimensions, the PMLF-based predictions
exhibit improved alignment with their respective ground truth counterparts, demonstrating enhanced
fidelity in modeling high-frequency oscillations as well as long-term drift.
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Table 2: Comparison of PMLF with standard and structure-aware loss functions on ETTh2, ETTm2,
and Weather datasets using Amplifier as the backbone model.

Dataset ETTh2 ETTm2 Weather

horizon 96 192 336 720 96 192 336 720 96 192 336 720

MSE MSE 0.303 0.369 0.412 0.446 0.180 0.241 0.303 0.399 0.164 0.213 0.268 0.344
MAE 0.355 0.397 0.428 0.455 0.262 0.301 0.344 0.399 0.209 0.268 0.292 0.342

Soft-DTW MSE 0.292 0.371 0.413 0.436 0.177 0.242 0.302 0.407 0.164 0.214 0.268 0.344
MAE 0.346 0.396 0.429 0.450 0.259 0.303 0.344 0.406 0.209 0.252 0.291 0.341

Huber MSE 0.298 0.360 0.399 0.432 0.174 0.238 0.299 0.397 0.159 0.209 0.265 0.342
MAE 0.345 0.388 0.420 0.444 0.255 0.299 0.339 0.396 0.201 0.246 0.287 0.338

TILDE-Q [16] MSE 0.286 0.364 0.394 0.420 0.177 0.236 0.296 0.390 0.169 0.214 0.267 0.345
MAE 0.334 0.384 0.419 0.438 0.254 0.293 0.333 0.390 0.213 0.250 0.291 0.341

FreDF [27] MSE 0.285 0.355 0.392 0.422 0.173 0.235 0.296 0.388 0.167 0.212 0.269 0.345
MAE 0.334 0.381 0.412 0.436 0.253 0.294 0.334 0.388 0.210 0.254 0.297 0.348

PMLF MSE 0.283 0.353 0.39 0.403 0.172 0.237 0.299 0.391 0.156 0.209 0.262 0.339
MAE 0.332 0.379 0.417 0.423 0.251 0.293 0.332 0.387 0.193 0.243 0.283 0.334

Table 3: Ablation study of the components of PMLF loss on the ETTh2, ETTm2 and Weather datasets
using Amplifier as a backbone.

Method PMLF w/o Ls w/o Lτ w/o Balancing w/ LMA

Metirc MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h2

96 0.283 0.332 0.330 0.361 0.375 0.391 0.292 0.335 0.289 0.332
192 0.353 0.379 0.487 0.468 0.428 0.423 0.357 0.382 0.357 0.379
336 0.385 0.405 0.670 0.588 0.421 0.429 0.392 0.409 0.391 0.406
720 0.403 0.423 0.592 0.548 0.434 0.446 0.406 0.425 0.406 0.425

E
T

T
m

2

96 0.172 0.251 0.206 0.277 0.208 0.282 0.175 0.256 0.171 0.250
192 0.237 0.293 0.301 0.345 0.249 0.303 0.239 0.297 0.239 0.295
336 0.299 0.332 0.348 0.369 0.308 0.340 0.301 0.338 0.296 0.331
720 0.391 0.387 0.433 0.414 0.405 0.396 0.400 0.392 0.393 0.390

W
ea

th
er

96 0.156 0.193 0.21 0.262 0.180 0.223 0.158 0.197 0.155 0.194
192 0.209 0.243 0.259 0.292 0.217 0.254 0.212 0.249 0.209 0.243
336 0.262 0.283 0.306 0.323 0.271 0.292 0.265 0.286 0.264 0.283
720 0.339 0.334 0.367 0.360 0.346 0.341 0.343 0.335 0.342 0.334

4.5 Ablation Studies

As shown in Table 3, we conduct ablation studies on the ETTh2, ETTm2, and Weather datasets
using Amplifier as the backbone. The results show that removing either the seasonal or trend
component from the loss formulation leads to a significant drop in forecasting accuracy, confirming
the necessity of jointly modeling both temporal structures. Additionally, eliminating the dynamic
weighting mechanism by fixing the loss coefficients also degrades performance, highlighting the
importance of adaptive balancing between the two structural modes. Furthermore, we implement a
learnable moving average (LMA) module with trainable kernels. Its performance remains comparable
to the fixed-kernel version, suggesting that the proposed loss is compatible with both static and
adaptive decomposition strategies. Finally, as illustrated in Figure 7, we assess the robustness of the
hyperparameter β on the ETTh1 and Weather datasets using the TimeXer model. The results indicate
that the performance remains stable across a wide range of β values, from 0.2 to 5, demonstrating
that our loss design is insensitive to this choice.
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5 Conclusion

We introduce a Physics-Guided Multiscale Loss Framework (PMLF) for time series forecasting, which
decouples seasonal and trend supervision by grounding each in distinct physical dynamics. Inspired
by molecular systems, the framework models short-term oscillations through harmonic potentials and
long-term drift via relaxation energy. Furthermore, a softmax-based dynamic weighting mechanism
balances the contributions of each component during training, enabling adaptive optimization across
structural error profiles. Experimental results across multiple datasets and model backbones show
that PMLF consistently improves forecasting accuracy.

Limitation and Future Works. However, PMLF assumes that multiscale structures are present and
separable. Although this assumption holds for many real-world signals, the benefits of structural
decoupling may diminish in settings dominated by abrupt transitions or highly regular periodic
signals, such as regime shifts or physiological rhythms like heartbeat and respiration. These signals
lack the multi scale heterogeneity that PMLF is designed to exploit. A promising direction for future
work is to explore adaptive decomposition mechanisms or hybrid supervision strategies that enhance
the framework’s applicability to structure-invariant or single-scale time series.
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• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

18

paperswithcode.com/datasets


• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets. The code and training details are
provided in supplementary materials.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The article uses the LLM for grammar checking and polishing.
Guidelines:
• The answer NA means that the core method development in this research does not

involve LLMs as any important, original, or non-standard components.
• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for

what should or should not be described.
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A Datasets and Implementation

A.1 Datasets

We conducted experiments on 8 real-world datasets to evaluate the effectiveness of the our proposed
PMLF loss functions across various domains. The detailed dateset information are depicted in Figure
4

• ETT(Electricity Transformer Temperature): The ETT dataset contains 7 variables of electricity
transformer temperature from July 2016 to july 2018. There are 4 sub datasets: ETTh1, ETTh2,
ETTm2, ETTm2, where ETTh recorded hourly and ETTm recorded every 15 minutes.

• Weather: Weather contains 21 meteorological variables collected every 10 minutes from the
Weather Station of the Max Planck Biogeochemistry Institute in 2020.

• ECL : ECL records the hourly electricity consumption data of 321 clients from 2012 to 2014.

• Traffic: Traffic collects hourly road occupancy rates measured by 862 sensors of San Francisco
Bay area freeways from January 2015 to December 2016.

• Solar-Energy: Solar records the solar power production of 137 PV plants in 2006, which are
sampled every 10 minutes.

We follow the same data processing and train-validation-test set split protocol used in TimesNet,
where the train, validation, and test datasets are strictly divided according to chronological order to
make sure there are no data leakage issues. As for the forecasting settings, we fix the length of the
lookback series as 96 and the prediction length varies in {96, 192, 336, 720}.

Table 4: Detailed Dataset Descriptions. Dim denotes the variable number of each dataset. Prediction
Length denotes the future time steps to be predicted and four prediction setting are included in
each dataset. Dataset Size denotes the total number of time steps in (Train, Validation, Test) split
respectively. Frequency denotes the sampling interval of time steps.

Dataset Dim Prediction Length Dataset Size Frequency Domain

ETTh1 7 {96, 192, 336, 720} (8545, 2881, 2881) 1 hour Electricity
ETTh2 7 {96, 192, 336, 720} (8545, 2881, 2881) 1 hour Electricity
ETTm1 7 {96, 192, 336, 720} (34465, 11521, 11521) 15 min Electricity
ETTm2 7 {96, 192, 336, 720} (34465, 11521, 11521) 15 min Electricity
Weather 21 {96, 192, 336, 720} (36792, 5271, 10540) 10 min Weather

ECL 321 {96, 192, 336, 720} (18317, 2633, 5261) 1 hour Electricity
Traffic 862 {96, 192, 336, 720} (12185, 1757, 3509) 1 hour Transportation

Solar-Energy 137 {96, 192, 336, 720} (36601, 5161, 10417) 10 min Energy

A.2 Implementation Details

All the experiments are implemented in PyTorch and conducted on four NVIDIA 4090 24GB GPU.
For fair comparison, we set the input size for all models to be uniform, with the batchsize for ETT
and Weather datasets set to 64 and the ECL, Traffic, and Solar datasets set to 16. Except for changing
the learning rate to fully learn new structures, do not change other parameters related to the model.

Before calculating the loss, the time series is decomposed into seasonal and trend components using
the moving average method. The kernel size refers to the setting in Autoformer, which is 25. But
in order to avoid fixed kernel sizes affecting time series with different sampling frequencies, we
designed a hybrid expert decomposition mechanism that uses a set of average pooling layers to extract
trends and combines them with learnable weights. The kernel sizes {7, 13, 15, 25, 49} represent the
corresponding periods at different frequencies.
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B Baselines

To evaluate the general applicability of PMLF, we compare it with a varied collection of leading time-
series forecasters that span the principal architectural families: state-space (S-Mamba), Transformer
(iTransformer, TimeXer, PatchTST), multilayer perceptron (Amplifier, TimeMixer), and convolutional
neural network (TimesNet). The core ideas of these baselines are outlined below.

• Amplifier: An energy-amplification block heightens weak spectral bands, the spectrum is re-
normalised, and parallel seasonal and trend heads with a lightweight channel-interaction module
enhance performance on low-signal datasets.

• TimeXer: Targets mixed endogenous and exogenous forecasting. Patch-wise self-attention models
the target series, variate-wise cross-attention injects exogenous cues, and global endogenous
tokens integrate the two streams, improving robustness to abrupt external shocks.

• S-Mamba: Represents each time step with a single per-channel token and applies a bidirectional
Mamba state-space layer along the channel axis to capture inter-variable dependencies. This
near-linear-time design surpasses Transformer baselines while greatly reducing computational
cost.

• iTransformer: Reassigns Transformer roles by applying attention across variables to learn cross-
channel links, while the feed-forward block operates along time to model nonlinear temporal
dynamics. This rearrangement lowers memory usage for long horizons and yields interpretable
variable-level attention.

• TimeMixer: A pure-MLP predictor. Depth-wise convolutions extract multi-scale bands, linear
layers mix these components, and a parallel head simultaneously outputs all future steps. The
absence of attention provides GPU-friendly speed without sacrificing accuracy.

• PatchTST: Divides long sequences into fixed-length temporal patches that serve as Transformer
tokens and shares encoder parameters among channels. This strategy reduces attention complexity
from O(L2) to O((L/P )2) while retaining local semantics.

• TimesNet: Converts a one-dimensional series into a two-dimensional time-period grid and
employs heterogeneous CNN kernels to capture intra-period seasonality as well as inter-period
trends. This representation enables direct transfer from vision backbones and delivers strong
results in forecasting, anomaly detection, and classification.

These heterogeneous baselines ensure that any improvements attributed to PMLF are not limited to a
single modelling philosophy but instead reflect a broad enhancement of time-series learning.

C More Experimental Results

C.1 Robustness Assessment

To examine the robustness of our framework, the Amplifier baseline was trained five times with
independent random seeds. Table 5 reports the mean performance together with the corresponding
standard deviations. The consistently small variances confirm that the Amplifier yields repeatable
results, underscoring the robustness of the proposed approach.

C.2 Parameter Sensitivity

To examine how the dynamic-weighting coefficient β influences forecasting accuracy, we conducted
a grid search over β ∈ {0.2, 0.4, 0.6, 0.8, 1, 1.5, 3, 5} for two representative networks: TimeXer and
TimeMixer. Figure 7 reports the resulting MSE and MAE on the ETTh2 and Weather datasets. For
TimeXer (top row) and TimeMixer (bottom row), the error curves remain nearly flat across the entire
range, and the optimal β values cluster around 1.0 on both datasets. The maximum deviation from
the best MSE and MAE is below 2.5%, indicating that the proposed dynamic weighting scheme is
insensitive to the precise choice of β. These results confirm the robustness of our framework with
respect to this hyper-parameter.
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Table 5: Roubustness of PMLF performance. The results are obtained from five random seeds using
the Amplifier as backbone.

Dataset ETTh1 ETTh2 Weather

Horizon MSE MAE MSE MAE MSE MAE

96 0.375±0.002 0.394±0.001 0.283±0.000 0.332±0.000 0.156±0.001 0.193±0.001
192 0.423±0.003 0.425±0.002 0.353±0.002 0.379±0.001 0.209±0.002 0.243±0.004
336 0.490±0.003 0.456±0.002 0.385±0.000 0.405±0.001 0.262±0.002 0.283±0.004
720 0.484±0.003 0.467±0.002 0.403±0.002 0.423±0.001 0.339±0.002 0.334±0.004

Dataset ETTm1 ETTm2 ECL

Horizon MSE MAE MSE MAE MSE MAE

96 0.311±0.002 0.342±0.002 0.172±0.002 0.250±0.001 0.148±0.000 0.242±0.000
192 0.371±0.004 0.372±0.003 0.237±0.001 0.293±0.002 0.161±0.001 0.243±0.000
336 0.399±0.003 0.395±0.003 0.299±0.002 0.332±0.002 0.170±0.000 0.263±0.001
720 0.481±0.005 0.436±0.004 0.391±0.003 0.387±0.004 0.199±0.001 0.288±0.001

(a) TimeXer:ETTh1 (b) TimeXer:ETTh1 (c) TimeXer:Weather (d) TimeXer:Weather

(e) TimeMixer:ETTh1 (f) TimeMixer:ETTh1 (g) TimeMixer:Weather (h) TimeMixer:Weather

Figure 7: Sensitivity of the dynamic-weighting coefficient β. The first row shows TimeXer perfor-
mance on ETTh2 (a, b) and Weather (c, d) as β varies, and the second row gives the corresponding
results for TimeMixer.

C.3 Additional Evaluation on Classical Forecasting Networks

Additionally, we assesses the architecture-independent effectiveness of PMLF on three widely used
forecasting models: the Transformer-based PatchTST, the selective state-space model S Mamba, and
the convolutional network TimesNet. For each architecture, the original MSE objective was replaced
with PMLF and the models were evaluated on the ETT, Weather, ECL, and Solar datasets under four
prediction horizons {96, 192, 336, 720}. As shown in Figure 8, across all datasets and horizons, the
substitution of MSE with PMLF consistently reduced the error metrics (MAE, MSE), confirming that
PMLF improves forecasting accuracy and robustness even in classical network settings that are not
covered by the main set of state-of-the-art architectures.

D Visualization

As shown in Figure 9 and 10, we provide a visual comparison between PMLF and MSE on six
benchmark datasets: ETTh2, ETTm2, Weather, ECL, Traffic, and Solar. Each row corresponds to
one dataset, where the first column presents the overall forecast, and the second and third columns
show the decomposed seasonal and trend components, respectively. Across all datasets, the forecasts
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(a) ETTh1:MSE (b) ETTh2:MSE (c) ETTm1:MSE

(d) ETTh1:MAE (e) ETTh2:MAE (f) ETTm1:MAE

(g) ETTm2:MSE (h) ECL:MSE (i) Solar:MSE

(j) ETTm2:MAE (k) ECL:MAE (l) Solar:MAE

Figure 8: Average forecasting performance of PatchTST, S-Mamba, and TimesNet under four
prediction horizons (96, 192, 336, 720) on the ETT (4 subsets), Weather, ECL, and Solar datasets.
Models trained with PMLF are contrasted with their original MSE counterparts. Across all horizons
and datasets, PMLF consistently reduces MAE, MSE, and RMSE, illustrating its effectiveness on
these classical architectures.

generated using PMLF exhibit closer alignment with the ground-truth signals, capturing long-term
trends and periodic patterns with higher fidelity compared to those produced with MSE.

24



(a) ETTh2 Prediction (b) ETTh2 Seasonal (c) ETTh2 Trend

(d) ETTm2 Prediction (e) ETTm2 Seasonal (f) ETTm2 Trend

(g) Weather Prediction (h) Weather Seasonal (i) Weather Trend

Figure 9: Visual comparison of Amplifier forecasts trained with PMLF and MSE across six benchmark
datasets. Each row corresponds to one dataset (ETTh2, ETTm2, Weather), with three columns
showing the overall prediction (left), seasonal component (middle), and trend component (right).
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(a) ECL Prediction (b) ECL Seasonal (c) ECL Trend

(d) Traffic Prediction (e) Traffic Seasonal (f) Traffic Trend

(g) Solar Prediction (h) Solar Seasonal (i) Solar Trend

Figure 10: Visual comparison of Amplifier forecasts trained with PMLF and MSE across six
benchmark datasets. Each row corresponds to one dataset (ECL, Traffic, and Solar), with three
columns showing the overall prediction (left), seasonal component (middle), and trend component
(right).
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