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Abstract
In recent years, large language models (LLMs)001
have revolutionized the field of natural lan-002
guage processing. However, they often003
suffer from knowledge gaps and hallucina-004
tions. Graph retrieval-augmented generation005
(GraphRAG) enhances LLM reasoning by in-006
tegrating structured knowledge from external007
graphs. However, we identify two key chal-008
lenges that plague GraphRAG: (1) Retrieving009
noisy and irrelevant information can degrade010
performance and (2) Excessive reliance on ex-011
ternal knowledge suppresses the model’s in-012
trinsic reasoning. To address these issues, we013
propose GraphRAG-FI (Filtering & Integra-014
tion), consisting of GraphRAG-Filtering and015
GraphRAG-Integration. GraphRAG-Filtering016
employs a two-stage filtering mechanism to017
refine retrieved information. GraphRAG-018
Integration employs a logits-based selection019
strategy to balance external knowledge from020
GraphRAG with the LLM’s intrinsic reasoning,021
reducing over-reliance on retrievals. Experi-022
ments on knowledge graph QA tasks demon-023
strate that GraphRAG-FI significantly improves024
reasoning performance across multiple back-025
bone models, establishing a more reliable and026
effective GraphRAG framework.027

1 Introduction028

Large language models (LLMs) have achieved re-029

markable success in NLP tasks, particularly in tasks030

that require complex reasoning (Havrilla et al.; Wu031

et al., 2023; Hao et al., 2023). However, despite032

their strengths, LLMs are prone to hallucinations,033

resulting in incorrect or poor reasoning (Ji et al.,034

2023; Huang et al., 2024; Sriramanan et al., 2025).035

GraphRAG techniques have emerged as a promis-036

ing solution to this problem (Han et al., 2024;037

Zhang et al., 2025; He et al., 2025; Mavromatis038

and Karypis, 2024), by integrating relevant infor-039

mation from external graphs. Knowledge graphs,040

which store facts in the form of a graph, are com-041

monly used for this problem. Specifically, relevant042

facts (i.e., triples) or paths are extracted from the 043

knowledge graph and used to enrich the context 044

of the LLMs with structured and reliable informa- 045

tion (Luo et al., 2024; Li et al., 2025; Ma et al., 046

2024). This approach has shown ability to improve 047

the reasoning capabilities and reduce the presence 048

of hallucinations in LLMs (Sun et al.; Li et al., 049

2025; Dong et al., 2024). 050

To better assess the efficacy of GraphRAG, in 051

Section 3 we conduct a preliminary study com- 052

paring its performance with an LLM-only model 053

(i.e., LLM without GraphRAG). This compari- 054

son reveals both the advantages and limitations 055

of GraphRAG. While GraphRAG improved rea- 056

soning accuracy by correcting some LLM errors, 057

it also introduces some notable weaknesses. For 058

example, incorporating external knowledge will 059

sometimes cause questions that were originally an- 060

swered correctly by the LLM to be misclassified. 061

This highlights the dangers of retrieving irrelevant 062

information. Furthermore, excessive retrieval com- 063

pounds this issue by introducing both noise and 064

redundant information, thus further hindering the 065

reasoning process. 066

Meanwhile, we find that LLM-only and 067

GraphRAG can complement one another. Specifi- 068

cally, GraphRAG can enhance reasoning for those 069

questions LLMs lack knowledge of; while exces- 070

sive reliance on external information may cause 071

the model to overlook internally known correct an- 072

swers. These findings highlight two key limitations 073

of existing GraphRAG methods. First, GraphRAG 074

is highly susceptible to retrieving irrelevant or mis- 075

leading information. Second, GraphRAG strug- 076

gles to balance external retrieval with the LLM’s 077

internal knowledge, often missing parts of the an- 078

swer that the LLM-only model can provide using 079

its own knowledge. These challenges differ from 080

those encountered in standard RAG settings (Wang 081

et al., 2023b; Chang et al., 2024); they arise specif- 082

ically within the graph context. Our focus is the 083
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GraphRAG setting, which involves structured re-084

trieval formats such as paths, triples, and sub-085

graphs—highly compact yet densely informative086

knowledge representations that are inherently more087

difficult for LLMs to interpret compared to unstruc-088

tured text (Luo et al., 2024; Li et al., 2025). This089

leads to several unique limitations: 1) Structured090

Noise: Retrieved graph data is often multi-hop and091

entangled. Noise manifests not as irrelevant facts,092

but as misleading or incomplete reasoning chains093

that hinder accurate inference. 2) Multi-Answer094

Complexity: Many KGQA queries have multiple095

correct answers, requiring the retrieved context to096

support all of them. This increases the difficulty of097

filtering, as naive top-K selection tends to overlook098

less dominant yet still valid answers.099

To address these complexities, we introduce a100

novel framework tailored to resolve the challenges101

inherent in graph-based retrieval. First, we aim102

to enhance the retrieval quality to better avoid re-103

trieving irrelevant information. Second, we inte-104

grate GraphRAG with the intrinsic reasoning abil-105

ity of the LLM, thereby leveraging complementary106

knowledge sources. In particular, to mitigate the107

issue of retrieving irrelevant information, we intro-108

duce a two-stage filtering process. Furthermore, to109

mitigate GraphRAG from over-relying on retrieved110

information while underutilizing the LLM’s inher-111

ent reasoning ability, we introduce a logits-based112

selection mechanism that dynamically integrates113

LLMs’ standalone answers with GraphRAG’s out-114

puts. This approach ensures that the final response115

effectively balances external knowledge with the116

model’s internal reasoning. The main contributions117

of our work are summarized as follows:118

• We identify two key challenges in GraphRAG:119

(1) It is susceptible to errors by retrieving120

irrelevant or misleading information. (2)121

It overemphasizes the externally retrieved122

knowledge, at the expense of the intrinsic rea-123

soning capabilities of LLMs.124

• We introduce a novel approach that enhances125

GraphRAG by incorporating a two-stage filter-126

ing mechanism to refine the retrieved knowl-127

edge and dynamically integrate this knowl-128

edge with a LLMs’ standalone reasoning ca-129

pabilities.130

• Extensive experiments on knowledge graph131

QA demonstrate the effectiveness of our132

method across multiple backbone models.133

2 Related work 134

GraphRAG. GraphRAG aims to address halluci- 135

nations and outdated knowledge in LLMs by in- 136

corporating additional information retrieved from 137

external knowledge bases (Sun et al.; Li et al., 138

2025; Dong et al., 2024). G-Retriever (He et al., 139

2025) identifies relevant nodes and edges for a 140

given query based on cosine similarity, and then 141

constructs a subgraph to aid in the generation pro- 142

cess. Similarly, RoG (Luo et al., 2024) introduces 143

a planning-retrieval-reasoning framework, where 144

it retrieves reasoning paths guided by a planning 145

module and performs reasoning using these paths. 146

On the other hand, GNN-RAG (Mavromatis and 147

Karypis, 2024) leverages Graph Neural Networks 148

(GNNs) (Kipf and Welling, 2016) to process the 149

intricate graph structures within knowledge graphs, 150

enabling effective retrieval. 151

Filter Methods. ChunkRAG (Singh et al., 2024) 152

tries to improve RAG systems by assessing and fil- 153

tering retrieved data at the chunk level, with each 154

"chunk" representing a concise and coherent seg- 155

ment of a document. Zeng et al. (2024b) introduce 156

Rep-PCA, which employs representation classifiers 157

for knowledge filtering. RoK (Wang et al., 2024) 158

refines the reasoning paths within the subgraph by 159

computing the average PageRank score for each 160

path. Similarly, He et al. (2024) use PageRank to 161

identify the most relevant entities. More details are 162

presented in Appendix A.1. 163

3 Preliminary studies 164

To evaluate the effectiveness of GraphRAG, we 165

compare the performance with and without re- 166

trieved external knowledge. Furthermore, we ana- 167

lyze the attention scores of the LLM to assess its 168

ability to discern both the relevance and importance 169

of the retrieved information. Lastly, we evaluate 170

the performance of internal knowledge filtering. 171

3.1 Experimental settings 172

In this section, we aim to study the importance 173

of retrieving external information when using 174

GraphRAG for knowledge graph QA. To do so, we 175

report the QA performance when using: LLM with 176

GraphRAG and LLM w/o GraphRAG (i.e., LLM- 177

only). For GraphRAG, we use RoG (Luo et al., 178

2024) and GNN-RAG (Mavromatis and Karypis, 179

2024). For the LLM-only experiments, we use 180

the fine-tuned LLaMA 2-7B model, which is the 181

same LLM used by RoG. The experiments are con- 182
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Figure 1: Category A includes cases where both
GraphRAG and the LLM-only model are correct. Cat-
egory B covers instances where GraphRAG outper-
forms the LLM-only model, while Category C includes
cases where the LLM-only model performs better than
GraphRAG. Category D represents cases where both
models fail.

Figure 2: The relationship between path number and
average F1

ducted on two common datasets the WebQSP (Yih183

et al., 2016) and CWQ (Talmor and Berant, 2018)184

datasets. In this study, we mainly use the F1 score185

to evaluate the performance.186

3.2 The Impact of GraphRAG187

To understanding the effectiveness of GraphRAG,188

we compare prediction outcomes between LLM189

with GraphRAG and LLM w/o GraphRAG (i.e.,190

LLM-only). We categorize the results into four191

groups based on F1 scores, as shown in the Figure 1.192

Category A includes cases where both GraphRAG193

and the LLM-only model provide correct answers.194

Category B consists of instances where GraphRAG195

produces a more accurate answer than the LLM-196

only model. Category C includes cases where197

the LLM-only model outperforms GraphRAG. Fi-198

nally, Category D represents instances where both199

GraphRAG and the LLM-only model fail to gen-200

erate the correct answer. Figure 1 illustrates the201

key observations from our experiments. While202

GraphRAG enhances certain predictions, it also203

introduces notable challenges that require further204

investigation.205

Positive Impact of GraphRAG GraphRAG can 206

enhance the LLM’s reasoning capabilities by cor- 207

recting errors that the standalone model would typ- 208

ically commit. Notably, in the category B, 45.64% 209

of previously incorrect responses were successfully 210

rectified with the integration of GraphRAG. This 211

highlights the advantage of leveraging structured 212

knowledge graphs to boost LLM performance. 213

Limited Impact of GraphRAG Category A con- 214

tains those answers where both GraphRAG and 215

LLM-only are correct. This show that GraphRAG 216

can sometimes preserve the performance of a 217

LLM when the LLM already possesses the correct 218

knowledge. Conversely, category D, representing 219

9.03% of cases, corresponds to those cases where 220

GraphRAG fails to enhance the model’s accuracy. 221

For this category, neither the standalone LLM nor 222

GraphRAG are able to provide the correct answer. 223

This pattern implies that GraphRAG does not al- 224

ways access or incorporate sufficiently informative 225

or relevant knowledge. 226

Negative Impact of GraphRAG A notable draw- 227

back of GraphRAG is that will occasionally de- 228

grade the performance of a standalone LLM. That 229

is, it will sometimes lead to wrong predictions 230

for queries that the standalone LLM originally got 231

right. These instances are represented by category 232

C and accounts for 16.89% of samples when evalu- 233

ating via the F1 score. In these cases, GraphRAG 234

misleads the model rather than improving it. This 235

suggests that some of the retrieved information may 236

be incorrect, noisy, or irrelevant, ultimately leading 237

to poorer predictions. Therefore, in some cases, 238

LLMs without GraphRAG outperform those with 239

GraphRAG, because existing works have shown 240

that LLMs tend to over-rely on external informa- 241

tion (Ren et al., 2023; Tan et al., 2024; Wang et al., 242

2023a; Ni et al., 2024; Zeng et al., 2024a). When 243

retrieval is insufficient or the quality of retrieved 244

knowledge is low, this reliance can degrade genera- 245

tion quality. 246

3.3 The Impact of the Number of Retrieved 247

Paths 248

Due to the structure of knowledge graphs, nodes 249

with high degrees and numerous relational edges 250

have a greater likelihood of yielding a large number 251

of retrieved paths. In this subsection, we study the 252

impact of the number of retrieved paths on perfor- 253

mance. Figure 2 illustrates the relationship between 254

the number of retrieved paths and the model’s per- 255
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formance. To present the information more clearly256

and statistically, we include interval statistics in257

Table 9, located in Appendix A.9. Interestingly, as258

indicated by the smoothed line (blue), incorporat-259

ing a moderate amount of retrieved information en-260

hances performance. However, increasing the num-261

ber of retrieved paths ultimately leads to a decline262

in performance. This trend (green line) suggests263

that retrieving too much information will introduce264

noise, making it harder for the model to use the265

correct and relevant knowledge for the task. This266

phenomenon thus highlights an important insight –267

more information does not necessarily indicate268

better performance. Instead, an overabundance of269

retrieved data can overwhelm the model with irrel-270

evant details. This observation underscores the ne-271

cessity for effective filtering mechanisms that can272

prioritize high-quality, relevant knowledge while273

discarding extraneous or misleading information.274

3.4 Attention Reflects the Importance of275

Retrieved Information276

Figure 3: Attention Scores for Retrieved Information
With/Without Ground Truth

In this subsection, we analyze the ability of the277

LLM to distinguish the importance of retrieved ex-278

ternal knowledge. The attention scores of a LLM279

can provide a natural indicator of the relevance280

and significance of the retrieved knowledge (Yang281

et al., 2024; Ben-Artzy and Schwartz, 2024). The282

attention scores, derived from the model’s internal283

mechanisms, effectively capture which pieces of in-284

formation are most influential in reaching the final285

decision. Inspired by recent work (Chuang et al.,286

2023; Halawi et al., 2023), which suggests that287

attention scores in the middle layers are more effec-288

tive. We examine the attention scores of the (mid-289

dle + 2)-th layer in the LLM for each retrieved path.290

We obtain the attention scores for all retrieved paths291

and categorize them into two groups: (1) paths that292

contain the ground truth and (2) paths that do not.293

We then compute the average attention score for294

each group and present the results in Figure 3. As 295

demonstrated in Figure 3, there is a clear alignment 296

between the attention scores and the ground truth 297

labels, suggesting that these scores can be used to 298

assess the relevance of retrieved information. 299

This observation inspires a key insight: The 300

attention scores highlight the most significant re- 301

trieved information, suggesting their potential use 302

in filtering out noisy or irrelevant knowledge. Since 303

retrieved information with lower attention scores 304

contribute minimally to the final output, they can be 305

pruned to streamline retrieval and enhance overall 306

performance. 307

3.5 Internal Knowledge Filtering 308

Large language models (LLMs) generate responses 309

that may contain both correct and incorrect infor- 310

mation. To assess the reliability of these responses, 311

we analyze the associated logits, which represent 312

the model’s confidence in its predictions. Typically, 313

higher confidence correlates with correctness (Ma 314

et al., 2025; Virk et al., 2024). Leveraging this 315

property, we implement “Internal Knowledge Fil- 316

tering”, which uses the logits to help refine the 317

answer selection.The logits of answer can be di- 318

rectly obtained from the LLM’s output. Formally, 319

let AL denote the sets of answer candidates from 320

the LLM model. Furthermore, let it’s correspond- 321

ing logits after softmax function be given by ℓL(a). 322

The filtering step is given by the following: 323

Afiltered
L = {a ∈ AL | ℓL(a) ≥ τL}, (1) 324

where τL = 1, a represents a specific candidate 325

answer and is an element of AL. This allows us 326

to filter out the responses that the LLM has low- 327

confidence in. The experimental results are shown 328

in Table 1. We can clearly see that that leveraging 329

logits to filter out low-confidence responses has a 330

large positive effect on performance. In this way, 331

we can reconsider intrinsic knowledge and apply 332

this approach to GraphRAG to better balance inter- 333

nal and external knowledge base on logits. Further- 334

more, we provide an experimental analysis compar- 335

ing our method with naive answer merging without 336

using logit threshold τL = 1 in Appendix A.5.

Table 1: Impact of logits on LLM performance

Methods WebQSP CWQ

Hit F1 Hit F1

LLM 66.15 49.97 40.27 34.17
LLM with Logits 84.17 76.74 61.83 58.19 337
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3.6 Discussions338

In this subsection, we summarize the key findings339

and discussions from our preliminary study. The340

performance issues observed in GraphRAG primar-341

ily arise from two key factors. (1) Noisy or Irrele-342

vant Retrieval: Some retrieved paths contain irrel-343

evant or misleading information. This negatively344

impacts the model’s ability to properly answer the345

query. Furthermore, this noise can introduce con-346

flicting or unnecessary information that hinders347

the decision-making process rather than improving348

it. (2) Lack of Consideration for LLM’s Own349

Knowledge: GraphRAG does not always take into350

account the inherent reasoning ability of the LLM351

itself. In some cases, the retrieved information352

overrides the LLM’s correct predictions, leading to353

performance degradation rather than enhancement.354

A more adaptive approach is needed to balance ex-355

ternal knowledge retrieval with the model’s internal356

knowledge.357

4 Method358

Based on our analysis, we propose a new frame-359

work to address the identified challenges, guided360

by two key insights: (1) Filtering retrieved informa-361

tion: Given the tendency of GraphRAG to retrieve362

irrelevant or incorrect retrieved information, it is363

essential to refine the retrieved knowledge. (2)364

Properly leveraging the LLMs standalone capabil-365

ities: The LLM itself can often correctly answer366

some questions. It’s thus necessary to effectively367

integrate and use the inherent reasoning ability of368

LLMs along with GraphRAG.369

An overview of our framework GraphRAG-FI370

is given in Figure 4. It consists of two core com-371

ponents: GraphRAG-Filtering and GraphRAG-372

Integration. GraphRAG-Filtering first refines the373

retrieved information by removing irrelevant or374

misleading knowledge. GraphRAG-Integration375

module balances the retrieved knowledge with the376

LLM’s inherent reasoning ability, thereby mitigat-377

ing the overuse of retrieved information that can378

negatively impact performance. In the following379

subsections, we will introduce each component of380

our framework in detail.381

4.1 GraphRAG-Filtering382

Let P = {p1, p2, . . . , pN} denote the set of N383

retrieved paths or triplets, where each path pi is384

assigned an attention score âi. Then we design385

filtering via the following two stages.386

Stage 1: Coarse Filtering using Attention: In 387

the first stage, we perform a coarse filtering by 388

retaining only those paths whose attention scores 389

exceeds a threshold τ . This is given formally by: 390

Pcoarse = {pi ∈ P | âi ≥ τ}. (2) 391

where âi denotes the attention score of path pi. The 392

detailed procedure for computing attention scores 393

is provided in Appendix A.6. 394

Stage 2: Fine Filtering via LLMs: After the 395

initial coarse filtering, which significantly reduces 396

the number of candidate paths, we perform a more 397

precise evaluation with a LLM on the remaining 398

subset. This two-stage filtering approach not only 399

enhances the quality of the retrieved paths but also 400

greatly reduces the overall cost by limiting the use 401

of the LLM to only those paths deemed promising 402

in the first stage. Let f(p) represent the evaluation 403

score provided by the LLM for a path p, and let 404

τ ′ be the corresponding threshold. The final set of 405

filtered paths is then given by: 406

Pfinal = {p ∈ Pcoarse | f(p) ≥ τ ′}, (3) 407

where Pcoarse is the set of paths that passed the 408

coarse filtering stage, τ ′ is not predefined but is 409

determined by the LLM itself. Specifically, we 410

prompt the LLM to achieve this goal. The prompt 411

is presented in Fig 6 in Appendix. 412

Prompt Construction for Question Answering: 413

After the two filtering stages, we incorporate the 414

selected paths and query into the prompt to further 415

guide the model’s reasoning. The prompt contains 416

the following two types of retrieved paths: 417

• High Priority Paths: These are the final fil- 418

tered paths given by Pfinal, which are consid- 419

ered the most reliable. 420

• Additional Paths: We also consider the the 421

remaining paths included by the coarse filter 422

but removed via the fine filter, Pcoarse − Pfinal. 423

We conjecture that while they may not be as 424

important as those paths in Pfinal, they can still 425

offer some useful supplementary context. 426

The new prompt is then constructed by first in- 427

serting a header for the high-priority paths, fol- 428

lowed by each path on a separate line. The same 429

process is repeated for the additional paths. By 430

structuring the prompt in this way, we are able to 431

clearly delineate the paths by their priority. This 432
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Figure 4: An overview of the GraphRAG-FI framework.

ensures that the most critical information (Pfinal)433

is emphasized and processed first, while still in-434

corporating the supplementary context from the435

additional paths. An example prompt is given in436

Fig 5 in Appendix A.3. In graph-based retrieval437

settings, limitations such as structured noise and438

multi-answer complexity are commonly encoun-439

tered. To enhance recall and ensure comprehen-440

sive answer coverage, it is crucial to incorporate441

additional paths beyond the top-ranked evidences.442

Accordingly, we conduct an experiment to assess443

the impact of these additional paths, as detailed in444

Appendix A.10.445

4.2 Integration with LLMs’ Internal446

Knowledge447

As noted in Section 3.2, in addition to ensuring448

we only retrieve high-quality information, we also449

want to retain internal knowledge of the LLMs. As450

such, we want to also integrate the capabilities of451

just the LLM into our framework. However, a chal-452

lenge is knowing when to defer to which method.453

When do we trust the answers given by GraphRAG454

and when the standalone LLM? Furthermore, how455

do we fuse the answers given by both methods?456

To achieve this goal, we need a method to de-457

termine which answers produced by both LLM-458

only and GraphRAG are actually relevant. In Sec-459

tion 3.5, we found that the LLM’s logits can pro-460

vide a useful tool to refine the potential answers.461

That is, focusing only on those answers that are462

given a higher confidence is helpful. This naturally463

provides us with an easy way to focus on just the464

high-quality information. For both GraphRAG and465

the LLM-only model, we filter the answers based466

on their logits, ensuring that only high-confidence467

responses are retained. After this logits-based fil-468

tering, the refined answers from both sources are 469

combined to produce the final answer, thereby en- 470

hancing robustness and accuracy. 471

Formally, let AG and AL denote the sets of an- 472

swer candidates from GraphRAG and the LLM- 473

only model, respectively. We further use a to in- 474

dicate a single candidate answer in either set. Fur- 475

thermore, let their corresponding logits after the 476

softmax function be given by ℓG(a) and ℓL(a). The 477

filtering step is given by the following: 478

Afiltered
G = {a ∈ AG | ℓG(a) ≥ τG}, (4) 479

Afiltered
L = {a ∈ AL | ℓL(a) ≥ τL}, (5) 480

where τG and τL are predefined thresholds, τL is set 481

to 1. Subsequently, the final answer is determined 482

by combining the filtered sets: 483

Afinal = Combine
(
Afiltered

G , Afiltered
L

)
, (6) 484

where Combine(·) denotes the function that inte- 485

grates the filtered answers into the final reliable 486

output. 487

5 Experiment 488

In our experiments, we seek to address the follow- 489

ing research questions: RQ1: How effective is the 490

proposed method when applied to state-of-the-art 491

GraphRAG retrievers in the knowledge graph QA 492

task? RQ2: How does the proposed method com- 493

pare to other filtering approaches? RQ3: How does 494

the performance change when more noisy informa- 495

tion is introduced? and RQ4: What is the impact 496

of the two modules on performance? 497

5.1 Experiment Settings 498

Datasets. To assess the effectiveness of our 499

method, we evaluate it on two widely recognized 500
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Table 2: Performance comparison with different baselines on the two KGQA datasets.

Type Methods
WebQSP CWQ

Hit F1 Hit F1

LLMs

Alpaca-7B(Taori et al., 2023) 51.8 - 27.4 -
LLaMA2-Chat-7B(Touvron et al., 2023) 64.4 - 34.6 -
ChatGPT 66.8 - 39.9 -
ChatGPT+CoT 75.6 - 48.9 -

LLMs+KGs

ROG 86.73 70.75 61.91 54.95
ROG + Similarity 85.50 69.38 61.62 54.38
ROG + PageRank 85.44 69.60 61.34 54.41
ROG + GraphRAG-Filtering 87.40 73.41 63.86 57.25
ROG + GraphRAG-FI 89.25 73.86 64.82 55.12

GNN-RAG 90.11 73.25 69.10 60.55
GNN-RAG + Similarity 89.68 72.17 68.50 60.26
GNN-RAG + PageRank 89.18 71.92 66.75 58.73
GNN-RAG + GraphRAG-Filtering 91.28 74.74 69.70 60.96
GNN-RAG + GraphRAG-FI 91.89 75.98 71.12 60.34

SubgraphRAG 76.90 64.65 53.87 50.43
SubgraphRAG + Similarity 72.72 59.98 52.05 48.27
SubgraphRAG + PageRank 61.79 50.65 46.75 43.23
SubgraphRAG + GraphRAG-Filtering 81.01 68.40 58.82 54.71
SubgraphRAG + GraphRAG-FI 81.08 68.28 58.96 52.52

KGQA benchmark datasets: WebQSP (Yih et al.,501

2016) and CWQ (Talmor and Berant, 2018). We-502

bQSP contains 4,737 natural language questions503

that require reasoning over paths of up to two hops.504

In contrast, CWQ includes 34,699 more complex505

questions that necessitate multi-hop reasoning over506

up to four hops. Both datasets are built upon Free-507

base , which consists of around 88 million enti-508

ties, 20 thousand relations, and 126 million triples.509

Further details on the datasets are provided in Ap-510

pendix A.2.511

Retriever Backbones. Our framework adopts512

three existing retrieval methods as its backbone:513

path-based retrieval (ROG (Luo et al., 2024)),514

GNN (Mavromatis and Karypis, 2024)), and515

subgraph-based retrieval (SubgraphRAG (Li et al.,516

2025)). Path-based retrieval extracts relevant paths517

using heuristics or shortest-path algorithms, while518

GNN-based retrieval leverages a Graph Neural Net-519

work to learn and retrieve informative paths. In520

contrast, subgraph-based retrieval retrieves rele-521

vant subgraphs and encodes them as triples, en-522

abling fine-grained relational reasoning. Therefore,523

both path-based and GNN-based methods generate524

paths as input for the LLM. Lastly, subgraph-based525

methods decompose the subgraph into triples—i.e.,526

(h, r, t), which are then used as input to the LLM.527

Considering these allows us to test the framework528

on diverse retrieval methods. 529

Filter Baselines. The most commonly used fil- 530

tering methods for RAG are similarity-based ap- 531

proaches used in (Gao et al., 2025). Similarity- 532

based methods evaluate the relevance of retrieved 533

information by measuring feature similarity. For 534

retrieval over graphs, PageRank-based filtering is 535

widely adopted (Wang et al., 2024). PageRank- 536

based filtering leverages the graph structure to rank 537

nodes based on their connectivity and importance. 538

These methods provide a baseline filtering mech- 539

anism for refining the retrieved results. To evalu- 540

ate the effectiveness of our method, we compare 541

it with several filtering and reranking approaches 542

within the traditional RAG framework, including 543

FILCO (Wang et al., 2023b), Main-RAG (Chang 544

et al., 2024), and BGE-Reranker (Chen et al., 2024). 545

The results are presented in Table 8 in Appendix. 546

Implementation and Evaluation Metrics. We 547

use LLaMA2-Chat-7B from ROG as the LLM 548

backbone, which is instruction-finetuned on the 549

training split of WebQSP and CWQ, as well as Free- 550

base, for three epochs. For the similarity-based fil- 551

ter, we utilize SentenceTransformer (‘all-MiniLM- 552

L6-v2’) to generate representations for retrieval. 553

We evaluate our retrieval methods using both Hit 554

Rate (Hit) and F1-score (F1). Hit Rate measures the 555

proportion of relevant items successfully retrieved, 556
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reflecting retrieval effectiveness. F1-score balances557

precision and recall, providing a comprehensive as-558

sessment of retrieval quality. These metrics ensure559

a robust evaluation of retrieval performance. We560

adjust the thresholds τ and τG within the ranges561

[top 40, top 50] and [0.4, 0.5], respectively.562

5.2 Main Results563

In this section, we evaluate the performance of564

our method with various retrievers and compare it565

against baseline filter models.566

RQ1: KGQA Performance Comparison. In this567

subsection, we apply our method to different re-568

trievers, including the path-based retriever, GNN-569

based retriever, and subgraph-based retriever. The570

results presented in Table 2 demonstrate that our571

method consistently improves all retrievers, achiev-572

ing an average improvement of 3.81% in Hit and573

2.35% in F1 over ROG, 2.46% in Hit and 1.7%574

in F1 over GNN-RAG, and significant gains of575

7.47% in Hit and 4.88% in F1 over SubgraphRAG576

across two datasets. These results demonstrate that577

our approach is effective across different retrieval578

paradigms, reinforcing its adaptability to various579

retrieval strategies in QA tasks. In addition, we580

provide some case studies in Appendix A.8.581

RQ2: Comparison with other filter methods.582

We compare our method against other filtering583

baselines, with the results presented in Table 2.584

Our approach consistently outperforms competing585

methods across both datasets and retriever types.586

Specifically, for ROG, our method can achieve an587

average improvement of 4.78% in Hit and 3.95% in588

F1 compared to similarity-based filtering on both589

datasets. Furthermore, compared to the PageRank-590

based filtering method, our approach yields an av-591

erage increase of 5.03% in Hit and 3.70% in F1592

across both datasets. These results highlight the593

superiority of our method in enhancing retrieval594

effectiveness and overall performance.595

Table 3: Performance when adding more noise

Methods WebQSP CWQ

Hit F1 Hit F1

ROG-original 86.73 70.75 61.91 54.95
ROG* 85.87 68.81 60.49 53.72
ROG* + GraphRAG-Filtering 86.61 73.01 61.91 55.67

5.3 Robustness to Noise596

In this subsection, we evaluate robustness of differ-597

ent methods to noise. To evaluate the noise resis-598

tance of the backbone model and our filter method,599

we use GPT to generate 30 additional noise paths 600

that contain both irrelevant and incorrect informa- 601

tion. This information is then incorporated into 602

the retrieved context. We then analyze the impact 603

of this noise on performance. The experimental 604

results presented in Table 3, ROG* represents the 605

cases where noise is introduced. As the noise level 606

increases, the Hit score decreases by 2.29%, and 607

the F1 score drops by 2.23% on the CWQ dataset, 608

highlighting the model’s sensitivity to noise. How- 609

ever, when applying our method, we observe a 610

2.23% improvement in Hit and a 3.63% improve- 611

ment in F1 over ROG* on CWQ. These results 612

demonstrate the effectiveness of our approach in 613

mitigating the negative impact of noisy retrieval. 614

5.4 Ablation Study 615

We conduct an ablation study to analyze the ef- 616

fectiveness of the filtering module and integrating 617

module in GraphRAG-FI. From the results in Ta- 618

ble 4, we can see that GraphRAG-Filtering is useful 619

for the ROG retriever, as it improves both the F1 620

and Hit scores. For example, GraphRAG-Filtering 621

increases the F1 score by 4.19% and the Hit score 622

by 3.15% on CWQ dataset. We also see a boost 623

in performance for GraphRAG-Integration, with a 624

1.60% and 2.62% increase in F1 and Hit score, re- 625

spectively, on WebQSP. These results demonstrate 626

the effectiveness of our two components. In ad- 627

dition, we conduct a parameter study, with the 628

results presented in Appendix A.4.

Table 4: Ablation study.

Methods WebQSP CWQ

Hit F1 Hit F1

ROG-original 86.73 70.75 61.91 54.95
ROG + GraphRAG-Filtering 87.40 73.41 63.86 57.25
ROG + GraphRAG-Integration 89.00 71.88 64.25 55.19
ROG + GraphRAG-FI 89.25 73.86 64.82 55.12 629

6 Conclusion 630

In this work, we propose GraphRAG-FI (Fil- 631

tering & Integration), an enhanced GraphRAG 632

framework that addresses key challenges in graph 633

retrieval-augmented generation. By incorporating 634

GraphRAG-Filtering, which utilizes a two-stage 635

filtering mechanism to refine retrieved informa- 636

tion, and GraphRAG-Integration, which employs a 637

logits-based selection strategy to balance retrieval 638

and intrinsic reasoning, our approach mitigates the 639

impact of noisy retrievals and excessive depen- 640

dence on external knowledge. 641
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Limitations642

In this work, we identify two key challenges in643

GraphRAG: (1) it is prone to errors due to the644

retrieval of irrelevant or misleading information,645

and (2) it places excessive emphasis on externally646

retrieved knowledge, which can diminish the in-647

trinsic reasoning capabilities of LLMs. Future re-648

search will first explore a broader range of large649

language models to evaluate their effectiveness650

within GraphRAG. Additionally, further investi-651

gation into diverse filtering methods could enhance652

the refinement of retrieved information and reduce653

noise. More sophisticated fusion strategies may654

also be explored to dynamically balance external655

knowledge with the intrinsic reasoning of LLMs,656

enabling more effective information integration.657
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A Appendix848

A.1 Related work849

GraphRAG. GraphRAG aims to address halluci-850

nations and outdated knowledge in LLMs by in-851

corporating additional information retrieved from852

external knowledge bases (Sun et al.; Li et al., 2025;853

Dong et al., 2024). G-Retriever (He et al., 2025)854

identifies relevant nodes and edges for a given855

query based on cosine similarity, and then con-856

structs a subgraph to aid in the generation pro-857

cess. Similarly, RoG (Luo et al., 2024) intro-858

duces a planning-retrieval-reasoning framework,859

where it retrieves reasoning paths guided by a plan-860

ning module and performs reasoning using these861

paths. On the other hand, GNN-RAG (Mavromatis862

and Karypis, 2024) leverages Graph Neural Net-863

works (GNNs) (Kipf and Welling, 2016) to pro-864

cess the intricate graph structures within knowledge865

graphs, enabling effective retrieval. They also use866

retrieval augmentation techniques to enhance diver-867

sity. However, the effectiveness of these methods868

is heavily dependent on the quality of the retrieved869

information, and their performance significantly de-870

clines when the retrieved graph data is either noisy871

or unrelated to the query (He et al., 2025) .872

Filter Methods. Filtering attempts to only873

keep those pieces of retrieved information that874

are relevant to the given query (Gao et al., 2025).875

ChunkRAG (Singh et al., 2024) tries to improve876

RAG systems by assessing and filtering retrieved877

data at the chunk level, with each "chunk" repre-878

senting a concise and coherent segment of a docu-879

ment. This method first applies semantic chunking880

to partition documents into meaningful sections.881

It then leverages LLM-based relevance scoring to882

evaluate how well each chunk aligns with the user883

query. Zeng et al. (2024b) thoroughly investigate884

LLM representation behaviors in relation to RAG,885

uncovering distinct patterns between positive and886

negative samples in the representation space. This887

distinction enables representation-based methods888

to achieve significantly better performance for cer-889

tain tasks. Building on these insights, they intro-890

duce Rep-PCA, which employs representation clas-891

sifiers for knowledge filtering. RoK (Wang et al.,892

2024) refines the reasoning paths within the sub-893

graph by computing the average PageRank score894

for each path. Similarly, He et al. (2024) use PageR-895

ank to identify the most relevant entities.896

Table 5: Statistics of datasets.

Datasets #Train #Test Max #hop
WebQSP 2,826 1,628 2

CWQ 27,639 3,531 4

A.2 Datasets 897

We utilize two benchmark KGQA datasets, We- 898

bQSP (Yih et al., 2016) and CWQ (Talmor and 899

Berant, 2018), as proposed in previous studies. Fol- 900

lowing ROG, we maintain the same training and 901

testing splits. The dataset statistics are provided 902

in Table 5. Each query have one or multiple cor- 903

rect answers. Specifically, for the WebQSP dataset, 904

there are 815 queries with a single answer and 905

813 queries with multiple answers, accounting for 906

49.94% of the total. For the CWQ dataset, 2676 907

queries have a single answer, while 855 queries 908

have multiple answers, representing 24.21% of the 909

total. 910

A.3 Prompt example 911

We provide an example prompt for question answer- 912

ing in Fig.5, and the prompt used for fine filtering 913

is shown in Fig.6. 914

Prompts

Based on the reasoning paths, please an-
swer the given question. Please keep the
answer as simple as possible and return all
the possible answers as a list.
Reasoning Paths:
High Priority Paths:

Northern Colorado Bears football → educa-
tion.educational_institution.sports_teams
→ University of Northern Colorado
Additional Paths:

Northern Colorado Bears football → educa-
tion.educational_institution.sports_teams
→ University of Northern Colorado
Greeley → location.location.containedby
→ United States of America
Greeley → location.location.containedby
→ Greeley Masonic Temple
Question: What educational institution has
a football sports team named Northern Col-
orado Bears is in Greeley, Colorado?

Figure 5: An Example Prompt of Question Answering
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A.4 Parameter study915

We conducted an additional parameter study to eval-916

uate the robustness of our method under different917

hyperparameter settings. We focus on two param-918

eters: τG and τ . The performance (Hit and F1919

scores) on the WebQSP dataset under varying set-920

tings is reported in Table 6: As shown, our model921

performs consistently well across different parame-922

ter settings, demonstrating that it is robust to mod-923

erate changes in both τG and τ .

Table 6: Performance Metrics for Parameter Study

Hit Score for Parameter Study
τG = 0.4 τG = 0.5

τ = top 40 89.07 89.06
τ = top 50 89.10 89.25

F1 Score for Parameter Study
τG = 0.4 τG = 0.5

τ = top 40 73.84 73.47
τ = top 50 73.73 73.86

924

A.5 Comparison with naively merging925

answers926

To verify whether the performance gain comes927

from our proposed GraphRAG integration rather928

than simply increasing the number of candidate an-929

swers, we conducted an additional ablation where930

we naively merged all answers from the internal931

LLM and external retrieved results without any932

filtering. The results are shown in Table 7. Al-933

though the naive merging strategy collects more934

answers through over-coverage, it leads to lower935

precision. In contrast, our method achieves signifi-936

cantly higher F1 scores, indicating more accurate937

and faithful answer selection. This highlights the938

effectiveness of our fusion mechanism in balancing939

internal and external knowledge, filtering out noise,940

and enhancing the overall quality of predictions.

Table 7: F1 scores on WebQSP and CWQ datasets com-
paring naive merging and GraphRAG-FI.

Method WebQSP CWQ
Naively merging 66.07 48.91
GraphRAG-FI 73.86 55.12

941

A.6 Attention Score for Coarse Filtering.942

To get attention scores for coarse filtering, we per-943

form the following steps:944

1. Target Layer Selection: We extract the at- 945

tention weights from an intermediate layer of 946

LLMs. 947

2. Token Alignment Within Path: For each 948

path pi, we identify its token span in the seri- 949

alized prompt by locating the position of each 950

path in the input string, and using the LLM 951

tokenizer to obtain the corresponding token 952

indices. 953

3. Attention Score Computation: We extract 954

the attention weights from the last decoding 955

token (usually corresponding to the genera- 956

tion of the first output token) to all tokens in 957

path pi, using the target attention layer. For 958

each path, we compute an attention-based rel- 959

evance score as: 960

âi =
max(att(pi)) + mean(att(pi))

2
(7) 961

where att(pi) refers to the attention weights from 962

the decoding token to the token span of path pi. 963

A.7 Comparison with more baselines 964

To evaluate the effectiveness of our method, we 965

compare it with several filtering and reranking 966

approaches within the traditional RAG frame- 967

work, including FILCO (Wang et al., 2023b), 968

Main-RAG (Chang et al., 2024), and BGE- 969

Reranker (Chen et al., 2024). Specifically, FILCO 970

is a mutual information-based filtering method, 971

Main-RAG leverages prompt-based filtering, and 972

BGE-Reranker utilizes a reranking model for can- 973

didate selection. The results, presented in Table 8, 974

show that our method consistently outperforms 975

these baselines across all metrics and datasets. This 976

highlights the effectiveness of our framework, par- 977

ticularly in leveraging graph-structured knowledge. 978

Table 8: Performance comparison between baselines
and our method on WebQSP and CWQ datasets.

Method WebQSP CWQ
Hit F1 Hit F1

Main-RAG 82.06 63.67 54.97 48.41
BGE-Reranker 85.93 69.23 61.56 54.95
FILCO 86.67 69.89 61.09 53.89
Our method 89.25 73.86 64.82 55.12
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Prompt Template

messages = [
{"role": "system",
"content": "You are a reasoning assistant. Your task is to analyze numbered reasoning paths and
return only the indices of useful paths."},
{"role": "user",
"content": "Question:\n{question}\n\n
Numbered Reasoning Paths:\n{numbered_paths_text} \n\n
Giving question, return only the indices of useful paths as a comma-separated list"}
]

Figure 6: Prompt of Fine Filtering

A.8 Case study979

We provide qualitative case studies to illustrate980

the effectiveness of our method. Below in Fig-981

ure 7 are two representative examples from the982

WebQSP dataset: These examples demonstrate that983

our method filters out noisy or irrelevant candidates984

and successfully integrates internal and external985

knowledge to recover all correct answers with high986

precision.987

A.9 Statistics of path count intervals988

To make the information more clear and statisti-989

cally, we provide interval statistics, including the990

average F1 scores within each interval and the p-991

values from t-tests, as shown in the Table 9. From992

the results, we observe an overall decreasing trend993

in F1 score as the number of paths increases. In 3994

out of 5 cases, the p-values indicate a statistically995

significant decrease.996

A.10 The importance of additional paths.997

To demonstrate the necessity of the additional998

paths discussed, we conducted an ablation study999

by removing those paths and keeping only the top-1000

ranked reasoning paths. As shown in Table 10,1001

removing secondary but informative paths leads1002

to a significant performance drop, confirming that1003

these paths are crucial for ensuring complete rea-1004

soning coverage, recall and improving final predic-1005

tion quality.1006
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Example 1
Question: What countries does Greece share borders with?
Ground Truth: Albania, Bulgaria, Republic of Macedonia, Turkey
Method Prediction
LLM-only Bulgaria, Turkey, Republic of Macedonia, Albania
LLM+GraphRAG Turkey, Republic of Macedonia, Albania (Misses Bulgaria)
Our Method Albania, Bulgaria, Turkey, Republic of Macedonia (All correct)

Example 2
Question: What colleges did Harper Lee attend?
Ground Truth: University of Alabama, Huntingdon College, University of Oxford, Uni-

versity of Alabama School of Law
Method Prediction
LLM-only University of Alabama, Huntingdon College, University of Alabama

School of Law, University of Tennessee, Cornell University, Shortridge
High School, Butler University, University of Chicago, Carnegie Mellon
University (includes many irrelevant institutions)

LLM+GraphRAG Huntingdon College, University of Alabama School of Law, University
of Oxford (Misses University of Alabama)

Our Method Huntingdon College, University of Alabama, University of Alabama
School of Law, University of Oxford (All correct)

Figure 7: Comparison of different methods on two example questions

Table 9: Statistics Table of Path Count Intervals

Interval Average F1 (%) Comparison P-value
0-10 74.69

10-40 66.91 0-10 vs 10-40 0.0002
40-70 58.43 10-40 vs 40-70 0.0269
70-100 65.96 40-70 vs 70-100 0.1691
100-130 62.17 70-100 vs 100-130 0.5723
130-160 35.12 100-130 vs 130-160 0.0469

Table 10: Comparison of hit rates and F1 scores with and without additional paths on WebQSP and CWQ datasets.

Method WebQSP CWQ
Hit F1 Hit F1

Without additional paths 37.78 34.35 27.27 25.01
Our method 89.25 73.86 64.82 55.12
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