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Abstract

In this work, we present SymObjectRF, a symmetry-based method that learns object-
centric representations for rigid objects from one dynamic scene without hand-crafted
annotations. SymObjectRF learns the appearance and surface geometry of all dynamic
object in their canonical poses and represents individual object within its canonical pose
using a canonical object field (COF). SymObjectRF imposes group equivariance on render-
ing pipeline by transforming 3D point samples from world coordinate to object canonical
poses. Subsequently, a permutation-invariant compositional renderer combines the color
and density values queried from the learned COFs and reconstructs the input scene via
volume rendering. SymObjectRF is then optimized by minimizing scene reconstruction
loss. We show the feasibility of SymObjectRF in learning object-centric representations
both theoretically and empirically.
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1. Introduction

Learning 3D object-centric representation from sensory inputs is crucial for scene under-
standing and downstream tasks across various domains. However, visual ambiguities caused
by occlusion and entangled information make object-centric learning an under-constrained
inverse problem. Previous unsupervised learning methods failed to address this challenging
problem unless additional structure in dataset or model architecture is available (Hyvärinen
and Pajunen, 1999; Locatello et al., 2019). Although recent researches demonstrate signifi-
cant progress (Yang et al., 2021; Wu et al., 2022a; Weder et al., 2023; Gao et al., 2023; Yu
et al., 2022; Niemeyer and Geiger, 2021; Wu et al., 2022b; Stelzner et al., 2021) in lever-
aging 3D cues for object-centric learning, existing 3D methods still have certain practical
limitations such as the high demand for training data (Yu et al., 2022), the requirement
for holistic scene geometry (Gao et al., 2023) or the reliance on hand-annotated supervi-
sion (Wu et al., 2022a; Yang et al., 2021). A natural question to ask is: Can we learn 3D
object-centric representations from a specific dynamic scene without relying on pixel-level
supervision, especially when the holistic scene geometry is not available?

In this work, we introduce group symmetry for learning 3D object-centric representa-
tions and impose Euclidean equivariance on the rendering process through scene reconstruc-
tion. The experimental results demonstrate that the learned object representations capture
invariance in objects such as appearance and surface geometry.
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2. Approach

2.1. Preliminaries

The goal of object-centric learning is to learn a dedicated representation for every object in
the presented scenes. In the rest of the text, we use capital and lowercase letters to denote
spaces and space elements and [·]i to index the i-th independent subspace or the element of
the i-th independent subspace. Let W =W1 ×W2 be the source space of two independent
objects, Z = Z1 × Z2 be the representation space of two objects. Let ψ and b denote a
decoding function and a data generating process with variable input object number and
dist be a distance measure. Object-centric learning aims to find a representation space Z,
such that dist(ψ(z′), b(w′)) is minimized for all z′ ∈ Pz and all w′ ∈ Pw, where Pw and Pz

denote the power sets of the subspace element sets of w ∈ W and z ∈ Z. Without loss of
generality, above setup is applicable to scenarios with an arbitrary number of objects.

2.2. Proposed Construction

A key challenges for learning object-centric representations is the object ordering ambiguity.
Similar to Locatello et al. (2020); Kipf et al. (2022); Elsayed et al. (2022), we propose the
construction of fixed object ordering in W and Z. Let IZ and IW be the sets of the
subspace indices of Z and W . Let P and P ′ be permutation groups on the subspaces of Z
and W with group actions βZ : P × IZ → IZ and βW : P ′ × IW → IW respectively. Let
Z/∼p

= ZβZ(p,1) × ZβZ(p,2),∀p ∈ P and W/∼p′
= ZβW (p′,1) ×WβZ(p′,2),∀p′ ∈ P ′.

Property 1 (Construction of fixed object ordering) (a) ∀p ∈ P,Z/∼p
∈ Z/P and

∀p′ ∈ P ′,W/∼p′
∈W/P ′ (b)

⋃
p∈P Z/∼p

= Z and
⋃

p′∈P ′ W/∼p
= Z.

In the rest of this work, we refer p and p′ to a fixed subspace permutation of Z and W for
the sake of simplicity. Instead of Z, we prospose to learn the representation Z/∼p

of W/∼p′
.

To tackle with the lack of supervision elaborated in Section 1, we introduce group
symmetry and equivariant decoding process as additional structure.

Property 2 (Assumption of source space structure) (a) There exists a group com-
position G = G1 ×G2 of two non-trivial subgroups with a group action αW : G×W →W
on W , (b) There exists a permutation group on the subspaces of G with group action
βG : R × IG → IG, where IG denotes the set of the subspace indices of G, (c) There exists
a permutation group isomorphism m′ : P ′ → R, (b)

⋃
W/∼p′

/G/∼m′(p′)
= W/∼p′

, where

G/∼r
= GβG(r,1) ×GβG(r,2),∀r ∈ R.

Similarly, we impose the group-induced structure in Z/∼p
by adopting the formalism of

symmetry-based disentangled representation (SBDR) from Higgins et al. (2018) and we
propose the construction for object-centric representions used in this work. Let αZ : G×Z →
Z be the group action of G on Z and g

(e)
i be the identity element of Gi.

Property 3 (Construction of object-centric representations) The representation
Z/∼p

is said to be object-centric if (a) There exists a permutation group isomorphism
m : P → R, (b) Z/∼p

is a homogeneous space for G/∼m(p)
, (c) There exists a G-equivariant

map f : W/∼p′
→ Z/∼p

such that f(αW (g, w)) = αZ(g, f(w)), ∀g ∈ G/∼m(p)
, w ∈ W/∼p′

,
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(d) (Z/∼p
)i is invariant to the group action of (G/∼m(p)

)j , ∀i ∈ {1, 2} and i ̸= j, i.e.,

zi = αZ(g, z)i, ∀z ∈ Z/∼p
, i ∈ {1, 2}, g ∈ {g|g ∈ G/∼m(p)

and gi = g
(e)
i }.

A major difference between our method and prior methods is that we aim to learn the
object set of a particular scene rather than certain object categories. Since the object set
to be learned can be considered as a connected subspace of W , our objective is equivalent
to learn a locally object-centric representations Zlocal, a connected subspace of Z/∼p

.

Property 4 (Construction of locally object-centric representations) The repre-
sentation Zlocal is said to be locally object-centric if (a) Zlocal ∈ Z/∼p

/G/∼m(p)
, (b)

There exists W ′ ∈ W/∼p′
/G/∼m(p)

and a G-equivariant map flocal : W
′ → Zlocal such that

∃w′ ∈ W ′,∀g ∈ G/∼m(p)
, flocal(αW (g, w′)) = αZ(g, flocal(w

′)), (c) (Zlocal)i is invariant to

the group action of (G/∼m(p)
)j ,∀i ∈ {1, 2} and i ̸= j, i.e., zi = αZ(g, z)i, ∀z ∈ Zlocal, i ∈

{1, 2}, g ∈ {g|g ∈ G/∼m(p)
and gi = g

(e)
i }.

Let b be a permutation-invariant data generating process andX ′ ⊆ X be the observation
set, we propose our final construction for locally object-centric learning.

Property 5 (Construction for locally object-centric learning) (a)X ′ ⊆ b(W ′),∃W ′ ∈
W/∼p′

/G/∼m′(p′)
, (b) We have the access to a mapping η : X → G/∼m′(p′)

, (c) We impose

G-equivariance on the permutation-invariant decoding function ψ : Z → X and the learned
locally object-centric representations Z ′ ∈ Z/∼p

/G/∼m(p)
, i.e., we want to learn a z′ ∈ Z ′,

∀x′ ∈ X ′, x′ = ψ(αZ(η(x
′), z′)).

2.3. Problem Setup

In this work, we focus on learning a locally object-centric representation from one single
dynamic scene. More specifically, we learn a canonical representation z′ ∈ Z ′ from a
homogeneous space Z ′ ∈ Z/∼p

/G/∼m(p)
that jointly reconstructs scene observations with

the application of group symmetry via property 5 (c).

3. Algorithm and Experiments

3.1. Algorithm Overview

The main idea of SymObjectRF is to reconstruct every dynamic object in a scene video from
its canonical representation. For every dynamic object in the scene, SymObjectRF main-
tains a dedicated canonical object field (COF), a neural radiance field that maps bounded
coordinates to density and RGB values. The learned objects are represent in their canoni-
cal pose in COFs. During volume rendering, 3D point samples are transformed from world
coordinate to the canonical poses of the learned objects by their canonical transformations,
which are the inverse transformations of corresponding object placements. The input scenes
are then reconstructed by combing the density and RGB values queried by the transformed
points from all the COFs. The minimization of reconstruction losses, i.e., RGB- and depth
loss, and the application of canonical transformations ensures the Euclidean equivariance
of the rendering pipeline.
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Methods MoviSim MoviCmplx

ARI↑ FG-ARI↑ ARI↑ FG-ARI↑
Slot AttentionLocatello et al. (2020) 0.255 0.617 0.199 0.603
SAVi Kipf et al. (2022) 0.442 0.632 0.412 0.663
SymObjectRF(Fixed viewpoint) 0.732 0.727 0.773 0.656

DYNAVOLGao et al. (2023) 0.027 0.112 0.033 0.257
uORFYu et al. (2022) 0.831 0.866 0.707 0.739
SAMHu et al. (2018) 0.422 0.512 0.529 0.562
SymObjectRF 0.937 0.873 0.822 0.795

Table 1: ARI and FG-ARI scores for the
quantitative evaluation of scene de-
composition problem.

Figure 1: Rendering results from one held-
out novel viewpoint

3.2. Experimental Setup

The training dynamic scenes were captured using Kubric (Greff et al., 2022) from a monoc-
ular camera with smooth linear movement, where captured scene geometry does not nec-
essarily include the geometries of all objects. We assume the access to object poses for
computing canonical transformations.

We evaluate SymObjectRF on the scenes generated using two distinct configurations.
The first configuration MoviSimple consists of a CLEVER-styled background and objects
from the kubasic object set, while a more photo-realistic configuration MoviCmplx shares
the same background and object arrangement as the Movi-E Greff et al. (2022) setup.

To assess the performance of SymObjectRF on the scene decomposition task, we use the
adjusted rand index (ARI) for the segmentation quality of the whole scene and foreground
adjusted rand index (FG-ARI) for object segmentation. ARI measures pixel-wise clustering
similarity between a predicted segmentation and the ground truth segmentation. The ARI
score varies from 0 for a random clustering to 1 for a perfect segmentation.

3.3. Experimental Results

To evaluate the object decomposition capability of SymObjectRF for 3D dynamic scenes,
we compare SymOjbectRF to 2D segmentation method Slot Attention (Locatello et al.,
2020), its video version SAVi(Kipf et al., 2022), SAM(Kirillov et al., 2023), 3D object-
centric method uORF (Yu et al., 2022) and unsupervised 3D object-centric method DY-
NAVOL(Gao et al., 2023). We compute the contribution of each canonical object field
(including the background field) during rendering and assign a sampled ray the object class
associated with the highest contribution for object segementation. We report the ARI
and FG-ARI scores averaged across all 4 scenes from the 12 held-out camera positions for
quantitative analysis in Table 1.

In the performance comparison presented in Table 1, our method outperforms nearly all
2D and 3D baseline methods. DYNAVOL potentially suffers from the absence of holistic
scene geometry and perform less competitively, while SymObjectRF showcases its ability to
learn object-centric representations even when the presented object geometry is incomplete.
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We present both scene-level and object-level rendering results of SymObjectRF from
one held-out novel viewpoint in Figure 1. Figure 1 (a) to (d) illustrate the scene-level re-
constructed RGB, segementation and depth map. Figure 1 (e) to (f) plot the corresponding
object-level rendering results. The plausible object-level rendering results and the perfect
alignments of objects to the coordinate origin imply the effectiveness of SymObjectRF in
learning object within a canonical pose.
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