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Abstract—Robots operating in open-ended environments must
be able to recognize the limits of their understanding and
know when to rely on human input. While vision-language-
action (VLA) models such as π0-FAST provide scalable and
expressive policies through next-token prediction, they often lack
mechanisms for introspection or fallback under uncertainty. We
present a system that leverages token-level uncertainty from a
fine-tuned π0-FAST model to enable uncertainty-aware human
intervention during robotic manipulation. When prediction un-
certainty exceeds a threshold, the robot halts execution and
explicitly requests a one-step corrective action from a human
operator. We evaluate our system against two baselines—random
intervention and no intervention—and demonstrate that using
uncertainty as a trigger improves success and reliability across
manipulation tasks. As a supplementary investigation, we also
explore a shared control variant that blends human joystick input
with model actions based on uncertainty, illustrating an alternate
use of model introspection. Our results suggest that token-
level uncertainty in VLA models provides meaningful signals
for decision arbitration, failure prediction, and adaptive human-
robot collaboration.

I. INTRODUCTION

Robots operating in unstructured environments must be able
to recognize when their knowledge is insufficient and know
how to appropriately seek human input [24, 5]. This ability
is critical for them to operate safely and reliably, especially
as behavior models increase in complexity and are deployed
in increasingly open-ended tasks. Recent vision-language-
action (VLA) models offer a promising direction for general-
purpose robotic policies, using autoregressive token prediction
to flexibly map from observations and language instructions
to action sequences. However, these models typically lack
mechanisms for introspection [26, 6, 18]; they not only predict
the next token without signaling when they are uncertain
or likely to fail, but also do not provide feedback on how
well they have learned from training data, making it difficult
for the robot’s human operator to understand what training
data they should provide in order to improve the model’s
performance [17, 4, 3, 2, 22, 15].

Our work takes the first step toward a lifelong learning
paradigm for VLA models: instead of collecting training data
all at once, we aim to support frequent iteration across (i)
training the model, (ii) deploying the model in the wild,
(iii) using introspection and intervention to selectively query
a human teacher for assistance when it is uncertain, and

Fig. 1. Overview of our uncertainty-aware VLA system. A fine-tuned π0-
FAST model introspects on its own predictions by computing token-level
uncertainty metrics—entropy and perplexity—during action generation (1).
When uncertainty is high, the robot either (2) blends human joystick input with
model predictions using a continuous shared control scheme, or (3) requests
a one-step human intervention via an intuitive Cartesian interface (X, Y, Z,
gripper). This design allows both continuous and discrete collaboration modes
based on model confidence. Yellow circles highlight key system contributions.

(iv) using this assistance to improve both immediate task
completion and future model updates. In this paper, we focus
on the introspection and intervention step. We instantiate
token-level uncertainty metrics that are commonly applied to
LLMs (entropy and perplexity) in a VLA model, analyze their
suitability and reliability in robotics tasks, and demonstrate
that intervention at high-uncertainty moments can meaning-
fully improve model performance. To our knowledge, this is
the first use of such metrics for VLA models.

We apply these metrics in two uncertainty-aware control
strategies. In the intervention setting, the robot pauses exe-
cution and explicitly requests help when uncertainty exceeds
a threshold, prompting the human to provide a one-step
corrective action. In the shared control setting, the robot
blends its actions with human joystick input in real time,
using uncertainty as a dynamic confidence weight. Through
empirical evaluation across a range of manipulation tasks,
we find that uncertainty-based methods improve task success
and reduce unnecessary interventions—but only when the
model has seen many training examples on the task. In low-
data regimes, uncertainty metrics behave similarly to random
triggers, underscoring the importance of model calibration.

Our contributions are:

• An uncertainty-aware intervention system using token-level
introspection from a fine-tuned π0-FAST model.



• A comparative evaluation of uncertainty-based, random, and
no-intervention approaches.

• A supplementary shared autonomy framework illustrating
broader applications of uncertainty-aware VLA inference.

• A novel xArm manipulation dataset for fine-tuning vision-
language-action models.
Together, these results show that token-level uncertainty

offers more than just introspection—it is an actionable signal
that can inform control, structure collaboration, and guide
future learning in robot systems.

II. RELATED WORK

A. Vision Language Action Models

Vision-Language-Action models (VLAs) such as RT-1 [4],
RT-2 [3], Octo [13], and OpenVLA [17], are a class of
embodied AI systems that integrate visual perception, natural
language understanding, and action generation into a single
framework. They enable robots to interpret high-level language
instructions, perceive the environment through vision, and
output low-level control commands to accomplish tasks. The
current best performing open-source models are π0 [2] and π0-
FAST (Frequency-space Action Sequence Tokenization) [22].
Our work is based on the π0-FAST model due to its perfor-
mance level, as well as the autoregressive decoding scheme
which allows us to employ token level entropy measurements,
which are standard model uncertainty metrics in LLM litera-
ture [26, 25].

By pre-training on extensive web data and vast amounts1

of training episodes, VLAs have achieved impressive perfor-
mance across a variety of sensory inputs and action spaces;
yet, even the most advanced models still require post-training
fine-tuning in novel Out-of-Distribution (OOD) settings [2].
Therefore, improving task performance through human super-
vision when using these models in real-world contexts is an
active and crucial topic in this field.

B. Uncertainty Metrics in Foundation Models

Entropy captures the spread of a model’s output distri-
bution, enabling confidence ranking via differential entropy
over the vocabulary [19]. At the token level, high entropy
can indicate low-confidence predictions that are likely to be
incorrect or hallucinated; for example, Fadeeva et al. [9] use
it to detect unreliable spans in LLM outputs. Semantic entropy
clusters responses by their meanings (using bi-directional
entailment) and computes entropy across clusters to reveal
confabulations [29, 10]. In training, entropy-regularized objec-
tives, such as masked MLE with self-distillation, help reduce
epistemic uncertainty and improve OOD robustness [20].

Perplexity, the exponentiated average negative log-
likelihood per token, quantifies model “surprise”:

PPL(x) = exp

(
− 1

N

N∑
i=1

log2 p(xi | x<i)

)
(1)

1OpenVLA [17] was trained on 970k real-robot demonstrations drawn from
the Open X-Embodiment dataset.

It is directly linked to cross-entropy loss and is a standard
proxy for model confidence [12]. Lower perplexity correlates
with more coherent outputs and better human-judged quality.
It is also effective for OOD detection; Ren et al. [24]
show that thresholding sequence perplexity enables abstention
from poor outputs and improves summarization and translation
performance.

Overall, entropy and perplexity offer complementary quan-
titative measures of uncertainty of foundation models: entropy
provides fine-grained, distribution-aware confidence at the
token or sequence level, while perplexity delivers a holis-
tic “surprise” metric over full text. However, comprehensive
metrics of uncertainty for robotic foundation models have yet
to be developed, due to the higher dimension inputs, model
complexity, as well as less well-defined token spaces [11, 14].
In this study, we address this gap by investigating whether
uncertainty metrics used for LLMs also apply to VLAs.

C. Shared Control

Shared control systems, which arbitrate human control and
robots’ autonomous movements and provide assistance based
on the operator’s inferred goals, improve teleoperation by
speeding up task completion and requiring less input [16, 1,
21]. Control arbitration determines how authority is divided
between the human and robot, and is key to performance
and user experience in shared control [21]. Without clear
arbitration, mixed-initiative systems risk conflicts, suboptimal
actions, or unstable control. Dragan and Srinivasa [8] modeled
arbitration as policy blending, showing that the blending pa-
rameter α significantly affects stability and task success, with
poor choices causing deadlock or failure. Here, we investigate
using VLA uncertainty metrics as the arbitration signal.

III. APPROACH: UNCERTAINTY-BASED POLICY
INTERVENTION AND SHARED CONTROL

Our key insight is that the entropy and perplexity of
predicted action tokens in autoregressive models like π0-FAST
can serve as reliable indicators of confidence. We develop an
end-to-end system in which the robot either (1) requests a one-
step correction when uncertainty exceeds a threshold, or (2)
blends its actions with real-time human input using uncertainty
as a dynamic weighting factor. To support this, we compute
token-level uncertainty at each inference step of the π0-
FAST model. Since π0-FAST generates discrete action tokens
conditioned on image and language input, these tokens are
then decoded into continuous joint-space actions via a learned
compression scheme. At each decoding step, the model outputs
a distribution over its vocabulary of tokens. We compute
the Shannon entropy of the token distribution at each step
(reflecting distributional spread) and perplexity of the selected
token (Eq. 1), capturing the model’s surprise at its own choice.
Because action decoding occurs over a sequence of tokens
that do not correspond directly to individual robot actions,
we summarize uncertainty across each inference sequence.
Specifically, we compute the mean entropy and perplexity
across all non-padding tokens in a predicted sequence. These



summary values are emitted alongside the decoded actions and
serve as introspective signals of model confidence.

A. Threshold Selection

To identify meaningful thresholds for intervention, we ana-
lyze uncertainty statistics under in-distribution conditions. We
run inference on the entire training set by sampling images at
30hz from each episode in our training set, collecting entropy
and perplexity for each. This yields a distribution of expected
uncertainty values for the fine-tuned model over our training
data. We set thresholds for intervention at the mean plus one
standard deviation for each metric. This provides a principled
yet lightweight approximation of confidence intervals: values
above this threshold indicate that the model’s confidence is
significantly lower than during training. This heuristic ensures
that interventions are triggered only when the model deviates
from its typical, well-calibrated behavior.

B. Intervention Policy

During execution, we continuously monitor the model’s
sequence-level uncertainty. If the mean entropy or perplexity
of a predicted token sequence exceeds its respective threshold,
the robot pauses and explicitly requests assistance from the
human operator. The intervention policy is defined as:

afinal =

{
ahuman, if u > τ

amodel, otherwise
(2)

where u is the model’s sequence-level uncertainty (e.g., mean
entropy or perplexity), and τ is the threshold for interven-
tion. To facilitate this interaction, we use an Xbox controller
through which the human operator (in our experiments, one
of the authors) provides a single corrective action in Cartesian
space, primarily controlling the end-effector’s 3-DoF position
and the gripper. When an intervention is triggered, we activate
haptic feedback on the controller to notify the operator, and
temporarily slow down the control loop to ensure accurate
input. The human intervention is recorded and reflected in real-
time by the robot, after which the model resumes inference
from the updated state. This policy enables targeted assistance
at moments of high uncertainty while minimizing unnecessary
interruptions to autonomous execution.

C. Shared Control

In addition to discrete interventions, we implement a shared
control variant as an exploratory use of model uncertainty.
Previous research [21] has shown that a crucial component
of shared control is control arbitration. In this mode, we
treat the model as the intention inference engine, and then
use the model’s uncertainty of its output as the arbitration
parameter. The robot fuses its predicted action amodel with a
real-time human joystick action ahuman using an uncertainty-
aware blending rule:

afinal = λ · ahuman + (1− λ) · amodel (3)

where λ is computed as a normalized function of sequence-
level uncertainty (e.g., scaled entropy). High model uncertainty

TABLE I
SUMMARY OF TRAINING DATASET BY TASK TYPE.

Task Type Count Percentage

Lift 173 48.3%
Put 156 43.6%
Knock 14 3.9%
Stir 8 2.2%
Wipe 7 2.0%

increases human influence, whereas low uncertainty preserves
autonomous execution. This shared control system is used to
explore continuous human-model arbitration as a supplemen-
tary alternative to binary intervention.

IV. EXPERIMENTS

A. Preliminaries: Fine-Tuning a VLA Model for Real-World
Uncertainty Evaluation

To investigate token-level uncertainty in VLAs during
robotic manipulation, we first fine-tuned a pre-trained VLA
policy on our own robot setup. We selected π0-FAST as the
base model due to its demonstrated performance across diverse
manipulation tasks [23]. To create a realistic yet tractable
testbed, we used a toy kitchen environment (shown in Fig. 1)
inspired by prior VLA datasets such as BridgeV2 and Open-X
[27, 7].

Our robot platform consists of an xArm7 manipulator,
which was not part of the original π0-FAST training distribu-
tion. To adapt the model, we collected a new dataset using
a custom GELLO controller [28] that provides kinesthetic
teaching and joystick teleoperation for xArm. The dataset in-
cludes demonstrations across five high-level task types: Lift,
Put, Knock, Wipe, and Stir. All actions were recorded at
30 Hz and tokenized using the original π0-FAST discretization
pipeline.

Table I summarizes the distribution of task. In total, our
dataset consists of 80,419 action steps spanning 5 unique
task categories and 17 unique tasks. We performed full-
parameter fine-tuning on the pre-trained π0-FAST model using
this dataset and selected a checkpoint with low training loss
and strong performance during physical robot testing. This
checkpoint serves as the foundation for our uncertainty-aware
control policies.

B. Experimental Goals and Setup

We evaluate our intervention and shared control systems
on a diverse set of robot manipulation tasks to investigate
three key questions: (1) Can token-level uncertainty metrics
such as entropy and perplexity reliably trigger helpful human
interventions? (2) How do these policies compare to random
and no-intervention baselines? (3) Can shared control offer a
practical, continuous alternative for leveraging uncertainty in
human-robot collaboration?

Tasks were selected to span a range of difficulties and
training coverage. Some, like knock the tomato sauce
can, were rarely observed during training and represent un-
dertrained scenarios. Others, such as lift the corn and



put the corn in the pot, were consistently challeng-
ing for the base model. Well-represented tasks like lift the
eggplant and put the pot in the sink serve as
high-confidence benchmarks.

Our policy evaluation includes entropy- and perplexity-
based interventions, where the robot halts and requests a one-
step corrective action when uncertainty exceeds a predefined
threshold. These are compared against two baselines that
request interventions at random intervals: a conservative policy
with probability p = 0.1 and an aggressive policy with
p = 0.5. We also evaluate a shared control strategy where
robot actions are blended with human joystick input based on
uncertainty, and a no-intervention baseline where the model
operates fully autonomously.

C. Results

Fig. 2. Success rate per task and intervention policy for low-data and
challenging tasks.

a) Performance on Low-Data and Challenging Tasks.:
Several tasks have low representation in the data set: knock,
wipe, and stir. We observed that some tasks were
more challenging for the model: lift the corn, put
the corn in the pot, and put the pot in the
sink. We have one easy task as a control (lift the
eggplant). Figure 2 reports task success rates across low-
data and challenging settings. Uncertainty-based interventions
outperform the conservative random baseline (p = 0.1) and
often match the aggressive random baseline (p = 0.5),
while requiring fewer interventions on well-represented tasks.
Overall, the aggressive random baseline reaches near perfect
success rate due to excessive intervention request. For highly
underrepresented tasks, however, performance of conservative
random and uncertainty-based methods converge. This indi-
cates that when the model does not have enough training
examples, its uncertainty metrics act like random signals.

To evaluate intervention efficiency, we define a metric as the
ratio of task success to the number of interventions. Results
are shown in Figure 3.

b) Validation on High-Data Tasks.: Given that entropy
and perplexity appear most informative in settings with suffi-
cient training data, we also tested their effectiveness on tasks
that are well-represented in our training data. As shown in

Fig. 3. Efficiency per task and intervention policy for low-data and
challenging tasks.

r

Fig. 4. Timing of first intervention in an episode: before vs. after failure.

Figure 5-Left, both uncertainty metrics maintain high success
rates while reducing unnecessary interventions.

Efficiency results for the same tasks are shown in Figure 5-
Right. Uncertainty-based policies, especially entropy, maintain
strong performance while using fewer interventions.

c) Intervention Timing.: To understand when interven-
tions occur, we examined the first intervention in each episode
and labeled it as either before failure or after failure. We found
that entropy tends to trigger interventions after failures, while
perplexity is more likely to request assistance beforehand
(see Fig. 4). These results suggest that perplexity may serve
as a more proactive indicator of model uncertainty during
execution.

d) Shared Control vs. No Intervention: We also tested
whether token-level uncertainty can support continuous
human-robot collaboration without discrete pauses. Figure 6
compares the shared control strategy—using either entropy or
perplexity as a blending weight—against the no-intervention
baseline. Shared control improves performance across nearly
all tasks, without increasing task completion time, demon-
strating the feasibility of using uncertainty not just for failure
recovery, but also for proactive safety during execution.

These results show that token-level uncertainty enables
a flexible spectrum of confidence-aware control strategies,
including both discrete interventions and continuous shared
autonomy.

V. DISCUSSION

a) Uncertainty helps—but only when calibrated.: Our
experiments reveal both the strengths and limitations of using
token-level uncertainty metrics—entropy and perplexity—as
control signals for robot intervention. In tasks where the



Fig. 5. Left: Success rate per well-trained task and intervention policy. Right: Efficiency per task and intervention policy for high-data tasks.

Fig. 6. Success rate per task for shared control and no-intervention baseline.

model had moderate or high training exposure, these uncer-
tainty metrics improved performance by selectively requesting
human input. However, in low-data regimes, such as rare
or underrepresented task-object combinations, entropy and
perplexity behaved similarly to random intervention policies.
This highlights a key limitation: when the model is poorly
calibrated, its uncertainty estimates lose discriminative power
and cannot reliably signal recoverable states.

b) Entropy and perplexity behave differently over time.:
During deployment, we also noticed consistent behavioral dif-
ferences between entropy- and perplexity-based interventions.
Entropy tended to rise later in execution, often triggering after
an error had begun unfolding, while perplexity sometimes
spiked earlier, ahead of failure. While not rigorously quan-
tified, this observation suggests that entropy may reflect dis-
tributed indecision across a sequence, while perplexity reacts
more to localized surprise. Understanding and formalizing this
difference remains an interesting open question.

c) Uncertainty as a stabilizing signal.: Uncertainty-
based intervention not only corrected specific errors but also
helped reposition the robot into more confident areas of its
action distribution. Human input guided the robot out of
ambiguous regions and enabled more stable continuation. In
shared control, we observed similar stabilizing effects without
needing to pause execution: the robot increasingly deferred to
the human in high-uncertainty states. Together, these mecha-
nisms demonstrate the broader utility of model introspection

as a tool for adaptive control.
d) Toward active learning from intervention.: While our

current system treats intervention as a purely reactive process,
it also opens the door to active learning. Each human cor-
rection offers a targeted demonstration for a high-uncertainty
state. Future extensions could convert these interventions into
labeled training examples, enabling the robot to incrementally
improve its policy in regions where it is least confident.

VI. CONCLUSION

We introduced a system for introspective robot control that
leverages token-level uncertainty—specifically entropy and
perplexity—from a fine-tuned vision-language-action (VLA)
model. By monitoring these metrics during inference, our
system dynamically modulates robot behavior through either
discrete intervention or continuous shared control. Our exper-
iments show that when the model has been sufficiently trained
on relevant tasks, these uncertainty signals can improve task
success while reducing the frequency of unnecessary human
involvement. While we observed that entropy tends to trigger
reactive interventions and perplexity more often anticipates
failure, this distinction merits further quantitative study.

Beyond control, our system also offers a natural entry
point for active learning. Each time the robot expresses high
uncertainty and receives a corrective demonstration from a
human, it uncovers a region of its policy space where it lacks
confidence. These moments could be used to automatically
generate new training data, enabling continual fine-tuning
targeted at the model’s weakest regions. By closing the loop
between introspection and adaptation, future systems could
use uncertainty not only to stay safe at test time, but also
to improve autonomously over time.

This work lays the foundation for scalable, model-agnostic
uncertainty-aware control in robotic systems. Future directions
include formalizing the entropy/perplexity dynamics across
tasks, learning adaptive thresholds for intervention, and in-
tegrating intervention data into continual or curriculum-based
fine-tuning pipelines. In doing so, we move closer to collabo-
rative robots that know when they need help—and learn from
it.
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