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Abstract

In this paper, we introduce UNSEE, which001
stands for Unsupervised Non-Contrastive Sen-002
tence Embeddings. UNSEE demonstrates bet-003
ter performance compared to SimCSE in the004
Massive Text Embedding (MTEB) benchmark.005
We begin by highlighting the issue of represen-006
tation collapse that occurs with the replacement007
of contrastive objectives with non-contrastive008
objectives in SimCSE. Subsequently, we in-009
troduce a straightforward solution called the010
target network to mitigate this problem. This011
approach enables us to harness non-contrastive012
objectives while ensuring training stability013
and achieving performance improvements sim-014
ilar to those seen with contrastive objectives.015
We have reached peak performance in non-016
contrastive sentence embeddings through ex-017
tensive fine-tuning and optimization. These018
efforts have resulted in superior sentence rep-019
resentation models, emphasizing the impor-020
tance of careful tuning and optimization for021
non-contrastive objectives.022

1 Introduction023

Contrastive learning has been used quite exten-024

sively in the sentence embedding models (Zhang025

et al., 2021b; Liu et al., 2021; Reimers and026

Gurevych, 2019; Chuang et al., 2022; Gao et al.,027

2021b; Yuxin Jiang and Wang, 2022; Liu et al.,028

2022) which achieve remarkable results on MTEB029

benchmark (Muennighoff et al., 2023). The con-030

trastive objective serves the basic purpose of reg-031

ularizing the anisotropic embedding space which032

eventually allows the language models to be used033

as efficient embedding models.034

On the other hand, non-contrastive methods have035

not gained much popularity as a main objective036

for training sentence embedding models despite037

the shown regularization power in vision (Bardes038

et al., 2022). The primary reason is that non-039

contrastive objectives perform quite poorly com-040

pared to contrastive objectives when employed in041

the SimCSE setting. To illustrate, SCD (Klein 042

and Nabi, 2022) which demonstrated that Barlow 043

Twins (Zbontar et al., 2021) only achieves 67.57 in 044

STSBenchmark (Cer et al., 2017) test set whereas 045

SimCSE (Gao et al., 2021b) accomplishes 76.85. 046

Furthermore, we show that this is not peculiar 047

to only Barlow Twins and other well-known non- 048

contrastive methods (Bardes et al., 2022; Ozsoy 049

et al., 2022) also suffer from poor performance 050

as the top evaluation scores in Figure 2 are quite 051

worse than SimCSE which has the 82.5. 052

Even though the non-contrastive objectives have 053

inferior performance as an objective in a sentence 054

embedding framework, their inherent properties 055

such as needlessness to negative samples and avoid- 056

ance of dimensional collapse as shown in Ozsoy 057

et al. (2022) motivate us to further explore and 058

enhance the performance of non-contrastive objec- 059

tives. 060

Therefore, We first provide empirical evidence 061

for the representation collapse during the training 062

with non-contrastive objectives, specifically those 063

employing the siamese network, dropout as aug- 064

mentation and even with additional parametrization 065

with MLP layers and discuss the possible reasons 066

for the poor performance in section 4.1. 067

Moreover, we introduce the target network as a 068

novel augmentation method that further diversifies 069

the embeddings which empirically avoids the col- 070

lapse of the non-contrastive objectives. Moreover, 071

we achieve the absolute best performance out of 072

non-contrastive objectives with further finetuning 073

and architectural refinements which we detail in 074

section 4.2 and section 4.3. 075

All in all, we present a series of non-contrastive 076

models that we gather under the name UNSEE that 077

surpass SimCSE in the MTEB benchmark which 078

shows the potential of non-contrastive objectives as 079

base objectives for the training of state-of-the-art 080

embedding models. 081
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Figure 1: Projection Model is the same as SimCSE (Gao et al., 2021b). The Online keyword is to emphasize that the
model gets gradient updates. The Online Projection Model is similar to the Projection Model except for the Target
Encoder. The Target Encoder is an exponentially moving average of the Online network. Both outputs from Online
and Target Encoders pass through the same MLP layer in the Online Projection Model. Target MLP is not employed
due to the nature of fine-tuning which will slightly change the newly initialized MLP layer that will potentially
corrupt the embeddings. In Single Projection Model, Target embeddings do not go through the MLP layer unlike
Online Projection Model. Single Projection Model is identical to the architecture proposed in BSL (Zhang et al.,
2021a). We only use BERT-base (Devlin et al., 2018) as the Encoder.

2 Related Work082

Competitive models for sentence embeddings are083

constructed by adapting BERT (Devlin et al.,084

2018) with various configurations. Early sen-085

tence embedding models such as InferSent (Con-086

neau et al., 2017) and the Universal Sentence En-087

coder(Cer et al., 2018) are predominantly based on088

LSTM (Hochreiter and Schmidhuber, 1997) or the089

Transformer(Vaswani et al., 2017).090

The standard BERT (Devlin et al., 2018) model091

underperforms and operates at a slower pace. Sen-092

tence BERT abbreviated as SBERT (Reimers and093

Gurevych, 2019), represents a modified iteration of094

BERT which leverages siamese or triplet networks095

to generate meaningful and accurate sentence em-096

beddings. SBERT enhances accuracy and signifi-097

cantly reduces the time needed to identify the most098

similar pair of sentences within a set of 10,000099

sentences, reducing the process from 65 hours to100

just 5 seconds. Despite the incorporation of newer101

adjustments into BERT, a fundamental question102

arises: why are these modifications needed in the103

first instance?104

Li et al. (2020) highlights a concern regard-105

ing BERT’s sentence embeddings, specifically not-106

ing the presence of anisotropy in the embedding107

space. Their empirical findings demonstrate that108

the sentence embedding space is non-smoothing 109

and poorly defined in certain areas, making it chal- 110

lenging to employ cosine similarity directly. In or- 111

der to address this issue, they suggest a solution in- 112

volving the transformation of sentence embeddings 113

into a Gaussian distribution that is both smooth and 114

isotropic, achieved through the use of normalizing 115

flows. This flow-based generative model is trained 116

in an unsupervised manner to maximize the like- 117

lihood of generating BERT sentence embeddings 118

from a standard Gaussian latent variable. 119

Liu et al. (2021) introduce a method called Mir- 120

rorBERT, which enhances sentence representations 121

through a straightforward approach of duplicating 122

or slightly augmenting the text input, all without 123

relying on external supervision. These augmenta- 124

tions can occur either within the input space, in- 125

volving actions such as random span masking, or 126

within the feature space, employing techniques like 127

dropout. Dropout is not only implemented within 128

the MLP, but it also results in the deactivation of 129

attention heads, all while maintaining the model’s 130

performance in various other tasks. Furthermore, 131

it has been demonstrated that Mirror-BERT also 132

enhances isotropy. 133

Gao et al. (2021b) introduce SimCSE, which 134

employs conventional dropout as a means of in- 135

put augmentation. By feeding a single sentence 136
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Figure 2: The performance of various non-contrastive objectives on STSBenchmark evaluation dataset (Cer et al.,
2017) in the Projection Model or SimCSE setting. The difference between models is the number of MLP layers.
MLP layer is adopted from BSL (Zhang et al., 2021b).

through two passes, this approach generates two137

distinct feature embeddings, which can be treated138

as similar to two separate pairs, while other sen-139

tences serve as negative samples. This dropout-140

based approach offers a straightforward technique141

for creating positive-negative pairs in contrastive142

learning. Impressively, it achieves superior perfor-143

mance compared to Mirror-BERT with only mod-144

erate modifications.145

The current landscape of state-of-the-art embed-146

ding models (Xiao et al., 2023; Li et al., 2023; Su147

et al., 2023; Wang et al., 2022) is characterized148

by their training on exceedingly large and com-149

prehensive corpora. These corpora consist of a150

vast volume of both unlabeled and labelled text151

data. This extensive and diverse training data has152

been instrumental in the remarkable performance153

achievements of these models in MTEB (Muen-154

nighoff et al., 2023) even though they are funda-155

mentally identical with SimCSE.156

In contrast, models like SimCSE operate under157

a significantly different paradigm, being trained on158

a comparatively modest dataset comprising just 1159

million sentences. Given the substantial discrep-160

ancy in the scale and diversity of training data, mak-161

ing direct comparisons between SimCSE-like mod-162

els and these state-of-the-art embedding models163

appears implausible and may not yield meaningful164

insights into their relative capabilities.165

3 Background166

In this section, we provide an extensive overview167

of non-contrastive representation learning and the168

methods that form the core of our research.169

3.1 Non-Contrastive Representation Learning 170

Recent advancements in the field of self-supervised 171

visual learning have extended beyond the tradi- 172

tional contrastive approach, exploring innovative 173

avenues that reduce the reliance on negative sample 174

pairs. These methods primarily focus on enhanc- 175

ing the quality of independently augmented rep- 176

resentations, forming a subset of non-contrastive 177

frameworks. To address challenges such as model 178

collapse, various effective strategies have emerged 179

within this domain. These include the adoption 180

of asymmetric network architectures (Grill et al., 181

2020; Chen and He, 2020), feature decorrelation 182

techniques (Zbontar et al., 2021; Bardes et al., 183

2022; Ozsoy et al., 2022; Ermolov et al., 2020), 184

as well as clustering methods (Amrani and Bron- 185

stein, 2021; Assran et al., 2022; Caron et al., 2019, 186

2020), all of which contribute to the progress in 187

self-supervised visual learning while addressing 188

the challenges inherent to this domain. 189

3.2 CorInfoMax 190

CorInfoMax (Ozsoy et al., 2022) utilize a second- 191

order statistics-based mutual information measure 192

to gauge the level of correlation among its input 193

components. The primary aims of maximizing this 194

measure between different representations of the 195

same input are twofold: firstly, it mitigates the risk 196

of feature vector collapse by generating feature vec- 197

tors with non-degenerate covariances. Secondly, it 198

establishes relevance among these alternative rep- 199

resentations by enhancing their linear interdepen- 200

dence. 201

An approximation of this information maximiza- 202

tion objective simplifies into a Euclidean distance- 203

based objective function, which is further regulated 204

by the logarithm of the determinant of the feature 205
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Figure 3: The performance of various non-contrastive objectives on STSBenchmark (Cer et al., 2017) in the Online
Projection Model with SimCSE hyperparameters. The difference between models is the number of MLP layers.
MLP layer is adopted from BSL (Zhang et al., 2021b).

covariance matrix. This regularization term serves206

as a natural safeguard against feature space degen-207

eracy. Consequently, the proposed approach not208

only prevents complete output collapse to a single209

point but also effectively averts dimensional col-210

lapse by encouraging the dispersion of information211

across the entire feature space.212

3.3 Barlow Twins213

The Barlow Twins (Zbontar et al., 2021) is designed214

to prevent collapse in a natural way. It accom-215

plishes this by assessing the cross-correlation ma-216

trix between the outputs of two identical networks,217

which are fed with altered versions of a sample.218

The goal is to make this cross-correlation matrix as219

similar to the identity matrix as possible. Conse-220

quently, this approach ensures that the embedding221

vectors of these distorted sample versions become222

more alike, all while reducing redundancy among223

their individual components. Importantly, Barlow224

Twins operates without the need for large batch225

sizes or introducing any disparities between the226

network twins, such as the inclusion of a predictor227

network, gradient stopping, or utilizing a moving228

average for weight updates.229

3.4 VICReg230

VICReg (Bardes et al., 2022), short for Variance-231

Invariance-Covariance Regularization, is an ap-232

proach specifically designed to address the issue233

of collapse in a straightforward manner. It ac-234

complishes this by introducing a simple regular-235

ization term that focuses on the variance of the236

embeddings along each dimension individually. In237

addition to the variance component, VICReg in-238

corporates a mechanism that reduces redundancy239

and ensures decorrelation among the embeddings,240

achieved through covariance regularization.241

3.5 BYOL 242

BYOL (Grill et al., 2020) hinges on the utiliza- 243

tion of two distinct neural networks, namely the 244

online and target networks, which collaborate and 245

mutually enhance their learning processes. This 246

technique operates by presenting an augmented 247

view of an image to the online network, with the 248

objective of training it to predict the representation 249

of the same image as processed by the target net- 250

work but under a different augmented view. Simul- 251

taneously, the target network undergoes updates 252

through a slow-moving average mechanism based 253

on the evolving state of the online network. 254

This approach essentially fosters a dynamic inter- 255

play between the online and target networks, where 256

they iteratively adapt and refine their representa- 257

tions in response to the variations in augmented 258

views. Through this collaborative learning pro- 259

cess, BYOL aims to yield highly informative and 260

generalized feature representations, making it par- 261

ticularly valuable for self-supervised learning tasks, 262

where labelled data may be limited or unavailable. 263

4 From SimCSE to the UNSEE 264

In this section, we elaborate on the process of deriv- 265

ing the ultimate UNSEE models from SimCSE. We 266

utilize the STSBenchmark evaluation dataset (Cer 267

et al., 2017) to identify the optimal configuration. 268

We adopt a systematic approach, incrementally dis- 269

cussing enhancements and providing rationales for 270

each decision made. Lastly, SimCSE has an 82.5 271

score in the STSBenchmark. We exclude it inten- 272

tionally from our figures since the high gap ruins 273

the visualization in some experiments. 274

4



0 2 4 6 8 10
Evaluation Steps During Training

0.60

0.62

0.64

0.66

0.68

0.70
Sp

ea
rm

an
 C

or
re

la
tio

n
Barlow Twins on STSBenchmark

SingleProjection1-Target
SingleProjection2-Target
SingleProjection3-Target
SingleProjection4-Target

0 2 4 6 8 10
Evaluation Steps During Training

0.60

0.62

0.64

0.66

0.68

0.70

0.72

0.74

Sp
ea

rm
an

 C
or

re
la

tio
n

VICReg on STSBenchmark

SingleProjection1-Target
SingleProjection2-Target
SingleProjection3-Target
SingleProjection4-Target

0 2 4 6 8 10
Evaluation Steps During Training

0.60

0.62

0.64

0.66

0.68

0.70

0.72

0.74

Sp
ea

rm
an

 C
or

re
la

tio
n

CorInfoMax on STSBenchmark

SingleProjection1-Target
SingleProjection2-Target
SingleProjection3-Target
S ngleProjection4-Target

Figure 4: The performance of various non-contrastive objectives on STSBenchmark (Cer et al., 2017) in the Single
Projection Model with SimCSE hyperparameters.

4.1 Projection Model275

In Figure 1, the ’Projection model’ corresponds to276

the precise configuration outlined in SimCSE (Gao277

et al., 2021b), wherein dropout serves as a straight-278

forward augmentation technique.279

Figure 2 offers compelling evidence of substan-280

tial deficiencies in non-contrastive models when281

employed within the SimCSE framework. It’s con-282

ceivable to assert that these models undergo a repre-283

sentation collapse during their training phase. This284

leads to critical questions regarding the broader ver-285

satility and generalization capacity of such objec-286

tives, hinting at their potential effectiveness within287

constrained domains or contexts.288

Conversely, it’s important to note that dropout289

augmentation emerges as a pivotal element within290

the SimCSE paradigm. This observation prompts291

us to consider the possibility of exploring alter-292

native augmentation techniques in order to delve293

deeper into the potential inherent in non-contrastive294

objectives. This pursuit of diverse augmentation295

strategies could potentially unveil the true efficacy296

and versatility of these objectives, shedding light on297

their capabilities beyond their current limitations.298

4.2 Online Projection Model299

Given the significant underperformance of non-300

contrastive objectives, it’s crucial to search for new301

ways to enhance them. As noted by Gao (2021),302

most input space augmentations are not as effective303

as dropout. This discovery makes it doubtful that304

we will find an input augmentation method better305

than dropout.306

This realization has steered our exploration to-307

ward the development of a novel augmentation308

technique, namely, the utilization of a target net-309

work. This approach represents a relatively straight-310

forward feature space augmentation strategy de-311

signed to introduce greater diversity into the embed- 312

dings, surpassing the efficacy of traditional dropout. 313

One can even draw parallels to ’lagged dropout’, 314

wherein networks subject to dropout exhibit slight 315

variations, and the target network operates as a 316

slow-moving average of the online network, con- 317

tributing to the diversification of embeddings. 318

Figure 3 illustrates that the use of a target net- 319

work effectively prevents representation collapse 320

and ensures a more stable training process. How- 321

ever, it is worth noting that, even in scenarios where 322

representation collapse is avoided, the overall per- 323

formance remains subpar. The introduction of addi- 324

tional parametrization through MLP layers has had 325

only a marginal impact on improving performance. 326

One could make the argument that construct- 327

ing effective sentence embeddings poses a greater 328

challenge when non-contrastive objectives are em- 329

ployed, particularly when compared to vision- 330

related tasks. In the realm of contrastive learn- 331

ing, the process involves explicitly pushing data 332

samples away from each other to enhance discrimi- 333

nation. However, in the context of sentence embed- 334

dings with non-contrastive objectives, this process 335

becomes implicit. 336

To draw a parallel, consider a problem in com- 337

puter vision where every single sample is assigned 338

a distinct label. However, these samples also share 339

certain common labels among them. Similarly, 340

when training a sentence embedding model using 341

non-contrastive objectives, it mirrors this intricate 342

situation given that we use the dataset which con- 343

sists of randomly sampled Wikipedia sentences that 344

are collected in SimCSE (Gao et al., 2021b). Each 345

sentence in the dataset may be unique in its content, 346

yet there exist underlying semantic or syntactic re- 347

lationships among them, akin to the shared labels in 348

the vision problem. This inherent complexity and 349
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Figure 5: The performance of various non-contrastive objectives on STSBenchmark (Cer et al., 2017) in the Single
Projection Model with slightly optimized hyperparameters. The difference between models is the number of MLP
layers. MLP layer is adopted from BSL (Zhang et al., 2021b).

the need to implicitly capture these relationships350

contribute to the intricacy of the sentence embed-351

ding task when utilizing non-contrastive objectives.352

4.3 Single Projection Model353

Within the context of our online projection model,354

it is imperative to underscore the pivotal role played355

by MLP layers in the processing pipeline of both356

target and online embeddings. It is worth noting357

that the sentence embeddings themselves are origi-358

nally derived from the BERT model359

The MLP layers, however, should not be re-360

garded as static fixtures within our model architec-361

ture; rather, they assume a dynamic and transient362

role during the training phase. Their purpose is in-363

strumental in continuously shaping the embeddings364

to ensure effective loss minimisation. Nevertheless,365

it is essential to underscore that the outputs gen-366

erated by these MLP layers do not constitute the367

definitive embeddings employed for subsequent368

evaluation.369

This leads us to a compelling conjecture: What370

if we were to consider circumventing the MLP371

layers in the processing of the target network’s em-372

beddings? By establishing a direct, unmediated373

connection between the loss minimization process374

and the generation of embeddings, we endeavour to375

explore whether such architectural simplification376

could yield substantial advantages. This modifi-377

cation holds the potential to provide insights into378

whether a more streamlined approach might en-379

hance both the efficiency of loss minimization and380

the quality of the resultant embeddings, thereby381

refining the overall training process.382

The results in Figure 4 align closely with our hy-383

pothesis. Throughout the training process, the mod-384

els consistently demonstrated incremental improve-385

ments in performance, surpassing the achievements 386

of the previous model despite retaining identical 387

complexities and hyperparameters. 388

While these findings are undeniably promising, 389

it’s important to note that they have not yet reached 390

the level of performance exhibited by SimCSE. 391

This indicates that further optimization efforts are 392

warranted to bridge the gap and enable our models 393

to match the performance of their SimCSE coun- 394

terparts. Thus, there is room for refinement and 395

enhancement in pursuit of achieving comparable 396

or even superior performance. 397

We have managed to significantly enhance our 398

model’s performance by making relatively minor 399

adjustments to certain hyperparameters, specifi- 400

cally focusing on the learning rate, batch size, and 401

sequence length. The best hyperparameters are 1e- 402

4, 32 and 64 respectively. The decay rate is 0.999 403

and kept the same across all experiments. Remark- 404

ably, these subtle modifications have allowed us to 405

achieve the highest achievable scores among non- 406

contrastive objectives, all without delving into the 407

optimization of hyperparameters within the loss 408

objective. 409

It’s worth emphasizing that we have deliberately 410

chosen to adhere to default values for the objectives, 411

highlighting the robustness and transferability of 412

these objectives across different domains. This 413

observation underscores the versatility of the objec- 414

tives, as they continue to perform effectively even 415

when applied in contexts beyond their original do- 416

main. 417

The results depicted in Figure 5 do not represent 418

the pinnacle of our achievement. We have achieved 419

even better results by conducting more frequent 420

evaluations(20 evaluations per run) during the train- 421

ing process and implementing a checkpointing sys- 422

6



Class. Clust. PairClass. Rerank. Retr. STS Summ. Avg.
Num. Datasets (→) 12 11 3 4 15 10 1 56

Self-supervised methods

Glove 57.29 27.73 70.92 43.29 21.62 61.85 28.87 41.97
Komninos 57.65 26.57 72.94 44.75 21.22 62.47 30.49 42.06
BERT 61.66 30.12 56.33 43.44 10.59 54.36 29.82 38.33
SimCSE 62.50 29.04 70.33 46.47 20.29 74.33 31.15 45.45
UNSEE-BYOL(Ours) 62.55 27.81 65.3 46.47 23.11 73.04 30.68 45.46
UNSEE-Barlow(Ours) 62.76 30.04 65.7 46.9 23.06 72.15 30.25 45.82
UNSEE-CorInfoMax(Ours) 62.85 28.90 67.87 46.81 24.80 72.31 30.81 46.22
UNSEE-VICReg(Ours) 62.58 28.44 70.24 47.23 24.79 73.11 30.34 46.37

Table 1: Average of the main metric from Muennighoff et al. (2023) per task per model on MTEB English subsets.
SimCSE, BERT, Komnimos, and Glove scores are taken from Muennighoff et al. (2023)

tem to capture the best-performing model. These423

specific runs were designed to align with our prior424

experiments, aimed at illustrating the efficacy of425

the adjustments made.426

5 Evaluation Dataset427

5.1 MTEB Benchmark428

The primary goal of the Massive Text Embedding429

Benchmark (MTEB) (Muennighoff et al., 2023) is430

to offer a comprehensive assessment of model per-431

formance across a diverse range of text embedding432

tasks. It serves as a valuable resource for identi-433

fying text embeddings that exhibit universal appli-434

cability across a wide spectrum of tasks. MTEB435

encompasses an extensive collection of 58 datasets436

spanning 112 languages, encompassing 8 distinct437

embedding tasks, including bitext mining, classi-438

fication, clustering, pair classification, reranking,439

retrieval, STS (Semantic Textual Similarity), and440

summarization.441

6 BYOL, BSL and Final Results442

In our paper, we extensively examine and engage in443

discussions concerning non-contrastive objectives444

that incorporate a siamese network architecture.445

However, it’s important to note that our most effec-446

tive configuration closely resembles BYOL (Grill447

et al., 2020), and we have conducted training448

to incorporate this configuration into our results.449

The ultimate model we present is a variation of450

BSL (Zhang et al., 2021b) with dropout serving as451

an augmentation method.452

Throughout our experimentation, it becomes evi-453

dent that non-contrastive methods consistently out-454

perform SimCSE as the table 1 verifies. The de-455

gree of improvement varies, with some methods456

showing only marginal enhancements, while others 457

exhibit significantly more substantial gains. This 458

overarching pattern underscores the compelling 459

impact of non-contrastive objectives on augment- 460

ing BERT’s proficiency as a sentence embedding 461

model. 462

Our findings collectively reinforce the notion 463

that non-contrastive methods contribute to a no- 464

table expansion of BERT’s capabilities, effectively 465

harnessing its potential to serve as a highly effec- 466

tive and versatile tool for generating sentence em- 467

beddings. This empirical evidence underscores 468

the transformative role these methods play in en- 469

hancing the utility and adaptability of BERT across 470

various sentence-related tasks. 471

7 Conclusion 472

UNSEE (Unsupervised Non-Contrastive Sentence 473

Embeddings) is a simple framework for non- 474

contrastive sentence embeddings, which outper- 475

forms SimCSE in the Massive Text Embedding 476

Benchmark (MTEB). We address representation 477

collapse using a simple solution called the target 478

network, enabling stable training and achieving 479

performance similar to contrastive objectives. Our 480

meticulous fine-tuning leads to performant sen- 481

tence embedding models, showcasing the signifi- 482

cance of thoughtful optimization in advancing non- 483

contrastive methods for sentence representation. 484

8 Limitations 485

UNSEE models have inherent limitations stem- 486

ming from their training data, which encompasses 487

only one million sentences. In contrast, state- 488

of-the-art embedding models undergo training on 489

datasets comprising over a hundred million, or even 490

7



more than a billion pairs. As a result, our models491

are expected to exhibit inferior performance when492

compared to models specifically designed for sen-493

tence embedding. We recommend considering the494

top-performing models on the MTEB leaderboard495

for more effective practical use.496

9 Ethics Statement497

The models under examination, UNSEE-*, lack498

generative abilities, ensuring their incapacity to499

produce unfair, biased, or harmful content. The500

datasets utilized in this study have been meticu-501

lously selected from reputable repositories known502

for their safety in research applications, with strict503

measures in place to prevent the inclusion of per-504

sonal information or offensive material.505
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Fangyu Liu, Ivan Vulić, Anna Korhonen, and Nigel634
Collier. 2021. Fast, effective, and self-supervised:635
Transforming masked language models into universal636
lexical and sentence encoders. In Proceedings of the637
2021 Conference on Empirical Methods in Natural638
Language Processing, pages 1442–1459, Online and639
Punta Cana, Dominican Republic. Association for640
Computational Linguistics.641

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-642
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,643
Luke Zettlemoyer, and Veselin Stoyanov. 2019.644
Roberta: A robustly optimized bert pretraining ap-645
proach. ArXiv, abs/1907.11692.646

Lajanugen Logeswaran and Honglak Lee. 2018. An647
efficient framework for learning sentence representa-648
tions. ArXiv, abs/1803.02893.649

Niklas Muennighoff, Nouamane Tazi, Loic Magne, and 650
Nils Reimers. 2023. MTEB: Massive text embedding 651
benchmark. In Proceedings of the 17th Conference 652
of the European Chapter of the Association for Com- 653
putational Linguistics, pages 2014–2037, Dubrovnik, 654
Croatia. Association for Computational Linguistics. 655

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, 656
Sam Gross, Nathan Ng, David Grangier, and Michael 657
Auli. 2019. fairseq: A fast, extensible toolkit for 658
sequence modeling. In Proceedings of NAACL-HLT 659
2019: Demonstrations. 660

Serdar Ozsoy, Shadi Hamdan, Sercan Ö. Arik, Deniz 661
Yuret, and Alper T. Erdogan. 2022. Self-supervised 662
learning with an information maximization criterion. 663

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: 664
Sentence embeddings using siamese bert-networks. 665
In Proceedings of the 2019 Conference on Empirical 666
Methods in Natural Language Processing. Associa- 667
tion for Computational Linguistics. 668

Victor Sanh, Lysandre Debut, Julien Chaumond, and 669
Thomas Wolf. 2019. Distilbert, a distilled version 670
of bert: smaller, faster, cheaper and lighter. ArXiv, 671
abs/1910.01108. 672

Hongjin Su, Weijia Shi, Jungo Kasai, Yizhong Wang, 673
Yushi Hu, Mari Ostendorf, Wen tau Yih, Noah A. 674
Smith, Luke Zettlemoyer, and Tao Yu. 2023. One 675
embedder, any task: Instruction-finetuned text em- 676
beddings. 677

Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob 678
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz 679
Kaiser, and Illia Polosukhin. 2017. Attention is all 680
you need. In NIPS. 681

Liang Wang, Nan Yang, Xiaolong Huang, Binx- 682
ing Jiao, Linjun Yang, Daxin Jiang, Rangan Ma- 683
jumder, and Furu Wei. 2022. Text embeddings by 684
weakly-supervised contrastive pre-training. ArXiv, 685
abs/2212.03533. 686

Tongzhou Wang and Phillip Isola. 2020. Understand- 687
ing contrastive representation learning through align- 688
ment and uniformity on the hypersphere. ArXiv, 689
abs/2005.10242. 690

Adina Williams, Nikita Nangia, and Samuel Bowman. 691
2018. A broad-coverage challenge corpus for sen- 692
tence understanding through inference. In Proceed- 693
ings of the 2018 Conference of the North American 694
Chapter of the Association for Computational Lin- 695
guistics: Human Language Technologies, Volume 696
1 (Long Papers), pages 1112–1122, New Orleans, 697
Louisiana. Association for Computational Linguis- 698
tics. 699

Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas 700
Muennighoff. 2023. C-pack: Packaged resources 701
to advance general chinese embedding. 702

Linhan Zhang Yuxin Jiang and Wei Wang. 2022. Im- 703
proved universal sentence embeddings with prompt- 704
based contrastive learning and energy-based learning. 705

9

https://api.semanticscholar.org/CorpusID:2937095
https://api.semanticscholar.org/CorpusID:2937095
https://api.semanticscholar.org/CorpusID:2937095
https://api.semanticscholar.org/CorpusID:1915014
https://api.semanticscholar.org/CorpusID:1915014
https://api.semanticscholar.org/CorpusID:1915014
https://api.semanticscholar.org/CorpusID:9126867
https://api.semanticscholar.org/CorpusID:247450777
https://api.semanticscholar.org/CorpusID:247450777
https://api.semanticscholar.org/CorpusID:247450777
https://doi.org/10.18653/v1/2020.emnlp-main.733
https://doi.org/10.18653/v1/2020.emnlp-main.733
https://doi.org/10.18653/v1/2020.emnlp-main.733
http://arxiv.org/abs/2308.03281
http://arxiv.org/abs/2308.03281
http://arxiv.org/abs/2308.03281
http://arxiv.org/abs/2308.03281
http://arxiv.org/abs/2308.03281
https://doi.org/10.18653/v1/2021.emnlp-main.109
https://doi.org/10.18653/v1/2021.emnlp-main.109
https://doi.org/10.18653/v1/2021.emnlp-main.109
https://doi.org/10.18653/v1/2021.emnlp-main.109
https://doi.org/10.18653/v1/2021.emnlp-main.109
https://api.semanticscholar.org/CorpusID:198953378
https://api.semanticscholar.org/CorpusID:198953378
https://api.semanticscholar.org/CorpusID:198953378
https://api.semanticscholar.org/CorpusID:3525802
https://api.semanticscholar.org/CorpusID:3525802
https://api.semanticscholar.org/CorpusID:3525802
https://api.semanticscholar.org/CorpusID:3525802
https://api.semanticscholar.org/CorpusID:3525802
https://doi.org/10.18653/v1/2023.eacl-main.148
https://doi.org/10.18653/v1/2023.eacl-main.148
https://doi.org/10.18653/v1/2023.eacl-main.148
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
http://arxiv.org/abs/2212.09741
http://arxiv.org/abs/2212.09741
http://arxiv.org/abs/2212.09741
http://arxiv.org/abs/2212.09741
http://arxiv.org/abs/2212.09741
https://api.semanticscholar.org/CorpusID:13756489
https://api.semanticscholar.org/CorpusID:13756489
https://api.semanticscholar.org/CorpusID:13756489
https://api.semanticscholar.org/CorpusID:254366618
https://api.semanticscholar.org/CorpusID:254366618
https://api.semanticscholar.org/CorpusID:254366618
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
http://arxiv.org/abs/2309.07597
http://arxiv.org/abs/2309.07597
http://arxiv.org/abs/2309.07597


Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and706
Stéphane Deny. 2021. Barlow twins: Self-supervised707
learning via redundancy reduction. In ICML.708

Yan Zhang, Ruidan He, Zuozhu Liu, Lidong Bing, and709
Haizhou Li. 2021a. Bootstrapped unsupervised sen-710
tence representation learning. In Annual Meeting of711
the Association for Computational Linguistics.712

Yan Zhang, Ruidan He, Zuozhu Liu, Lidong Bing, and713
Haizhou Li. 2021b. Bootstrapped unsupervised sen-714
tence representation learning. In Proceedings of the715
59th Annual Meeting of the Association for Compu-716
tational Linguistics and the 11th International Joint717
Conference on Natural Language Processing (Vol-718
ume 1: Long Papers), pages 5168–5180, Online. As-719
sociation for Computational Linguistics.720

A Training Details721

We implement UNSEE with SentenceTransformers722

from (Reimers and Gurevych, 2019). To compare723

our models while developing them we keep the hy-724

perparameters as same as the SimCSE which are725

64 for batch size, 3e-5 for learning rate and 32 for726

the sequence length. When the target network is727

employed, the decay rate is 0.999 throughout all728

experiments. Our best models have 32 for the batch729

size, 1e-4 for the learning rate, and 64 for the se-730

quence length, decay rate is the same. Best BYOL731

and VICReg models use 3 layers of MLP. CorIn-732

foMax and Barlow Twins use 4. We use the same733

MLP architecture as BSL (Zhang et al., 2021b).734

In Barlow Twins, we use the same λ as the orig-735

inal paper which is 0.0051. In VICReg, we use736

the same hyperparameter weights from the original737

paper which are 25 for invariance and variance, 1738

for covariance. In CorInfoMax, we use R_ini=1,739

la_=0.01,la_mu=0.01, R_eps_weight=1e-6, 0.2 for740

covariance and 2000 for invariance loss.741

B Computational Requirements742

We only use Tesla T4 GPUs for our experiments.743
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