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Abstract

In this paper, we introduce UNSEE, which
stands for Unsupervised Non-Contrastive Sen-
tence Embeddings. UNSEE demonstrates bet-
ter performance compared to SimCSE in the
Massive Text Embedding (MTEB) benchmark.
We begin by highlighting the issue of represen-
tation collapse that occurs with the replacement
of contrastive objectives with non-contrastive
objectives in SimCSE. Subsequently, we in-
troduce a straightforward solution called the
target network to mitigate this problem. This
approach enables us to harness non-contrastive
objectives while ensuring training stability
and achieving performance improvements sim-
ilar to those seen with contrastive objectives.
We have reached peak performance in non-
contrastive sentence embeddings through ex-
tensive fine-tuning and optimization. These
efforts have resulted in superior sentence rep-
resentation models, emphasizing the impor-
tance of careful tuning and optimization for
non-contrastive objectives.

1 Introduction

Contrastive learning has been used quite exten-
sively in the sentence embedding models (Zhang
et al., 2021b; Liu et al.,, 2021; Reimers and
Gurevych, 2019; Chuang et al., 2022; Gao et al.,
2021b; Yuxin Jiang and Wang, 2022; Liu et al.,
2022) which achieve remarkable results on MTEB
benchmark (Muennighoff et al., 2023). The con-
trastive objective serves the basic purpose of reg-
ularizing the anisotropic embedding space which
eventually allows the language models to be used
as efficient embedding models.

On the other hand, non-contrastive methods have
not gained much popularity as a main objective
for training sentence embedding models despite
the shown regularization power in vision (Bardes
et al., 2022). The primary reason is that non-
contrastive objectives perform quite poorly com-
pared to contrastive objectives when employed in

the SimCSE setting. To illustrate, SCD (Klein
and Nabi, 2022) which demonstrated that Barlow
Twins (Zbontar et al., 2021) only achieves 67.57 in
STSBenchmark (Cer et al., 2017) test set whereas
SimCSE (Gao et al., 2021b) accomplishes 76.85.

Furthermore, we show that this is not peculiar
to only Barlow Twins and other well-known non-
contrastive methods (Bardes et al., 2022; Ozsoy
et al., 2022) also suffer from poor performance
as the top evaluation scores in Figure 2 are quite
worse than SImCSE which has the 82.5.

Even though the non-contrastive objectives have
inferior performance as an objective in a sentence
embedding framework, their inherent properties
such as needlessness to negative samples and avoid-
ance of dimensional collapse as shown in Ozsoy
et al. (2022) motivate us to further explore and
enhance the performance of non-contrastive objec-
tives.

Therefore, We first provide empirical evidence
for the representation collapse during the training
with non-contrastive objectives, specifically those
employing the siamese network, dropout as aug-
mentation and even with additional parametrization
with MLP layers and discuss the possible reasons
for the poor performance in section 4.1.

Moreover, we introduce the target network as a
novel augmentation method that further diversifies
the embeddings which empirically avoids the col-
lapse of the non-contrastive objectives. Moreover,
we achieve the absolute best performance out of
non-contrastive objectives with further finetuning
and architectural refinements which we detail in
section 4.2 and section 4.3.

All in all, we present a series of non-contrastive
models that we gather under the name UNSEE that
surpass SimCSE in the MTEB benchmark which
shows the potential of non-contrastive objectives as
base objectives for the training of state-of-the-art
embedding models.
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Figure 1: Projection Model is the same as SimCSE (Gao et al., 2021b). The Online keyword is to emphasize that the
model gets gradient updates. The Online Projection Model is similar to the Projection Model except for the Target
Encoder. The Target Encoder is an exponentially moving average of the Online network. Both outputs from Online
and Target Encoders pass through the same MLP layer in the Online Projection Model. Target MLP is not employed
due to the nature of fine-tuning which will slightly change the newly initialized MLP layer that will potentially
corrupt the embeddings. In Single Projection Model, Target embeddings do not go through the MLP layer unlike
Online Projection Model. Single Projection Model is identical to the architecture proposed in BSL (Zhang et al.,
2021a). We only use BERT-base (Devlin et al., 2018) as the Encoder.

2 Related Work

Competitive models for sentence embeddings are
constructed by adapting BERT (Devlin et al.,
2018) with various configurations. Early sen-
tence embedding models such as InferSent (Con-
neau et al., 2017) and the Universal Sentence En-
coder(Cer et al., 2018) are predominantly based on
LSTM (Hochreiter and Schmidhuber, 1997) or the
Transformer(Vaswani et al., 2017).

The standard BERT (Devlin et al., 2018) model
underperforms and operates at a slower pace. Sen-
tence BERT abbreviated as SBERT (Reimers and
Gurevych, 2019), represents a modified iteration of
BERT which leverages siamese or triplet networks
to generate meaningful and accurate sentence em-
beddings. SBERT enhances accuracy and signifi-
cantly reduces the time needed to identify the most
similar pair of sentences within a set of 10,000
sentences, reducing the process from 65 hours to
just 5 seconds. Despite the incorporation of newer
adjustments into BERT, a fundamental question
arises: why are these modifications needed in the
first instance?

Li et al. (2020) highlights a concern regard-
ing BERT’s sentence embeddings, specifically not-
ing the presence of anisotropy in the embedding
space. Their empirical findings demonstrate that

the sentence embedding space is non-smoothing
and poorly defined in certain areas, making it chal-
lenging to employ cosine similarity directly. In or-
der to address this issue, they suggest a solution in-
volving the transformation of sentence embeddings
into a Gaussian distribution that is both smooth and
isotropic, achieved through the use of normalizing
flows. This flow-based generative model is trained
in an unsupervised manner to maximize the like-
lihood of generating BERT sentence embeddings
from a standard Gaussian latent variable.

Liu et al. (2021) introduce a method called Mir-
rorBERT, which enhances sentence representations
through a straightforward approach of duplicating
or slightly augmenting the text input, all without
relying on external supervision. These augmenta-
tions can occur either within the input space, in-
volving actions such as random span masking, or
within the feature space, employing techniques like
dropout. Dropout is not only implemented within
the MLP, but it also results in the deactivation of
attention heads, all while maintaining the model’s
performance in various other tasks. Furthermore,
it has been demonstrated that Mirror-BERT also
enhances isotropy.

Gao et al. (2021b) introduce SimCSE, which
employs conventional dropout as a means of in-
put augmentation. By feeding a single sentence

—>» | Non-Contrastive
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Figure 2: The performance of various non-contrastive objectives on STSBenchmark evaluation dataset (Cer et al.,
2017) in the Projection Model or SimCSE setting. The difference between models is the number of MLP layers.

MLP layer is adopted from BSL (Zhang et al., 2021b).

through two passes, this approach generates two
distinct feature embeddings, which can be treated
as similar to two separate pairs, while other sen-
tences serve as negative samples. This dropout-
based approach offers a straightforward technique
for creating positive-negative pairs in contrastive
learning. Impressively, it achieves superior perfor-
mance compared to Mirror-BERT with only mod-
erate modifications.

The current landscape of state-of-the-art embed-
ding models (Xiao et al., 2023; Li et al., 2023; Su
et al., 2023; Wang et al., 2022) is characterized
by their training on exceedingly large and com-
prehensive corpora. These corpora consist of a
vast volume of both unlabeled and labelled text
data. This extensive and diverse training data has
been instrumental in the remarkable performance
achievements of these models in MTEB (Muen-
nighoff et al., 2023) even though they are funda-
mentally identical with SimCSE.

In contrast, models like SImCSE operate under
a significantly different paradigm, being trained on
a comparatively modest dataset comprising just 1
million sentences. Given the substantial discrep-
ancy in the scale and diversity of training data, mak-
ing direct comparisons between SimCSE-like mod-
els and these state-of-the-art embedding models
appears implausible and may not yield meaningful
insights into their relative capabilities.

3 Background

In this section, we provide an extensive overview
of non-contrastive representation learning and the
methods that form the core of our research.

3.1 Non-Contrastive Representation Learning

Recent advancements in the field of self-supervised
visual learning have extended beyond the tradi-
tional contrastive approach, exploring innovative
avenues that reduce the reliance on negative sample
pairs. These methods primarily focus on enhanc-
ing the quality of independently augmented rep-
resentations, forming a subset of non-contrastive
frameworks. To address challenges such as model
collapse, various effective strategies have emerged
within this domain. These include the adoption
of asymmetric network architectures (Grill et al.,
2020; Chen and He, 2020), feature decorrelation
techniques (Zbontar et al., 2021; Bardes et al.,
2022; Ozsoy et al., 2022; Ermolov et al., 2020),
as well as clustering methods (Amrani and Bron-
stein, 2021; Assran et al., 2022; Caron et al., 2019,
2020), all of which contribute to the progress in
self-supervised visual learning while addressing
the challenges inherent to this domain.

3.2 CorInfoMax

CorInfoMax (Ozsoy et al., 2022) utilize a second-
order statistics-based mutual information measure
to gauge the level of correlation among its input
components. The primary aims of maximizing this
measure between different representations of the
same input are twofold: firstly, it mitigates the risk
of feature vector collapse by generating feature vec-
tors with non-degenerate covariances. Secondly, it
establishes relevance among these alternative rep-
resentations by enhancing their linear interdepen-
dence.

An approximation of this information maximiza-
tion objective simplifies into a Euclidean distance-
based objective function, which is further regulated
by the logarithm of the determinant of the feature

CorinfoMax on STSBenchmark
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Figure 3: The performance of various non-contrastive objectives on STSBenchmark (Cer et al., 2017) in the Online
Projection Model with SimCSE hyperparameters. The difference between models is the number of MLP layers.

MLP layer is adopted from BSL (Zhang et al., 2021b).

covariance matrix. This regularization term serves
as a natural safeguard against feature space degen-
eracy. Consequently, the proposed approach not
only prevents complete output collapse to a single
point but also effectively averts dimensional col-
lapse by encouraging the dispersion of information
across the entire feature space.

3.3 Barlow Twins

The Barlow Twins (Zbontar et al., 2021) is designed
to prevent collapse in a natural way. It accom-
plishes this by assessing the cross-correlation ma-
trix between the outputs of two identical networks,
which are fed with altered versions of a sample.
The goal is to make this cross-correlation matrix as
similar to the identity matrix as possible. Conse-
quently, this approach ensures that the embedding
vectors of these distorted sample versions become
more alike, all while reducing redundancy among
their individual components. Importantly, Barlow
Twins operates without the need for large batch
sizes or introducing any disparities between the
network twins, such as the inclusion of a predictor
network, gradient stopping, or utilizing a moving
average for weight updates.

34 VICReg

VICReg (Bardes et al., 2022), short for Variance-
Invariance-Covariance Regularization, is an ap-
proach specifically designed to address the issue
of collapse in a straightforward manner. It ac-
complishes this by introducing a simple regular-
ization term that focuses on the variance of the
embeddings along each dimension individually. In
addition to the variance component, VICReg in-
corporates a mechanism that reduces redundancy
and ensures decorrelation among the embeddings,
achieved through covariance regularization.

3.5 BYOL

BYOL (Grill et al., 2020) hinges on the utiliza-
tion of two distinct neural networks, namely the
online and target networks, which collaborate and
mutually enhance their learning processes. This
technique operates by presenting an augmented
view of an image to the online network, with the
objective of training it to predict the representation
of the same image as processed by the target net-
work but under a different augmented view. Simul-
taneously, the target network undergoes updates
through a slow-moving average mechanism based
on the evolving state of the online network.

This approach essentially fosters a dynamic inter-
play between the online and target networks, where
they iteratively adapt and refine their representa-
tions in response to the variations in augmented
views. Through this collaborative learning pro-
cess, BYOL aims to yield highly informative and
generalized feature representations, making it par-
ticularly valuable for self-supervised learning tasks,
where labelled data may be limited or unavailable.

4 From SimCSE to the UNSEE

In this section, we elaborate on the process of deriv-
ing the ultimate UNSEE models from SimCSE. We
utilize the STSBenchmark evaluation dataset (Cer
et al., 2017) to identify the optimal configuration.
We adopt a systematic approach, incrementally dis-
cussing enhancements and providing rationales for
each decision made. Lastly, SImCSE has an 82.5
score in the STSBenchmark. We exclude it inten-
tionally from our figures since the high gap ruins
the visualization in some experiments.
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Figure 4: The performance of various non-contrastive objectives on STSBenchmark (Cer et al., 2017) in the Single

Projection Model with SimCSE hyperparameters.

4.1 Projection Model

In Figure 1, the ’Projection model’ corresponds to
the precise configuration outlined in SimCSE (Gao
et al., 2021b), wherein dropout serves as a straight-
forward augmentation technique.

Figure 2 offers compelling evidence of substan-
tial deficiencies in non-contrastive models when
employed within the SImCSE framework. It’s con-
ceivable to assert that these models undergo a repre-
sentation collapse during their training phase. This
leads to critical questions regarding the broader ver-
satility and generalization capacity of such objec-
tives, hinting at their potential effectiveness within
constrained domains or contexts.

Conversely, it’s important to note that dropout
augmentation emerges as a pivotal element within
the SimCSE paradigm. This observation prompts
us to consider the possibility of exploring alter-
native augmentation techniques in order to delve
deeper into the potential inherent in non-contrastive
objectives. This pursuit of diverse augmentation
strategies could potentially unveil the true efficacy
and versatility of these objectives, shedding light on
their capabilities beyond their current limitations.

4.2 Online Projection Model

Given the significant underperformance of non-
contrastive objectives, it’s crucial to search for new
ways to enhance them. As noted by Gao (2021),
most input space augmentations are not as effective
as dropout. This discovery makes it doubtful that
we will find an input augmentation method better
than dropout.

This realization has steered our exploration to-
ward the development of a novel augmentation
technique, namely, the utilization of a target net-
work. This approach represents a relatively straight-
forward feature space augmentation strategy de-

signed to introduce greater diversity into the embed-
dings, surpassing the efficacy of traditional dropout.
One can even draw parallels to ’lagged dropout’,
wherein networks subject to dropout exhibit slight
variations, and the target network operates as a
slow-moving average of the online network, con-
tributing to the diversification of embeddings.

Figure 3 illustrates that the use of a target net-
work effectively prevents representation collapse
and ensures a more stable training process. How-
ever, it is worth noting that, even in scenarios where
representation collapse is avoided, the overall per-
formance remains subpar. The introduction of addi-
tional parametrization through MLP layers has had
only a marginal impact on improving performance.

One could make the argument that construct-
ing effective sentence embeddings poses a greater
challenge when non-contrastive objectives are em-
ployed, particularly when compared to vision-
related tasks. In the realm of contrastive learn-
ing, the process involves explicitly pushing data
samples away from each other to enhance discrimi-
nation. However, in the context of sentence embed-
dings with non-contrastive objectives, this process
becomes implicit.

To draw a parallel, consider a problem in com-
puter vision where every single sample is assigned
a distinct label. However, these samples also share
certain common labels among them. Similarly,
when training a sentence embedding model using
non-contrastive objectives, it mirrors this intricate
situation given that we use the dataset which con-
sists of randomly sampled Wikipedia sentences that
are collected in SimCSE (Gao et al., 2021b). Each
sentence in the dataset may be unique in its content,
yet there exist underlying semantic or syntactic re-
lationships among them, akin to the shared labels in
the vision problem. This inherent complexity and

Evaluation Steps During Training
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Figure 5: The performance of various non-contrastive objectives on STSBenchmark (Cer et al., 2017) in the Single
Projection Model with slightly optimized hyperparameters. The difference between models is the number of MLP
layers. MLP layer is adopted from BSL (Zhang et al., 2021b).

the need to implicitly capture these relationships
contribute to the intricacy of the sentence embed-
ding task when utilizing non-contrastive objectives.

4.3 Single Projection Model

Within the context of our online projection model,
it is imperative to underscore the pivotal role played
by MLP layers in the processing pipeline of both
target and online embeddings. It is worth noting
that the sentence embeddings themselves are origi-
nally derived from the BERT model

The MLP layers, however, should not be re-
garded as static fixtures within our model architec-
ture; rather, they assume a dynamic and transient
role during the training phase. Their purpose is in-
strumental in continuously shaping the embeddings
to ensure effective loss minimisation. Nevertheless,
it is essential to underscore that the outputs gen-
erated by these MLP layers do not constitute the
definitive embeddings employed for subsequent
evaluation.

This leads us to a compelling conjecture: What
if we were to consider circumventing the MLP
layers in the processing of the target network’s em-
beddings? By establishing a direct, unmediated
connection between the loss minimization process
and the generation of embeddings, we endeavour to
explore whether such architectural simplification
could yield substantial advantages. This modifi-
cation holds the potential to provide insights into
whether a more streamlined approach might en-
hance both the efficiency of loss minimization and
the quality of the resultant embeddings, thereby
refining the overall training process.

The results in Figure 4 align closely with our hy-
pothesis. Throughout the training process, the mod-
els consistently demonstrated incremental improve-

ments in performance, surpassing the achievements
of the previous model despite retaining identical
complexities and hyperparameters.

While these findings are undeniably promising,
it’s important to note that they have not yet reached
the level of performance exhibited by SimCSE.
This indicates that further optimization efforts are
warranted to bridge the gap and enable our models
to match the performance of their SimCSE coun-
terparts. Thus, there is room for refinement and
enhancement in pursuit of achieving comparable
or even superior performance.

We have managed to significantly enhance our
model’s performance by making relatively minor
adjustments to certain hyperparameters, specifi-
cally focusing on the learning rate, batch size, and
sequence length. The best hyperparameters are le-
4, 32 and 64 respectively. The decay rate is 0.999
and kept the same across all experiments. Remark-
ably, these subtle modifications have allowed us to
achieve the highest achievable scores among non-
contrastive objectives, all without delving into the
optimization of hyperparameters within the loss
objective.

It’s worth emphasizing that we have deliberately
chosen to adhere to default values for the objectives,
highlighting the robustness and transferability of
these objectives across different domains. This
observation underscores the versatility of the objec-
tives, as they continue to perform effectively even
when applied in contexts beyond their original do-
main.

The results depicted in Figure 5 do not represent
the pinnacle of our achievement. We have achieved
even better results by conducting more frequent
evaluations(20 evaluations per run) during the train-
ing process and implementing a checkpointing sys-
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Class. Clust. PairClass. Rerank. Retr. STS Summ. Avg.
Num. Datasets (—) 12 11 3 4 15 10 1 56
Self-supervised methods
Glove 5729 27.73 70.92 4329 21.62 61.85 28.87 41.97
Komninos 57.65 26.57 72.94 4475 2122 6247 3049 42.06
BERT 61.66 30.12 56.33 4344  10.59 5436 29.82 38.33
SimCSE 62.50 29.04 70.33 4647 2029 7433 31.15 4545
UNSEE-BYOL(Ours) 62.55 27.81 65.3 46.47  23.11 73.04 30.68 45.46
UNSEE-Barlow(Ours) 62.76  30.04 65.7 46.9 23.06 72.15 30.25 45.82
UNSEE-CorInfoMax(Ours) | 62.85 28.90 67.87 46.81 24.80 7231 30.81 46.22
UNSEE-VICReg(Ours) 62.58 28.44 70.24 47.23 2479 73.11 3034 46.37

Table 1: Average of the main metric from Muennighoff et al. (2023) per task per model on MTEB English subsets.
SimCSE, BERT, Komnimos, and Glove scores are taken from Muennighoff et al. (2023)

tem to capture the best-performing model. These
specific runs were designed to align with our prior
experiments, aimed at illustrating the efficacy of
the adjustments made.

5 Evaluation Dataset

5.1 MTEB Benchmark

The primary goal of the Massive Text Embedding
Benchmark (MTEB) (Muennighoff et al., 2023) is
to offer a comprehensive assessment of model per-
formance across a diverse range of text embedding
tasks. It serves as a valuable resource for identi-
fying text embeddings that exhibit universal appli-
cability across a wide spectrum of tasks. MTEB
encompasses an extensive collection of 58 datasets
spanning 112 languages, encompassing 8 distinct
embedding tasks, including bitext mining, classi-
fication, clustering, pair classification, reranking,
retrieval, STS (Semantic Textual Similarity), and
summarization.

6 BYOL, BSL and Final Results

In our paper, we extensively examine and engage in
discussions concerning non-contrastive objectives
that incorporate a siamese network architecture.
However, it’s important to note that our most effec-
tive configuration closely resembles BYOL (Grill
et al.,, 2020), and we have conducted training
to incorporate this configuration into our results.
The ultimate model we present is a variation of
BSL (Zhang et al., 2021b) with dropout serving as
an augmentation method.

Throughout our experimentation, it becomes evi-
dent that non-contrastive methods consistently out-
perform SimCSE as the table 1 verifies. The de-
gree of improvement varies, with some methods

showing only marginal enhancements, while others
exhibit significantly more substantial gains. This
overarching pattern underscores the compelling
impact of non-contrastive objectives on augment-
ing BERT’s proficiency as a sentence embedding
model.

Our findings collectively reinforce the notion
that non-contrastive methods contribute to a no-
table expansion of BERT’s capabilities, effectively
harnessing its potential to serve as a highly effec-
tive and versatile tool for generating sentence em-
beddings. This empirical evidence underscores
the transformative role these methods play in en-
hancing the utility and adaptability of BERT across
various sentence-related tasks.

7 Conclusion

UNSEE (Unsupervised Non-Contrastive Sentence
Embeddings) is a simple framework for non-
contrastive sentence embeddings, which outper-
forms SimCSE in the Massive Text Embedding
Benchmark (MTEB). We address representation
collapse using a simple solution called the target
network, enabling stable training and achieving
performance similar to contrastive objectives. Our
meticulous fine-tuning leads to performant sen-
tence embedding models, showcasing the signifi-
cance of thoughtful optimization in advancing non-
contrastive methods for sentence representation.

8 Limitations

UNSEE models have inherent limitations stem-
ming from their training data, which encompasses
only one million sentences. In contrast, state-
of-the-art embedding models undergo training on
datasets comprising over a hundred million, or even



more than a billion pairs. As a result, our models
are expected to exhibit inferior performance when
compared to models specifically designed for sen-
tence embedding. We recommend considering the
top-performing models on the MTEB leaderboard
for more effective practical use.

9 Ethics Statement

The models under examination, UNSEE-*, lack
generative abilities, ensuring their incapacity to
produce unfair, biased, or harmful content. The
datasets utilized in this study have been meticu-
lously selected from reputable repositories known
for their safety in research applications, with strict
measures in place to prevent the inclusion of per-
sonal information or offensive material.
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A Training Details

We implement UNSEE with SentenceTransformers
from (Reimers and Gurevych, 2019). To compare
our models while developing them we keep the hy-
perparameters as same as the SimCSE which are
64 for batch size, 3e-5 for learning rate and 32 for
the sequence length. When the target network is
employed, the decay rate is 0.999 throughout all
experiments. Our best models have 32 for the batch
size, le-4 for the learning rate, and 64 for the se-
quence length, decay rate is the same. Best BYOL
and VICReg models use 3 layers of MLP. Corln-
foMax and Barlow Twins use 4. We use the same
MLP architecture as BSL (Zhang et al., 2021Db).
In Barlow Twins, we use the same A as the orig-
inal paper which is 0.0051. In VICReg, we use
the same hyperparameter weights from the original
paper which are 25 for invariance and variance, 1
for covariance. In CorInfoMax, we use R_ini=1,
la_=0.01,]la_mu=0.01, R_eps_weight=1e-6, 0.2 for
covariance and 2000 for invariance loss.

B Computational Requirements

We only use Tesla T4 GPUs for our experiments.
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