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Abstract

Atoms rearrange themselves during materials synthesis; understanding this self-
organization choreography would help the design of novel synthesis recipes. Yet,
the mechanisms of such phase transformations are often governed by statistically
improbable atomic transitions — known as rare events — that are challenging to
investigate by direct, brute-force sampling with conventional atomistic simulations.
The transition-state theory framework has been successfully applied for numerous
rare-event sampling techniques, which require prior knowledge of reaction coordi-
nates to be encoded in a committor function. Here we show how E(3)-equivariant
graph neural networks can be used to simultaneously learn physically appropriate
reaction coordinates and committors, solely from molecular dynamics simulations
near the start and end states of a reaction. This approach is applied to two dramat-
ically different systems and associated mechanisms, namely the conformational
transition in a alanine dipeptide molecule and the solid-liquid transition in the
solidification of the CrFeNi metallic alloy. We demonstrated that this approach
reduces the need for human intervention in designing reaction coordinates and
committor functions, which may enable the high-throughput study of transition
states.

1 Introduction

Autonomous and high-throughput laboratories promise a reduction in time and labor required for
experiments, yet they still lag far behind the rate at which simulations can propose new candidates1–5.
However, in light of evidence that current thermodynamic heuristics cannot reliably predict successful
syntheses6,7, the community stands to benefit from the development of new atomistic modeling
techniques that can guide the synthesis of solid state materials, and enhance synthesis success rates.

In solid-state materials synthesis, it is understood that reactions occur through a sequence of interme-
diate phases generated from an initial combination of precursors8,9. Given that reactions happen at
the interfaces of phases (fig. 1a), the number of unique interfaces can grow exponentially, creating
a combinatorial challenge10,11. The tools of transition state theory allow detailed understanding of
reaction dynamics, but are labor intensive and require prior knowledge of the system. Therefore,
reducing the labor required to identify and sample rare, rate-limiting interfacial reaction events from
molecular dynamics (MD) would be highly valuable to understanding reaction kinetics12, especially
as modern machine-learned interatomic potentials offer long time-and length-scale dynamics with
quantum mechanical accuracy13–20.
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Figure 1: Simultaneous discovery of reaction coordinates and committor functions. a) Interfacial
dynamics are often dominated by rare transition events. We aim to automate the identification
of reaction coordinates and committor functions, minimizing the need for human effort. b) Our
model architecture processes molecular dynamics data by converting it into a graph representation.
We employ an E(3)-equivariant graph neural network (E(3)-GNN) to reduce both structural and
chemical information to a lower-dimensional representation, referred to as reaction coordinates.
These reaction coordinates are then fed into a feed forward neural network to compute the committor
function. The model is optimized to learn both the committor function and reaction coordinates
simultaneously through a variational and a boundary loss (see app. A for details). c) Our approach
identifies physically-appropriate reaction coordinates and committor functions based solely on the
dynamics near the initial and final states of the reaction.

Enhanced rare-event sampling has been shown to allow deeper insights into interfacial dynamics21.
This approach relies on the concept of a reaction coordinate (r): a lower-dimensional representation
of atomic coordinates that tracks the evolution between two distinct states. A committor function
q(r) is employed to map the reaction coordinate to a continuous range between 0 and 1, where values
near 0 and 1 respectively correspond to the initial and final states of the system, and a value of 0.5
marks the transition state22.

Recently, the authors of ref. 23 demonstrated how q(r) could be bootstrapped from atomistic simula-
tions of configurations near the initial and end states of the reaction, and how its gradient magnitude
can be used to create biasing potentials that guide the system’s time evolution towards the transition
state (see app. A for a brief summary of their approach). A key limitation of ref. 23, and of other
known approaches for committor function learning24–26, is the requirement that a reaction coordinate
r be known ahead of time. Identifying physically-appropriate r requires detailed knowledge of the
system’s transition, often requiring complex human-designed mathematical functions21,27,28, render-
ing rare-event sampling methods unsuitable to high-throughput approaches. Using machine learning
for reaction coordinate discovery is becoming more popular29–31. The work of Sun et al.32 shows
a multi-task framework that identifies low dimensional system descriptors and basin classification
that behaves as a committor. They encode system configuration with a multi-layer perceptron-like
architecture and use potential energy to help distinguishing reaction progress (which the authors note
may not help for diffusion-dominated transitions). Equivariant models may remove both the need for
energy to distinguish environments and exploit the efficiency of equivariant networks to learn from
atomistic data14,20,33. This approach is desirable because it makes no assumptions about either the
reaction coordinate or the functional form of the committor.

Here, we enhanced the framework presented in ref. 23 by leveraging an upstream equivariant graph
neural network (fig. 1b) to simultaneously identify both reaction coordinates (r) and committor
functions (q) directly from atomistic simulation data (fig. 1c). We demonstrate the efficacy of our
framework to discover physically-appropriate r and q(r) by applying it to atomistic simulations of the
conformational transition of a alanine dipeptide molecule (fig. 2), and of the solid-liquid transitions
during solidification of the CrFeNi metallic alloy (fig. 3), and comparing the learned r and q(r) with
known well-established representations.
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Figure 2: Learned alanine dipetide committor function. a) Illustration of the conformational
space of alanine dipeptide, and of its dihedral angles ϕ, θ, ψ, and ω. b) Projection of the learned
committor function onto the discovered reaction coordinate plane, with committor values of q(ri) ≈
0.5 identifying the transition state. c) Dihedral angles and learned committor value for atomistic
simulations undergoing the conformational transition. To enhance visualization, atomistic systems
with a learned committor value q(ri) ∈ [0.45, 0.55] were assigned the highest drawing order. Observe
the correlation between the transition state (TS) dihedral angles, digitized from ref. 35, and the
dihedral angles of atomistic systems where our method assigns a committor value of q(ri) ≈ 0.5.
Our framework accurately identifies a physically relevant transition state (θ ≈ −ϕ) directly from the
structure, without prior knowledge of the transition states, and of dihedral angles.

2 Results

2.1 Learned alanine dipeptide committor function

Alanine dipeptide is a widely used benchmark molecule for studying transition states23,32,34. Its
molecular conformation states (fig. 2a) have well-defined energy minima28 described by the dihedral
angles ϕ, θ, ψ, and ω23. Notably, configurations at the transition state between conformations C7eq

(state A) and C7ax (state B)1 are characterized by the inverse relationship θ ≈ −ϕ23,28,35.

Here, we showcase how our model discovers a committor function and corresponding reaction
coordinate of alanine dipetide, by training exclusively on MD data from states A and B without any
prior knowledge of the transition state or expert-derived reaction coordinate. The first step in our
process involves converting the unbiased atomistic data of states A and B (collected in ref. 23) into a
graph representation, which is subsequently inserted into our committor network (see sec. 4.1 for
details). Our framework enables simultaneous learning of both the reaction coordinates r and the
committor function q(r). Figure 2b shows the discovered reaction coordinate space; notice that a
clear transition state is identified with a committor value q(ri) ≈ 0.5. Next, we investigate whether
this transition state corresponds to the correct physical transition state of alanine dipeptide. This
is accomplished by comparing in fig.2c the dihedral angles and learned committor of atomistic
simulations undergoing the conformational change (taken from the biased atomistic simulations of
ref. 23), to the dihedral angles from ref. 35, which were obtained using well-established rare-event
sampling techniques. While it is clear that there is a strong correlation between our discovered
committor and previously-known reaction coordinates, a more definitive validation would involve
running atomistic simulations with a biasing potential derived directly from our learned committor —
an approach we plan to explore in future work. Nevertheless, our findings suggest that it is possible
to learn relevant committors and reaction coordinates directly from the atomistic data near the start
and end states.

2.2 Learned CrFeNi solid-liquid committor function

We next turn to the study of materials synthesis by applying our method to some 100,000 atom MD
simulations of solidification from a spherical crystalline seed of the CrFeNi metallic alloy (fig. 3a, see
sec. 4.2 for details). The kinetics of the atomic transitions from the all-liquid (state A) to the all-solid
phase (state B) is governed by rare events36,37. Figure 3b compares the learned committor with the

1So named due to the orientation of the Cβ atom being in an axial or equatorial orientation relative to a
7-atom ring formed by intramolecular hydrogen bonding28.
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Figure 3: Learned CrFeNi committor function. a) Crystal growth from a spherical CrFeNi seed,
with atoms colored by their local crystal structure (see app. B for details). b) The learned committor
over simulation time approximates the fraction of solid atoms in the system. c) Comparison of local
atomic environment classification (top) and per-atom committor values (bottom) after removing the
network’s pooling layers post-training. Atoms identified as liquid (top) and with q ≤ 0.9999 (bottom)
are hidden.

fraction of solid atoms in the simulation, which was obtained from a crystal-structure classifier known
as polyhedral template matching38 (see app. B for details). Notice the close proximity between the
curves, showing that from structure, we were able to derive a physically relevant global description
of the system state which captures the increase of solid-like atomic environments. Addtionally, the
correlation of pre-pooling values with local descriptors of crystallinity (fig. 3c) suggests that the
learned committor gradients, propagated backwards through the reaction coordinates, could direct
atomic movements towards solid or liquid-like committor-derived biasing potentials.

Note that unlike in the molecular case, where the conformation is a global variable, it appears that the
global system state is roughly tracking the fraction of atoms that are in the solid versus liquid phase.
This, and the fact that our formalism requires the identification of only two distinct states, raises the
questions of how to proceed in (1) precisely identifying the transition state for local phase transitions,
and (2) how to study complex multi-step processes that involve intermediate species or by-products.
We leave deeper study of both of these for future work, but propose here some initials thoughts. For
(1), two possible ways to do this are to study the contribution of individual atoms to the committor
along the natural trajectory, or to use a biasing potential to examine the trajectory that maximizes an
atom’s contribution to the committor. We hope that this procedure may reduce the labor of identifying
and studying a transition state given molecular dynamics data (e.g., do atoms with intermediate
local contributions to the committor represent those undergoing local transformations? Could these
local transformations provide insights into the mechanisms driving variations in growth behavior?).
For (2), multi-step processes, we do not know a priori how intermediate or byproduct phases could
interact with this framework. However, making it easier to generate intermediate steps could enable
easier sampling campaigns while zooming in to proposed transition states, iteratively applying this
framework to successively smaller in-between steps in a more complex phase transition. However,
further study would need to be conducted to estimate the risk of a non rate-limiting transition pathway
to be picked up by the model.

Optimizing computational performance is crucial for realistic simulations of materials processing
and synthesis, which often require models capable of handling millions of atoms per time step16.
Enhancing the inference speed of our E(3)-GNN (currently operating at approximately 14 seconds
per hundred thousand atom without just-in-time compilation) should not be overlooked. Integrating
eSCN layers39 offers an effective solution to reduce computational complexity by replacing SO(3)
convolutions with mathematically equivalent SO(2) convolutions. Additionally, investigating alterna-
tive equivariance methods, such as EGNN’s use of relative atomic distances40, could provide insights
into the differences in representational richness and computational complexity. Finally, examining the
role of symmetry-inductive bias could highlight its benefits in low-data regimes14,41 and determine if
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the learned coordinates and committor display greater variability without it, thereby justifying the
additional computational complexity.

Consequently, future work will extend to solid-solid phase transitions21, examine how variations in
loss functions and system states affect the learned reaction coordinates (see app. C for preliminary
intuitions), and will benchmark our framework against other methods by comparing transition state
sampling performances.

3 Conclusion

In this work we show evidence that E(3)-equivariant neural networks can be used to simultaneously
identify reaction coordinates and committor functions solely from atomistic simulation data at the
start and end states of a transition of interest. We anticipate that this approach may simplify and
help automate the discovery of physically-appropriate reaction coordinates and committor functions,
which can facilitate the identification and understanding of rate-limiting transition states associated
with interfacial reactions common during solid-state synthesis8. Facilitating the rapid and automatic
modeling of interfacial dynamics may accelerate the refinement of experimental parameters and
enhance synthesis success rates.

4 Methods

4.1 E(3)-equivariant committor network

Molecular dynamics snapshots at every time step t are transformed into a graph representation,
which is then processed by an E(3)-equivariant graph neural network to produce a lower-dimensional
representation of the system state rt ∈ R2. Our architecture, inspired from refs. 20, 33, 42, is
implemented using the e3nn package43. The network consists of two E(3)-equivariant convolutions,
which employ O(3)-equivariant filters constructed using spherical harmonics Y m

ℓ (r) up to degree
ℓmax = 1, and of a radial basis network, composed of ten cosine radial basis functions. The hidden
layer features transform according to the irreducible representation 25×1o+25×1e+25×0o+25×0e,
where “ℓp” denotes the e3nn data types, with ℓ being the angular frequency, and p representing parity
(p = o for odd and p = e for even). The lower dimensional representation of the system state zt ∈ R2

is then fed to a feed-forward neural network composed of three linear layers with output dimension
32, 32, and one respectively. Hyperbolic tangent functions were used as activation function in the
feed-forward neural network, given that the loss function (see app. A for details) depends on the
derivative of the inputs. Additionally, to facilitate the learning of the committor, a sharp sigmoid-like
activation function is used in the last layer.

4.2 Solidification simulation

Solidification simulations of the equiatomic CrFeNi medium entropy alloy were carried out using the
Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) software44, with the EAM
potential of ref. 45. The initial structure was composed of 100,000 atoms, with 2,400 atoms arranged
as a spherical crystalline seed in a face-centered cubic structure, while the remaining atoms were
distributed randomly to mimic the liquid phase. The system was equilibrated in two steps. First, the
liquid atoms were relaxed using a conjugate gradient algorithm for 100 steps. Then, the liquid atoms
were equilibrated for 1 ps at zero pressure and finite temperature, using a Nosé-Hoover thermostat
and barostat with a 0.1 ps temperature damping parameter, a 1 ps pressure damping parameter, and
a chain length of three, allowing isotropic expansion and contraction. The crystalline seed atoms
remained fixed in their initial structure with constant lattice parameters, unaffected by the liquid
atoms’ behavior. The growth is then carried on using a Nosé-Hoover thermostat and barostat with a 1
ps damping parameter and a chain length of 3 to maintain the system at finite temperature (800 K)
and zero pressure for up to 1 ns.
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A Committor loss function

To briefly summarize the approach of ref. 23, they propose learning the committor function by
simultaneously optimizing two types of losses: the boundary condition loss Lb (eq. 1) and the
variational loss Lv (eq. 2). The boundary condition loss Lb ensures that the reaction coordinates
of the initial state “A” and final state “B” are mapped to 0 and 1 respectively. The variational loss
Lv acts as a regularizer, smoothing the transition between the initial and final states in the reaction
coordinate space.

Mathematically, those are defined as:

Lb =
1

NA

NA∑

i∈A

[q(ri)]
2 +

1

NB

NB∑

i∈B

[q(ri)− 1]2 (1) Lv =
1

Nn

N n∑

i

wi |∇uq(ri)|2 , (2)

where q is the committor function of a system characterized by its reaction coordinate ri, NA,NB
are the number of atomistic systems in states A and B, respectively. N n is the number of systems
initiated at iteration n, and wi is a weighting factor which accounts for the gradual sampling of the
transition state ensemble as the iterative process of running atomistic simulations with an increasingly
refined biasing potential progresses.

The committor loss function L is expressed as:

L = Lv + αLb,

where α modulates the relative importance of the two loss.

Finally, a biasing potential Vb can be derived from the learned committor

Vb = − 1

β
log

(
|∇uq(ri)|2

)
,

where β is the inverse temperature. Based on the overall behavior of q(x), Vb is repulsive in bassin A
and B, given that ∇q(x) ≈ 0 there. However, near the transition state, where q(x) increases sharply
from 0 to 1, Vb becomes significantly attractive.

We note that this procedure assumes two distinct states A and B, and our paper exclusively assumes
two-step processes. In real synthesis processes, sometimes reactions occur via multi-step procedures,
but we speculate that the enumeration and study of possible intermediate states could be an application
of this method46.

B Local crystal structure identification

Local crystal structures were identified using the polyhedral template matching method38 with a
cutoff of 0.08. Red indicates hexagonal close-packed environments, green indicates face-centered
cubic environments, and liquid environments are omitted for clarity.

C Influence of the variational loss onto the reaction coordinate space

We hope to show that the benefit of the variational term in the committor loss (eq. 2) is to help the
network learn reaction coordinates suited to lower-dimensional mapping, effectively regularizing the
learned coordinates. However, we emphasize that these observations remain speculative as we are
still in the process of validating this hypothesis. The precise interpretation of the learned descriptions
are still under study, as the crystal growth has already begun before the value attains q(ri) ≈ 0.5,
suggesting that the learned committor is describing mostly the population-level statistics of atoms;
the formulation of the committor as describing the probability of a configuration transitioning to state
B47 may not readily apply here.
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D Code and data availability

The code and data associated with the results of this work will be made available on GitHub upon
acceptance.
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