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Abstract
Sparse or ℓ0 adversarial attacks arbitrarily per-
turb an unknown subset of the features. ℓ0 ro-
bustness analysis is particularly well-suited for
heterogeneous (tabular) data where features have
different types or scales. State-of-the-art ℓ0 cer-
tified defenses are based on randomized smooth-
ing and apply to evasion attacks only. This paper
proposes feature partition aggregation (FPA) – a
certified defense against the union of ℓ0 evasion,
backdoor, and poisoning attacks. FPA generates
its stronger robustness guarantees via an ensem-
ble whose submodels are trained on disjoint fea-
ture sets. Compared to state-of-the-art ℓ0 de-
fenses, FPA is up to 3,000× faster and provides
median robustness guarantees up to 4× larger,
meaning FPA provides the additional dimensions
of robustness essentially for free.

1. Introduction
Machine learning models are vulnerable to numerous types
of adversarial attacks, including (1) evasion attacks which
manipulate a model by perturbing test instances (Szegedy
et al., 2014), (2) poisoning attacks which manipulate pre-
dictions by perturbing a model’s training set (Biggio et al.,
2012), (3) backdoor attacks which combine training and
test perturbations (Li et al., 2022), and (4) patch attacks – a
specialized evasion attack where the adversarial perturba-
tion is restricted to a specific shape (Brown et al., 2017).
Certified defenses provide provable guarantees of a predic-
tion’s robustness against adversarial attack (Li et al., 2023).

This work focuses on ℓ0 or sparse attacks, where an ad-
versary controls an unknown subset of the features. By
certifying robustness w.r.t. the number of perturbed fea-
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tures, ℓ0 analysis is particularly well-suited to hetero-
geneous (tabular) data where the features have different
types (e.g., numerical, categorical) or scales. Moreover,
ℓ0 defenses provide provable robustness against real-world
patch attacks (Levine & Feizi, 2020a). Several certified
ℓ0 defenses have been proposed (Calzavara et al., 2021;
Jia et al., 2022b; Levine & Feizi, 2020b; 2022), but these
methods apply to evasion only, which can be limiting. For
example, consider a distributed sensor network where each
(tabular) feature is independently measured by a different
sensor. Under this type of vertical partitioning where fea-
tures are sourced from multiple parties, an attacker that
controls a single feature (i.e., sensor) can partially per-
turb every instance – training and test – up to 100% poi-
soning rate (Li et al., 2021; Wei et al., 2022). Existing
ℓ0 evasion defenses do not provide robustness over training
perturbations rendering them moot under such an attack.
Moreover, existing ℓ0 defenses could not be combined with
instance-wise poisoning defenses here since typically, the
latter are only provably robust under small poisoning rates,
e.g., ≤1% (Rezaei et al., 2023; Wang et al., 2022b).

To address these limitations, we propose feature partition
aggregation (FPA) – a certified sparse defense jointly ro-
bust against both training and test feature perturbations.
FPA relies on an ensemble where each submodel is trained
on a disjoint feature set, meaning any perturbed feature –
training or test – affects at most one submodel. Hence, FPA
guarantees robustness over the union of ℓ0 evasion, back-
door, and poisoning attacks – a strictly stronger guarantee
than existing ℓ0 methods (Levine & Feizi, 2020b). We sum-
marize our primary contributions below; additional theoret-
ical analysis and all proofs are in the supplement.

• We propose feature partition aggregation, a certified
feature defense that uses an ensemble of submodels
trained on disjoint feature sets. We detail two cer-
tification schemes – a simple one based on plurality
voting and the other based on multi-round elections.

• We empirically evaluate FPA on two classification and
two regression datasets. FPA provided simultaneously
larger and stronger median guarantees than state-of-
the-art certified ℓ0 defenses while also being 2 to 3
orders of magnitude faster.
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Figure 1. Feature partition aggregation example prediction for instance x ∈ X , n = 3, d = 4, and |Y| = 3. Feature partitioning
across T = 4 submodels, where the t-th submodel uses only feature dimensions St = {t} ⊂ [4] and training set Dt, i.e., the tuple
containing the t-th column of feature matrix X (denoted Xt) and label vector y := [y1, y2, y3]. xSt denotes the subvector of x restricted
to the feature dimensions in St. Plurality label ypl = 0; runner-up label yru = 1; and run-off label yRO = 0. Under the plurality voting
decision function (§4.1), f(x) has certified feature robustness rpl = 0. With run-off (§4.2), f(x)’s certified feature robustness is rRO = 1.

2. Preliminaries
Suppl. Sec. A provides a full nomenclature reference. Let
[m] denote integer set {1, . . . ,m}. 1[a] is the indicator func-
tion, which equals 1 if predicate a is true and 0 otherwise.
ℓ0 norm ∥w∥0 is the number of non-zero elements in vec-
tor w. Given some matrix A, denote its j-th column as Aj .
In a slight abuse of notation, let A ⊖ A′ :=

{
j : Aj ̸= A′

j

}
denote the set of column indices over which equal-size ma-
trices A and A′ differ. Similarly, let v ⊖ v′ ⊆ [|v|] denote
the set of dimensions where vectors v and v′ differ.

Let x ∈ X ⊆ Rd be a feature vector (d := |x|) and
y ∈ Y ⊆ N a label. A training set {(xi, yi)}ni=1 consists
of n instances. Denote the training set’s feature matrix as
X := [ x1 · · · xn ]⊺ where X ∈ Rn×d, and denote the label
vector y := [y1, . . . , yn]. Let f : X → Y be a model. For
feature partition aggregation (FPA), f is an ensemble of
T submodels (see Figure 1). A decision function aggregates
the T submodel predictions to form f’s overall prediction.
The model architecture and decision function combined
dictate how the certified robustness is calculated. For in-
stance (x, y), let gt(x, y) be the t-th submodel’s logit value
for label y, where gt : X × Y → R. Let ft(x) denote the
t-th submodel’s predicted label for x, where ft : X → Y
and ft(x) := argmaxy∈Y gt(x, y). All ties are broken by
selecting the label with the smallest index.

Feature set [d] is partitioned across FPA’s T submodels.
Let St ⊂ [d] be the features used by the t-th submodel

where
⊔T

t=1 St = [d]. In other words, each FPA submodel
considers a fixed, disjoint subset of the features for all train-
ing and test instances. The t-th submodel’s training set, Dt,
consists of: label vector y and the St columns in X. FPA
submodels are deterministic, meaning fixing Dt, St, and x,
in turn, fixes label ft(x) and logits ∀y gt(x, y).

Given x and y, the pointwise submodel vote count is
ċy(x) :=

∑T
t=1 1[ft(x) = y]. The plurality and runner-up

labels receive the most and second-most votes (resp.), i.e.,
ypl = argmaxy∈Y ċy(x) and yru = argmaxy∈Y\ypl

ċy(x). The
pointwise submodel vote gap between labels y, y′ ∈ Y is

GAPvote(y, y
′;x) := ċy(x)− ċy′(x)− 1

[
y′ < y

]
, (1)

with the indicator function used to break ties. Let
c̈y(x; y

′) :=
∑T

t=1 1[gt(x, y) > gt(x, y
′)] be y’s logit vote

count w.r.t. y′ ∈ Y. The logit vote gap for y w.r.t. y′ is

GAPlogit(y, y
′;x) := c̈y(x; y

′)− c̈y′(x; y)− 1
[
y′ < y

]
. (2)

Below, x is dropped from GAPvote and GAPlogit when the fea-
ture vector of interest is clear from context.

Threat Model Given arbitrary (x, y), the attacker’s objec-
tive is to ensure that y ̸= f(x). The adversary achieves this
objective via two methods: (1) modify training features X

or (2) modify test instance x’s features. An adversary may
use either method individually or both methods jointly. An
attacker can perturb up to 100% of the training instances.

Our Objective For arbitrary (x, y), determine the certified
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feature robustness, r (defined below). Pointwise guarantees
certify the robustness of each instance (x, y) individually.
Def. 1. Certified Feature Robustness Given training
set (X,y), model f ′ trained on (X′,y), and arbitrary fea-
ture vector x′ ∈ X , certified feature robustness r ∈ N is
a pointwise, deterministic guarantee w.r.t. instance (x, y)

where |X ⊖ X′ ∪ x ⊖ x′| ≤ r =⇒ y = f ′(x′).

Certified robustness r is not w.r.t. individual feature val-
ues. Rather, certified feature robustness provides a stronger
guarantee allowing all values of a feature – training and test
– to be perturbed.

3. Related Work
FPA marries ideas from two classes of certified adversar-
ial defenses, which are discussed below. We defer a more
detailed discussion of related work to suppl. Sec. C.

ℓ0-Norm Certified Evasion Defenses Representing the
work most closely related to ours, these methods certify
ℓ0-norm robustness (also known as “sparse robustness”),
which we formalize below.
Def. 2. ℓ0-Norm Certified Robustness Given model f ,
α ∈ (0, 1), and arbitrary feature vector x′ ∈ X , ℓ0-norm
certified robustness ρ ∈ N is a pointwise guarantee w.r.t.
instance (x, y) where if ∥x− x′∥0 ≤ ρ, then y = f(x′) with
probability at least 1− α.

There are two main differences between certified ℓ0-norm
robustness (Def. 2) and our certified feature robustness
(Def. 1). (1) ℓ0-norm methods are not certifiably robust
against any adversarial training perturbations (e.g., poison-
ing and backdoors). (2) ℓ0-norm robustness guarantees are
probabilistic, while our feature guarantees are determinis-
tic. Put simply, our certified feature guarantees are strictly
stronger than ℓ0-norm guarantees.

Randomized ablation (RA) is the state-of-the-art certified
ℓ0-norm defense (Jia et al., 2022b). RA adapts ideas from
randomized smoothing to ℓ0 evasion attacks (Levine &
Feizi, 2020b). Specifically, RA creates a smoothed classi-
fier by repeatedly evaluating different ablated inputs, each
of which keeps a random subset of the features unchanged
and masks outs (ablates) all other features. RA’s ab-
lated training generally permits only stochastically-trained,
parametric model architectures. At inference, RA evaluates
up to 100k ablated inputs to certify each prediction. Jia
et al. (2022b) improve RA’s guarantees via new certifica-
tion analysis that is tight for top-1 predictions.

Certified patch robustness is a restricted form of ℓ0-norm
robustness where the perturbed test features are constrained
to a specific, contiguous shape, e.g., square (Levine &
Feizi, 2020a; Metzen & Yatsura, 2021). Note any certified
feature or ℓ0-norm defense (e.g., FPA, RA) is also a certi-

fied patch defense, given the former’s stronger guarantees.

Instance-wise Certified Poisoning Defenses The second
class of related defenses certify robustness under the arbi-
trary insertion or deletion of entire instances in the training
set – generally a small poisoning rate (e.g., ≤1%). Like
FPA, most instance-wise poisoning defenses are voting-
based (Jia et al., 2021; 2022a; Wang et al., 2022a). For
example, deep partition aggregation (DPA) randomly par-
titions the training instances across an ensemble of T sub-
models (Levine & Feizi, 2021). More recently, Rezaei et al.
(2023) propose run-off elections, a novel decision func-
tion for DPA that can improve DPA’s certified robustness
by several percentage points. While certified instance-wise
poisoning defenses show promise, they are still vulnerable
to test perturbations – even of a single feature.

4. Certifying Feature Robustness
Our certified defense, feature partition aggregation (FPA),
can be viewed as the transpose of Levine & Feizi’s (2021)
deep partition aggregation (DPA). Both defenses are (1) en-
sembles, (2) rely on voting-based decision functions, and
(3) partition the training set; the key difference is in the
partitioning operation. DPA horizontally partitions the
set of training instances (rows of feature matrix X), en-
abling DPA to certify instance-wise robustness. In contrast,
FPA vertically partitions along an orthogonal dimension –
the feature set (columns of X) – enabling FPA to certify
feature-wise robustness. Intuitively, partitioning along or-
thogonal dimensions means that DPA and FPA certify or-
thogonal types of robustness. Training FPA submodels on
disjoint feature subsets (e.g., Fig. 1) entails that a perturbed
feature affects, at most, one submodel prediction. FPA
leverages this property to certify feature robustness r. Be-
low we describe two FPA decision functions: (1) a simpler
scheme using plurality voting and (2) an enhanced multi-
round voting procedure specialized for multiclass classifi-
cation. The decision function combined with FPA’s archi-
tecture dictates how our robustness guarantee is calculated.

4.1. Feature Robustness Under Plurality Voting

For x ∈ X , the plurality voting decision function defines
the model prediction as f(x) := ypl, i.e., the label that re-
ceives the most submodel votes. A successful attack re-
quires perturbing enough submodels to change ypl. Specif-
ically, each submodel perturbation decreases the submodel
vote gap (GAPvote) between ypl and the adversary’s se-
lected label by two. Hence, the minimum number of sub-
model perturbations equals half the vote gap between ypl

and runner-up label yru. Thm. 3 formalizes this idea as a
deterministic feature robustness guarantee.
Theorem 3. Certified Feature Robustness with Plural-
ity Voting For feature partition S1, . . . ,ST , let f be an en-
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semble of T submodels using the plurality-voting decision
function, where the t-th submodel uses the features in St.
For instance (x, y), the certified feature robustness is

rpl :=

⌊
GAPvote(ypl, yru)

2

⌋
. (3)

Understanding Thm. 3 More Intuitively LetAtr ⊆ [d] be
the set of features (i.e., dimensions) an attacker modified in
the training set, and let Ax ⊆ [d] be the set of features the
attacker modified in instance x. As long as |Atr ∪ Ax| ≤ r,
the adversarial perturbations did not change the model pre-
diction. The union over the perturbed feature sets entails
that a feature perturbed in both training and test counts only
once against guarantee r. Certified feature robustness r ap-
plies equally to an ℓ0 evasion attack (Ax only) as it does to
ℓ0 poisoning (Atr only). Thm. 3’s guarantees also encom-
pass more complex ℓ0 backdoor attacks (Atr ∪ Ax).

4.2. Feature Robustness Under Run-Off Elections

Under plurality voting, only submodels that predict either
ypl or yru are considered when determining the certified fea-
ture robustness (Eq. (3)). In other words, submodels pre-
dicting other labels essentially contribute nothing to plural-
ity voting’s pointwise guarantees. Decision functions that
leverage these “wasted” submodels may certify larger guar-
antees (see Figure 1). For instance, Rezaei et al. (2023)
propose run-off elections, an enhanced two-round DPA de-
cision function for multiclass classification.1 Since FPA
and DPA share the same basic architecture (excluding the
partitioning dimension), run-off can be directly combined
with FPA to improve our certified robustness.

We now describe run-off. Our presentation is similar to
Rezaei et al.’s (2023) except we standardize the formula-
tion to align with previous work and to correct an error in
Rezaei et al.’s preprint version. Formally, run-off’s deci-
sion function procedure is:

Round #1: Determine plurality and runner-up labels ypl

and yru (resp.) as above.

Round #2: Set run-off prediction yRO to either label ypl or
yru based on the logit vote gap where

f(x) = yRO :=

{
ypl GAPlogit(ypl, yru) ≥ 0

yru Otherwise
. (4)

Under run-off, ensemble prediction yRO can only be per-
turbed in two ways: (1) overtake yRO in round #2 or (2) eject
yRO from round #1’s top-two labels. Run-off’s certified (fea-
ture) robustness is lower bounded by whichever case takes
fewer submodel perturbations. We discuss these two cases

1Run-off only changes the decision function; no training or
model architecture changes are required.

separately below; Thm. 4 combines these analyses to define
run-off’s overall feature robustness.

Case #1: Overtake yRO in Round #2 Let
ỹRO := {ypl, yru} \ yRO denote the label not selected in
round #2. For a label y to overtake yRO in round #2, y
must simultaneously satisfy two requirements: (a) be in
round #1’s top-two labels (in turn ejecting ỹRO from the top
two) and (b) receive more logit votes than yRO in round #2.
Hence, the certified robustness for this case is bounded
by whichever of these requirements requires more feature
perturbations. Therefore, an attacker may control up to

rCase1
RO := min

y∈Y\yRO
max

{⌊
GAPvote(ỹRO, y)

2

⌋
,

⌊
GAPlogit(yRO, y)

2

⌋}
(5)

features without yRO being overtaken in round #2 (Lem. 6).

Case #2: Eject yRO from Round #1’s Top-Two Labels
In round #1, a label y is preferred over a different label
y′ iff GAPvote(y, y

′) ≥ 0 (Lem. 5). Therefore, ejecting yRO

from round #1’s top-two labels requires perturbing suffi-
cient submodels such that two labels have negative sub-
model vote gaps w.r.t. yRO. Let dp be a function that takes
two submodel vote gaps (e.g., i, j ∈ N) and returns yRO’s
round #1 certified feature robustness. Recall that perturb-
ing a submodel vote from yRO to a different y decreases
GAPvote(yRO, y) by 2; this submodel perturbation also de-
creases GAPvote(yRO, y

′) by 1 for all y′ ∈ Y \ {yRO, y}. Com-
bining these interactions, dp can be defined recursively as

dp[i, j] = 1 + min{dp[i− 2, j − 1],dp[i− 1, j − 2]}, (6)

with base case, dp[i, j] = 0 when max{i, j} ≤ 1 and
(i, j) ̸= (1, 1), ensuring at least one submodel vote gap is
always non-negative. Therefore, case #2’s total certified
robustness is

rCase2
RO := min

y,y′∈Y\yRO
dp

[
gapy, gapy′

]
(7)

where gapy∗ = max{0,GAPvote(yRO, y
∗)} (Lem. 7). Recur-

sive formulations like Eq. (6) are solvable using classic
dynamic programming. O(T 2)-space matrix dp is pre-
populated once, meaning the incremental lookup cost is
only O(1) and rCase2

RO ’s total time complexity O(|Y|2).

Combining Cases #1 and #2 to Certify Feature Robust-
ness Thm. 4 provides the certified feature robustness for
an FPA prediction using the run-off decision function. In-
tuitively, an optimal attacker selects whichever of the two
cases above requires fewer feature perturbations; hence,
Eq. (8) below takes the minimum of rCase1

RO and rCase2
RO .

Theorem 4. Certified Feature Robustness with Run-
off For feature partition S1, . . . ,ST , let f be an ensemble
of T submodels using the run-off decision function, where
the t-th submodel uses only the features in St. Then, for
instance (x, y), the pointwise certified feature robustness is

rRO = min{rCase1
RO , rCase2

RO }. (8)
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5. Feature Partitioning Strategies
Sec. 4’s certification analysis holds irrespective of the fea-
ture partitioning strategy. However, how the features are
partitioned can have a major impact on the size of FPA’s
certified guarantees. Below, we very briefly describe two
insights into the properties of good feature partitions.

Insight #1 Ensure sufficient feature information is avail-
able to each submodel. Each incorrect submodel or logit
vote cancels out a correct vote, meaning the goal should be
to maximize the number of correct submodel predictions
while simultaneously minimizing incorrect ones. In other
words, robustness is maximized when all submodels per-
form well, and feature information is divided equally.

Insight #2 Limit information loss due to feature partition-
ing. Models use (implicit) feature interaction information
when making a prediction. Intuitively, if a pair of features
are assigned to different FPA submodels, none of the sub-
models can use these features’ pairwise interaction during
inference. Put simply, feature partitioning causes some fea-
ture (interaction) information to be completely lost. Fix-
ing T , some feature partitions are more lossy than others,
and good partitions limit the total information lost.

5.1. Feature Partitioning Paradigms

Applying the above insights, we propose two general fea-
ture partitioning paradigms. In practice, the partitioning
strategy is essentially a hyperparameter tunable on valida-
tion data. The validation set need not be clean so long as
the perturbations are representative of the test distribution.

Balanced Random Partitioning Given no domain-
specific knowledge, each feature’s expected information
content is equal. Balanced random partitioning assigns
each submodel a disjoint feature subset sampled uniformly
at random, with subsets differing in size by at most one.
Random partitioning has two primary benefits. First, each
submodel has the same a priori expected information con-
tent. Second, random partitioning can be applied to any
dataset. FPA with random partitioning is usually a good
initial strategy and empirically performs quite well.

Deterministic Partitioning One may have application-
related insights into quality feature partitions. For exam-
ple, consider feature partitioning of images. Features (i.e.,
pixels) in an image are ordered, and that structure can be
leveraged to design better feature partitions. Often the most
salient features are clustered in an image’s center. To en-
sure all submodels are high-quality, each submodel should
be assigned as many highly salient features as possible.
Moreover, adjacent pixels can be highly correlated, i.e.,
contain mostly the same information. Given a fixed set of
pixels to analyze, the information contained in those lim-
ited features should be maximized, so a good strategy can

be to select a subset of pixels spread uniformly across the
image. Put simply, for images, random partitioning can
have larger information loss than deterministic strategies.
Suppl. Sec. H.7 empirically compares random and deter-
ministic partitioning. In short, a simple strided strategy that
distributes features regularly across an image tends to work
well for vision. Formally, given d pixels and T submodels,
the t-th submodel’s feature set under strided partitioning is
St = {j ∈ [d] : jmod T = t− 1}.

5.2. Beyond Partitioned Feature Subsets

Everything above should not be interpreted to imply that
certifying feature robustness necessarily requires parti-
tioned feature sets. Submodel feature sets can partially
overlap, but determining optimal r under overlapping sets
is NP-hard in general via reduction to (partial) set cover.
FPA’s computational efficiency is an important strength
over methods like randomized ablation. Tying FPA to an
NP-hard optimization destroys this differentiator. Nonethe-
less, suppl. Sec. F extends FPA to overlapping feature sets
and provides an empirical comparison. In summary, over-
lapping feature sets can marginally outperform random par-
titioning but often lags deterministic partitions.

6. Evaluation
Our empirical evaluation is modeled after Levine & Feizi’s
(2020b) evaluation of randomized ablation. Due to space,
additional results are deferred to the supplement includ-
ing: each dataset’s non-robust accuracy (H.1), full numer-
ical results (H.2 & H.3), hyperparameter sensitivity anal-
ysis (H.4 & H.5), plurality voting vs. run-off compari-
son (H.6), random vs. deterministic feature partitioning
comparison (H.7), and model training times (H.8).

6.1. Experimental Setup

Due to space, most evaluation setup details are deferred to
suppl. Sec. G with a brief summary below.

Baselines Randomized ablation (RA) is FPA’s most
closely related work and the primary baseline below. We
report the performance of both Levine & Feizi’s (2020b)
original version of RA (denoted “(LF‘20b)”) as well as
Jia et al.’s (2022b) improved version (denoted “(Jia‘22b)”),
where the certification analysis is tight for top-1 pre-
dictions. RA performs feature ablation during training
and inference. Each ablated input keeps e randomly
selected features unchanged and masks out the remain-
ing (d− e) features; RA evaluates up to 100,000 ab-
lated inputs to certify each prediction. Recall that RA’s
ℓ0-norm robustness only applies to evasion attacks (Def. 2),
while FPA provides strictly stronger feature guarantees that
cover manipulation of both training and test data (Def. 1).



Feature Partition Aggregation: A Fast Certified Defense over a Union of ℓ0 Attacks

We also compare FPA to three certified patch defenses:
(de)randomized smoothing (Levine & Feizi, 2020a), patch
interval bound propagation (IBP) (Chiang et al., 2020b),
and BAGCERT (Metzen & Yatsura, 2021).

Performance Metrics Certified defenses generally trade-
off robustness and (clean) accuracy. Hence, following
Levine & Feizi’s (2020b) evaluation of RA, performance
is measured using two complementary metrics: (1) median
certified robustness, the median value of the certified ro-
bustness across a dataset’s entire test set with misclassified
instances assigned robustness−∞ and (2) classification ac-
curacy, the fraction of test predictions classified correctly.
Below, rmed and ρmed denote the median certified feature ro-
bustness (Def. 1) and ℓ0-norm robustness (Def. 2), respec-
tively. Mean certification time measures the time to certify
a single prediction. Certified accuracy is the fraction of
correctly-classified test instances that satisfy some specific
robustness criterion; this criterion can be patch robustness
or certified robustness of at least ψ ∈ N.

Datasets We compare the methods on standard datasets
used in data poisoning evaluation. First, following Levine
& Feizi’s (2020b) evaluation of RA, we consider MNIST
and CIFAR10 where each feature corresponds to one
(RGB) pixel.2 Second, Hammoudeh & Lowd (2023) prove
that certified regression reduces to certified binary classi-
fication when median is used as the regressor’s decision
function (see Sec. G.6 for details). We apply their re-
duction to both FPA and RA where for instance (x, y)

and hyperparameter ξ ∈ R≥0, the goal is to certify that
y − ξ ≤ f(x) ≤ y + ξ. We consider two tabular regres-
sion datasets: (1) Weather (Malinin et al., 2021) predicts
the temperature using features such as date, longitude,
and latitude (ξ = 3◦C). (2) Ames (De Cock, 2011) pre-
dicts housing prices using features such as square footage
(ξ = 15%y). These regression datasets serve as a stand-in
for vertically partitioned data, which as Sec. 1 mentions
are particularly vulnerable to our union of ℓ0 attacks threat
model. Note run-off and plurality voting are identical un-
der binary classification so we only report FPA’s plurality
voting regression results.

Model Architectures For MNIST and CIFAR10, all
methods used convolutional neural networks. Gradient-
boosted decision trees (GBDTs) generally work exception-
ally well on tabular data (Brophy et al., 2023) so for re-
gression datasets Weather and Ames, FPA used LightGBM
GBDTs (Ke et al., 2017). In contrast, RA’s feature ab-
lation prevents the use of tree-based models like GBDTs,
so RA instead used linear models for these two datasets
(Hammoudeh & Lowd (2023) also used linear models for

2Existing certified poisoning defenses do not evaluate on full
ImageNet due to the high training cost (Jia et al., 2022a; Levine
& Feizi, 2021; Rezaei et al., 2023; Wang et al., 2022a;b).

Table 1. Median certified robustness (larger is better). Each
dataset’s best performing method is in bold. FPA’s median ro-
bustness was 20–30% larger than RA for classification and 3 to
4× larger for regression. For detailed results, see Sec. H.2.

Dataset Dim. (d)
FPA (ours) Random. Ablate.

Plural Run-Off (LF‘20b) (Jia‘22b)

CIFAR10 1024 11 13 7 10
MNIST 784 9 12 8 10
Weather 128 4 – 0 1
Ames 352 3 – 1 1

Table 2. Classification accuracy (% – larger is better). We report
FPA’s accuracy at both RA’s (middle, bold) and FPA’s (green)
best median robustness levels. RA’s classification accuracy is re-
ported at its peak median robustness. For full results, see Sec. H.2.

Dataset
FPA (ours) RA (Jia‘22b)

rmed Acc. rmed Acc. ρmed Acc.

CIFAR10 13 62.4 10 75.0 10 64.7
MNIST 12 87.2 10 96.1 10 93.1
Weather 4 76.1 1 85.3 1 75.2
Ames 3 65.5 1 84.6 1 67.2

Weather). Even when restricted to linear submodels, FPA
still had better median robustness and classification accu-
racy than RA; see suppl. Tables 24 and 25.

Feature Partitioning Strategy For CIFAR10 and MNIST,
FPA used strided feature partitioning; each submodel con-
sidered the full image dimensions with any pixels not in St
set to 0. For Weather and Ames, FPA used balanced ran-
dom partitioning as the tabular features are unordered.

Hyperparameters Hyperparameters T (FPA’s submodel
count) and e (RA’s kept feature count) control the corre-
sponding method’s robustness vs. accuracy tradeoff. When
optimizing patch and median robustness, hyperparame-
ters T and e were tuned on validation data.

6.2. Main Results

Tables 1 and 2 summarize the median certified robustness
and classification accuracy (resp.) for FPA and baseline
RA. Tab. 3 details each method’s mean certification time.
Note that due to space, Tables 2 and 3 only report results for
Jia et al.’s (2022b) (significantly) better performing version
of baseline RA. Tab. 4 analyzes FPA as a patch defense. We
briefly summarize the experiments’ takeaways below. See
Secs. H.2 and H.3 for the full numerical results, including
comparing the methods at additional robustness levels.

Takeaway #1: FPA simultaneously provided larger and
stronger median robustness guarantees than RA. As Tab. 1
details, FPA’s median certified robustness was 20–30%
larger than RA for classification and 3 to 4× larger for re-
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Table 3. Mean certification time in seconds for FPA and Jia
et al.’s (2022b) randomized ablation (RA). FPA is 2 to 3 orders
of magnitude faster than baseline RA.

Dataset
RA (Jia‘22b) FPA (ours)

Speedup
e Time T Time

CIFAR10 15 5.4E+0 115 7.3E−3 743×
MNIST 25 6.8E−1 60 2.9E−3 235×
Weather 45 3.1E−1 21 1.0E−4 3,134×
Ames 60 3.8E−1 21 3.5E−4 1,082×

gression. Importantly, FPA’s certified feature guarantees
apply to evasion, poisoning, and backdoor attacks, while
baseline RA only covers evasion attacks.

Takeaway #2: FPA’s median robustness gains come at lit-
tle cost in classification accuracy. Tab. 2 reports FPA’s
classification accuracy at two robustness levels: (1) FPA’s
best median robustness (green) and (2) RA’s best median
robustness (bold). Tab. 2 also reports RA’s classification
accuracy at its best median robustness (last column). For
CIFAR10 at median robustness of 10 pixels, FPA’s classifi-
cation accuracy was 10.2 percentage points (pp) better than
RA (75.0% vs. 64.7%). At rmed = 13, FPA’s CIFAR10 clas-
sification accuracy was 62.4% – only 2.3pp lower than RA
at ρmed = 10. For MNIST at median robustness 10, FPA’s
classification accuracy was 3pp better than RA (96.1%
vs. 93.1%). At rmed = 12, FPA’s MNIST classification ac-
curacy was 87.2%, 5.9pp lower than RA.

Takeaway #3: FPA certifies predictions 2 to 3 orders of
magnitude faster than RA. Tab. 3 compares the mean
certification times using the hyperparameter settings with
the best median robustness. To certify one prediction, Jia
et al.’s (2022b) improved RA evaluates 100k ablated in-
puts. In contrast, FPA requires exactly T forward passes
per prediction (one per submodel).

Takeaway #4: FPA provides strong patch robustness with-
out any assumptions about patch shape or the number
of patches. As Table 4 details, FPA certifies 41.6% of
CIFAR10 predictions at r = 24 perturbed pixels (2.3%
of d) – regardless of patch shape or the number of
patches. In contrast, (de)randomized smoothing’s (Levine
& Feizi, 2020a) (BS, s = 12) 24-pixel certified accuracy
varies between 0% to 72.7% based on patch shape alone.
BAGCERT’s certified accuracy drops as low as 43.1% for
24-pixel column and row patches – only 1.5pp better than
FPA. Unlike FPA, patch defenses’ certified accuracy guar-
antees decline further or even evaporate under (1) multiple
patches, (2) training data perturbations, and (3) amorphous
shapes. While less effective in some settings than dedicated
patch defenses that make stronger assumptions and weaker
guarantees, FPA is still competitive, providing patch guar-
antees essentially for free.

Table 4. CIFAR10 certified patch accuracy (% – larger is better)
for FPA, RA, and three dedicated patch defenses. FPA is compet-
itive despite making fewer assumptions and providing stronger
guarantees than patch defenses.

Method
24 Pixel Rect. Square

Min. Max. 5× 5

FPA Plurality (T = 180, ours) ←− 38.53−→ 37.77
FPA Run-Off (T = 180, ours) ←− 41.60−→ 40.95
Randomized Ablation (LF‘20b) ←− 28.95−→ 28.21
Randomized Ablation (Jia‘22b) ←− 37.31−→ 36.43
(De)Randomized Smoothing 0.0 72.68 57.69
BAGCERT 43.11 60.17 59.95
Patch IBP — — 30.30

Takeaway #5: FPA is the first integrated defense to pro-
vide significant pointwise robustness guarantees over the
union of evasion, backdoor, and poisoning attacks – ℓ0
or otherwise. Consider CIFAR10 (n = 50,000) where
FPA feature robustness r ≥ 25 (Table 4) certifies 41.0%
of predictions’ robustness against 1.25M arbitrarily per-
turbed pixels. In contrast, the only other certified defense
robust over the union of evasion, backdoor, and poison-
ing attacks (Weber et al., 2020) certifies the equivalent of 3
or fewer arbitrarily perturbed CIFAR10 pixels (i.e., a total
training and test ℓ2 perturbation distance of ≤3). More-
over, FPA certifies r ≥ 7 for 35.1% of Weather predictions
(n > 3M – Tab. 28) – a pointwise guaranteed robustness of
up to 21M arbitrarily perturbed feature values.

7. Conclusions
We propose feature partition aggregation – a certified de-
fense against the union of ℓ0 evasion, poisoning, and back-
door attacks. FPA provided stronger and larger (median)
robustness guarantees than the state-of-the-art ℓ0 evasion
defense, randomized ablation. FPA’s certified feature guar-
antees are particularly important for vertically partitioned
data where a single compromised data source allows an at-
tacker to arbitrarily modify a limited number of features for
all instances – training and test. To our knowledge, FPA is
the first integrated defense providing non-trivial pointwise
robustness guarantees against this union of attacks – ℓ0 or
otherwise (Weber et al., 2020). Future work remains to de-
velop other ℓp defenses over this union of attack types.
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A. Nomenclature Reference

Scalars and functions are denoted with lowercase italics letters. Vectors are denoted as lowercase bold letters. Matrices are
denoted as uppercase bold letters. The j-th column of a matrix A is denoted Aj .

Table 5: Nomenclature Reference: Related symbols are grouped together. For example, the first group lists the acronyms
of methods evaluated in this work. This table also includes nomenclature symbols that only appear in the supplement.

FPA Our certified defense, feature partition aggregation, against sparse poisoning, backdoor, evasion, and patch attacks
RA Randomized ablation. Certified ℓ0-norm evasion defense. Proposed by Levine & Feizi (2020b) and subsequently

improved by Jia et al. (2022b)
DPA Deep partition aggregation certified instance-wise poisoning defense proposed by Levine & Feizi (2021)
DRS (De)randomized smoothing certified patch defense proposed by Levine & Feizi (2020a). Based on randomized

ablation
Patch IBP Certified patch defense based on interval bound propagation proposed by Chiang et al. (2020b)
BAGCERT Certified patch defense proposed by Metzen & Yatsura (2021)

RAB Robustness against backdoors certified defense proposed by Weber et al. (2020)
LightGBM Gradient-boosted decision tree model architecture (Ke et al., 2017)

r Pointwise certified feature robustness – feature partition aggregation’s certification objective (Def. 1)
rmed Median certified feature robustness w.r.t. a dataset’s test set
ρ Pointwise ℓ0-norm certified evasion-only robustness (Def. 2). A weaker guarantee than certified feature robustness.
ρmed Median ℓ0-norm certified evasion-only robustness w.r.t. a dataset’s test set
ρ̄ Certified instance-wise poisoning robustness. (Def. 9 – §C).
r̃ Pointwise certified feature and label-flipping robustness (Def. 11 – §E)
[m] Integer set {1, . . . ,m} where m ∈ N
1[q] Indicator function where 1[q] = 1 if q is true and 0 otherwise
∥w∥0 ℓ0 norm for vector w, i.e., the number of non-zero elements in w

Xj j-th column of matrix X where j ∈ [d] and Xj ∈ Rn

X ⊖ X′ Set of column indices over which equal-size matrices X and X′ differ, where X ⊖ X′ = {j ∈ [d] : Xj ̸= X′
j}

xj j-th dimension of vector x where j ∈ [d] and xj ∈ R
x ⊖ x′ Set of dimensions over which vectors x and x′ differ where x ⊖ x′ = {j ∈ [d] : xj ̸= x′j}

dsym(D,D′) Symmetric difference between sets D and D′

pp Percentage points
n Number of training instances
X Feature domain where X ⊆ Rd

x Feature vector where ∀x x ∈ X
d Feature dimension where ∀x|x| = d

[d] Complete feature set
Y Label set where Y ⊆ N
y Instance label where ∀y y ∈ Y

(xi, yi) Arbitrary training instance where xi ∈ X , yi ∈ Y , and i ∈ [n]

X Training feature matrix where X := [ x1 · · · xn ]⊺ and X ∈ Rn×d

y Training label vector where y := [y1, . . . , yn]

f Voting-based, ensemble classifier trained over partitioned feature sets where f : X → Y
T Number of submodels in ensemble f
St Feature subset considered by the t-th submodel during training and test where St ⊂ [d] and

⊔T
t=1 St = [d]

xSt Subvector of x ∈ X restricted to feature subset St ⊂ [d]

Dt Training set for the t-th submodel
ϕ Spread degree of the (overlapping) feature subsets D1, D2, . . . ; by default, ϕ = 1 (§F).

(Continued . . . )
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Table 5: Nomenclature Reference (Continued): Related symbols are grouped together.

f(x) Model prediction for instance x ∈ X and f(x) ∈ Y
ft(x) Label predicted by the t-th submodel for instance x ∈ X where ft(x) := argmaxy∈Y gt(x, y)

ċy(x) Submodel vote count for label y and feature vector x where ċy(x) :=
∑T

t=1 1[ft(x) = y]

GAPvote(y, y
′;x) Submodel vote gap for instance x ∈ X and labels y, y′ ∈ Y where GAPvote(y, y

′;x) := ċy(x)− ċy′(x)− 1[y′ < y]

ypl Submodel plurality label where ypl := argmaxy∈Y ċy(x) and ties broken by preferring the smaller label. FPA
ensemble prediction under the plurality label decision function (§4.1)

yru Label with the second-most submodel votes (i.e., the “runner up”) where yru := argmaxy′∈Y\ypl
ċy′(x)

gt(x, y) Logit value predicted by the t-th submodel for instance x ∈ X and label y ∈ Y where gt(x, y) ∈ [0, 1]

yRO FPA ensemble prediction under the run-off decision function (§4.2).
ỹRO Label in the run-off decision function’s second round that is not selected as the run-off prediction where

ỹRO := {ypl, yru} \ yRO

c̈x(y; y
′) Pairwise logit count for instance x and label y ∈ Y w.r.t. label y′ ∈ Y where

c̈y(x; y
′) :=

∑T
t=1 1[gt(x, y) > gt(x, y

′)]

GAPlogit(y, y
′;x) Submodel logit vote gap for labels y, y′ ∈ Y where GAPlogit(y, y

′;x) := c̈y(x; y
′)− c̈y′(x; y)− 1[y′ < y]

f(x; k) Top-k model prediction for instance x ∈ X (§D)
ỹ Label with the (k + 1)-th most submodel votes (§D)
htr Instance space mapping function where htr : X × Y → [T ] (§E).
hS Feature subset mapping function for overlapping feature sets where hS : [ϕT ]→ [ϕT ] (§F)
e Randomized ablation hyperparameter – number of kept features with the other (d− e) ablated where e ∈ N.

BS Blocking smoothing ablation paradigm used by (de)randomized smoothing (Levine & Feizi, 2020a)
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B. Proofs

This section contains all proofs for our theoretical contributions. §B.1 provides the proofs for the main paper’s theoretical
contributions. Due to space, some of our theoretical contributions appear only in the supplement. §B.2 contains the proofs
for these supplement-only theoretical contributions.

B.1. Theorems from the Main Paper

This section provides the proofs for our theoretical contributions in the main paper.

PROOF OF THEOREM 3

Proof. Let
∆ := ċypl(x)− ċyru(x) ≤ ∀y′ /∈Y\{ypl,yru} ċypl(x)− ċy′(x). (9)

In words, vote-count difference ∆ between plurality label ypl and runner-up label yru is at least as small as the gap between
ypl and any other label.

In the worst case, a single feature perturbation changes a single submodel’s vote from plurality label ypl to a label of the
adversary’s choosing. Each perturbed submodel prediction reduces the gap between the plurality label and the adversary’s
chosen label by two. By Eq. (9), it takes the fewest number of vote changes for yru to overtake plurality label ypl with the
proof following by induction. ∆ then lower bounds the certified robustness. When determining r, ∆ may be even or odd.
We separately consider both cases below.

Case #1: ∆ is odd.

Since ∆ is odd, there can never be a tie between labels ypl and yru, simplifying the analysis. Then, the maximum number
of submodel predictions that can change without changing the plurality label is any r ∈ N satisfying

ċyru(x) + 2r < ċypl(x) (10)

r <
ċypl(x)− ċyru(x)

2
(11)

r =

⌊
ċypl(x)− ċyru(x)

2

⌋
▷ r must be a whole number (12)

=

⌊
ċypl(x)− ċyru(x)− 1[yru < ypl]

2

⌋
▷ Subtracting 1 has no effect when ∆ odd (13)

=

⌊
GAPvote(ypl, yru;x)

2

⌋
▷ Eq. (1). (14)

Case #2: ∆ is even.

For even-valued ∆, ties can occur. If yru < ypl, the tie between ypl and yru is broken in favor of yru. Then, the number of
submodel predictions that can change without changing the plurality label is any r ∈ N satisfying

ċyru(x) + 1[yru < ypl] + 2r < ċypl(x) (15)

r ≤
ċypl(x)− ċyru(x)− 1[yru < ypl]

2
(16)

r =

⌊
ċypl(x)− ċyru(x)− 1[yru < ypl]

2

⌋
▷ r must be a whole number (17)

=

⌊
GAPvote(ypl, yru;x)

2

⌋
▷ Eq. (1). (18)
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Theorem 3’s definition of r follows the same basic structure as that of deep partition aggregation (Levine & Feizi, 2021,
Eq. (10)).

PROOF OF CLAIMS RELATED TO THEOREM 4

Lemma 5. Let f1, . . . , fT be a set of T models where ∀t∈[T ] ft : X → Y . Under submodel voting, label y ∈ Y is preferred
over label y′ ∈ Y \ y w.r.t. instance x ∈ X if and only if GAPvote(y, y

′;x) ≥ 0.

Proof. Label y is preferred over label y′ in only two cases:

1. y receives more (sub)model votes than y′, i.e., ċy(x) > ċy′(x).

2. y and y′ receive the same number of votes and y < y′.

In the first case,

GAPvote(y, y
′;x) := ċy(x)− ċy′(x)− 1[y′ < y]

≥ 1− 1[y′ < y]

≥ 1− 1 = 0.

In the second case,

GAPvote(y, y
′;x) := ċy(x)− ċy′(x)− 1[y′ < y]

= 0− 1[y′ < y]

= 0− 0 = 0.

The reverse direction where GAPvote(y, y
′;x) ≥ 0 =⇒ y is preferred over y′ can be proven by contradiction using similar

logic as above. If y′ receives more votes than y, then GAPvote(y, y
′;x) < 0, a contradiction. Similarly, if ċy(x) = ċy′(x)

then necessarily y′ < y. This also leads to a contradiction as GAPvote(y, y
′;x) would be negative.

Lemma 6. Runoff Elections Case #1 Certified Feature Robustness Given submodel feature partition S1, . . . ,ST , let f
be a voting-based ensemble of T submodels, where the t-th submodel uses only the features in St. For instance x ∈ X ,
let yRO be the label selected by the run-off decision function. The certified feature robustness of yRO getting overtaken in
round #2 of the run-off election is

rCase1
RO := min

y∈Y\yRO

max

{⌊
GAPvote(ỹRO, y)

2

⌋
,

⌊
GAPlogit(yRO, y)

2

⌋}
Proof. For a label y ∈ Y \ yRO to overtake yRO, two requirements must be simultaneously met:

• y and yRO must be round #1’s top-two labels, and

• y must be preferred over yRO in round #2.

Let ỹRO ∈ Y \ ypl denote the other top-two label in round #1. Note that ỹRO may or may not be the same as y. The robustness
of ỹRO to being overtaken by y in round #1 follows directly from Theorem 3 and equals

r′ =

⌊
GAPvote(ỹRO, y;x)

2

⌋
. (19)

Concerning the second requirement, yRO is preferred over y in round #2 so long as GAPlogit(yRO, y;x) ≥ 0. Following
similar logic as above, yRO’s certified feature robustness in round #2 is

r′′ =

⌊
GAPlogit(yRO, y;x)

2

⌋
. (20)
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Since both requirements must hold, the certified feature robustness is lower bounded by both (i.e., the maximum) of
Eqs. (19) and (20). Moreover, the optimal label y ∈ Y \ yRO is not determined a priori meaning all labels need to be
checked.

Lemma 7. Runoff Elections Case #2 Certified Feature Robustness Given submodel feature partition S1, . . . ,ST , let f
be a voting-based ensemble of T submodels, where the t-th submodel uses only the features in St. For instance x ∈ X , let
yRO be the label selected by the run-off decision function. Define recursive function dp as

dp[i, j] =

{
0 min{i, j} ≤ 1 and (i, j) ̸= (1, 1)

1 + min{dp[i− 2, j − 1],dp[i− 1, j − 2]} Otherwise
(21)

Then yRO’s certified feature robustness of remaining in the top-two round #1 labels predicted by the submodels is

rCase2
RO := min

y,y′∈Y\yRO

dp
[
gapy, gapy′

]
where gapy∗ = max{0,GAPvote(yRO, y

∗)}.

Proof. Lemma 5 proves that a label y is preferred over another label y′ iff GAPvote(y, y
′;x) ≥ 0. For label yRO to be in

round #1’s top two, no pair of labels can have negative submodel vote gaps w.r.t. yRO. Determining yRO’s round #1 certified
feature robustness reduces to determining the maximum number of submodel votes that can be perturbed with it remaining
guaranteed that both labels do not have negative submodel vote gaps.

In the best case for an attacker, perturbing a single submodel changes the submodel’s predicted label from yRO to a label of
the attacker’s choosing, e.g., y ̸= yRO; this perturbation decreases GAPvote(yRO, y;x) by 2. For all other y′ ∈ Y \ {yRO, y},
this perturbation also decreases GAPvote(yRO, y

′;x) by 1.

By definition, yRO is in the top-two round #1 labels, meaning rCase2
RO ≥ 0. Consider first when

max{GAPvote(yRO, y),GAPvote(yRO, y
′)} ≤ 1 and (i, j) ̸= (1, 1). The attacker perturbs whichever label y, y′ has the

larger submodel vote gap. Since at most one of these two labels has a positive gap, an additional submodel pertur-
bation could make both GAPvote(yRO, y) and GAPvote(yRO, y

′) negative meaning no further feature perturbations are
possible. In the special case of i = j = 1, perturbing a submodel predicting either label y or y′ never causes the other
label’s submodel vote gap to be negative meaning one additional submodel feature perturbation is possible. When
max{GAPvote(yRO, y),GAPvote(yRO, y

′)} > 1, the proof follows by induction where recursive function dp returns the
fewest number of submodel perturbations required given y, y′ ∈ Y .

Since the attacker’s optimal pair of labels y, y′ is not determined a priori, Eq. (7)’s feature guarantee considers all pairs of
labels and returns the robustness of the pair most advantageous to the attacker.

PROOF OF THEOREM 4

Proof. For a given x ∈ X , there are only two possible ways that run-off prediction yRO ∈ Y can be perturbed, namely:

1. yRO loses in run-off’s second round.

2. yRO fails to qualify for the second round by not being in the top two labels in round #1.

These two cases align directly with Lemmas 6 and 7, respectively. An optimal attacker targets whichever of the two
cases requires fewer feature perturbations. Therefore, run-off’s certified feature robustness is the minimum of Eqs. (5)
and (7).

B.2. Lemmas from the Supplemental Materials

This section provides the proofs for our theoretical contributions that appear only in the supplement.
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PROOF OF THEOREM 10

Alg. 1’s iterative greedy strategy is formalized below.

Def. 8. Certified Feature Robustness Greedy Strategy Given target label y ∈ Y, plurality label ypl ∈ Y, and label ỹ ∈ Y
with the (k + 1)-th most votes, if ċy(x) > 0, decrement ċy(x) by 1; otherwise, decrement ċypl(x) by 1. Increment both ċỹ(x)
and certified feature robustness r by 1.

Theorem 10’s proof references Def. 8 for brevity.

Proof. We follow the classic “greedy stays ahead” proof strategy (Kleinberg & Tardos, 2006). In short, given some iterative
greedy strategy, the greedy algorithm always does better at each iteration than any other algorithm. Also, observe that the
order that the greedy strategy perturbs the labels does not affect the optimality of the bound since each perturbation is
strictly increasing, additive, and fully commutative.

In short, Def. 8’s greedy strategy minimizes at each iteration the margin between y’s vote count, ċy(x), and the vote
count of the label with the (k + 1)-th most votes, i.e., ċỹ(x). Recall that Theorem 3’s proof above for top-1 certified
robustness only considers the runner-up label yru since all other labels y′ /∈ Y \ {y, yru} require at least as many label
changes as runner-up yru to overtake plurality label y. Def. 8’s greedy strategy generalizes this idea where now only the
top (k + 1) labels are considered and the rest of the labels ignored.

Each iteration of Alg. 1 may have a different label with the (k + 1)-th most votes. For a given iteration, denote this label ỹ,
making label y’s margin of remaining in the top k

∆ := ċy(x)− ċỹ(x). (22)

Trivially, maximally reducing ċy(x) and maximally increasing ċỹ(x) has the effect of maximally reducing their differ-
ence ∆. While it is always possible to increase ċỹ(x), it is not always possible to always reduce ċy(x). Our greedy
approach, as implemented in Alg. 1, conditions each iteration’s strategy based on whether ċy(x) can be reduced, i.e.,
whether ċy(x) > 0.

Case #1: ċy(x) > 0.

In each iteration, a single submodel prediction is changed. Changing one submodel prediction ft(x) from label y to label ỹ
maximally decreases ċy(x). Moreover, transferring the vote to ỹ also increases ċỹ(x). No other allocation of the votes
could reduce ∆ more in particular since the order of the votes being reallocated does not matter.

Case #2: ċy(x) = 0.

No label can have negative votes so ċy(x) cannot be further reduced. Reducing the margin exclusively entails maximally
increasing ċỹ(x). Def. 8 and Alg. 1 transfer a vote from the plurality label ypl := argmaxy′∈Y ċy′(x) to label ỹ. Transfer-
ring the vote from the plurality label guarantees that ċỹ(x) monotonically increases and no vote is ever transferred twice
since k < T .

PROOF OF LEMMA 12

Proof. This proof follows directly from the proof of Thm. 3 with one difference. When training labels y1, . . . , yn may not
be pristine, an adversary can use malicious training labels to modify a submodel prediction.

Each training label is considered by exactly one submodel. An adversarial label change has the same worst-case effect as
an adversarial feature perturbation, meaning the certified robustness derivation in Thm. 3’s proof applies here unchanged
(other than the definition of robustness). Hence, similar to Eq. (3),

r̃ =

⌊
GAPvote(ypl, yru)

2

⌋
. (23)
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PROOF OF LEMMA 13

Proof. This proof follows directly from Lem. 12’s proof. As above, a single adversarial label flip or feature perturbation
still changes at most one submodel prediction. Training submodels with (deterministic) semi-supervised learning does not
change the mechanics of the ensemble decision. Therefore, Lem. 12’s certified guarantee derivation remains unchanged
between partitioning the training instances versus partitioning the training labels with semi-supervised learning.

PROOF OF LEMMA 14

Proof. This proof follows directly from Wang et al.’s (2022a) Theorem 2; we direct the reader to the original paper for
Wang et al.’s complete derivation. For brevity, we directly apply Wang et al.’s result below.

Both FPA and Wang et al.’s deterministic finite aggregation (DFA) train an ensemble of ϕT submodels, with each submodel
considering the union of ϕ disjoint sets of objects. The only difference between the two formulations is that DFA considers
sets of training instances while FPA considers sets of features; the differences in the two methods’ certified guarantees arise
solely out of this one difference in formulation. DFA provides guarantees w.r.t. training instances, i.e., w.r.t. overlapping
objects in the sets. Since FPA’s sets instead contain feature dimensions, FPA certifies feature robustness.

Eq. (31)’s robustness bound is identical to Wang et al.’s Theorem 2, albeit with slightly different notation.

Note that Wang et al. do not contextualize their Theorem 2 w.r.t. top-k predictions. Rather Wang et al. specify their
guarantees w.r.t. correct/incorrect predictions, which is equivalent to top-1 accuracy.
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C. Related Work: Extended Discussion

Section 3 briefly summarizes work closely related to our certified defense, feature partition aggregation (FPA). Due to
space, we deferred this more extensive discussion of related work to the supplement.

C.1. Summarized Comparison of Closely Related Work

Tab. 6 provides a summarized comparison of the certified defenses most relevant to this work.

Table 6. Certified defense comparison for the primary methods considered in this work, namely: feature partition aggregation (FPA),
randomized ablation (RA), (de)randomized smoothing (DRS), and deep partition aggregation (DPA). This comparison covers the types
of guarantees each method provides as well as each method’s model architecture.

Property
Method

FPA (ours) Random. Ablate. (De)Rand. Smooth. DPA

Evasion Defense ✓ ✓ ✓*
Patch Defense ✓ ✓ ✓
Poison Defense ✓ ✓
Backdoor Defense ✓
Guarantee Type Deterministic Probabilistic Deterministic Deterministic
Guarantee Dimension Feature-wise Feature-Wise Square Patch* Instance-wise
Model Type Ensemble Smoothed Smoothed Ensemble

C.2. ℓ0-Norm Certified Evasion Defenses

These defenses represent the most closely related work. Given (test) instance (x, y), ℓ0-norm defenses certify the number
of features that change in test instance x without changing prediction f(x) (Def. 2).

Originally proposed by Levine & Feizi (2020b) and subsequently improved by Jia et al. (2022b), randomized ablation (RA)
is the current state-of-the-art ℓ0-norm certified defense. RA is smoothing-based (Cohen et al., 2019; Rosenfeld et al., 2020).
Given some feature vector x, RA’s underlying classifier labels multiple random perturbations of x; the model’s smoothed
prediction is the plurality label across these randomly perturbed predictions. Also generated from the perturbed predictions
is a lower bound on the probability of predicting the plurality label as well as upper bounds on probabilities all other labels.3

These probability bounds are then used to calculate RA’s certified probabilistic guarantee ρ.

The type of perturbation dictates the type of certified guarantee smoothing yields. For example, to certify robustness against
label-flipping attacks, Rosenfeld et al. (2020) train multiple submodels, each using a different set of randomly perturbed
training labels (y). Randomized ablation uses a novel ablation strategy customized for ℓ0 attacks; specifically, for each
ablated input of x, (d− e) randomly-selected features are “turned off” (i.e., ablated),4 with the remaining e features left
unchanged. If an attacker perturbs m unknown features in x, then via combinatorics, we can determine the probability that
one or more perturbed features intersect with the ablated input’s kept features; if the feature-set intersection is empty, then
the adversarial perturbation had no effect on the ablated prediction. RA combines this insight with the Neyman-Pearson
Lemma to calculate ℓ0-norm robustness ρ (Jia et al., 2022b).

Levine & Feizi’s (2020b) RA guarantees are often loose in practice, particularly for larger values of ρ. More recently, Jia
et al. (2022b) propose improved certification analysis that generates tight RA guarantees for top-1 predictions and almost
tight guarantees for top-k predictions.

Given the looseness of Levine & Feizi’s (2020b) certified guarantees, RA’s effectiveness as certified patch defense is
limited. To that end, Levine & Feizi (2020a) propose (de)randomized smoothing (DRS) – a specialized version of RA for
patch attacks. The primary differences between RA and DRS are:

3These upper and lower bounds are probabilistic given some user-specific hyperparameter α ∈ (0, 1).
4To mark a feature as turned-off, randomized ablation relies on a custom feature encoding that doubles the number of features. For

details, see the original randomized ablation paper (Levine & Feizi, 2020b).
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1. RA provides ℓ0-norm guarantees (Def. 2) while DRS provides patch guarantees. Both of these guarantees apply to
evasion attacks only.

2. As its name indicates, randomized ablation’s smoothing process selects the set of kept (i.e., non-ablated) features
uniformly at random. By restricting consideration to just patches, DRS restricts the number of possible attacks from
order O(

(
d
m

)
) to O(d). More practically, exponentially fewer possible perturbations allow DRS to certify a prediction

with far fewer ablated inputs – so few that DRS’s ablation set can usually be tested exhaustively.

3. Since RA considers only a random subset of the possible ablations, RA provides only probabilistic guarantees. By
exhaustively testing a deterministic set of possible ablations, DRS provides deterministic guarantees.

Levine & Feizi’s (2020a) empirical evaluation of DRS considers exclusively square patches. Tab. 4 details how some
rectangular patch shapes drop DRS’s certified accuracy to 0%. Tab. 6 above lists DRS as providing guarantees w.r.t. specif-
ically square patches since as Metzen & Yatsura (2021) state in the BAGCERT paper, “we do not consider [(de)randomized
smoothing] with column smoothing...[a] general patch defense, despite good performance for square patches and efficient
certification analysis...”

Levine & Feizi (2022) generalize the idea of (de)randomized smoothing’s deterministic guarantees to ℓ0 attacks. Unlike
FPA which provides certified feature guarantees (Def. 1), Levine & Feizi’s (2022) alternate method only provides ℓ0-norm
robustness guarantees (Def. 2) and still generally requires ablated training.

To summarize the differences between the various certified ℓ0 and patch defenses:

1. FPA provides guarantees over the union of ℓ0 evasion, backdoor, and poisoning attacks, while RA and DRS provide
no training robustness guarantees.

2. FPA trains an ensemble of (non-smoothed) classifiers, while RA and DRS train a single smoothed classifier.

3. During both training and inference, feature ablation functionally marks any ablated feature as missing; this generally
restricts RA and DRS to model architectures that are robust under missing data. In practice, feature ablation works
best when combined with parametric model architectures (e.g., neural networks) that are trained using first-order
methods. Ablated training and inference cannot be directly combined with tree-based methods such as gradient-
boosted decision trees (GBDTs). By contrast, FPA supports any submodel architecture. Therefore, unlike RA and
DRS, FPA can use whichever submodel architectures works best for a given application.

4. FPA and RA consider more general ℓ0 attacks, while DRS considers more restrictive patch attacks.

5. FPA and DRS provide deterministic guarantees, while RA provides only probabilistic guarantees.

6. DRS’s deterministic ablation patterns (e.g., band smoothing and block smoothing) generally perform poorly when
used as deterministic feature partitions.

Calzavara et al. (2021) propose a binary classification only ℓ0-norm certified defense based on decision tree ensembles.
Like FPA, Calzavara et al. use feature partitioning to bootstrap their guarantees. However, Calzavara et al.’s certification
procedure is NP-complete in the worst case via reduction to partial set cover. Moreover, each of Calzavara et al.’s models
certifies a single ℓ0-norm robustness level, potentially requiring a different model to be trained for each target robustness
level ρ.

C.3. Instance-wise Certified Poisoning Defenses

The second class of defenses related to FPA certify robustness against instance-wise data poisoning. Specifically, these
methods provide pointwise guarantees on the number of arbitrary instances that can be inserted into or deleted from the
training set without changing model prediction f(x).5 Def. 9 formalizes instance-wise poisoning guarantees as commonly
defined in related work (Levine & Feizi, 2021; Rezaei et al., 2023; Wang & Feizi, 2023; Wang et al., 2022a;b), where
function dsym denotes the symmetric difference.

5Recall that FPA’s certified feature robustness (Def. 1) provides guarantees on the number of features – training or test – an attacker
can perturb. FPA does not certify robustness w.r.t. instances like DPA.



Feature Partition Aggregation: A Fast Certified Defense over a Union of ℓ0 Attacks

Def. 9. Instance-wise Certified Poisoning Robustness Given model f trained on training set D = {(xi, yi)}ni=1 and
model f ′ trained on D′ = {(xj , yj)}mj=1, instance-wise certified poisoning robustness ρ̄ ∈ N is a pointwise, deterministic
guarantee w.r.t. instance x where |dsym(D,D′)| ≤ ρ̄ =⇒ f(x) = f ′(x).

The first poisoning defense to provide non-trivial instance-wise guarantees was deep partition aggregation (DPA) (Levine
& Feizi, 2021). Described briefly, let htr : Rd → [T ] be a deterministic function that partitions the instance space into
T disjoint subregions. DPA trains an ensemble of T deterministic submodels where each submodel’s training set is drawn
from a different htr subregion. Levine & Feizi’s (2021) formulation of DPA relies on plurality voting as the decision
function. FPA is heavily inspired by DPA, so we chose to name our method similarly.

Rezaei et al. (2023) propose run-off elections – an alternate DPA decision function and certification procedure. Run-off
elections require no retraining of the DPA ensemble, meaning run-off can increase DPA’s certified guarantees essentially
for free.

Additional instance-wise poisoning defenses include Jia et al.’s (2022a) nearest-neighbor defense and Wang et al.’s (2022a)
finite aggregation.

A major strength of FPA is its ability to directly leverage the properties implicit in existing voting-based techniques.
More specifically, FPA can directly leverage both plurality voting and run-off election decision functions to maximize our
certified guarantees.

C.4. Certified Defenses against the Union of ℓp Attacks

Feature partition aggregation (FPA) is the first certified defense robust against the union of ℓ0 evasion, backdoor, and
poisoning attacks. To our knowledge, the only other certified method robust over this union of attack types is Weber et al.’s
(2020) robustness against backdoors (RAB) defense, which focuses on ℓ2 robustness. RAB extends randomized smoothing
by training an ensemble of smoothed classifiers. Each smoothed RAB submodel is trained on a unique smoothed training
set where i.i.d. random (Gaussian) noise is added to each training instance’s feature vector.

To better understand RAB’s certified guarantees, let δi ∈ Rd denote the adversarial perturbation added to the i-th train-
ing instance, δx ∈ Rd denote the backdoor trigger added to target test instance x, and b ∈ R≥0 denote RAB’s certified
guarantee. Then, RAB defines a prediction as pointwise certifiably robust whenever√√√√ n∑

i=1

∥δi∥22 < b (24)

implies (with high probability) that clean and poisoned training sets would have the same prediction for feature vector
x+ δx.

In practice, RAB provides comparatively small robustness guarantees b. For example, consider CIFAR10 where RAB’s
maximum reported certified robustness is bmax ≤ 3 (Weber et al., 2020, Fig. 4b). An attacker could violate this bound
by arbitrarily modifying as few as three RGB pixels across the entire training set. In contrast, FPA can certify 41.0% of
CIFAR10 predictions up to 1.25M arbitrarily perturbed pixels (see Takeaway #5 in Sec. 6.2).
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D. Certifying a Top-k Prediction

In line with Jia et al.’s (2022b) extension of randomized ablation to top-k certification, below we generalize FPA with
plurality voting to top-k predictions below. For simplicity of presentation, we restrict consideration to the meaningful case
where k < T .

Updated Nomenclature f ’s plurality-voting decision function generalizes to top-k prediction as

f(x; k) := argmax
Yk⊂Y, |Yk|=k

∑
y∈Yk

ċy(x), (25)

where ties are broken by selecting the smallest class indices.

Extending Plurality Voting to Top-k Intuitively, Thm. 3’s certified feature robustness r quantifies the number of sub-
model “votes” that can switch from plurality label ypl to runner-up label yru without changing the model’s prediction. The
simplicity of top-1 predictions permits Eq. (3)’s neat closed form. Thm. 3’s guarantee r can also be calculated greedily,
where submodel “votes” are switched, one at a time, from ypl to yru, with the vote-flipping stopping right before the plurality
label changes. While top-k feature robustness under plurality voting does not have a convenient closed form like Eq. (3),
an (optimal) greedy strategy still applies.

Intuitively, a label y is not in the top k if there exist k labels with more votes. Hence, two approaches to eject a label y from
the top k are: (1) reduce ċy(x), the number of submodels that predict y, and (2) increase the number of votes for ỹ, i.e., the
label with (k + 1)-th most votes. Note that for k > 1, label ỹ may change after each greedy iteration; it is this interaction
that complicates providing a compact closed-form top-k guarantee r that is tight.

Alg. 1 formalizes the above intuition into a complete method to calculate top-k certified feature robustness r. With linear-
time sorting (e.g., counting sort), Alg. 1 has O(T ) time complexity – same as plurality-voting top-1 certification.6

Theorem 10. Top-k Greedy Strategy Optimality Alg. 1 returns plurality voting’s top-k certified feature robustness r
that is tight under worst-case perturbations.

Alg. 1 addresses an edge case to ensure r is tight. Based on how ties are broken, a label y can be in the top k without
receiving any votes (i.e., ċy(x) = 0). In such cases, Alg. 1 transfers votes from plurality label ypl. Perturbing ypl ensures
ċỹ(x) is monotonically increasing. Like ỹ, the plurality label can change between loop iterations.

Generalizing our Top-k Greedy Algorithm Observe that Alg. 1 deals only in submodel vote counts (i.e., ċy′(x)) and
is agnostic to how these independent votes are generated – be it over partitioned features or otherwise. Multiple existing

6With a more sophisticated greedy strategy, certifying a top-k prediction under plurality voting requires no more than O(k) greedy
iterations. We provide the less efficient Alg. 1 here for simplicity. Our source code implements both greedy algorithms.

Algorithm 1 Top-k Greedy Robustness Certification under Plurality Voting

Input: Instance x ∈ X ; target label y ∈ Y; k ∈ N; label vote counts ∀y′∈Y ċy′(x)

Output: Certified feature robustness r
1: r ← −1
2: while ċy(x) is in the top k do
3: ỹ ← Label with the (k + 1)-th most votes
4: if ċy(x) > 0 then
5: ċy(x)← ċy(x)− 1

6: else
7: ypl ← argmaxy′ ċy′(x) ▷ Plurality label
8: ċypl(x)← ċypl(x)− 1

9: ċỹ(x)← ċỹ(x) + 1

10: r ← r + 1 ▷ Update certified robustness
11: return r
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certified defenses (e.g., deep partition aggregation (Levine & Feizi, 2021) and the nearest neighbor-based instance-wise
poisoning defense (Jia et al., 2022a)) are top-1 only and voting-based, with the votes independent. Alg. 1 can be directly
reused to generalize those existing certified defenses to provide robustness guarantees over top-k predictions. Alg. 1 also
applies to alternate FPA formulations with non-pristine training labels (see suppl. §E).

Combining our Top-k Greedy Algorithm with Run-Off §4.2 describes two possible ways an attacker can perturb run-
off prediction yRO. Consider Case #2 where the goal is to eject yRO from round #1’s top-two labels. Observe that this case
reduces to calculating yRO’s top-2 robustness. Rezaei et al.’s (2023) dynamic programming-based formulation in Eq. (7)
could be directly replaced by Alg. 1’s greedy approach. §4.2’s presentation was chosen to better align with Rezaei et al.’s
preprint formulation (while correcting an error in the definition of dp).
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E. On a Sparse Attacker that Modifies Training Labels

§2’s base formulation of feature partition aggregation trains each submodel on a subset of the features from all training
instances. Each submodel also considers full label vector y := [y1, . . . , yn] (see Fig. 1). In the worst case, a single
adversarial label flip could manipulate all T predictions, invalidating FPA’s guarantees. Whether an attacker is able to
manipulate the training labels is application dependent. Previous work commonly views clean-label attacks (where y is
pristine) as the stronger threat model (Chen et al., 2017; Huang et al., 2020; Shafahi et al., 2018; Wallace et al., 2021). To
simplify the formulation and allow for a more direct comparison to existing work, we chose for our primary presentation to
assume clean labels. Nonetheless, FPA’s underlying formulation can be generalized to a threat model where an adversary
can modify training labels. Def. 11 formalizes a joint robustness guarantee over feature perturbations and training-label
flips.

Def. 11. Certified Feature and Label-Flipping Robustness Given training set (X,y), model f ′ trained on (X′,y′), and
arbitrary feature vector x′ ∈ X , certified feature and label-flipping robustness r̃ ∈ N is a pointwise, deterministic guarantee
w.r.t. instance (x, y) where |X ⊖ X′ ∪ x ⊖ x′|+ |y ⊖ y′| ≤ r̃ =⇒ y = f ′(x′).

Similar to certified feature robustness r in Def. 1, certified feature and label robustness r̃ is not w.r.t. feature values.
Instead, r̃ provides a stronger guarantee allowing all values – training and test – for a feature to be perturbed. Robustness r̃
arbitrarily divides between feature perturbations and training-label flips.

Below we propose two extended FPA formulations, which provide certified feature and label-flipping robustness guaran-
tees. We focus on plurality voting below with the extension to run-off straightforward.

E.1. Training Instance Partitioning

FPA’s base formulation is particularly vulnerable to adversarial label flipping since each submodel considers full label
vector y. This vulnerability’s fix is very simple: partition both the features and training instances across the T submodels.
Under this alternate formulation, a single adversarial label flip affects at most one submodel prediction, i.e., the submodel
trained on that instance. Lem. 12 formalizes certified feature and label-flipping robustness for FPA under training instance
partitioning. Like Thm. 3, Lem. 12 generalizes to certify top-k predictions via Alg. 1. Alternatively, r̃ could be certified
using run-off elections similar to Theorem 4.

Lemma 12. Certified Robustness with Partitioned Training Instances Given feature partition S1, . . . ,ST , let f be an
ensemble of T submodels using the plurality-voting decision function. Let htr : X × Y → [T ] be a deterministic function
that partitions the instance space. The t-th submodel is trained exclusively on the features in set St as well as only those
training instances (xi, yi) where htr(xi, yi) = t. Then, for instance (x, y), the pointwise certified feature and label-flipping
robustness is

r̃ =

⌊
GAPvote(ypl, yru)

2

⌋
. (26)

While Lem. 12’s guarantees appear similar to existing certified poisoning defenses such as deep partition aggrega-
tion (DPA) (Levine & Feizi, 2021), there is a subtle yet important difference. As explained in §3, DPA’s threat model
encompasses only data poisoning attacks, meaning test instance x is assumed pristine. DPA does not certifiably improve
the model’s robustness under backdoor or evasion attacks when x is adversarially manipulated. By contrast, Lem. 12 pro-
vides certifiable robustness under sparse poisoning, backdoor, and evasion attacks – as well as adversarial label flipping.
There exist backdoor attacks where Lem. 12 is provably robust but DPA is not (e.g., Gu et al.’s (2019) pixel-based attacks)
and vice versa.

Lem. 12 is no free lunch. Partitioning the training instances across the ensemble entails that each submodel is trained
on even fewer data. This can degrade submodel performance, potentially degrading the certified robustness (Wang et al.,
2022b). Next, we modify the above formulation to restore some of the feature information that is lost when the training
instances are partitioned.
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E.2. Training Label Partitioning with Semi-Supervised Learning

§2’s threat model places no constraint on the poisoning rate, i.e., the fraction of the training instances an attacker may
adversarially perturb. In other words, under this threat model, perturbing a feature for one instance is equivalent, from a
certification perspective, to perturbing that feature for all instances.

In Section E.1 above, our revised feature partition aggregation (FPA) formulation above discards significant feature infor-
mation. Formally, for training instance (xi, yi) assigned to t-th submodel model (i.e., htr(xi, yi) = t), features dimensions
[d] \ St in xi are not used in the training of any submodel. In other words, xi’s feature dimensions [d] \ St are totally
ignored. Since our threat model allows a 100% poisoning rate, discarding these features does not improve the theoretical
robustness.

Rethinking §E.1, the primary motivation for partitioning the training instances was to ensure that a single adversarial label
flip did not affect more than one submodel. To achieve that, the formulation above not only restricts each submodel’s
access to some training labels, it also restricts access to the corresponding training instance’s feature information. This is
heavy-handed, and a more careful partitioning is possible.

This section’s revised FPA formulation is inspired by semi-supervised learning. The t-th submodel still considers the
St columns of matrix X. The sole difference is in the training-label vector used by each submodel. Rather than partitioning
the training instances like in the previous section, our semi-supervised FPA uses function htr to partition just the training
labels. The t-th submodel treats as unlabeled any training instance (xi, yi) were htr(xi, yi) ̸= t. Put simply, the only
difference between the submodel training sets of our base and semi-supervised formulations lies in the training labels
available to each submodel. Both formulations train each submodel on the same feature submatrix.

Lem. 13 formalizes the certified feature and label-flipping robustness (Def. 11) for FPA under training label partitioning
with semi-supervised learning. Observe that Eqs. (26) and (27) define the certified feature and label-flip robustness r̃
identically. Like Thm. 3 and Lem. 13 above, Lem. 13 generalizes to certify top-k predictions via Alg. 1. Again, Lem. 13
can be trivially modified to instead certify feature and label-flipping robustness using run-off elections similar to Theorem 4.

Lemma 13. Certified Robustness with Partitioned Training Labels Given feature partition S1, . . . ,ST , let f be an
ensemble of T submodels using the plurality-voting decision function. Let htr : X × Y → [T ] be a deterministic function
that partitions the instance space. The t-th submodel is trained exclusively on the features in set St as well as the training
labels for those training instances (xi, yi) where htr(xi, yi) = t. For all training instances (xi, yi) where htr(xi, yi) ̸= t,
the t-th submodel treats the instance as unlabeled. Then, for instance (x, y), the pointwise certified feature and label-
flipping robustness is

r̃ =

⌊
GAPvote(ypl, yru)

2

⌋
. (27)

Whether partitioning the training labels (§E.2) or the training instances (§E.1) yields larger certified guarantees is an
empirical question, whose answer depends on the application and semi-supervised learning algorithm.
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F. On Overlapping Submodel Feature Sets

feature partition aggregation does not necessarily require that feature subsets S1, . . . ,ST be a partition of the full feature
set [d]. Rather, the feature subsets can partially overlap, but the certification analysis becomes NP-hard in the general case
via reduction to (partial) set cover (Hammoudeh & Lowd, 2022, Lem. 11).

Recall also that deep partition aggregation (DPA) is a certified defense against poisoning attacks under a limited poisoning
rate. Like FPA, DPA trains submodels on partitioned sets – specifically, partitioned training instances. Wang et al.’s (2022a)
deterministic finite aggregation (DFA) extends DPA where submodels are trained on overlapping instance sets. Just as FPA
with partitioned feature sets can be viewed as the transpose of DPA, FPA with overlapping feature sets can be viewed as
the transpose of Wang et al.’s DFA. Below we formulate FPA with overlapping feature sets as inspired by deterministic
finite aggregation.

Rather than partitioning feature set [d] into T subsets, consider partitioning [d] into ϕT disjoint subsets where ϕ ∈ N. By
definition, it should hold that ϕT ≤ d. Otherwise, some subsets in the partition will be empty by the pigeonhole principle.

In our base FPA formulation, each submodel is trained on approximately 1
T -th of the features, and each feature subset

is assigned to exactly one submodel. For FPA with overlapping features, each submodel is still trained on 1
T -th of the

features. However, since each feature set is now 1
ϕ -th the size, each overlapping submodel is assigned ϕ feature subsets.

Following Wang et al. (2022a), each feature subset is similarly assigned to ϕ submodels. Hence, ϕ is referred to as the
feature subsets’ spread degree.

Deterministic function hS : [ϕT ] → [ϕT ]
ϕ maps the ϕT feature subsets to the ϕT submodels. Our overlapping features

empirical evaluation below defines hS identically to Wang et al.’s hspread function. Formally, let T ⊂ [ϕT ] be a set drawn
uniformly at random without replacement from [ϕT ] where |T | = ϕ. Then, the set of submodels that use feature partition
l ∈ [ϕT ] is

hS(l) := {τ + l mod ϕT : τ ∈ T } . (28)

Since T is constructed randomly, overlapping feature sets more closely resemble balanced random partitioning than deter-
ministic partitioning.

There are two important differences in the analysis of FPA with partitioned versus overlapping feature sets. First, under
partitioned feature sets, a single perturbed feature affects exactly one submodel. For overlapping features, each feature
subset is used in the training of ϕ submodels, meaning a single perturbed feature affects ϕ submodel votes. Second,
under partitioned feature sets, certification analysis exclusively considered the minimum number of models required for
the runner-up label to overtake the plurality label. Under overlapping features, the runner-up label may not be the most
efficient to perturb, meaning all labels must be considered in certification analysis.

The next section formalizes the certified feature robustness under overlapping feature sets with plurality voting.

F.1. Certified Feature Robustness with Overlapping Feature Sets

Recall that for any y ∈ Y and x ∈ X ,
ċy(x) := |{t ∈ [T ] : ft(x) = y}|

denotes the number of submodels that predict label y for x. Given ϕT disjoint feature subsets where
⊔ϕT

l=1 Sl = [ϕT ], let

ċy(x; l) := |{t ∈ [T ] : ft(x) = y ∧ t ∈ hS(l)}|, (29)

denote the number of submodels that both use feature subset Sl and predict label y for x. Define the multiset w.r.t. x ∈ X
as

∆(y,y′) := {ϕ+ ċy(x; l)− ċy′(x; l) : l ∈ [ϕT ]} , (30)

and let ∆r′

(y,y′) denote the sum of the r′ ∈ N largest elements in multiset ∆(y,y′).

Lem. 14 defines the certified feature robustness with overlapping feature sets, plurality voting, and fixed spread degree ϕ.
Lem. 14 follows directly from Wang et al.’s (2022a) Thm. 2.
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Lemma 14. Certified Feature Robustness with Overlapping Feature Sets and Fixed Spread Degree Given submodel
feature partition S1, . . . ,SϕT and function hS , let f be a voting-based ensemble of ϕT submodels using plurality-voting,
where each deterministic submodel ft uses the features in set⊔

l∈[ϕT ]
t∈hS(l)

Sl.

Then the pointwise certified feature robustness of prediction is y := f(x) is r = miny′ ̸=y ry′ where

ry′ := argmax
r′∈N

s.t. ∆r′

(y,y′) ≤ ċy(x)− ċy′(x)− 1[y′ < y] (31)

The next section discusses the limitations of training FPA’s submodels on overlapping feature subsets.

F.2. Limitations of Overlapping Feature Sets

Combining FPA with overlapping feature sets has two primary limitations.

First, overlapping feature sets increase the computational cost versus Thm. 3’s disjoint feature sets – even without an
NP-hard optimization. One of FPA’s key advantages over previous related methods like randomized ablation is FPA’s
computational efficiency (Tab. 3). FPA with disjoint feature sets has computational complexity in O(T ). In contrast, FPA
as formulated in Lem. 14 with overlapping feature sets has computation complexity in O(ϕT ). Any performance gains
derived from overlapping features need to be weighed against the multiplicative increase in training and certification time.

The other major limitation is that supplemental §D’s greedy algorithm does not apply to overlapping feature sets. Like
any NP-hard problem, greedy methods may overestimate the solution necessitating an approximation factor to address any
overestimation. A greedy-based, top-k certification algorithm for overlapping feature sets is left as future work.

As an alternative to Wang et al.’s (2022a) closed-form lower bound for the certified robustness on overlapping sets of
instances, Hammoudeh & Lowd (2023) use an integer linear program to find the optimal certified robustness. In short,
Hammoudeh & Lowd’s formulation trades a better certified bound for a potentially (significantly) more complex opti-
mization. Hammoudeh & Lowd’s (2023) linear program could be modified to determine overlapping FPA’s optimal top-k
robustness.

F.3. Empirical Evaluation of Overlapping Feature Sets for Certified Feature Robustness

This section evaluates FPA’s performance with disjoint and overlapping feature sets under plurality voting. The results for
CIFAR10 are in Tables 7 and 8. MNIST’s results are in Tables 9, 10, and 11. Weather’s results are in Tables 12 and 13.
Beyond the overlapping feature sets, the evaluation setup is identical to §6.

Recall that under overlapping features, the total number of feature partitions is ϕT . As discussed above, this quantity
is functionally bounded by the dataset dimension d. For each model configuration below, we evaluate performance with
spread degree ϕ set as large as possible given T without exceeding the dataset’s corresponding dimension d.

We briefly summarize these experiments’ takeaways.

Takeaway #1: The benefits of overlapping feature sets is largest for smaller T values. We see this trend for all three
datasets. For example with CIFAR10, overlapping feature sets improved random partitioning’s performance by up to
3.5 percentage points when T = 25. By contrast, for CIFAR10 with T = 115, overlapping feature sets improved the
performance by only 0.6 percentage points. We conjecture that the primary cause of this behavior is that T and the
maximum spread degree are inversely related. Since feature dimension d is fixed, larger T restricts ϕ and in turn the
potential benefits of overlapping feature sets.

By comparison, the spread degree of Wang et al.’s (2022a) DFA is capped by the number of training instances. For modern
datasets, the training set’s size is much larger than the feature dimension. We believe this partially explains why overlapping
sets are more useful for certified poisoning defenses than FPA.
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Takeaway #2: For vision datasets, deterministic partitioning generally outperforms overlapping feature sets. The trend
is most visible for CIFAR10 where overlapping feature sets only marginally outperformed strided partitioning under one
small case. By contrast, CIFAR10 deterministic partitioning outperformed overlapping feature sets by multiple percentage
points in many cases. For MNIST, overlapping feature sets did outperform strided deterministic partitioning in particular
when r is small. In many of those cases, random partitioning also performed as well as or better than strided partitioning.

Takeaway #3: Overlapping feature sets reduce the certified accuracy’s variance for random partitioning. For
Weather (Malinin et al., 2021), we report both the certified accuracy’s mean and standard deviation. As spread degree ϕ
increased, the certified accuracy’s variance decreased by up to two-thirds. In short, overlapping feature sets mitigate the
effect of poor feature partitions, which can severely degrade random partitioning’s performance.

Takeaway #4: The benefits of overlapping feature sets decrease as r increases. This trend is consistent across all
three datasets over all T values. At the largest certified robustness values, overlapping feature sets can even significantly
underperform random partitioning. We theorize the primary cause for this phenomenon is that while guarantees for disjoint
feature sets are tight, Lem. 14 only lower bounds overlapping feature set’s maximum certifiable robustness. As r increases,
this looseness becomes increasingly visible.

Table 7. CIFAR10 Overlapping Feature Sets (T = 25): CIFAR10 certified accuracy for our sparse defense, feature partition aggre-
gation (FPA), with T = 25. “Random” denotes balanced random partitioning with disjoint submodel feature sets (i.e., spread degree
ϕ = 1). “Overlapping” denotes that the submodel feature sets were trained using §F.1’s overlapping feature set formulation with the cor-
responding spread degree (ϕ) specified above each column. “Strided” denotes deterministic strided partitioning with disjoint submodel
feature sets (Eq. (33)). The configuration with the best mean certified accuracy is shown in bold.

Cert.
Robust. Random

Overlapping
Strided

ϕ = 10 ϕ = 20 ϕ = 40

1 72.1 73.2 73.6 73.7 76.1
4 60.8 62.4 63.6 64.3 67.6
8 42.5 43.6 44.4 45.8 53.0

12 14.2 13.1 12.8 12.7 25.0

Table 8. CIFAR10 Overlapping Feature Sets (T = 115): CIFAR10 certified accuracy for our sparse defense, feature partition aggre-
gation (FPA), with T = 115. “Random” denotes balanced random partitioning with disjoint submodel feature sets (i.e., spread degree
ϕ = 1). “Overlapping” denotes that the submodel feature sets were trained using §F.1’s overlapping feature set formulation with the cor-
responding spread degree (ϕ) specified above each column. “Strided” denotes deterministic strided partitioning with disjoint submodel
feature sets (Eq. (33)). The configuration with the best mean certified accuracy is shown in bold.

Cert.
Robust. Random

Overlapping
Strided

ϕ = 4 ϕ = 8

1 61.3 61.5 61.6 61.2
10 49.6 49.6 50.2 51.2
20 36.9 36.8 37.3 40.0
30 25.1 24.7 24.8 29.1
40 14.7 14.1 14.0 18.9
50 5.7 5.5 5.4 8.9
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Table 9. MNIST Overlapping Feature Sets (T = 25): MNIST certified accuracy for our sparse defense, feature partition aggrega-
tion (FPA), with T = 25. “Random” denotes balanced random partitioning with disjoint submodel feature sets (i.e., spread degree
ϕ = 1). “Overlapping” denotes that the submodel feature sets were trained using §F.1’s overlapping feature set formulation with the cor-
responding spread degree (ϕ) specified above each column. “Strided” denotes deterministic strided partitioning with disjoint submodel
feature sets (Eq. (33)). The configuration with the best mean certified accuracy is shown in bold.

Cert.
Robust. Random

Overlapping
Strided

ϕ = 10 ϕ = 20 ϕ = 30

1 93.6 94.7 94.9 95.0 94.1
4 84.0 86.5 87.4 87.6 86.5
8 57.5 59.9 60.6 61.8 66.4

12 11.3 11.5 10.5 10.8 20.1

Table 10. MNIST Overlapping Feature Sets (T = 60): MNIST certified accuracy for our sparse defense, feature partition aggrega-
tion (FPA), with T = 60. “Random” denotes balanced random partitioning with disjoint submodel feature sets (i.e., spread degree
ϕ = 1). “Overlapping” denotes that the submodel feature sets were trained using §F.1’s overlapping feature set formulation with the cor-
responding spread degree (ϕ) specified above each column. “Strided” denotes deterministic strided partitioning with disjoint submodel
feature sets (Eq. (33)). The configuration with the best mean certified accuracy is shown in bold.

Cert.
Robust. Random

Overlapping
Strided

ϕ = 6 ϕ = 12

1 80.8 82.6 82.7 80.8
5 64.9 67.3 68.4 66.6

10 43.1 43.9 46.5 46.9
15 26.1 25.9 27.1 29.2
20 14.2 14.2 14.6 16.1
25 5.2 5.2 5.7 6.3

Table 11. MNIST Overlapping Feature Sets (T = 80): MNIST certified accuracy for our sparse defense, feature partition aggrega-
tion (FPA), with T = 80. “Random” denotes balanced random partitioning with disjoint submodel feature sets (i.e., spread degree
ϕ = 1). “Overlapping” denotes that the submodel feature sets were trained using §F.1’s overlapping feature set formulation with the cor-
responding spread degree (ϕ) specified above each column. “Strided” denotes deterministic strided partitioning with disjoint submodel
feature sets (Eq. (33)). The configuration with the best mean certified accuracy is shown in bold.

Cert.
Robust. Random

Overlapping
Strided

ϕ = 6 ϕ = 9

1 72.2 73.8 74.5 68.0
8 46.3 47.2 48.3 46.2

16 24.0 24.0 24.5 25.5
24 12.0 12.1 12.1 13.2
32 3.1 2.6 3.2 5.3
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Table 12. Weather Overlapping Feature Sets (T = 11): Certified accuracy mean and standard deviation for the Weather tabular dataset
for FPA (FPA) with T = 11. “Random” denotes balanced random partitioning with disjoint submodel feature sets (i.e., spread degree
ϕ = 1). “Overlapping” denotes that the submodel feature sets were trained using §F.1’s overlapping feature set formulation with the
corresponding spread degree (ϕ) specified above each column. The configuration with the best mean certified accuracy is shown in bold.
Results averaged over 10 trials.

Cert.
Robust. Random

Overlapping

ϕ = 3 ϕ = 7 ϕ = 9 ϕ = 11

1 78.9 ± 1.5 80.1 ± 1.1 79.8 ± 0.4 80.1 ± 0.4 80.7 ± 0.5
2 70.6 ± 2.5 72.6 ± 1.9 73.2 ± 0.9 72.1 ± 0.7 73.2 ± 0.9
3 58.9 ± 3.6 61.2 ± 3.0 61.8 ± 1.7 61.7 ± 1.1 61.9 ± 1.5
4 42.5 ± 4.4 43.7 ± 3.8 40.7 ± 2.7 43.9 ± 1.5 44.2 ± 1.9
5 19.4 ± 4.4 18.2 ± 2.9 17.2 ± 2.6 17.3 ± 1.5 17.5 ± 1.3

Table 13. Weather Overlapping Feature Sets (T = 31): Certified accuracy mean and standard deviation for the Weather tabular dataset
for FPA (FPA) with T = 31. “Random” denotes balanced random partitioning with disjoint submodel feature sets (i.e., spread degree
ϕ = 1). “Overlapping” denotes that the submodel feature sets were trained using §F.1’s overlapping feature set formulation with the
corresponding spread degree (ϕ) specified above each column. The configuration with the best mean certified accuracy is shown in bold.
Results averaged over 10 trials.

Cert.
Robust. Random

Overlapping

ϕ = 3

1 61.9 ± 1.4 61.0 ± 0.9
3 52.7 ± 1.4 53.3 ± 0.9
6 36.8 ± 1.6 37.6 ± 1.0
9 18.3 ± 2.4 17.7 ± 1.9

12 3.0 ± 1.7 3.1 ± 1.1
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G. Evaluation Setup

This section details the evaluation setup used in the experiments in Sections 6, F, and H. Below, we provide our exper-
iments’ implementation details, dataset configurations, and hyperparameter settings. The evaluation setup details below
apply irrespective of whether the decision function uses plurality voting or run-off.

Our source code can be downloaded from https://github.com/ZaydH/feature-partition. All experiments
were implemented and tested in either Python 3.7.13 or 3.10.10. All neural networks were implemented in PyTorch
version 1.12.0 (Paszke et al., 2019). LightGBM decision forests were trained using the official lightgbm Python module,
version 3.3.3.99 (Ke et al., 2017).

G.1. Hardware Setup

Experiments were performed on a desktop system with a single AMD 5950X 16-core CPU, 64GB of 3200MHz DDR4
RAM, and a single NVIDIA 3090 GPU.

G.2. Baselines

To the extent of our knowledge, no existing method considers certified feature robustness guarantees (Def. 1). Randomized
ablation – our most closely related method – considers ℓ0-norm certified robustness (Def. 2) (Levine & Feizi, 2020b). RA
is a specialized form of randomized smoothing (Cohen et al., 2019; Li et al., 2023) targeted towards sparse evasion attacks.
In terms of the state of the art, Jia et al. (2022b) provide the tightest certification analysis for randomized ablation.

Recall that feature partition aggregation (FPA) provides strictly stronger certified guarantees than baseline RA. Put simply,
FPA is solving a harder task than baseline randomized ablation. Therefore, when FPA achieves the same certified accuracy
as the baseline, FPA is performing provably better, given FPA’s stronger guarantees.

We also compare FPA to three certified patch defenses, namely: (de)randomized smoothing (DRS) (Levine & Feizi, 2020a),
patch interval bound propagation (IBP) (Chiang et al., 2020b), and BAGCERT (Metzen & Yatsura, 2021). Note that
BAGCERT’s implementation is not open source, and Metzen & Yatsura (2021) have indicated they do not plan to open
source the code in the future.7 As such, BAGCERT’s results in the main paper were provided by Metzen & Yatsura via
personal correspondence. BAGCERT’s closed source code prohibited the collection of its certification time. Nonetheless,
comparing FPA’s certification time to that of BAGCERT provides only limited insight since FPA and BAGCERT certify
very different types of guarantees.

G.3. Datasets

Our empirical evaluation considers four datasets. First, MNIST (LeCun et al., 1998) and CIFAR10 (Krizhevsky et al.,
2014) are vision classification datasets with 10 classes each. In line with the evaluation of existing certified poisoning
defenses, we do not consider full ImageNet due to the high training cost (Jia et al., 2022a; Levine & Feizi, 2021; Rezaei
et al., 2023; Wang et al., 2022a;b; Weber et al., 2020).

Although all certified sparse defenses considered in this work are exclusively proposed in the context of classification,
Hammoudeh & Lowd (2023) prove that certified regression reduces to voting-based certified classification. Hence, it is
straightforward to transform FPA and randomized ablation into certified regression defenses. We reuse this reduction and
evaluate two tabular regression datasets, Weather (Malinin et al., 2021) and Ames (De Cock, 2011).

For Weather, we follow Hammoudeh & Lowd’s (2023) empirical evaluation, where the objective is to predict ground
temperature within ±3◦C using features that include the date, time of day, longitude, and latitude. Similarly, we follow
Hammoudeh & Lowd’s (2023)’s empirical evaluation for Ames, where the objective is to predict a property’s sale price
within ±15% of the actual price. Since ablated training requires a custom feature encoding to differentiate ablated and
non-ablated features, min-max scaling was applied to both datasets’ features for RA to normalize all feature values to the
range [0, 1].

7The author’s comments regarding open-sourcing their code can be found on BAGCERT’s OpenReview page.

https://github.com/ZaydH/feature-partition
https://openreview.net/forum?id=hr-3PMvDpil
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We chose these two regression datasets as a stand-in for vertically partitioned data, which are commonly tabular and
particularly vulnerable to sparse backdoor and evasion attacks.

Tab. 14 provides basic information about the four datasets, including their sizes and feature dimension. Tab. 15 provides
summary statistics for the regression datasets’ test target-value (i.e., y) distribution.

Table 14. Evaluation dataset information
Dataset # Classes # Feats # Train # Test

CIFAR10 10 1,024 50,000 10,000
MNIST 10 784 60,000 10,000
Weather N/A 128 3,012,917 531,720
Ames N/A 352 2,637 293

Table 15. Target Value Test Distribution Statistics: Mean (ȳ), standard deviation (σy), minimum value (ymin) and maximum value
(ymax) for the test instances’ target y value for regression datasets Weather and Ames.

ȳ σy ymin ymax

Weather 14.9◦C 10.3◦C −44.0◦C 54.0◦C
Ames $184k $83.4k $12.8k $585k

Our source code automatically downloads all necessary dataset files.

G.4. Network Architectures

Tab. 16 details the CIFAR10 neural network architecture. Specifically, we follow previous work on CIFAR10 data poison-
ing (Hammoudeh & Lowd, 2022) and use Page’s (2020) ResNet9 architecture. ResNet9 is ideal for our experiments since
it is very fast to train, as ranked on DAWNBench (Coleman et al., 2017). ResNet9’s fast training significantly reduces the
overhead of training T submodels for FPA.

We directly adapt Page’s (2020) published implementation8 including the use of ghost batch normalization (Summers &
Dinneen, 2020) and the CELU activation function with α = 0.075 (Barron, 2017).

Three forms of data augmentation were also used in line with Page’s (2020) implementation. First, a random crop with
four pixels of padding was performed. Next, the image was flipped horizontally with a 50% probability. Finally, a random
8× 8 pixel portion of the image was randomly erased. Note that these transformations were performed after the pixels
were disabled in the image, meaning these transformations do not result in a network seeing additional pixel information.

In a separate paper, Levine & Feizi (2021) propose deep partition aggregation (DPA), a certified defense against poison-
ing attacks. Here, we follow Levine & Feizi’s (2021) public implementation9 and use the Network-in-Network (NiN)
architecture (Lin et al., 2014) when evaluating our method on MNIST. Tab. 17 visualizes the MNIST NiN architecture.

G.5. Hyperparameters

For simplicity, FPA used the same hyperparameter settings for a given dataset irrespective of T . Therefore, FPA’s results
could be further improved in practice by tuning the hyperparameter settings to optimize the ensemble’s performance for a
specific submodel count.

Tab. 18 details the CIFAR10 and MNIST hyperparameter settings for feature partition aggregation.

For CIFAR10 and MNIST, we directly used Levine & Feizi’s (2020b) published randomized ablation training source code,
which includes pre-specified hyperparameter settings for the learning rate, weight decay, and optimizer hyperparameters.

Recall from §6 that for the Weather and Ames datasets, FPA’s submodels are LightGBM (Ke et al., 2017) gradient-boosted
decision tree (GBDT) regressors. Tab. 19 details FPA’s LightGBM hyperparameter settings. For a more direct comparison

8Source code: https://github.com/davidcpage/cifar10-fast.
9Source code: https://github.com/alevine0/DPA.

https://github.com/davidcpage/cifar10-fast
https://github.com/alevine0/DPA
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Table 16. ResNet9 neural network architecture
Conv1 In=3 Out=64 Kernel=3× 3 Pad=1
BatchNorm2D Out=64
CELU

Conv2 In=64 Out=128 Kernel=3× 3 Pad=1
BatchNorm2D Out=128
CELU
MaxPool2D 2× 2

↑
ResNet1

↓

ConvA In=128 Out=128 Kernel=3× 3 Pad=1
BatchNorm2D Out=128
CELU

ConvB In=128 Out=128 Kernel=3× 3 Pad=1
BatchNorm2D Out=128
CELU

Conv3 In=128 Out=256 Kernel=3× 3 Pad=1
BatchNorm2D Out=256
CELU
MaxPool2D 2× 2

Conv4 In=256 Out=512 Kernel=3× 3 Pad=1
BatchNorm2D Out=512
CELU
MaxPool2D 2× 2

↑
ResNet2

↓

ConvA In=512 Out=512 Kernel=3× 3 Pad=1
BatchNorm2D Out=512
CELU

ConvB In=512 Out=512 Kernel=3× 3 Pad=1
BatchNorm2D Out=512
CELU

MaxPool2D 4× 4

Linear Out=10

with randomized ablation which cannot use a GBDT, we also evaluated FPA with linear submodels. FPA’s linear submodel
hyperparameter settings for the regression datasets are in Tab. 20.

Levine & Feizi (2020b) only evaluate classification datasets in their original paper. As such, there are no existing hyper-
parameter settings for randomized ablation on Weather and Ames. We manually tuned randomized ablation’s learning
rate for the regression datasets considering all values in the set {10−2, 10−3, 10−4}. We also tested numerous different
settings for the number of training epochs. To ensure a strong baseline, we report the best performing randomized ablation
hyperparameter settings.

Recall from §3 that randomized ablation only provides probabilistic guarantees. By contrast, feature partition aggregation
provides deterministic guarantees. To facilitate a more direct comparison between certified feature and ℓ0-norm guarantees,
α = 0.0001 in all experiments.

G.6. Overview of the Certified Regression to Certified Classification Reduction

Hammoudeh & Lowd (2023) provide a reduction from certified regression to (voting-based) certified classification.
Hammoudeh & Lowd (2023) frame this reduction primarily in the context of poisoning attacks, but the reduction gen-
eralizes to other voting-based certified classifiers. For full details on the reduction from certified regression to certified
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Table 17. Network-in-Network neural network architecture

Block 1

Conv1 In=3 Out=192 Kernel=5× 5 Pad=2
BatchNorm2D Out=192
ReLU

Conv2 In=192 Out=160 Kernel=1× 1 Pad=1
BatchNorm2D Out=160
ReLU

Conv3 In=160 Out=96 Kernel=1× 1 Pad=1
BatchNorm2D Out=96
ReLU

MaxPool2D 3× 3

Block 2

Conv1 In=96 Out=192 Kernel=5× 5 Pad=2
BatchNorm2D Out=192
ReLU

Conv2 In=192 Out=192 Kernel=1× 1 Pad=1
BatchNorm2D Out=192
ReLU

Conv3 In=192 Out=192 Kernel=1× 1 Pad=1
BatchNorm2D Out=192
ReLU

AvgPool2D 3× 3

Block 3

Conv1 In=192 Out=192 Kernel=3× 3 Pad=1
BatchNorm2D Out=192
ReLU

Conv2 In=192 Out=192 Kernel=1× 1 Pad=1
BatchNorm2D Out=192
ReLU

Conv3 In=192 Out=192 Kernel=1× 1 Pad=1
BatchNorm2D Out=192
ReLU

GlobalAvgPool2D Out=192

Linear Out=10

classification, we direct the reader to Hammoudeh & Lowd’s (2023) original paper. We briefly summarize the reduction
below.

Consider a multiset of real-valued “votes” V ∈ RT , where Hammoudeh & Lowd (2023) assume for simplicity that T
is odd. These “votes” could be generated from an ensemble of independent submodels in the case of deep partition
aggregation (Levine & Feizi, 2021) and FPA. These votes could also be generated from a smoothing-based classifier such
as randomized ablation. Regardless, for voting-based real-valued regression, model f ’s decision function for arbitrary
instance x ∈ X is

f(x) := medV , (32)

where med denotes the median operator.

Let y ∈ R denote the true target value for x and let ξl, ξu ∈ R≥0 be arbitrary non-negative constants. Hammoudeh &
Lowd’s (2023) formulation seeks to certify the pointwise robustness of ξl ≤ f(x) ≤ ξu.10 Below, we discuss certifying a

10We use the exact same definitions for ξl and ξu as Hammoudeh & Lowd (2023). Specifically for the Weather dataset, our experiments
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Table 18. FPA’s neural network training hyperparameters

CIFAR10 MNIST

Data Augmentation? ✓
Validation Split N/A 5%
Optimizer SGD AdamW
Batch Size 512 128

# Epochs 80 25

Learning Rate (Peak) 1 · 10−3 3.16 · 10−4

Learning Rate Scheduler One cycle Cosine
Weight Decay (L2) 1 · 10−1 1 · 10−3

Table 19. Regression datasets LightGBM submodel training hyperparameters

Weather Ames

Boosting Type GBDT GBDT
# Estimators 500 1,000
Max. Depth 10 6
Min. Child Samples 20 5
Max. # Leaves 127 127
L1 Regularizer 0 1 · 10−3

L2 Regularizer 0 1 · 102

Objective Huber MAE
Learning Rate 0.5 1 · 102

Subsampling 0.9 0.9

Table 20. Regression datasets linear submodel training hyperparameters

Weather Ames

L1 Regularizer 3.16 · 10−3 4.15 · 10−5

Max. # Iterations 1 · 104 1 · 106

Tolerance 1 · 10−3 1 · 10−8

one-sided upper bound f(x) ≤ ξu. As Hammoudeh & Lowd (2023) explain, certifying a two-sided bound is equivalent to
taking the minimum robustness of the one-sided lower and upper bounds.

Consider binarizing multiset V as V±1 := {sgn (v − ξu) : v ∈ V}, where sgn (·) is the signum function. Intuitively, our
goal is to transform each real-valued instance in the multiset into a binary label, either −1 or +1. Certified defenses
such as deep partition aggregation (Levine & Feizi, 2020b), our sparse defense feature partition aggregation (FPA), and
randomized ablation (RA) turn a multiset of votes into certified guarantees. Hammoudeh & Lowd’s (2023) key insight is
that the median and plurality labels of a binary multiset (e.g., V±1) with odd-valued cardinality are always equal. In short,
certifying when a multiset’s median exceeds some threshold (e.g., ξu) is equivalent to certifying the perturbation of the
plurality label of binarized multiset V±1 (Hammoudeh & Lowd, 2023, Lem 6). Hammoudeh & Lowd’s (2023) reduction
allows us to change the underlying prediction mechanism from a classifier to a regressor and directly reuse a voting-based
certified classifier’s robustness certification mechanism.

Hence, while our feature partition aggregation (FPA) and baseline randomized ablation are formulated as certified classi-
fiers, both can be reformulated as certified regressors using the reduction of Hammoudeh & Lowd (2023). In practice, the
primary change made to both defenses is that the underlying learner(s) predict a real value instead of a label.

used ξl = y − 3◦C and ξu = y + 3◦C. For the Ames dataset, our experiments used ξl = y − 15%y and ξu = y + 15%y.
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For regression, certified accuracy denotes that the model prediction satisfies ξl ≤ f(x) ≤ ξu, even after r feature perturba-
tions.

For smoothing-based methods like randomized ablation, the reduction of Hammoudeh & Lowd (2023) is functionally very
similar to Chiang et al.’s (2020a) median smoothing. The two methods have slightly different formulations depending on
the specification of the bounds.
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H. Additional Experiments

Limited space prevents us from including all experimental results in the main paper. We provide additional results below.

H.1. Non-Robust Accuracy

Tab. 21 provides the non-robust (i.e., uncertified) accuracy when training a single model (T = 1) on each of §6’s four
datasets. The non-robust accuracy provides an upper-bound reference for the maximum achievable accuracy given the
training set and the model architectures we used.

For regression, the “non-robust accuracy” denotes the single model’s prediction satisfies the error bounds, i.e.,
ξl ≤ f(x) ≤ ξu. Given arbitrary instance (x, y), we follow Hammoudeh & Lowd (2023) and use for Weather ξl = y − 3◦C
and ξu = y + 3◦C as well as for Ames ξl = y − 15%y and ξu = y + 15%y.

Table 21. Non-Robust Accuracy: Prediction accuracy when training a single model on all model features, i.e., T = 1. These values
represent an upper bound on the potential accuracy of our method given the training set, model architecture, and hyperparameters.

Dataset Accuracy

CIFAR10 95.40%
MNIST 99.57%
Weather 92.61%
Ames 88.05%
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H.2. Detailed Median Certified Robustness Results

In Section 6.2 of the main paper, Tables 1 and 2 summarize the median certified robustness and classification accuracies
of feature partition aggregation (FPA) and baseline randomized ablation (Jia et al., 2022b; Levine & Feizi, 2020b). In the
tables, “(LF‘20b)” denotes Levine & Feizi’s (2020b) original version of RA, and “(Jia‘22b)” denotes Jia et al.’s (2022b)
improved RA; “Plural” denotes FPA using plurality voting as the decision function (§4.1) while “Run-Off” denotes FPA
with §4.2’s run-off elections.

Recall that FPA’s primary hyperparameter is T – the number of ensemble submodels. RA’s primary hyperparameter is e
– the number of kept (unchanged) pixels in each ablated input. T and e control the corresponding method’s accuracy-
robustness trade-off where smaller T and larger e entail better accuracy. As a rule of thumb, the fairest comparison across
methods sets T ≈ d

e
, since this relationship entails that each FPA and RA prediction uses approximately the same number

of features from instance x.

This section explores the relationship between each method’s hyperparameter settings and the corresponding median ro-
bustness and classification accuracy. Each dataset’s results are split into separate tables similar to Levine & Feizi’s (2020b,
Tables 1 and 2) presentation in the original RA paper.

For CIFAR10 and MNIST, FPA uses deterministic partitioning. Specifically, we use a striding strategy as Section 5.1
details. Depending on the image dimensions, some stride lengths are substantially worse than others, leading to non-
monotonic changes in median robustness as a function of T . Tables 22 and 23 do not report the particularly poor choices
of T that severely degrade median robustness, e.g., when T is evenly divisible by the image width.

Below, any misclassified prediction is assigned robustness of −∞, meaning the median certified robustness can in some
cases be negative.

Table 22. CIFAR10 Detailed Results: Classification accuracy (%) and median certified robustness (larger is better) for the
CIFAR10 (Krizhevsky et al., 2014) dataset (d = 1024) for our certified sparse defense, feature partition aggregation (FPA), and baseline
randomized ablation (RA) across various hyperparameter settings. Each certification method’s hyperparameter setting with the best
median robustness is shown in bold. The best overall median robustness is shown in green.

(a) Feature Partition Aggregation (FPA – Ours)

T
Plural Run-Off

Acc. (%) rmed Acc. (%) rmed

5 91.46 2 91.77 2
10 86.09 4 86.20 4
20 81.38 7 81.40 7
25 78.65 8 78.58 8
40 74.74 9 74.95 10
55 70.44 10 70.34 11
70 67.46 9 67.47 11
85 66.24 10 66.61 12

105 63.55 10 63.61 12
115 62.39 11 62.35 13
140 60.35 10 60.57 12
165 57.91 8 58.48 10
185 56.08 7 56.39 9
200 55.80 7 56.43 9
225 56.27 6 56.56 8
250 53.30 4 53.46 5

(b) Randomized Ablation (RA – Baseline)

e
(LF‘20b) (Jia‘22b)

Acc. (%) ρmed Acc. (%) ρmed

250 88.77 2 88.56 2
225 88.05 2 87.90 2
200 86.76 3 86.54 3
175 86.16 3 85.94 3
150 84.23 4 84.08 4
125 82.66 5 82.49 5
100 80.43 6 80.05 6

75 78.48 7 78.11 7
50 73.26 7 72.79 8
35 70.34 7 69.72 9
30 69.62 7 69.01 9
25 68.81 6 68.08 9
20 67.01 5 66.15 9
15 65.68 3 64.74 10
12 63.93 0 62.91 10
10 62.73 0 61.71 10

8 60.24 0 59.12 9
7 59.08 0 57.83 8
5 53.20 0 51.84 3
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Table 23. MNIST Detailed Results: Classification accuracy (%) and median certified robustness (larger is better) for the MNIST (Le-
Cun et al., 1998) dataset (d = 784) for our certified sparse defense, feature partition aggregation (FPA), and baseline randomized abla-
tion (RA) across various hyperparameter settings. Each certification method’s hyperparameter setting with the best median robustness is
shown in bold. The best overall median robustness is shown in green.

(a) Feature Partition Aggregation (FPA – Ours)

T
Plural Run-Off

Acc. (%) rmed Acc. (%) rmed

5 99.50 2 99.51 2
10 98.64 4 98.67 4
15 96.82 7 97.02 7
20 96.36 8 96.53 8
25 95.77 9 96.06 10
35 91.70 9 93.05 11
40 89.37 9 91.32 11
50 84.54 8 88.46 11
60 83.54 9 87.22 12
70 79.71 8 85.87 11
80 71.29 6 79.05 9
90 69.94 6 79.25 9

105 62.53 4 74.45 8
120 63.03 3 74.09 7
130 57.48 2 69.93 7
150 52.51 0 67.30 5

(b) Randomized Ablation (RA – Baseline)

e
(LF‘20b) (Jia‘22b)

Acc. (%) ρmed Acc. (%) ρmed

100 98.78 4 98.75 4
95 98.75 5 98.72 5
90 98.62 5 98.56 5
85 98.60 5 98.52 5
80 98.46 6 98.40 6
75 98.35 6 98.27 6
70 98.14 6 98.07 6
65 98.04 7 97.98 7
60 97.85 7 97.78 7
55 97.58 7 97.39 8
50 97.26 7 97.07 8
45 96.88 8 96.68 8
40 96.42 8 96.13 9
35 95.69 8 95.32 9
30 94.87 7 94.47 9
25 93.55 6 93.09 10
20 90.99 3 90.07 9
15 86.71 0 85.24 8
10 76.78 0 74.69 6

5 35.54 −∞ 32.89 −∞



Feature Partition Aggregation: A Fast Certified Defense over a Union of ℓ0 Attacks

Table 24. Weather Detailed Results: Classification accuracy (%) and median certified robustness (larger is better) for the Weather (Ma-
linin et al., 2021) dataset (d = 128) for our certified sparse defense, feature partition aggregation (FPA), and baseline randomized
ablation (RA) across various hyperparameter settings. FPA considers only plurality voting-based certification (§4.1) since Hammoudeh
& Lowd’s (2023) reduction is from certified regression to certified binary classification (see §G.6 for details). FPA results are reported
using both GBDTs (Ke et al., 2017) and linear submodels. Median robustness “−∞” denotes that the classification accuracy was less
than 50%. Each approach’s hyperparameter setting with the best median robustness is shown in bold. The best overall median robustness
is shown in green. Takeaway: FPA with both GBDT and linear submodels achieved better median robustness than baseline RA.

(a) Feature Partition Aggregation (FPA – Ours)

T
LightGBM Linear

Acc. (%) rmed Acc. (%) rmed

1 92.70 0 86.05 0
5 85.29 2 83.34 2

11 82.48 3 79.55 2
15 81.09 3 76.15 3
21 76.10 4 67.09 2
25 71.40 3 64.77 2
31 67.06 3 58.71 2
35 62.56 3 55.95 1
41 60.19 2 51.57 0
51 55.34 1 45.84 −∞
75 42.20 −∞ 26.93 −∞

101 28.67 −∞ 21.26 −∞

(b) Randomized Ablation (RA – Baseline)

e
(LF‘20b) (Jia‘22b)

Acc. (%) ρmed Acc. (%) ρmed

65 80.70 0 78.63 0
60 80.33 0 78.01 0
55 79.52 0 77.05 0
50 78.62 0 76.59 0
45 77.20 0 75.19 1
40 76.56 0 74.82 1
35 74.76 0 73.22 1
30 72.04 0 70.74 1
25 69.77 0 68.72 1
20 66.94 0 65.87 1
16 63.89 0 63.10 1
12 58.59 0 57.74 1

8 53.44 0 52.82 0
6 47.94 −∞ 47.25 −∞
4 40.70 −∞ 39.91 −∞

Table 25. Ames Detailed Results: Classification accuracy (%) and median certified robustness (larger is better) for the Ames (De Cock,
2011) dataset (d = 352) for our certified sparse defense, feature partition aggregation (FPA), and baseline randomized ablation (RA)
across various hyperparameter settings. FPA considers only plurality voting-based certification (§4.1) since Hammoudeh & Lowd’s
(2023) reduction is from certified regression to certified binary classification (see §G.6 for details). FPA results are reported using both
GBDTs (Ke et al., 2017) and linear submodels. Median robustness “−∞” denotes that the classification accuracy was less than 50%.
Each approach’s hyperparameter setting with the best median robustness is shown in bold. The best overall median robustness is shown
in green. Takeaway: FPA with both GBDT and linear submodels achieved better median robustness than baseline RA.

(a) Feature Partition Aggregation (FPA – Ours)

T
LightGBM Linear

Acc. (%) rmed Acc. (%) rmed

1 88.05 0 89.25 0
5 84.64 1 82.08 1

11 78.50 2 74.40 1
15 73.04 2 66.55 2
21 65.53 3 61.60 2
25 61.77 2 57.34 1
31 57.68 2 53.58 0
35 55.97 1 50.34 0
41 52.90 1 46.42 −∞
51 47.10 −∞ 40.10 −∞
75 36.86 −∞ 35.15 −∞

(b) Randomized Ablation (RA – Baseline)

e
(LF‘20b) (Jia‘22b)

Acc. (%) ρmed Acc. (%) ρmed

70 68.60 0 66.89 0
60 68.94 0 67.24 1
50 67.58 1 66.89 1
40 61.77 1 61.77 1
35 61.09 0 60.07 1
30 57.68 0 57.00 1
25 53.58 0 52.56 1
20 51.54 0 49.49 −∞
15 45.05 −∞ 44.37 −∞
10 37.20 −∞ 37.54 −∞

5 33.79 −∞ 33.79 −∞
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H.3. Feature Partition Aggregation and Randomized Ablation Certified Accuracy Comparison

Levine & Feizi (2020b) use median certified robustness and classification accuracy as the two primary metrics by which
they compare RA against previous work. In this section, we present an alternative evaluation strategy comparing the
methods’ certified accuracy across a range of robustness levels.

Specifically, we consider the same four datasets from Section 6, namely classification datasets CIFAR10 (Krizhevsky et al.,
2014) and MNIST (LeCun et al., 1998) as well as regression datasets Weather (Malinin et al., 2021) and Ames (De Cock,
2011). Like in Section 6, we report FPA’s performance using both the plurality-voting and run-off decision functions
for classification and only plurality voting for regression. For baseline randomized ablation (RA), we again report the
performance of Levine & Feizi’s (2020b) original version of RA as well as the improved version by Jia et al. (2022b).

This section also compares FPA and RA against a naive baseline that is generally low accuracy but maximally robust. For
classification, the naive baseline always predicts f(x) = 1; for regression, the naive baseline always predicts the training
set’s median target value.

Recall that hyperparameters T for FPA and e for baseline randomized ablation control the corresponding method’s accuracy
versus robustness trade-off. Specifically, a smaller value of T and a larger value of e entails better accuracy. As a rule of
thumb, the fairest comparison between FPA and RA is when T ≈ d

e
as each FPA and RA prediction, in expectation, uses a

comparable amount of information (i.e., number of features). For each dataset, we report each method’s certified accuracy
across 10 hyperparameter settings, roughly following the rule of thumb above. Section H.3.1 presents the experimental
results in tabular form, and Section H.3.2 visualizes the methods’ certified accuracy graphically.

H.3.1. NUMERICAL COMPARISON OF FEATURE PARTITION AGGREGATION AND RANDOMIZED ABLATION

Certified accuracy w.r.t. ψ ∈ N quantifies the fraction of correctly-classified test instances with certified robustness at
least ψ.

Tables 26, 27, 28, and 29 numerically display the certified accuracies for our certified feature defense, feature partition
aggregation (FPA), and baseline randomized ablation (RA) for CIFAR10, MNIST, Weather, and Ames, respectively. For
each dataset, the corresponding table lists the certified accuracy at 11 equally spaced certified robustness levels.

Recall that RA’s ℓ0-norm robustness (Def. 2) is a strictly weaker guarantee than FPA’s certified feature robustness (Def. 1).
Put simply, a true direct comparison is not possible here since FPA provides stronger certified guarantees than the base-
line. Despite that, FPA can achieve larger certified accuracies than the baseline while simultaneously providing stronger
guarantees.
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Table 26. CIFAR10 Certified Accuracy Comparison: CIFAR10 (d = 1024) certified accuracy (% – larger is better) for our certified
feature defense, feature partition aggregation (FPA), and baseline randomized ablation (RA). “Plurality” denotes FPA with plurality
voting as the decision function (§4.1) while “Run-Off” denotes FPA using run-off elections as the decision function (§4.2). “(LF‘20b)”
denotes Levine & Feizi’s (2020b) original version of randomized ablation while “(Jia‘22b)” denotes Jia et al.’s (2022b) improved version
of RA that is tight for top-1 predictions. We also consider an additional naive baseline that always predicts f(x) = 1, where, for correct
predictions, the feature robustness equals d. For each certified robustness level, each method’s best performing hyperparameter setting is
shown in bold with the overall best performing method shown in green. These numerical results are visualized graphically as envelope
plots in Figure 2.

Method
Cert.
Alg.

Hyper.
Setting

Certified Robustness

0 13 26 39 52 65 78 91 104 117 130

Always f(x) = 1 N/A 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00

FPA (T )
(ours)

Plurality

5 91.46 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
25 78.65 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
35 69.62 36.35 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
55 70.44 44.06 10.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
85 66.24 46.67 26.87 7.77 0.00 0.00 0.00 0.00 0.00 0.00 0.00

115 62.39 47.74 33.48 19.67 6.97 0.00 0.00 0.00 0.00 0.00 0.00
160 60.94 42.27 27.77 16.95 9.00 3.89 0.52 0.00 0.00 0.00 0.00
250 53.30 43.98 35.63 28.37 21.54 15.57 10.91 7.04 4.02 1.62 0.00
500 43.79 38.75 33.63 28.86 24.65 20.86 17.56 14.32 11.56 9.38 7.66

1024 33.01 29.70 26.95 24.14 21.68 19.33 17.24 15.41 13.92 12.29 11.05

Run-Off

5 91.77 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
25 78.58 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
35 69.92 37.45 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
55 70.34 46.71 11.18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
85 66.61 49.26 30.25 8.91 0.00 0.00 0.00 0.00 0.00 0.00 0.00

115 62.35 50.04 36.76 22.64 8.21 0.00 0.00 0.00 0.00 0.00 0.00
160 61.34 45.54 32.71 21.16 11.96 5.06 0.56 0.00 0.00 0.00 0.00
250 53.46 45.48 38.40 31.70 25.24 19.02 13.48 8.94 4.99 1.88 0.00
500 44.58 39.58 35.25 31.17 27.60 24.21 20.57 17.62 14.74 12.33 10.25

1024 35.50 32.01 28.80 25.89 23.22 20.74 18.63 16.85 15.20 13.80 12.57

RA (e)

(LF‘20b)

250 88.77 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
75 78.48 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
50 73.26 25.80 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
25 68.81 38.82 11.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
15 65.68 38.81 23.59 9.42 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 62.73 37.60 27.46 17.72 9.74 1.89 0.00 0.00 0.00 0.00 0.00
7 59.08 33.44 25.65 18.58 12.56 7.77 3.71 1.09 0.00 0.00 0.00
5 53.20 28.47 22.80 17.85 14.04 10.10 6.87 4.20 2.31 0.94 0.05
2 40.44 14.03 12.37 10.62 9.12 7.91 6.96 5.95 5.16 4.51 3.98
1 21.16 4.37 3.87 3.37 2.91 2.58 2.35 1.90 1.68 1.42 1.21

(Jia‘22b)

250 88.56 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
75 78.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
50 72.79 26.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
25 68.08 43.10 12.28 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
15 64.74 46.17 28.17 11.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 61.71 47.54 34.36 22.44 11.99 2.31 0.00 0.00 0.00 0.00 0.00
7 57.83 46.43 35.75 26.23 17.70 10.79 4.96 1.33 0.00 0.00 0.00
5 51.84 43.08 34.70 27.14 20.77 15.27 10.36 6.32 3.34 1.21 0.06
2 38.70 33.84 29.15 25.01 21.22 17.95 14.90 12.49 10.33 8.54 7.03
1 19.64 17.96 15.83 14.06 12.48 11.18 10.17 9.06 8.24 7.35 6.48
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Table 27. MNIST Certified Accuracy Comparison: MNIST (d = 784) certified accuracy (% – larger is better) for our certified feature
defense, feature partition aggregation (FPA), and baseline randomized ablation (RA). “Plurality” denotes FPA with plurality voting as
the decision function (§4.1) while “Run-Off” denotes FPA using run-off elections as the decision function (§4.2). “(LF‘20b)” denotes
Levine & Feizi’s (2020b) original version of randomized ablation while “(Jia‘22b)” denotes Jia et al.’s (2022b) improved version of
RA that is tight for top-1 predictions. We also consider an additional naive baseline that always predicts f(x) = 1, where, for correct
predictions, the feature robustness equals d. For each certified robustness level, each method’s best performing hyperparameter setting is
shown in bold with the overall best performing method shown in green. These numerical results are visualized graphically as envelope
plots in Figure 2.

Method
Cert.
Alg.

Hyper.
Setting

Certified Robustness

0 4 8 12 16 20 24 28 32 36 40

Always f(x) = 1 N/A 11.35 11.35 11.35 11.35 11.35 11.35 11.35 11.35 11.35 11.35 11.35

FPA (T )
(ours)

Plurality

5 99.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 98.64 87.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
25 95.77 86.48 66.42 20.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00
35 91.70 79.49 59.53 35.95 13.18 0.00 0.00 0.00 0.00 0.00 0.00
60 83.54 70.30 54.72 39.10 26.26 16.08 7.95 1.78 0.00 0.00 0.00
75 74.99 61.44 47.75 34.97 25.34 17.90 12.43 8.11 3.89 0.42 0.00
90 69.94 57.11 43.89 33.01 24.52 17.89 12.99 9.16 6.24 3.22 0.71

105 62.53 50.33 39.10 29.27 22.13 16.52 13.04 10.51 8.42 6.61 4.63
130 57.48 46.68 36.45 28.38 22.70 18.52 15.23 12.54 10.45 8.38 6.30
240 28.13 24.67 21.81 19.57 17.63 16.33 15.16 14.40 13.79 13.00 12.30

Run-Off

5 99.51 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 98.67 87.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
25 96.06 88.72 71.52 20.28 0.00 0.00 0.00 0.00 0.00 0.00 0.00
35 93.05 83.56 67.58 44.72 14.36 0.00 0.00 0.00 0.00 0.00 0.00
60 87.22 76.59 63.67 50.52 37.10 23.91 12.14 2.97 0.00 0.00 0.00
75 81.74 68.54 56.44 44.65 34.68 25.48 17.82 11.09 5.28 0.45 0.00
90 79.25 66.38 53.93 43.35 33.92 26.20 20.14 14.71 9.98 6.02 2.34

105 74.45 61.76 50.73 40.32 31.38 24.57 19.00 14.85 11.80 9.05 6.46
130 69.93 58.88 48.44 38.73 31.04 25.06 20.82 17.47 14.69 12.00 9.85
240 48.33 40.31 33.37 28.30 24.57 21.29 18.71 17.17 15.82 14.82 13.81

RA (e)

(LF‘20b)

100 98.78 84.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
85 98.60 86.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
60 97.85 84.30 35.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
50 97.26 81.56 49.77 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
40 96.42 76.53 51.99 16.85 0.00 0.00 0.00 0.00 0.00 0.00 0.00
30 94.87 66.97 46.33 26.88 7.30 0.00 0.00 0.00 0.00 0.00 0.00
20 90.99 48.11 34.38 23.77 15.23 7.50 0.96 0.00 0.00 0.00 0.00
10 76.78 20.36 16.22 13.08 10.62 8.40 5.99 3.72 1.54 0.16 0.00
5 35.54 10.85 10.31 9.75 9.17 8.69 7.86 6.90 5.73 4.42 3.23
3 16.91 11.13 10.96 10.70 10.51 10.19 9.84 9.41 8.87 8.21 7.04

(Jia‘22b)

100 98.75 86.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
85 98.52 88.21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
60 97.78 88.45 39.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
50 97.07 87.28 57.28 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
40 96.13 85.69 62.37 21.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00
30 94.47 82.47 62.32 36.45 11.20 0.00 0.00 0.00 0.00 0.00 0.00
20 90.07 76.29 58.26 39.39 24.36 12.98 2.70 0.00 0.00 0.00 0.00
10 74.69 59.11 44.55 32.87 23.94 17.91 13.49 10.38 7.33 3.73 0.80
5 32.89 26.17 21.19 17.56 15.76 14.46 13.43 12.52 11.51 10.77 10.05
3 15.91 14.97 13.90 13.10 12.46 12.01 11.71 11.50 11.40 11.30 11.30
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Table 28. Weather Certified Accuracy Comparison: Weather (Malinin et al., 2021) dataset (d = 128) certified accuracy (% – larger is
better) for our certified feature defense, feature partition aggregation (FPA), and baseline randomized ablation (RA). “(LF‘20b)” denotes
Levine & Feizi’s (2020b) original version of randomized ablation while “(Jia‘22b)” denotes Jia et al.’s (2022b) improved version of RA
that is tight for top-1 predictions. Hammoudeh & Lowd’s (2023) reduction is from certified regression to certified binary classification.
Run-off is identical to plurality voting under binary classification, so we report only the plurality voting results below. We also consider
an additional naive baseline that always predicts the median training set target value (i.e., f(x) = med{yi}ni=1), where, for correct
predictions, the feature robustness equals d. For each certified robustness level, each method’s best performing hyperparameter setting is
shown in bold with the overall best performing method shown in green. These numerical results are visualized graphically as envelope
plots in Figure 3.

Method
Cert.
Alg.

Hyper.
Setting

Certified Robustness

0 1 2 3 4 5 6 7 8 9 10

Always f(x) = med{yi}ni=1 N/A 21.90 21.90 21.90 21.90 21.90 21.90 21.90 21.90 21.90 21.90 21.90

FPA (T )
(ours)

Plurality

5 85.29 77.38 62.69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
11 82.48 76.34 67.59 55.50 39.02 18.42 0.00 0.00 0.00 0.00 0.00
15 81.09 75.23 68.16 58.98 48.08 35.81 19.92 7.77 0.00 0.00 0.00
21 76.10 70.78 64.73 57.69 50.01 41.48 33.04 23.78 14.30 6.47 0.91
25 71.40 66.29 60.70 55.03 49.17 42.93 35.88 28.92 21.58 14.29 7.12
31 67.06 62.80 58.18 53.39 48.76 43.85 38.49 32.77 27.12 21.51 15.81
35 62.56 58.84 54.93 50.72 46.54 42.03 37.62 33.08 28.10 22.76 17.18
41 60.19 56.83 53.34 49.72 45.99 42.34 38.55 34.60 30.44 26.09 21.47
45 57.96 54.99 51.94 48.81 45.57 42.26 38.78 35.11 31.29 27.23 22.91

127 23.43 22.95 22.49 22.04 21.61 21.19 20.77 20.38 20.00 19.61 19.23

RA (e)

(LF‘20b)

50 78.62 22.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
40 76.56 31.26 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
30 72.04 39.64 9.53 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
20 66.94 45.11 20.61 6.82 0.00 0.00 0.00 0.00 0.00 0.00 0.00
16 63.89 45.77 26.67 11.64 3.83 0.04 0.00 0.00 0.00 0.00 0.00
12 58.59 45.19 31.87 18.36 9.67 4.37 1.06 0.00 0.00 0.00 0.00
9 54.68 44.55 35.11 25.05 15.88 9.48 5.26 2.26 0.61 0.01 0.00
6 47.94 41.22 34.84 28.60 22.32 16.45 11.82 8.60 6.00 3.90 2.37
3 36.88 33.32 30.57 27.90 25.63 23.08 20.58 18.16 15.97 13.91 11.87
1 21.00 20.68 20.61 20.48 20.35 20.19 20.05 19.93 19.77 19.67 19.43

(Jia‘22b)

50 76.59 47.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
40 74.82 53.84 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
30 70.74 56.18 31.24 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
20 65.87 56.66 44.24 26.06 3.94 0.00 0.00 0.00 0.00 0.00 0.00
16 63.10 55.29 46.24 34.49 19.75 5.20 0.00 0.00 0.00 0.00 0.00
12 57.74 51.96 45.73 38.47 29.53 19.26 10.88 0.00 0.00 0.00 0.00
9 53.97 49.95 45.97 41.18 35.62 29.11 21.44 14.51 9.10 2.63 0.00
6 47.25 44.86 41.94 39.16 36.21 33.00 29.54 25.82 21.18 16.82 13.31
3 36.01 34.97 33.59 32.19 31.02 29.72 28.46 27.33 26.28 25.21 23.99
1 20.84 20.76 20.72 20.63 20.58 20.50 20.41 20.31 20.25 20.14 20.03
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Table 29. Ames Certified Accuracy Comparison: Ames (De Cock, 2011) dataset (d = 352) certified accuracy (% – larger is better) for
our certified feature defense, feature partition aggregation (FPA), and baseline randomized ablation (RA). “(LF‘20b)” denotes Levine
& Feizi’s (2020b) original version of randomized ablation while “(Jia‘22b)” denotes Jia et al.’s (2022b) improved version of RA that
is tight for top-1 predictions. Hammoudeh & Lowd’s (2023) reduction is from certified regression to certified binary classification.
Run-off is identical to plurality voting under binary classification, so we report only the plurality voting results below. We also consider
an additional naive baseline that always predicts the median training set target value (i.e., f(x) = med{yi}ni=1), where, for correct
predictions, the feature robustness equals d. For each certified robustness level, each method’s best performing hyperparameter setting is
shown in bold with the overall best performing method shown in green. These numerical results are visualized graphically as envelope
plots in Figure 3.

Method
Cert.
Alg.

Hyper.
Setting

Certified Robustness

0 1 2 3 4 5 6 7 8 9 10

Always f(x) = med{yi}ni=1 N/A 31.40 31.40 31.40 31.40 31.40 31.40 31.40 31.40 31.40 31.40 31.40

FPA (T )
(ours)

Plurality

5 84.64 72.01 39.93 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
11 78.50 70.99 58.70 40.96 22.53 5.12 0.00 0.00 0.00 0.00 0.00
21 65.53 60.41 54.95 50.17 41.64 32.42 22.87 12.63 5.46 1.37 0.00
25 61.77 58.36 54.27 49.83 43.69 35.84 28.67 20.82 12.63 6.14 2.39
31 57.68 54.95 51.54 48.12 42.66 37.20 32.08 26.28 20.82 15.02 10.24
35 55.97 52.56 48.81 45.73 42.32 38.23 33.79 29.01 24.57 19.45 14.68
41 52.90 50.51 47.10 43.34 40.96 37.20 34.47 31.06 27.65 24.23 20.82
51 47.10 44.37 41.98 39.25 37.88 35.49 34.13 32.08 30.03 28.33 26.28
65 41.64 39.25 37.88 37.20 36.01 34.47 33.45 32.42 31.40 30.38 29.69

101 33.45 33.11 32.76 32.76 32.42 32.08 32.08 31.74 31.74 31.74 31.40

RA (e)

(LF‘20b)

60 68.94 43.34 11.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
50 67.58 52.56 32.08 7.85 0.00 0.00 0.00 0.00 0.00 0.00 0.00
40 61.77 50.17 38.23 18.09 4.10 0.00 0.00 0.00 0.00 0.00 0.00
35 61.09 49.49 39.93 20.48 10.24 1.71 0.00 0.00 0.00 0.00 0.00
30 57.68 48.46 39.59 26.96 16.38 5.46 0.00 0.00 0.00 0.00 0.00
25 53.58 47.78 38.91 27.65 20.82 15.02 4.10 0.34 0.00 0.00 0.00
20 51.54 43.34 38.23 32.76 26.28 20.48 15.02 7.85 2.39 0.00 0.00
15 45.05 39.25 36.18 34.81 29.69 27.99 23.21 19.45 13.99 9.90 5.80
10 37.20 36.18 35.15 33.11 32.76 31.40 28.67 26.62 25.26 24.57 22.87
5 33.79 33.11 32.76 32.08 32.08 32.08 31.74 31.40 31.06 30.38 30.38

(Jia‘22b)

60 67.24 59.73 46.76 13.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00
50 66.89 59.73 48.81 31.40 7.17 0.00 0.00 0.00 0.00 0.00 0.00
40 61.77 55.63 49.49 38.57 25.60 6.48 0.00 0.00 0.00 0.00 0.00
35 60.07 52.90 48.12 38.91 31.06 16.38 2.39 0.00 0.00 0.00 0.00
30 57.00 51.88 47.10 41.30 34.81 26.96 15.36 2.39 0.00 0.00 0.00
25 52.56 50.17 45.39 40.27 35.84 31.06 24.91 17.06 6.48 0.34 0.00
20 49.49 45.73 44.03 41.30 37.54 33.79 30.38 25.94 22.53 13.99 6.83
15 44.37 42.32 40.96 39.93 35.84 35.49 32.76 30.72 27.65 24.91 22.18
10 37.54 36.52 35.84 33.79 33.79 33.45 32.42 31.06 30.38 29.35 29.01
5 33.79 33.45 33.45 33.11 33.11 33.11 32.76 32.76 32.42 32.08 32.08
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H.3.2. GRAPHICAL COMPARISON OF FEATURE PARTITION AGGREGATION AND RANDOMIZED ABLATION

Recall that hyperparameters T for FPA and e for baseline randomized ablation control the corresponding method’s
accuracy-robustness trade-off. Specifically, a smaller value of T and a larger value of e entails better accuracy. This section
emulates a defender that tunes FPA’s and randomized ablation’s hyperparameters to maximize the certified accuracy at
each individual robustness level individually.

Tables 26 through 29 above report each method’s certified accuracy across 10 comparable hyperparameter settings. For a
given method, each hyperparameter setting provides a certified accuracy versus certified robustness curve (example curves
are shown in Figures 4 and 5). This section considers each defense’s certified accuracy envelope. Specifically, an envelope
in mathematics represents the supremum of a set of curves. Intuitively, taking the certified accuracy envelope emulates
maximizing a method’s performance at each certified robustness level individually across the 10 hyperparameter settings.

Figures 2 and 3 visualize the certified accuracy envelopes in two ways. First, Figures 2a, 2b, 3a, and 3b visualize the
envelope curves themselves. These figures also visualize the same naive baselines considered in §H.3.1 above (e.g., always
predict label 1 for classification and median med{yi}ni=1 for regression). Second, Figures 2c, 2d, 3c, and 3d visualize the
improvement in certified accuracy between FPA and the two versions of randomized ablation across the range of certified
robustness levels. A positive value in these four subfigures entails that FPA outperformed the corresponding baseline (i.e.,
FPA had a larger certified accuracy), while a negative value entails the baseline outperformed FPA.

For CIFAR10 and MNIST, FPA with run-off’s envelope had larger certified accuracy than the envelope of both versions of
baseline RA across the entire certified robustness range (x-axis). Specifically, for Levine & Feizi’s (2020b) version of RA,
FPA with run-off’s certified accuracy advantage was as large as 14.17 and 24.28 percentage points (pp) for CIFAR10 and
MNIST, respectively. For Jia et al.’s (2022b) version of RA, FPA with run-off’s certified accuracy advantage was as large
as 6.54pp and 12.74pp for CIFAR10 and MNIST, respectively.

For regression datasets Weather and Ames, FPA’s envelope had larger certified accuracy than the envelope of both versions
of baseline RA across most of the certified accuracy range. At the largest robustness values, (Jia et al., 2022b) marginally
outperformed both FPA and the naive baseline by <2pp. At smaller certified robustness values, FPA outperformed Jia
et al.’s (2022b) version of RA by up to 21.9pp and 17.4pp for Weather and Ames, respectively.
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(a) CIFAR10: Certified Accuracy Envelope
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(b) MNIST: Certified Accuracy Envelope
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(c) CIFAR10: FPA’s Certified Accuracy Improvement over
RA
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(d) MNIST: FPA’s Certified Accuracy Improvement over RA

Figure 2. Classification certified accuracy envelope for datasets CIFAR10 (d = 1024) and MNIST (d = 784) for feature partition
aggregation (FPA) and baseline randomized ablation (RA). Each method’s envelope considers the corresponding hyperparameters in
Tables 26 and 27, emulating a certified defense where the hyperparameters are roughly tuned to maximize the certified accuracy at each
robustness level. Subfigures 2a and 2b visualize each method’s certified accuracy envelope (larger is better); also shown in these subfig-
ures is a naive baseline where the decision function always predicts label f(x) = 1. Subfigures 2c and 2d visualize the improvement in
certified accuracy when using FPA with the run-off decision function over the two randomized ablation baselines from Levine & Feizi
(2020b) and Jia et al. (2022b). FPA with run-off’s certified accuracy advantage over Jia et al.’s version of RA was as large as 6.54pp and
12.74pp for CIFAR10 and MNIST, respectively. FPA’s performance advantage was even larger over Levine & Feizi’s (2020b) version
of RA. The envelope plots’ underlying numerical values are provided in Table 26 for CIFAR10 and Table 27 for MNIST.
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(a) Weather: Certified Accuracy Envelope
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(b) Ames: Certified Accuracy Envelope
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(c) Weather: FPA’s Certified Accuracy Improvement over
RA
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(d) Ames: FPA’s Certified Accuracy Improvement over RA

Figure 3. Regression certified accuracy envelope for the Weather (Malinin et al., 2021) (d = 128) and Ames (De Cock, 2011)
(d = 352) datasets for feature partition aggregation (FPA) and baseline randomized ablation (RA). Each method’s envelope considers
the corresponding hyperparameters in Tables 28 and 29, emulating a certified defense where the hyperparameters are tuned to maximize
each robustness level’s certified accuracy. Subfigures 3a and 3b visualize each method’s certified accuracy envelope (larger is better);
also shown in these subfigures is a naive baseline that always predicts the median training data target value. Subfigures 3c and 3d vi-
sualize the improvement in certified accuracy when using FPA (with plurality voting) as the decision function over the two randomized
ablation baselines from Levine & Feizi (2020b) and Jia et al. (2022b). FPA with run-off’s certified accuracy advantage over Jia et al.’s
version of RA was as large as 21.9pp and 17.4pp for Weather and Ames, respectively. FPA’s performance advantage was even larger
over Levine & Feizi’s (2020b) version of RA. FPA outperforms randomized ablation for smaller certified robustness values, while Jia
et al.’s (2022b) version of RA marginally outperformed both FPA and the naive baseline at larger robustness values. The envelope plots’
underlying numerical values are provided in Table 28 for Weather and Table 29 for Ames.
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H.4. Feature Partition Aggregation Model Count Hyperparameter Analysis

Figure 4 visualizes the certified accuracy11 of FPA for multiple T values for all four datasets in Section 6. Figure 4 also
visualizes each dataset’s non-robust (i.e., uncertified) accuracy ( ), where a single model is trained on all features.

These experiments used the same evaluation setup as Section 6. For classification datasets CIFAR10 (Krizhevsky et al.,
2014) and MNIST (LeCun et al., 1998), results using plurality voting and run-off decisions are provided. For regression
datasets Weather (Malinin et al., 2021) and Ames (De Cock, 2011), plurality voting and run-off are identical; we provide
regression results for both LightGBM (Ke et al., 2017) and linear submodels.

The exact effect of T differs by dataset. As a general rule, increasing T decreases the ensemble’s classification accuracy
(although not necessarily monotonically in the case of deterministic partitioning). Figure 4 visualizes this basic relationship
where increasing T generally increases the maximum certified robustness.

11Certified accuracy w.r.t. ψ ∈ N quantifies the fraction of correctly-classified test instances with certified robustness at least ψ.
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(a) CIFAR10 Plurality Voting
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(b) CIFAR10 Run-Off
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(c) MNIST Plurality Voting
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(d) MNIST Run-Off
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(e) Weather (LightGBM Submodels)
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(f) Weather (Linear Submodels)
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(g) Ames (LightGBM Submodels)
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(h) Ames (Linear Submodels)

Figure 4. Effect of Submodel Count T on the Certified Feature Robustness: Mean certified accuracy (%) for our sparse defense,
feature partition aggregation (FPA), across different submodel counts (T ). The non-robust accuracy ( ) visualizes the classification
accuracy of a single model (T = 1) trained on all features; these single model prediction results are provided only for reference. For all
four datasets, increasing T decreases the classification accuracy but increases the maximum certifiable robustness.
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H.5. Randomized Ablation Number of Kept Features (e) Hyperparameter Analysis

As discussed in Sections 3, 6, and C, ℓ0-norm certified defense randomized ablation (RA) is based on randomized smooth-
ing where predictions are averaged across multiple randomly perturbed inputs. For each input, e ∈ N features in x ∈ X
are randomly selected to be kept at their original value, and the rest of the features are ablated, i.e., marked as unused or
“turned off.” In short, e controls RA’s accuracy versus robustness tradeoff where larger e increases the classifier’s accuracy
at the expense of a smaller maximum achievable robustness (ρ). By contrast, a small e decreases the model’s accuracy but
increases the maximum achievable certified robustness.

Figure 5 visualizes RA’s certified accuracy12 for a range of e settings for all four datasets in §6, namely
CIFAR10 (Krizhevsky et al., 2014), MNIST (LeCun et al., 1998), Weather (Malinin et al., 2021), and Ames (De Cock,
2011). Fig. 5 also visualizes each dataset’s non-robust accuracy ( ), where a single non-smoothed model is trained on all
features.

12Certified accuracy w.r.t. ψ ∈ N quantifies the fraction of correctly-classified test instances with certified robustness at least ψ.
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(a) CIFAR10 RA (Levine & Feizi, 2020b)
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(b) CIFAR10 RA (Jia et al., 2022b)
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(c) MNIST RA (Levine & Feizi, 2020b)
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(d) MNIST RA (Jia et al., 2022b)
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(e) Weather RA (Levine & Feizi, 2020b)
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(f) Weather RA (Jia et al., 2022b)
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(g) Ames RA (Levine & Feizi, 2020b)
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(h) Ames RA (Jia et al., 2022b)

Figure 5. Effect of the Number of Kept Features (e) on RA’s Certified ℓ0-Norm Robustness: Mean certified accuracy (%) for
baseline randomized ablation across different quantities of kept pixels (e). Non-robust accuracy ( ) visualizes the peak accuracy of a
single model (T = 1) trained on all features; these single model predictions are provided only for reference.
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H.6. Comparing FPA Plurality Voting and Run-Off Certification

§4 proposes two decision functions for FPA, namely plurality voting (4.1) and run-off elections (4.2). Both decision
functions can be used to certify feature robustness (Def. 1). However, the two decision functions’ guarantees may differ
significantly in size.13

Below, Figures 6, 7, and 8 show the improvement in FPA’s certified accuracy14 for CIFAR10 and MNIST when robustness
certification is enhanced using run-off elections. Specifically, Figure 6 visualizes the improvement in certified accuracy
when run-off is used instead of plurality voting for each certified robustness value r, where a positive value denotes that run-
off performed better, while a negative value entails that plurality voting had better performance. Across almost all values of
r and submodel counts T , combining FPA with run-off improved the certified accuracy, with performance improvements
as large as 12.3 percentage points (pp) for MNIST and 3.8pp for CIFAR10.

Figures 7 and 8 visualize the performance of FPA with plurality voting directly against that of FPA with run-off for
CIFAR10 and MNIST, respectively.
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(a) CIFAR10
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(b) MNIST

Figure 6. Improvement in FPA’s Certified Accuracy with Run-Off Elections for CIFAR10 and MNIST: Effect of the decision
function on FPA’s certified accuracy. 0 on the y-axis denotes the baseline performance of FPA using plurality voting-based (§4.1). A
positive value denotes that run-off-based certification improves FPA’s certified accuracy, while a negative value denotes run-off degrades
performance. Across almost all submodel counts T and certified robustness levels r, run-off improves FPA’s certified accuracy, with
improvements up to 12.3 percentage points (pp) on MNIST and 3.8pp on CIFAR10.

13Recall that run-off and plurality voting are identical for regression datasets Weather (Malinin et al., 2021) and Ames (De Cock,
2011) since Hammoudeh & Lowd’s (2023) reduction is from certified regression to certified binary classification.

14Certified accuracy w.r.t. ψ ∈ N quantifies the fraction of correctly-classified test instances with certified robustness at least ψ.
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(a) CIFAR10: T = 25
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(b) CIFAR10: T = 50
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(c) CIFAR10: T = 115
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(d) CIFAR10: T = 145

Figure 7. Effect of the Decision Function on FPA’s CIFAR10 Certified Accuracy: Comparison of the certified accuracy of FPA when
using the plurality-voting decision function (§4.1) versus the run-off decision function (§4.2). Across all model counts (T ) and certified
robustness levels (r), run-off improved the certified accuracy, with the maximum improvement up to 3.8 percentage points on CIFAR10.
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(a) MNIST: T = 25
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(b) MNIST: T = 60
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(c) MNIST: T = 90
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(d) MNIST: T = 120

Figure 8. Effect of the Decision Function on FPA’s MNIST Certified Accuracy: Comparison of the certified accuracy of FPA when
using the plurality-voting decision function (§4.1) versus the run-off decision function (§4.2). Across all model counts (T ) and certified
robustness levels (r), run-off improved the certified accuracy, with the maximum improvement up to 12.3 percentage points on MNIST.
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H.7. Random vs. Deterministic Feature Partitioning

§5 proposes two paradigms for partitioning the d features between the T submodels. The first option, balanced random
partitioning, assigns each submodel approximately the same number of features uniformly at random. The second option,
deterministic partitioning, uses a deterministic scheme to decide the set of features assigned to each submodel.

In the main paper, we propose what we term “strided partitioning,” a deterministic partitioning strategy where for sub-
model ft, the corresponding feature set is

St = {j ∈ [d] : j mod T = t− 1}. (33)

Strided partitioning is specifically targeted toward structured, two-dimensional feature sets (e.g., images). Striding ensures
that each subset St contains feature information across the 2D grid.

Alternative deterministic strategies we considered include “patching,” where the image is broken up into a grid of disjoint
2D patches. Each submodel is then trained on a different subpatch. Patching performed exceptionally poorly (much worse
than random partitioning) because, in short, each submodel is trained on highly correlated pixels limiting the information
available to each. Moreover, many of the submodel patches contained no information from the highly salient center pixels.

A third deterministic partitioning strategy we considered assigned pixels to each submodel starting from the center of the
image. In essence, this “spiral” strategy renumbers the pixels, defining the center pixel as feature 1 and then assigning
pixels indices in order based on their Manhattan distance from the center. The intuition behind the “spiral” strategy is to
maximize the number of highly-salient center pixels used by each submodel.

Figure 9 compares FPA with plurality voting’s certified accuracy using random partitioning versus the consistently best
performing deterministic strategy – striding. We consider three datasets from §6. CIFAR10 (Krizhevsky et al., 2014)
(d = 1024) and MNIST (LeCun et al., 1998) (d = 784) are image classification datasets, while Weather (Malinin et al.,
2021) is a tabular regression dataset. For all three datasets, the partitioning strategy used in §6 is shown as a solid line,
while the other partitioning strategy is shown as a dashed line. Below we briefly summarize the key takeaways from Fig. 9.

Takeaway #1: Deterministic feature partitioning significantly improves FPA’s performance on vision datasets. For
both CIFAR10 and MNIST, deterministic (strided) feature partitioning significantly outperforms random partitioning. For
example, on CIFAR10 and MNIST T = 25, strided partitioning improves the mean certified accuracy by up to 15.6% and
11.9%, respectively.

Takeaway #2: Deterministic partitioning’s benefits decrease with increasing submodel count. For CIFAR10 with
T = 115 submodels, deterministic partitioning improved FPA’s mean certified accuracy by at most 5.8%; in contrast,
for CIFAR10 with T = 25 submodels, deterministic partitioning improved performance by up to 15.6%. A similar trend
is observed for MNIST. As T increases, each submodel is trained on (substantially) fewer pixels. As feature sparsity
increases, the benefit of a regular pixel pattern decreases.

Takeaway #3: Deterministic and random partitioning perform comparably for the Weather dataset. Tabular features are
generally unstructured or, in some cases, loosely structured. Intuitively, there is no consistent advantage in ensuring that the
tabular features considered by each submodel are well-spaced. A deterministic tabular feature partition can be viewed as a
random variable drawn from the set of all random partitions. Some deterministic partitions outperform the mean random
partition; other deterministic partitions underperform the mean random partition. We see this behavior in Fig. 9c, where
for T = 11, strided partitioning outperforms balanced random while for T = 21, balanced random is better. For T = 31,
strided and random partitioning perform similarly.



Feature Partition Aggregation: A Fast Certified Defense over a Union of ℓ0 Attacks

Rand. T = 25 Strided T = 25 Rand. T = 115 Strided T = 115

0 15 30 45 60

20

40

60

80

100

Certified Robustness (r)

C
er

tifi
ed

A
cc

ur
ac

y
(%

)

(a) CIFAR10
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(b) MNIST
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(c) Weather (LightGBM)

Figure 9. Effect of the Feature Partitioning Paradigm on Certified Feature Robustness: Certified accuracy for feature partition
aggregation (FPA) with plurality voting across different feature partitioning paradigms. Uncertified accuracy ( ) visualizes the peak
accuracy of a single model (T = 1) trained on all features; these single model predictions are completely non-robust and provided only
for reference. For each dataset, the feature partitioning strategy used in §6 is shown as a solid line. The alternate feature partitioning
strategy is shown in the same color but as dashed lines.
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H.8. Model Training Time

This section summarizes the (sub)model training times of feature partition aggregation (FPA) and baseline randomized
ablation (RA). These experiments were performed on a desktop system with a single AMD 5950X 16-core CPU, 64GB of
3200MHz DDR4 RAM, and a single NVIDIA 3090 GPU.

Recall that certified defenses against sparse attacks – both ours and randomized ablation – trade off accuracy against
robustness. Put simply, larger certified guarantees are generally achieved at the expense of reduced accuracy (and vice
versa). To capture the nature of this trade-off, supplemental §H.3 reports performance at various hyperparameter settings.

Hyperparameter settings can affect (sub)model training times so Tab. 30 reports the mean training times for two hyperpa-
rameter settings per method – one a higher accuracy setting and the other a more robust setting. For FPA, we separately
report the mean training time for a single submodel as well as the total training time of the entire ensemble. Model training
for randomized ablation used Levine & Feizi’s (2020b) original source code for MNIST and CIFAR10. Levine & Feizi’s
code was modified to support the Weather and Ames datasets, which are not included in RA’s published implementation.

For the tabular Weather and Ames dataset, FPA was 18× to 90× faster to train than randomized ablation. Randomized
ablation is only compatible with model types that support stochastic, ablated training. By contrast, FPA supports any
submodel type, including LightGBM gradient-boosted decision trees (GBDTs) used here.

For vision datasets MNIST and CIFAR10, FPA’s total ensemble training times are 2.1× to 11× slower than randomized
ablation. Note that the training of each FPA submodel is fully independent. In other words, FPA ensemble training
is embarrassingly parallel with up to T degrees of parallelism. Provided sufficient hardware, an FPA ensemble can be
(significantly) faster to train in parallel than a randomized ablation model, as evidenced by Tab. 30’s single FPA submodel
training times.

Training is identical for both Levine & Feizi’s (2020b) and Jia et al.’s (2022b) versions of randomized ablation (RA).

Table 30. Model Training Time: Mean model training time (in seconds) for feature partition aggregation (FPA) and baseline randomized
ablation. For each dataset, we report the training times for two hyperparameter settings – one that achieves higher certified accuracy
and the other that achieves larger certified robustness. For FPA, the time to train a single submodel and the total time to train the entire
ensemble are reported. “<1” denotes that training took less than 1 second.

Dataset
Random. Abl. FPA (ours)

e Time T Single Total

CIFAR10
75 6,278 25 541 13,526
25 6,085 115 544 62,613

MNIST
45 904 25 153 3,834
20 883 60 161 9,669

Weather
20 5,186 11 13 141

8 5,210 31 9 278

Ames
50 63 11 <1 1
15 64 51 <1 <1
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