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ABSTRACT

The Mamba architecture achieves linear time and memory complexity in long-
sequence modeling and vision tasks through a dynamic, input-conditioned state
transition mechanism and hardware-efficient scan operations. However, as network
depth increases, the state space model (SSM) component tends to amplify activa-
tion magnitudes during the forward pass, often leading to gradient explosion. To
relieve this, we analyze training stability by tracking (i) the spectral norm of the
output projection weights and (ii) the largest eigenvalue of the joint input-output
covariance matrix, demonstrating the effectiveness of post-SSM in suppressing
activation and gradient scale inflation. From the perspective of optimization effi-
ciency, we use K-FAC to approximate the Fisher Information Matrix and show that
pre-SSM significantly reduces the condition number of per-layer gradients, thereby
accelerating convergence. Furthermore, we propose a composite normalization
strategy (BN→SSM→LN), combining BatchNorm before input projection layer
and LayerNorm after the SSM layer. We evaluate this strategy across a broad
range of benchmarks. Experimental results demonstrate that the composite scheme
consistently outperforms single or no normalization in both convergence speed and
final accuracy. We hope this work provides both theoretical insights and empirical
guidance for normalization in designing SSM-based models.

1 INTRODUCTION

Mamba Gu & Dao (2023) has attracted significant attention across a broad range of applications,
including long-sequence modeling tasks such as speech and audio processing Ren et al. (2025), as
well as domains like natural language processing (NLP) and computer vision (CV) (Liu et al., 2024),
due to its strong capabilities in capturing long-range dependencies and computational efficiency.
However, Mamba faces notable training challenges, as instability during training often causes the
iteration to diverge, particularly as model parameters scale up (Dao & Gu, 2024). This phenomenon
is illustrated in Figure 1, which shows that as the depth increases from 4 to 32 layers, the training
process becomes more unstable, with gradient explosion and divergence occurring earlier in deeper
networks.

Vanilla Mamba 4 Layers 8 Layers 32 Layers

Figure 1: Training instability of Vanilla Mamba in Imagenet dataset. Red line indicates loss and
blue line indicates gradient norm. As model depth increases from 4 to 32 layers, the training process
becomes more unstable.
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To better understand the source of instability, we examine the behavior of the SSM block. Specifically,
we track the range of its input x and output y activations during training. As shown in Figure 2,
two consistent phenomena emerge across both WikiText-103 and ImageNet: (1) the SSM amplifies
input activations, and (2) with increasing steps, deeper layers first exhibit extremely large values,
which soon explode to infinity after several iterations. These observations suggest that the intrinsic
amplification effect of the SSM, together with the discrepancy in activation magnitudes between
shallow and deep layers, is a key factor underlying training instability. Such amplification further
indicates that the Mamba architecture inherently suffers from poor scale-invariance, which explains
why deeper layers are more prone to instability.

Figure 2: Input and Output Ranges of the SSM Module for vanilla mamba on the WikiText-103
Dataset.

Given that poor scale-invariance thus emerges as a fundamental limitation of Mamba, which directly
contributes to the observed training instability. The success of deep neural networks has relied
heavily on advances in training techniques, among which normalization of internal representations
plays a central role (Hinton & Salakhutdinov, 2006; Nair & Hinton, 2010; Kingma & Ba, 2015).
Normalization is widely recognized to stabilize and accelerate training by promoting scale-invariance,
improving conditioning of the optimization landscape, and introducing beneficial stochasticity (Huang,
2022). We therefore turn to normalization as a potential remedy for the instability of Mamba.

Despite recent efforts Gu & Dao (2023); Ma et al. (2024); Liu et al. (2024) introducing different
normalization layers into the Mamba architecture—such as Layer Normalization (LN) (Ba, 2016),
Group Normalization (GN) (Wu & He, 2018), and Root Mean Square Normalization (RMSN) (Zhang
& Sennrich, 2019), these adaptations have largely been task-specific, aiming to improve performance
on individual benchmarks. However, there remains a lack of systematic analysis on the role of
normalization in Mamba, particularly with respect to training dynamics. Beyond stability, another
critical aspect of training dynamics is optimization efficiency, i.e., how fast and effectively the model
converges. It is still unclear how different normalization choices, and their placements within the
architecture, affect both the stability of training and the efficiency of optimization, leaving open the
question of how to design principled normalization strategies for Mamba.

To bridge this gap, in this paper we focus on the two most common normalization positions in the
Mamba architecture: after the SSM layer (Norm2) and before the input projection layer (Norm1),
as illustrated in Figure 4. Building on our training dynamics analysis, we propose a two-stage
hybrid normalization strategy: (1) Stage 1: Given that the SSM module amplifies activations and
exacerbates instability, placing LN at Norm2 effectively stabilizes training and ensures convergence.
Since different normalization methods exhibit complementary effects; for example, BN is known
to improve optimization efficiency better than LN. (2) Stage 2: We further introduce BN at Norm1.
This enhances optimization efficiency, enabling the model to reach higher accuracy faster.

Next, we conduct a layer-wise analysis to study the role of normalization in stabilizing and accelerat-
ing Mamba training. Specifically, we first examine the effect of applying LN at Norm2, by assessing
two key indicators: (i) the spectral norm of the output projection weights and (ii) the maximum
singular value of both the layer input covariance matrix and the layer output-gradient covariance
matrix. These metrics reflect how LN at Norm2 enforces scale invariance (Ba, 2016) across layers
and mitigates instability. After establishing training stability, we then analyze the effect of applying
BN at Norm1 from an optimization perspective. To this end, we track the maximum singular value
and condition number of the Kronecker-Factored Approximate Curvature (K-FAC) matrix (Huang
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Figure 3: Normalization methods for sequence data Each subfigure displays the dimensional
information of a feature map, where mrepresents the batch axis, d the channel axis, L the sequence
length axis. The dashed arrows indicate that the mean and variance are computed by aggregating the
values across these dimensions.

et al., 2020), which approximates the Fisher Information Matrix (FIM). This analysis demonstrates
that BN at Norm1 substantially improves optimization conditioning and accelerates convergence.

Building upon these insights, we propose a composite normalization strategy BN→SSM→LN. We
evaluate this design across a diverse set of benchmark tasks, including image classification, object
detection, semantic segmentation, long-sequence modeling, and natural language processing. The
results show that our BN→SSM→LN configuration consistently outperforms baselines that use either
a single normalization method or none at all.

To sum up, our contributions are summarized as follows:

• We demonstrate that applying LN at Norm2 plays a critical role in stabilizing training by
suppressing activation and gradient scale explosion, as evidenced by tracking spectral norms
and singular values of covariance matrices.

• We show that applying BN at Norm1 substantially improves optimization efficiency by
reducing the condition number of the approximated Fisher Information Matrix (K-FAC),
thereby accelerating convergence.

• We propose a composite normalization strategy BN→SSM→LN based on these insights.
The design is derived from a general training dynamics perspective and theoretical analysis,
which together establish a principled normalization guideline that combines the stability of
LN and the efficiency of BN, yielding consistent improvements across diverse tasks.

2 RELATED WORK

2.1 LINEAR STATE SPACE MODELS

Transformers with quadratic-time attention (Vaswani et al., 2017) achieve strong performance but
suffer from O(n2) complexity, which limits scalability in long-context applications. To address this,
researchers have developed linear attention mechanisms (Choromanski et al., 2020; Katharopoulos
et al., 2020) and state space models (SSMs) (Gu et al., 2021), both enabling efficient long-sequence
modeling. Building on this line, Mamba (Gu & Dao, 2023) introduces a selective mechanism for
content-aware state transitions and has inspired numerous extensions (Phung et al., 2024; Chiang
et al., 2024; Wu et al., 2024; Pierro & Abreu, 2024; Zeng et al., 2024; Wei et al., 2024). However,
these efficiency gains come with a major drawback: training instability. Unlike softmax attention,
which inherently normalizes activations and gradients, Mamba’s SSM block amplifies activations,
violates scale-invariance, and often causes gradient explosion and divergence, particularly in deeper
networks (Dao & Gu, 2024).

2.2 THE ROLE OF NORMALIZATIONS

The success of deep neural networks (DNNs) has relied heavily on normalization techniques that
regulate the distribution of activations (Kingma & Ba, 2015; Ioffe & Szegedy, 2015). As illustrated in
Figure 3, normalization methods differ in how they compute statistics across batch, channel, or feature
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dimensions. For example, Batch Normalization (BN) standardizes activations across both batch
and feature dimensions, effectively mitigating internal covariate shift and improving optimization
efficiency (Ioffe & Szegedy, 2015; Wang et al., 2022). Layer Normalization (LN), in contrast,
normalizes along the feature dimension within each sample, stabilizing hidden-state dynamics and
preventing scale explosion across layers (Ba, 2016). While these methods have been extensively
used in RNNs and Transformer-based architectures (Xiong et al., 2020; Shleifer et al., 2022; Han
et al., 2021), their role in Mamba remains unclear. Several recent studies have attempted to insert
normalization layers such as LN, GN, or RMSNorm into Mamba (Gu & Dao, 2023; Ma et al., 2024;
Liu et al., 2024), but these adaptations are largely task-specific and lack a systematic analysis of
training dynamics.

3 METHOD
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Figure 4: Mamba Normalization Framework. We conduct a layer-wise analysis of training stability
and optimization in the Mamba architecture by examining the input and output-gradient of the output
projection layer.

To systematically investigate the role of normalization in Mamba, we focus on the two most common
insertion points: Norm1, placed before the input projection layer, and Norm2, placed after the
SSM block. Our methodology is organized in two stages: the first stage analyzes stability with
LN at Norm2, and the second stage examines optimization with BN at Norm1. For stability,
we track the spectral norm of the output projection weights and the singular values of input and
output-gradient covariance matrices, which capture activation scaling and gradient dynamics across
layers. For optimization, we employ Kronecker-Factored Approximate Curvature (K-FAC) analysis
to evaluate eigenvalues and condition numbers, thereby characterizing the conditioning of the
optimization landscape. Finally, we integrate these insights into a composite normalization strategy
(BN→SSM→LN) and systematically evaluate its effectiveness across vision, language, and long-
sequence benchmarks.

3.1 PRELIMINARIES OF MAMBA PIPELINE

We first briefly review the core components of the Mamba architecture. As illustrated in Figure 4, let
N1 denote the first normalization layer applied to input x. The main branch then proceeds through a
sequence of transformations:

f = N2(SSM(F1(N1(x)))). (1)

Here, F1 represents the main forward path, including a linear projection, depthwise separable
convolution, and a SiLU activation. SSM denotes the selective structured state space module, and
N2 is the second normalization layer applied after SSM. Meanwhile, in the parallel branch, the
normalized input N1(x) is processed by a lightweight path F2:

p = F2(N1(x)). (2)
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F2 includes a linear projection and a SiLU activation. The outputs of the two branches are combined
element-wise and followed by a linear layer:

y = L(f ⊗ p). (3)

Where ⊗ denotes element-wise multiplication.

3.2 TWO-STAGE NORMALIZATION STRATEGY

Building on our training dynamics analysis, we propose a two-stage normalization strategy that
explicitly integrates stability and optimization considerations into the Mamba pipeline.

Stage 1: To suppress activation amplification and stabilize training, we place Layer Normalization
after the SSM block. Formally,

f = LN(SSM(F1(Norm1(x)))). (4)

Stage 2: To improve conditioning and accelerate convergence, we place Batch Normalization before
the input projection. The parallel branch then becomes

f = LN(SSM(F1(BN(x)))), p = F2(BN(x)). (5)

This composite strategy can thus be summarized as a BN→SSM→LN pipeline, combining the
stabilizing effect of LN with the optimization benefits of BN.

3.3 STABILITY METRICS

To evaluate training stability, we investigate three statistics, the magnitude of layer input (indicated
by λmax (Σx)), the magnitude of layer output-gradient (indicated by λmax (Σ∇h)) and the magnitude
of output projection weight (indicated by ∥W∥2) which ensure that weight magnitudes can grow
under gradient descent while gradient norms shrink proportionally—thereby avoiding divergence. To
quantify this, we adopt two spectral metrics at the output layer, as shown in Figure 4.

• The spectral norm of the output projection weights , reflecting the scale of activations during
training.

• The maximum eigenvalues of the input activation covariance and output gradient covariance
matrices, indicating sensitivity to scale perturbations in forward and backward propagation.

Since SSM amplifies activations in forward propagation and accumulates over depth, Norm2 is used
to regulate the activation scale. Prior work has also shown that LayerNorm stabilizes training. We
therefore conduct controlled experiments comparing None→SSM→None and None→SSM→LN, and
analyze the impact of LN on Mamba training stability using the above metrics.

These metrics jointly indicate whether normalization reduces distortion in activations and gradients
across layers, thereby stabilizing overall training dynamics. The subsequent experimental results on
Mamba further validate our analysis.

3.4 OPTIMIZATION METRICS

To evaluate the impact of Norm1 on model trainability, we analyze the spectral structure of the
Fisher Information Matrix (FIM), which characterizes the curvature of the loss landscape, as shown
in Figure 4. However, due to memory and compute constraints, directly analyzing the full curvature
matrix is infeasible. We instead approximate it using Kronecker-Factored Approximate Curvature
(K-FAC) (Huang et al., 2020; Martens & Grosse, 2015). The FIM can be approximated as a block-
diagonal matrix:

F ≈


F1 0 · · · 0
0 F2 · · · 0
...

...
. . .

...
0 0 · · · FL

 , (6)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

The k-th block Fk (or the k-th layer) is approximated as:

Fk ≈ E[xkx
⊤
k ]⊗ E

[
∂l

∂hk

(
∂l

∂hk

)⊤
]
, (7)

where, xk is the input to the k-th layer, and ∂l
∂hk

is the output gradient.

To investigate the optimization role of Norm1 in Mamba, we conduct experiments comparing
None→SSM→LN and BN→SSM→LN. We analyze the impact of BN using the condition number κ(Fk)

1:

κ(Fk) =
λmax(Fk)

λmin(Fk)
(8)

A lower κ(Fk) implies better conditioning and more efficient gradient-based optimization. A higher
condition number indicates ill-conditioning and potential convergence challenges. The experimental
results on the Mamba architecture presented later also support this analysis.

Step(×20)

Step(×50)

None-LN

None-None

None-LN

None-None

None-LN

None-None

None-LN

None-None

None-LN

None-None

None-LN

None-None

Wikitext

Imagenet

Figure 5: Analysis of layer input magnitude, output gradient magnitude, and weight norm. Yellow
indicates None→LN, and blue indicates None→None. Subfigures (a), (b), and (c) illustrate the varia-
tions in stability metrics on the WikiText-103 dataset, while (d), (e), and (f) present the corresponding
results on the ImageNet-100 dataset.

In the following section, we conduct experiments across diverse tasks to validate the effectiveness
and generalizability of the proposed method.

4 EXPERIMENTS

In this section, we first introduce the datasets and experimental settings used to evaluate the impact of
normalization on the Mamba architecture across vision, natural language processing, and sequential
tasks. Next, we analyze the normalization results in language modeling and image classification
tasks using output-layer weight norms, eigenvalues of input-gradient covariance matrices, and K-FAC
condition numbers. Finally, we conduct comparison experiments on our proposed composite BN and
LN normalization strategy across various tasks to verify its generalizability.

1The general condition number with respect to the percentage is defined as: κp = λmax
λp

where λp s the
p− th eigenvalue (in descending order). This measure provides a better characterization of over-parameterized
models.
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4.1 EXPERIMENT SETTINGS

Baselines We select the vanilla Mamba architecture, which adopts RMSNorm-None as the nor-
malization configuration, and the widely used VMamba architecture, which employs LN-LN as its
normalization setup. Both serve as baselines for comparison.

Datasets We use a range of datasets to evaluate the performance across different tasks. For stability
analysis and optimization analysis, we utilize WikiText-103 (Merity et al., 2016), a widely-used
dataset for language modeling, and ImageNet-100 (ima, 2019), a subset of ImageNet for image
classification. For generalization verification, we evaluate the combined normalization strategy across
a variety of benchmark datasets, including sequence tasks from the LRA Benchmark (Tay et al.,
2021), NLP tasks with WikiText-103, and computer vision tasks such as ImageNet-100, COCO (Lin
et al., 2014) and ADE-20K (Zhou et al., 2019). The dataset and experimental configurations are
described in detail in the Appendix 1.

Layer Layer Layer

Layer Layer Layer

Wikitext

Imagenet

None-LN

BN-LN

None-LN

BN-LN

None-LN

BN-LN

None-LN

BN-LN

None-LN

BN-LN

None-LN

BN-LN

Figure 6: Analysis of the condition of K-FAC (indicated by κ and κ50%) and magnitude of K-
FAC (indicated by λmax (Fk)). The green line represents None→LN, and red line indicates BN→LN.
Subfigures (a), (b), and (c) illustrate the corresponding optimization metric changes on the WikiText-
103 dataset, while (d), (e), and (f) are on the ImageNet-100 dataset.

4.2 STABILITY ANALYSIS

We begin by examining the impact of normalization strategies on training stability. Following
the setup described in the Method section, we compare two configurations: None→SSM→LN and
None→SSM→None, which correspond to applying LayerNorm after the SSM versus no normalization
at all.

On the WikiText-103 and ImageNet-100 dataset, we track the spectral norm of output projection
weights, as well as the maximum eigenvalues of the input activation covariance and output gradient
covariance matrices across Mamba layers, as shown in Figure 5. The results are summarized below:

• Weight Norms: Under the None→SSM→None configuration, the weight norms of deeper
layers (e.g., layer 20) increase significantly, far exceeding earlier layers. This results in gradi-
ent explosion and even training divergence. In contrast, with LayerNorm (None→SSM→LN),
the norm trends remain consistent across layers, and gradients maintain scale invariance,
enabling smoother training, as shown in Figures 5(a) and (d).

• Output Gradient Eigenvalues: Compared to the None→SSM→None, None→SSM→LN
exhibits more consistent gradient eigenvalue distributions and reduced fluctuations during
training, suggesting smoother gradient flow, as shown in Figures 5(b) and (e).
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• Input Covariance Eigenvalues: The None→SSM→LN setup maintains consistent and rel-
atively high eigenvalues across layers, with minimal variation over training iterations,
indicating effective suppression of forward-pass scale perturbation. Without normaliza-
tion, inter-layer eigenvalue differences are large, reducing numerical stability, as shown in
Figures 5(c) and (f).

These results confirm that the normalization after SSM (Norm2) significantly suppresses activation
and gradient explosion, thereby improving the training stability of deep Mamba networks. This also
validates the theoretical insights in Section 3, where Norm2 was shown to alleviate scale inflation
caused by the SSM.

4.3 OPTIMIZATION ANALYSIS

We further investigate the effect of input-side normalization (Norm1) on optimization efficiency
by applying BN before the SSM. We compare BN→SSM→LN against None→SSM→LN, using the
maximum eigenvalue and condition number of the K-FAC-approximated Fisher Information Matrix
as evaluation metrics.

Results on the WikiText-103 and ImageNet-100 datasets show that:

• K-FAC Condition Number: Across 100% and 50% thresholds, the condition numbers under
BN→SSM→LN ( with BN) are significantly lower than those without BN (None→SSM→LN),
indicating faster gradient convergence and improved training efficiency, as shown in Fig-
ures 6(a) and (d).

• Convergence Performance: Compared to the None→SSM→LN (without BN), BN→SSM→LN
(with BN) helps the Mamba reach lower training loss and better generalization performance
more rapidly, as shown in Figures 6(b) and (e).

• K-FAC Maximum Eigenvalue: The K-FAC Maximum Eigenvalue under BN→SSM→LN
are lower than under None→SSM→LN, suggesting better alignment in parameter update
directions and a smoother optimization landscape, as shown in Figures 6(c) and (f).

These results indicate that input-side BN not only accelerates convergence but also improves numerical
conditioning during optimization, thereby enhancing the trainability of Mamba models.

4.4 VALIDATION OF BN-LN COMPOSITE NORMALIZATION

Building on the above theoretical and empirical analyses, we propose the composite normaliza-
tion strategy BN→SSM→LN, and conduct systematic comparisons across tasks including vision clas-
sification, segmentation, and reasoning, sequence modeling, natural language processing,. The
datasets include ImageNet-100, COCO, ADE-20K, Pathfinder, ListOps, CIFAR-10, IMDB (Text),
and WikiText-103. Results are summarized in Tables 1, 2, and 3, respectively.

Table 1: Results of different normalization strategies on sequence tasks. Configurations that result in
divergent (NaN) losses during training are marked with an asterisk (*).

Method ListOps CIFAR Pathfinder
None→None 38.61* 56.4* 49.95
RMSN→None 39.51 62.74 51.00
BN→BN 37.50* 63.09 50.80*
LN→LN 42.18 58.80 50.80
BN→LN (Ours) 43.75 63.41 51.43

We can observe that single-use BN or LN strategies lead to unstable or divergent behavior in certain
tasks. In contrast, the BN-LN composite strategy not only significantly accelerates convergence but
also achieves the best (or even state-of-the-art) performance across all evaluated tasks. Particularly
in deeper Mamba models, BN-LN effectively balances optimization speed and training stability,
demonstrating stronger generalization.

8
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Table 2: Results of different normalization strategies on NLP task WikiText-103. Configurations that
result in divergent (NaN) losses during training are marked with an asterisk (*).

Method WikiText-103 IMDB
None→None 201.07* 77.2*
RMSN→None 28.9 78.40
BN→BN 201.3* 70.24
LN→LN 27.59 79.87
BN→LN (Ours) 27.57 81.48

Table 3: Results of different normalization strategies on visual tasks.Configurations that result in
divergent (NaN) losses during training are marked with an asterisk (*).

Method ImageNet100 COCO ADE20K
None→None 11.52* 0* 0*
RMSN→None 87.04 24.2* 26.17
BN→BN 44.92* 20.1 25.78
LN→LN 87.04 34.5 26.92
BN→LN (Ours) 87.74 34.9 27.32

Moreover, the evaluation metrics curves during training are shown in 7. These figures also demonstrate
that combined normalization leads to faster convergence. For example, in the segmentation task, the
combined normalization consistently outperforms single normalization methods in terms of accuracy
and reaches the highest accuracy earlier during training.

To further evaluate the effectiveness of different normalization strategies in accelerating convergence,
we replaced Norm1 with several commonly used normalization methods, as shown in Figure 8. It
can be seen that the combined normalization configuration of BN+LN not only maintains high final
accuracy but also achieves the fastest convergence, making it the optimal choice for efficient training.

Figure 7: Training stability and convergence on
ADE-20K segmentation.

Figure 8: Comparison with various Norm1 meth-
ods.

5 CONCLUSION
In this paper, we investigate the training stability and optimization convergence of normalization in
the Mamba architecture. For training stability, we monitor the spectral norm of the output projection
weights and the maximum eigenvalue of the output layer covariance. These analyses show that

9
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post-SSM LayerNorm is essential for suppressing activation and gradient amplification, thereby
preventing gradient explosion in deep networks. For optimization efficiency, through condition-
number estimates of a K-FAC-approximated Fisher Information Matrix, we show that pre-SSM
BatchNorm substantially improves numerical conditioning, accelerating gradient convergence and
training speed. Finally, across tasks such as language modeling, image classification, and semantic
segmentation, our composite strategy not only converges more rapidly but also outperforms baselines.
However, this study is limited by its focus on only two normalization methods and fixed insertion
positions, which may restrict scalability to deeper networks and larger-scale tasks. Future work will
explore broader normalization variants, automated placement strategies, and extend the framework to
more complex architectures and large-scale settings to enhance generality and performance.
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This paper presents work whose goal is to advance the field of Deep Learning. There are many
potential social consequences of our work, none which feel must be specifically highlighted here.
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A APPENDIX

In this appendix, we provide additional details that could not be included in the main paper due
to limited space, which comprises the details of our experiment settings, theoretical backgrounds,
empirical experiments, and theoretical analysis. We discuss:

• Datasets and experiment settings.

• Supplementary Theoretical Backgrounds

• Empirical evidence for the role of Norm2 in enhancing training stability.

• Empirical evidence for the role of Norm1 in improving optimization condition.

• Discussion of other composite Strategy cases.

A DATASETS AND EXPERIMENT SETTINGS

We conduct experiments on benchmark datasets spanning three domains: sequential modeling, natural
language processing (NLP), and computer vision (CV).

A.1 NLP TASK

Dataset WikiText-103 (Merity et al., 2016) is a large-scale English word-level language modeling
benchmark consisting of 28,475 high-quality Wikipedia articles. It retains original casing, punctuation,
and numerical content, with the training set comprising approximately 103 million words and a
vocabulary of over 260,000 tokens. The validation and test sets each contain 60 full articles. Notably,
the dataset preserves paragraph continuity within articles, making it well-suited for evaluating a
model’s ability to capture long-range dependencies across thousands of tokens.

Experiment Setting Our Mamba-based language model comprises 24 layers with a hidden dimen-
sion of 768, totaling approximately 125 million parameters. The model adopts the Mamba1 state
space architecture, without employing RMS normalization or tying input and output embeddings. We
trained the 24-layer Mamba for 150 epochs using Distributed Data Parallel (DDP) across 8 GPUs,
with a global batch size of 128. We use the AdamW optimizer (Loshchilov & Hutter, 2017) with
a peak learning rate of 1.5× 10−3 and a weight decay of 0.25. The learning rate follows a cosine
annealing schedule with 1% linear warm-up steps, starting from 1× 10−6 and decaying to 10% of
the peak value. Gradient clipping is applied with a maximum norm of 1.0. All computations are
performed using FP32 precision.

A.2 SEQUENTIAL MODELING BENCHMARK

In Long range arena(LRA) benchmark (Tay et al., 2021), we use a 8-layer Mamba1-based sequence
classification model with a hidden size of 128 and approximately 1.4M parameters. It uses a state
dimension of 64, kernel size of 4, expansion factor of 2, and no normalization layers. Positional
encodings are added to capture sequence order.

Dataset ListOps (Nangia & Bowman, 2018) contains approximately 90,000 training samples,
10,000 validation samples, and 10,000 test samples, totaling around 110,000 prefix-style arithmetic
expressions with nested operations. Each sequence has an average length of 1̃30 tokens, with some
exceeding 200 tokens. The task requires outputting a single integer between 0–9, with operators such
as MAX, MIN, MED, and SUM MOD (SM). This dataset evaluates a model’s ability to reason over
long-distance dependencies and recursive tree structures, using accuracy as the evaluation metric.

Experiment Setting The model is trained on LISTOPS for 40 epochs using AdamW (learning
rate 1× 10−4, weight decay 0.05) with a constant schedule and 2,000 warm-up steps. Training is
performed with DDP over 8 GPUs, batch size 64, and no gradient clipping. Inputs are padded to
2,048 tokens with a vocabulary size of 18. End-of-sequence tokens are appended, and outputs are
aggregated via pooling with length-aware processing.
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Dataset IMDB (Maas et al., 2011) is a sentiment analysis dataset consisting of English movie
reviews. It provides 25,000 labeled training samples, 25,000 labeled test samples, and an additional
50,000 unlabeled reviews for semi-supervised learning. Review lengths range from 200 to 1,000
words, and labels are binary: positive or negative. The dataset features a balanced sentiment
distribution and linguistic diversity, including slang, negation, and sarcasm, making it a standard
benchmark for assessing a model’s capacity to capture fine-grained sentiment in long-form text.
Accuracy is used as the evaluation metric.

Experiment Setting The model is trained on the IMDB dataset for 65 epochs with a batch size
of 32. We use the AdamW optimizer with a learning rate of 1× 10−4, a weight decay of 0.1, and a
constant learning rate schedule with 2,000 linear warm-up steps (approximately one epoch). Input
sequences are tokenized at the character level using a minimum frequency threshold of 15, yielding a
vocabulary of 135 characters. Sequences are padded to a maximum length of 4,096 characters, and
end-of-sequence tokens are appended. The final outputs are computed via pooling-based sequence
classification with length-aware aggregation to effectively handle variable-length movie reviews.

Dataset CIFAR-10 (Krizhevsky et al., 2009) consists of 50,000 training images and 10,000 test
images, totaling 60,000 32×32 RGB images across 10 common categories: airplane, automobile, bird,
cat, deer, dog, frog, horse, ship, and truck. The low resolution and cluttered backgrounds demand that
models learn discriminative features from limited pixels. Each class contains 5,000 training samples.
The dataset is widely used to assess image classification capabilities, with accuracy serving as the
evaluation metric.

Experiment Setting The model processes CIFAR-10 images converted to grayscale and serialized
into 1,024-token sequences (32×32 pixels), without any data augmentation. Training is conducted for
150 epochs with a batch size of 50. We use the AdamW optimizer with a learning rate of 1× 10−3,
weight decay of 0.1, and β parameters set to (0.9, 0.95). The learning rate follows a cosine annealing
schedule with 2,000 linear warm-up steps. Gradient clipping is applied with a maximum norm of 1.0
to further stabilize training. Each pixel is treated as a discrete token, allowing sequence modeling
techniques to be applied to vision tasks through this serialization-based approach.

Dataset Pathfinder (Linsley et al., 2018) is a visual reasoning benchmark designed to assess
topological reasoning. The task is to determine whether two marked circles in a binary image are
connected by a single continuous path. The dataset includes approximately 100,000 training images
and 20,000 validation/test images, with each image sized at 64×64 pixels. As the number of path
segments increases, so does task difficulty. Since no semantic cues are available, models must rely on
global receptive fields and spatial reasoning. Evaluation is based on accuracy.

Experiment Setting The model processes PATHFINDER images converted to grayscale and serial-
ized into sequences of varying lengths: 1,024 tokens (32×32), 4,096 tokens (64×64), and 65,536
tokens (256×256). Training is conducted for 200 epochs with a batch size of 32. We employ the
AdamW optimizer with learning rates of 1×10−4 for lower resolutions and 1×10−3 for the 256×256
setting, using weight decay values between 0.05 and 0.1, and β parameters set to (0.9, 0.95). The
learning rate follows either a constant or cosine annealing schedule with 5,000 linear warm-up steps.
Gradient clipping with a maximum norm of 1.0 is applied for higher-resolution inputs. Each pixel is
treated as a discrete token in the serialized sequence, allowing us to evaluate the model’s capacity to
capture long-range dependencies across different input lengths.

A.3 COMPUTER VISION(CV) TASK

We conduct experiments on the ImageNet-100, COCO2017, and ADE20K datasets using the open-
source Vanilla-VMamba-Tinymodel. To ensure a fair comparison, we retrain each configuration
from scratch on an 8-GPU server without employing any pre-trained weights. This avoids incon-
sistencies caused by potential mismatches between modified normalization layers and pre-trained
parameters. Furthermore, for each dataset, we adopt the same hyperparameter settings as in the
original implementation. The details are as follows:
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Dataset ImageNet-100 (ima, 2019) is a curated subset of ImageNet-1k (Deng et al., 2009) ,
comprising 100 randomly selected and semantically coherent classes. Each class contains 1,300
training images and 50 validation images, totaling 130,000 training and 5,000 validation samples.
Image resolution follows that of the original ImageNet, commonly resized by cropping or scaling
the short edge to 160–224 pixels. It is used to evaluate image classification performance, covering
common entities such as animals, objects, and scenes, with Top-1 accuracy as the evaluation metric.

Experiment Setting The backbone consists of 14 Mamba blocks with three downsampling stages,
and the layer configuration is set to [2, 2, 8, 2]. We train the model using the AdamW optimizer with
a weight decay of 0.05, an initial learning rate of 5× 10−3, a batch size of 256, and a total of 300
epochs.

Dataset COCO 2017 (Lin et al., 2014) is one of the most widely used benchmarks for multi-task
vision evaluation, featuring approximately 330,000 images, including 118,000 for training, 5,000 for
validation, and 20,000 for test-dev. It includes 80 object detection categories and 91 stuff categories,
with 1.5 million object instances annotated with bounding boxes. The images depict real-world
scenarios with dense object layouts, occlusions, and large scale variations. It serves as a standard
benchmark for object detection and instance segmentation, with mean Average Precision (mAP) used
for evaluation.

Experiment Setting The backbone consists of 14 Mamba blocks with three downsampling stages,
and the layer configuration is [2, 2, 9, 2]. For object detection and instance segmentation, we employ
the Mask R-CNN head. The training is performed using the AdamW optimizer with a weight decay
of 0.05, an initial learning rate of 1× 10−4, a batch size of 8, and a total of 12 epochs.

Dataset ADE-20K (Zhou et al., 2019) is a benchmark for semantic segmentation and scene
parsing, aggregating over 27,000 scene images from the SUN and Places datasets. All images are
annotated with pixel-level polygons, covering 150 semantic classes and over 3,000 instance-level
object categories. The dataset spans a wide variety of environments, including indoor, outdoor,
natural, and urban scenes, with annotations for both visible and occluded object regions. It is the
standard evaluation set for fine-grained segmentation and multi-scale understanding, using mean
Intersection over Union (mIoU) as the evaluation metric.

Experiment Setting The backbone consists of 14 Mamba blocks with three downsampling stages,
and the layer configuration is [2, 2, 8, 2]. For semantic segmentation, we use the UPerHead as the
decoding head. Training is conducted using the AdamW optimizer with a weight decay of 0.01, an
initial learning rate of 6× 10−5, a batch size of 32, and a total of 160,000 training iterations.

A.4 SUPPLEMENTARY THEORETICAL BACKGROUNDS

In our section Method, we presented the definitions of the stability and optimization metrics along
with the associated empirical conclusions. In this appendix, we provide supplementary theoretical
discussion to further substantiate the principles underlying our analysis of training stability and
optimization behavior in neural networks.

A.5 STABILITY ANALYSIS

In gradient-based neural network training, instability often manifests as exploding gradients, where
gradients grow excessively and lead to numerical failures. Intuitively, this phenomenon typically
arises from two sources: the explosion of hidden activations (e.g., large spectral values in forward
inputs or backward gradients causing NaNs in the loss), or unbounded growth in network weights
due to overly large updates during backpropagation. Accordingly, our stability analysis considers
both activation dynamics and weight behavior.

Due to the cumulative feature of transformations across multiple layers, the out put layers in deep
neural networks are particularly susceptible to numerical instabilities. Moreover, we observed a
similar phenomenon in Mamba, as illustrated in Figure 10. The figure compares the activation
magnitude range of the SSM outputs before and after applying normalization. It can be seen that the
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State Space Model (SSM) tends to amplify activation magnitudes during the forward pass, and such
amplification accumulates progressively in deep networks, eventually leading to gradient explosion.
Notably, in computer vision (CV) tasks, the amplification of the input x by the SSM module in
the absence of normalization at the Norm2 position is significantly greater than in sequential data
tasks. As a result, CV models are more susceptible to gradient explosion, as shown in Figure11.
Chiang et al. (2024) similarly observed this property of Mamba. Introducing normalization effectively
mitigates this accumulation and constrains the numerical range. Therefore, we focus our analysis on
the spectral properties of the forward inputs, backward gradients, and output-layer weight matrices of
out proj layer in each Mamba block.

Previous studies have shown that spectral analysis of activations and monitoring the norms of weight
matrices are effective methods for evaluating training stability in deep neural networks(DNNs) Huang
et al. (2020). Motivated by this, we adopt two representative indicators to analyze the stability of
the Mamba architecture: (1) the maximum eigenvalue of the activation covariance matrix, which
captures the scale and distributional dynamics of the hidden activations, and (2) the spectral norm
of the output-layer weight matrices, which reflects the model’s scaling behavior and its tendency to
produce unstable updates.

We denote the covariance matrix of the layer input as Σl
x = Ep(x)q(y|x)

[
xl−1

(
xl−1

)T ]
and the

covariance matrix of the layer output-gradient as Σl
∇h = Eq(y|x)

[
∂ℓT

∂hl
∂ℓ
∂hl

]
, where l is the l-th

mamba layer.

• Maximum eigenvalue of the input covariance matrix:

λmax(Σ
l
x) = max

{
λ ∈ Spec(Σl

x)
}
,

Σl
x = Ep(x)q(y|x)

[
xl−1(xl−1)⊤

]
,

(9)

which measures the second-order statistics of the forward input to the layer.

• Maximum eigenvalue of the output-gradient covariance matrix:

λmax(Σ
l
∇h) = max

{
λ ∈ Spec(Σl

∇h)
}
,

Σl
∇h = Eq(y|x)

[
∂ℓ⊤

∂hl

∂ℓ

∂hl

]
,

(10)

which reflects the second-order sensitivity of the loss with respect to the layer outputs.

A.6 OPTIMIZATION ANALYSIS

In prior work, the condition number has been widely regarded as a key indicator for monitoring the
optimization behavior of deep neural networks Saarinen et al. (1993); Desjardins et al. (2015); Huang
et al. (2020). It is formally defined as:

κ(Fk) =
λmax(Fk)

λmin(Fk)
, (11)

where Fk denotes the Fisher Information Matrix (FIM) or its approximation for the k-th layer.

Intuitively, a condition number closer to 1 implies that the optimization landscape is more isotropic
(i.e., closer to a spherical shape). This indicates that weight updates are more evenly distributed
across the principal directions of the data, thereby facilitating more stable and efficient convergence.

FIM characterizes the curvature of the loss landscape very well (Oczkowski & Barreca, 1997; Fasina
et al., 2023). One successful example is approximating the Fisher Information Matrix (FIM) of DNNs
using the Kronecker-factored Approximate Curvature (K-FAC) method Martens & Grosse (2015). In
the K-FAC approach, two assumptions are made: (1) weight gradients in different layers are assumed
to be uncorrelated; (2) the input and output gradients in each layer are approximated as independent.

Under these assumptions, the full FIM can be approximated as a block diagonal matrix:

F ≈ diag(F 1, F 2, . . . , FL),
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where F l is the sub-FIM corresponding to the parameters in the l-th layer, computed as:

F l = Ep(x),q(y|x)

((
xl−1

(
xl−1

)T)⊗
(
∂ℓT

∂hl

∂ℓ

∂hl

))

≈ Ex∼p(x)

[
xl−1

(
xl−1

)T ]⊗ E(x,y)∼p(x)q(y|x)

[
∂ℓT

∂hl

∂ℓ

∂hl

]
Properties of the Kronecker-structured FIM. Given the Kronecker-factored approximation of
the Fisher Information Matrix (FIM) for the l-th layer as

F l = A⊗B,

where A and B are symmetric positive semi-definite matrices representing the input and output-
gradient statistics respectively, the spectral properties of F l satisfy the following:

• Eigenvalues. The eigenvalues of F l are the pairwise products of the eigenvalues of A and
B:

λ(F l) = {λi(A) · λj(B) | λi ∈ λ(A), λj ∈ λ(B)} .
In particular, the maximum eigenvalue satisfies:

λmax(F
l) = λmax(A) · λmax(B).

• Condition Number. The condition number of F l equals the product of the condition
numbers of A and B:

κ(F l) = κ(A⊗B) = κ(A) · κ(B).

B EMPIRICAL EVIDENCE FOR THE ROLE OF NORM2 IN ENHANCING
TRAINING STABILITY

Previous studies have shown that Layer Normalization (LN) effectively stabilizes model conver-
gence Ba (2016); Xu et al. (2019); Zhang & Sennrich (2019). In particular, research within Trans-
former architectures has demonstrated that applying LN before the attention module can yield superior
performance Kim et al. (2025); Xiong et al. (2020); Shleifer et al. (2022). This raises the question:
does a similar principle hold for the Mamba architecture? Specifically, is LN more effective when
placed before the SSM block (Norm1), after the SSM block (Norm2), or on both sides?

To investigate this, we conducted experiments on the ImageNet-100 dataset with three configurations:
applying LN before the SSM module (Norm1), after the SSM module (Norm2), and on both sides
(Norm1 and Norm2). All experiments were conducted using the same model architecture and training
settings to ensure fairness. The results are presented in Figure 12.

Key observations from Figure 12:

1. Normalization can stabilize model training: The baseline configuration (Non→SSM→Non)
fails to converge, achieving only 23.08% Top-1 accuracy. This indicates that without
normalization, the amplification of activations and gradient explosion in the SSM severely
disrupt training. In contrast, all configurations with normalization successfully converge and
achieve Top-1 accuracy above 86%.

2. Post-SSM LN (Norm2) yields the best performance: When LN is applied only after
the SSM (Non→SSM→LN), the model achieves the highest Top-1 accuracy of 86.36% and
exhibits the steepest convergence curve. This suggests that Norm2 directly suppresses the
activation norm explosion from the SSM, significantly improving training stability and
convergence speed.

3. Pre-SSM LN (Norm1) is slightly less effective: Applying LN only before the SSM
(LN→SSM→Non) results in a slightly lower peak accuracy of 86.04% and slower convergence.
This implies that Norm1 helps improve the numerical condition of the input features but is
less effective than post-normalization in stabilizing the network.
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Figure 9: Stability comparison across different normalization methods applied to the SSM block.

4. Dual LN provides stable convergence but no additional benefit: Using LN on both
sides of the SSM (LN→SSM→LN) yields a final accuracy of 86.16%, which is between the
performances of Norm1 and Norm2 alone. The convergence speed is also intermediate. This
suggests that dual normalization does not provide additive benefits and may slightly impair
feature expressiveness due to over-normalization.

In summary, LN is effective in stabilizing training in Mamba-based models. However, unlike
Transformer models where pre-normalization is often optimal, post-normalization (Norm2) after
the SSM block achieves better stability and performance in Mamba. While pre-normalization
(Norm1) accelerates convergence, it is slightly less effective, and dual normalization brings no
additional gains.

B.1 COMPARISON WITH OTHER NORMALIZATION METHODS

To further validate the generality of post-normalization effectiveness beyond LN, we also evalu-
ated other commonly used normalization strategies, including RMSNorm and GroupNorm. The
experimental results are shown in Figure 9.

Key observations from Figure 9:

• RMSNorm and LayerNorm: Both normalization methods are capable of stabilizing
training regardless of placement (pre or post-SSM). For GroupNorm, however, only post-
normalization configurations (Non→SSM→GN and GN→SSM→GN) result in stable convergence
with Top-1 accuracy exceeding 86.0%. The pre-normalization setting (GN→SSM→Non)
diverges after several training steps, reaching only 50.1% accuracy.
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Figure 10: Comparison of the input (x) and output (y) range of the SSM module on the WIKITEXT-
103 dataset. The x-axis denotes training steps (logged every 20 steps), and the y-axis indicates
the layer index of the Mamba block. Subfigures (a) and (b) show the range evolution when no
normalization is applied after the SSM layer (Norm2=None), while (c) and (d) present the results
with LayerNorm applied at Norm2. Applying LN leads to steady iteration dynamics across layers,
whereas the absence of normalization results in unstable growth before divergence.

• InstanceNorm and BatchNorm: Neither method achieves convergence under any config-
uration. Post-normalization variants (Non→SSM→IN and Non→SSM→BN) initially improve
performance but subsequently diverge, with Top-1 accuracy peaking at only 1.12% and
21.56%, respectively, before collapsing.

These results reinforce the finding that, unlike in Transformer architectures, post-SSM normalization
(Norm2) is particularly effective for ensuring training stability in Mamba models, especially
when using LayerNorm. Accordingly, we adopt Norm2 = LN as the default normalization configu-
ration in our main experiments.

C EMPIRICAL EVIDENCE FOR THE ROLE OF NORM1 IN IMPROVING
OTIMIZATION CONDITION

C.1 EFFECT OF BATCH NORMALIZATION ON ACCELERATING CONVERGENCE AND
COMPARISON WITH OTHER NORMALIZATION TECHNIQUES

Having established a stable training setup with post-SSM Layer Normalization (Norm2 = LN), we
further investigate the effect of Batch Normalization (BN) on accelerating convergence. Specifically,
we use the Non→SSM→LN configuration as our baseline, and introduce BN before the SSM block
(BN→SSM→LN, i.e., Norm1 = BN). The experimental results are illustrated in Figure 13.

Observations from Figure 13:

With Norm2 fixed as LN to ensure stable training, introducing BN at Norm1 (red line) significantly
accelerates convergence compared to the baseline Non+LN (blue line):

• Faster early-stage convergence:
– At epoch 10, BN+LN achieves a Top-1 accuracy of approximately 35.6%, compared to

34.8% for Non+LN.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Figure 11: Comparison of the input (x) and output (y) range of the SSM module on the IMAGENET
dataset. The x-axis denotes training steps (logged every 20 steps), and the y-axis indicates the layer
index of the Mamba block. Subfigures (a) and (b) show the range evolution when no normalization is
applied after the SSM layer (Norm2=None), while (c) and (d) present the results with LayerNorm
applied at Norm2. Applying LN leads to steady iteration dynamics across layers, whereas the absence
of normalization results in unstable growth before divergence.

Figure 12: Comparison of training stability with LN applied at different positions in the SSM block.
Each bar represents the final Top-1 accuracy, and the inner curve shows the accuracy evolution during
training.

– At epoch 20, BN+LN reaches about 62.3%, approximately 4 percentage points higher
than the baseline.

• Mid-stage acceleration:

– From epoch 20 to 50, BN+LN maintains a steeper ascent, surpassing 70% accuracy
earlier than the baseline.

– By epoch 60, the accuracy curve of BN+LN stabilizes around 75%, with reduced
oscillation.
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Figure 13: Convergence speed comparison between BN+LN and Non+LN configurations.

These findings suggest that BN→SSM→LN enables larger gradient steps during the early training phase,
allowing the model to enter the high-accuracy regime faster and resulting in significantly improved
convergence speed over Non→SSM→LN.

C.1.1 COMPARISON WITH OTHER NORM1 CONFIGURATIONS

To further assess the acceleration effect across different normalization strategies, we replaced Norm1
with other commonly used normalization methods, including Group Normalization (GN), Root Mean
Square Normalization (RMSN), Instance Normalization (IN), and Layer Normalization (LN). We
compared their Top-1 accuracy and the steepness of the convergence curves. The results are presented
in Figure 14.

Figure 14: Convergence speed comparison with various Norm1 methods combined with Norm2 =
LN.

Key findings from Figure 14:

• BN+LN achieves the best performance:
– Final Top-1 accuracy reaches 86.72%, surpassing the baseline Non+LN (86.36%).
– The learning curve exhibits the steepest slope in the 0–80% range, indicating the most

significant early acceleration.

• Other combinations:
– GN→SSM→LN and LN→SSM→LN also provide faster convergence than the baseline, but

with gentler slopes during the first 20–30 epochs.
– IN→SSM→LN and RMSN→SSM→LN exhibit the flattest early-stage slopes and the slowest

overall convergence, with the lowest final accuracy.
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In summary, among all evaluated Norm1 strategies, the BatchNorm → SSM → LayerNorm
configuration not only maintains high final accuracy but also maximizes convergence speed, making
it the most effective combination for efficient training.
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