

000 001 002 003 004 005 LAYER-WISE ANALYSIS IN EXPLORING THE NORMAL- 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 559 560 561 562 563 564 565 566 567 568 569 569 570 571 572 573 574 575 576 577 578 579 579 580 581 582 583 584 585 586 587 588 589 589 590 591 592 593 594 595 596 597 598 599 599 600 601 602 603 604 605 606 607 608 609 609 610 611 612 613 614 615 616 617 618 619 619 620 621 622 623 624 625 626 627 628 629 629 630 631 632 633 634 635 636 637 638 639 639 640 641 642 643 644 645 646 647 648 649 649 650 651 652 653 654 655 656 657 658 659 659 660 661 662 663 664 665 666 667 668 669 669 670 671 672 673 674 675 676 677 678 679 679 680 681 682 683 684 685 686 687 688 689 689 690 691 692 693 694 695 696 697 698 699 699 700 701 702 703 704 705 706 707 708 709 709 710 711 712 713 714 715 716 717 718 719 719 720 721 722 723 724 725 726 727 728 729 729 730 731 732 733 734 735 736 737 738 739 739 740 741 742 743 744 745 746 747 748 749 749 750 751 752 753 754 755 756 757 758 759 759 760 761 762 763 764 765 766 767 768 769 769 770 771 772 773 774 775 776 777 778 779 779 780 781 782 783 784 785 786 787 788 789 789 790 791 792 793 794 795 796 797 798 799 799 800 801 802 803 804 805 806 807 808 809 809 810 811 812 813 814 815 816 817 818 819 819 820 821 822 823 824 825 826 827 828 829 829 830 831 832 833 834 835 836 837 838 839 839 840 841 842 843 844 845 846 847 848 849 849 850 851 852 853 854 855 856 857 858 859 859 860 861 862 863 864 865 866 867 868 869 869 870 871 872 873 874 875 876 877 878 879 879 880 881 882 883 884 885 886 887 888 889 889 890 891 892 893 894 895 896 897 898 899 899 900 901 902 903 904 905 906 907 908 909 909 910 911 912 913 914 915 916 917 918 919 919 920 921 922 923 924 925 926 927 928 929 929 930 931 932 933 934 935 936 937 938 939 939 940 941 942 943 944 945 946 947 948 949 949 950 951 952 953 954 955 956 957 958 959 959 960 961 962 963 964 965 966 967 968 969 969 970 971 972 973 974 975 976 977 978 979 979 980 981 982 983 984 985 986 987 988 989 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1098 1099 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1198 1199 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1298 1299 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1398 1399 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1498 1499 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1598 1599 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1698 1699 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1798 1799 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1898 1899 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1909 1910 1911 1912 1913 1914<br

To better understand the source of instability, we examine the behavior of the SSM block. Specifically, we track the range of its input x and output y activations during training. As shown in Figure 2, two consistent phenomena emerge across both WikiText-103 and ImageNet: (1) the SSM amplifies input activations, and (2) with increasing steps, deeper layers first exhibit extremely large values, which soon explode to infinity after several iterations. These observations suggest that the intrinsic amplification effect of the SSM, together with the discrepancy in activation magnitudes between shallow and deep layers, is a key factor underlying training instability. Such amplification further indicates that the Mamba architecture inherently suffers from poor scale-invariance, which explains why deeper layers are more prone to instability.

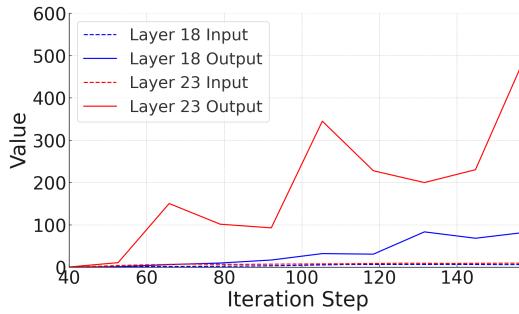


Figure 2: Input and Output Ranges of the SSM Module for vanilla mamba on the WikiText-103 Dataset.

Given that poor scale-invariance thus emerges as a fundamental limitation of Mamba, which directly contributes to the observed training instability. The success of deep neural networks has relied heavily on advances in training techniques, among which normalization of internal representations plays a central role (Hinton & Salakhutdinov, 2006; Nair & Hinton, 2010; Kingma & Ba, 2015). Normalization is widely recognized to stabilize and accelerate training by promoting scale-invariance, improving conditioning of the optimization landscape, and introducing beneficial stochasticity (Huang, 2022). We therefore turn to normalization as a potential remedy for the instability of Mamba.

Despite recent efforts Gu & Dao (2023); Ma et al. (2024); Liu et al. (2024) introducing different normalization layers into the Mamba architecture—such as Layer Normalization (LN) (Ba, 2016), Group Normalization (GN) (Wu & He, 2018), and Root Mean Square Normalization (RMSN) (Zhang & Sennrich, 2019), these adaptations have largely been task-specific, aiming to improve performance on individual benchmarks. However, there remains a lack of systematic analysis on the role of normalization in Mamba, particularly with respect to training dynamics. Beyond stability, another critical aspect of training dynamics is optimization efficiency, i.e., how fast and effectively the model converges. It is still unclear how different normalization choices, and their placements within the architecture, affect both the stability of training and the efficiency of optimization, leaving open the question of how to design principled normalization strategies for Mamba.

To bridge this gap, in this paper we focus on the two most common normalization positions in the Mamba architecture: after the SSM layer (Norm2) and before the input projection layer (Norm1), as illustrated in Figure 4. Building on our training dynamics analysis, we propose a two-stage hybrid normalization strategy: (1) Stage 1: Given that the SSM module amplifies activations and exacerbates instability, placing LN at Norm2 effectively stabilizes training and ensures convergence. Since different normalization methods exhibit complementary effects; for example, BN is known to improve optimization efficiency better than LN. (2) Stage 2: We further introduce BN at Norm1. This enhances optimization efficiency, enabling the model to reach higher accuracy faster.

Next, we conduct a layer-wise analysis to study the role of normalization in stabilizing and accelerating Mamba training. Specifically, we first examine the effect of applying LN at Norm2, by assessing two key indicators: (i) the spectral norm of the output projection weights and (ii) the maximum singular value of both the layer input covariance matrix and the layer output-gradient covariance matrix. These metrics reflect how LN at Norm2 enforces scale invariance (Ba, 2016) across layers and mitigates instability. After establishing training stability, we then analyze the effect of applying BN at Norm1 from an optimization perspective. To this end, we track the maximum singular value and condition number of the Kronecker-Factored Approximate Curvature (K-FAC) matrix (Huang

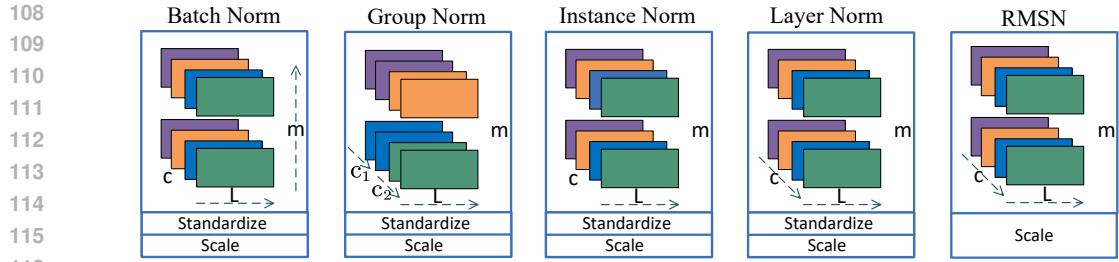


Figure 3: **Normalization methods for sequence data** Each subfigure displays the dimensional information of a feature map, where m represents the batch axis, d the channel axis, L the sequence length axis. The dashed arrows indicate that the mean and variance are computed by aggregating the values across these dimensions.

et al., 2020), which approximates the Fisher Information Matrix (FIM). This analysis demonstrates that BN at Norm1 substantially improves optimization conditioning and accelerates convergence.

Building upon these insights, we propose a composite normalization strategy BN \rightarrow SSM \rightarrow LN. We evaluate this design across a diverse set of benchmark tasks, including image classification, object detection, semantic segmentation, long-sequence modeling, and natural language processing. The results show that our BN \rightarrow SSM \rightarrow LN configuration consistently outperforms baselines that use either a single normalization method or none at all.

To sum up, our contributions are summarized as follows:

- We demonstrate that applying LN at Norm2 plays a critical role in stabilizing training by suppressing activation and gradient scale explosion, as evidenced by tracking spectral norms and singular values of covariance matrices.
- We show that applying BN at Norm1 substantially improves optimization efficiency by reducing the condition number of the approximated Fisher Information Matrix (K-FAC), thereby accelerating convergence.
- We propose a composite normalization strategy BN \rightarrow SSM \rightarrow LN based on these insights. The design is derived from a general training dynamics perspective and theoretical analysis, which together establish a principled normalization guideline that combines the stability of LN and the efficiency of BN, yielding consistent improvements across diverse tasks.

2 RELATED WORK

2.1 LINEAR STATE SPACE MODELS

Transformers with quadratic-time attention (Vaswani et al., 2017) achieve strong performance but suffer from $O(n^2)$ complexity, which limits scalability in long-context applications. To address this, researchers have developed linear attention mechanisms (Choromanski et al., 2020; Katharopoulos et al., 2020) and state space models (SSMs) (Gu et al., 2021), both enabling efficient long-sequence modeling. Building on this line, Mamba (Gu & Dao, 2023) introduces a selective mechanism for content-aware state transitions and has inspired numerous extensions (Phung et al., 2024; Chiang et al., 2024; Wu et al., 2024; Pierro & Abreu, 2024; Zeng et al., 2024; Wei et al., 2024). However, these efficiency gains come with a major drawback: training instability. Unlike softmax attention, which inherently normalizes activations and gradients, Mamba’s SSM block amplifies activations, violates scale-invariance, and often causes gradient explosion and divergence, particularly in deeper networks (Dao & Gu, 2024).

2.2 THE ROLE OF NORMALIZATIONS

The success of deep neural networks (DNNs) has relied heavily on normalization techniques that regulate the distribution of activations (Kingma & Ba, 2015; Ioffe & Szegedy, 2015). As illustrated in Figure 3, normalization methods differ in how they compute statistics across batch, channel, or feature

dimensions. For example, Batch Normalization (BN) standardizes activations across both batch and feature dimensions, effectively mitigating internal covariate shift and improving optimization efficiency (Ioffe & Szegedy, 2015; Wang et al., 2022). Layer Normalization (LN), in contrast, normalizes along the feature dimension within each sample, stabilizing hidden-state dynamics and preventing scale explosion across layers (Ba, 2016). While these methods have been extensively used in RNNs and Transformer-based architectures (Xiong et al., 2020; Shleifer et al., 2022; Han et al., 2021), their role in Mamba remains unclear. Several recent studies have attempted to insert normalization layers such as LN, GN, or RMSNorm into Mamba (Gu & Dao, 2023; Ma et al., 2024; Liu et al., 2024), but these adaptations are largely task-specific and lack a systematic analysis of training dynamics.

3 METHOD

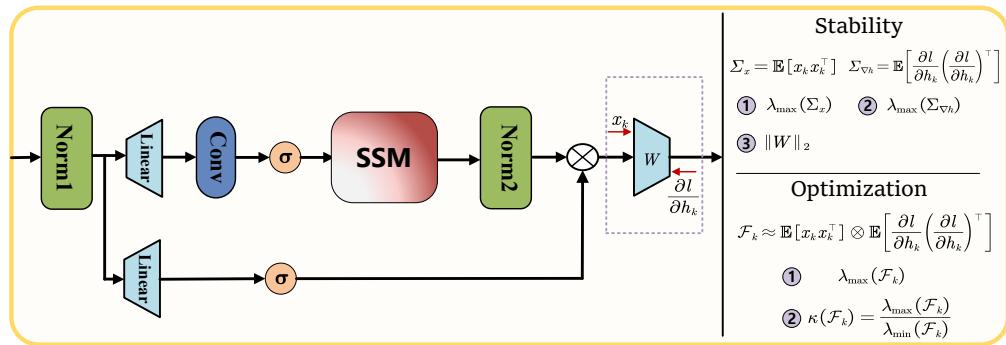


Figure 4: Mamba Normalization Framework. We conduct a layer-wise analysis of training stability and optimization in the Mamba architecture by examining the input and output-gradient of the output projection layer.

To systematically investigate the role of normalization in Mamba, we focus on the two most common insertion points: **Norm1**, placed before the input projection layer, and **Norm2**, placed after the SSM block. Our methodology is organized in **two stages**: the first stage analyzes stability with LN at Norm2, and the second stage examines optimization with BN at Norm1. For stability, we track the spectral norm of the output projection weights and the singular values of input and output-gradient covariance matrices, which capture activation scaling and gradient dynamics across layers. For optimization, we employ Kronecker-Factored Approximate Curvature (K-FAC) analysis to evaluate eigenvalues and condition numbers, thereby characterizing the conditioning of the optimization landscape. Finally, we integrate these insights into a composite normalization strategy (**BN**→**SSM**→**LN**) and systematically evaluate its effectiveness across vision, language, and long-sequence benchmarks.

3.1 PRELIMINARIES OF MAMBA PIPELINE

We first briefly review the core components of the Mamba architecture. As illustrated in Figure 4, let N_1 denote the first normalization layer applied to input x . The main branch then proceeds through a sequence of transformations:

$$f = N_2(\text{SSM}(F_1(N_1(x)))) \quad (1)$$

Here, F_1 represents the main forward path, including a linear projection, depthwise separable convolution, and a SiLU activation. SSM denotes the selective structured state space module, and N_2 is the second normalization layer applied after SSM. Meanwhile, in the parallel branch, the normalized input $N_1(x)$ is processed by a lightweight path F_2 :

$$p = F_2(N_1(x)) \quad (2)$$

216 F_2 includes a linear projection and a SiLU activation. The outputs of the two branches are combined
 217 element-wise and followed by a linear layer:
 218

$$219 \quad y = L(f \otimes p). \quad (3)$$

221 Where \otimes denotes element-wise multiplication.
 222

223 3.2 TWO-STAGE NORMALIZATION STRATEGY

225 Building on our training dynamics analysis, we propose a two-stage normalization strategy that
 226 explicitly integrates stability and optimization considerations into the Mamba pipeline.

227 **Stage 1:** To suppress activation amplification and stabilize training, we place **Layer Normalization**
 228 after the SSM block. Formally,

$$229 \quad f = \text{LN}(\text{SSM}(F_1(\text{Norm1}(x))). \quad (4)$$

231 **Stage 2:** To improve conditioning and accelerate convergence, we place **Batch Normalization** before
 232 the input projection. The parallel branch then becomes

$$233 \quad f = \text{LN}(\text{SSM}(F_1(\text{BN}(x))), p = F_2(\text{BN}(x)). \quad (5)$$

235 This composite strategy can thus be summarized as a BN→SSM→LN pipeline, combining the
 236 stabilizing effect of LN with the optimization benefits of BN.
 237

238 3.3 STABILITY METRICS

240 To evaluate training stability, we investigate three statistics, the magnitude of layer input (indicated
 241 by $\lambda_{\max}(\Sigma_x)$), the magnitude of layer output-gradient (indicated by $\lambda_{\max}(\Sigma_{\nabla h})$) and the magnitude
 242 of output projection weight (indicated by $\|W\|_2$) which ensure that weight magnitudes can grow
 243 under gradient descent while gradient norms shrink proportionally—thereby avoiding divergence. To
 244 quantify this, we adopt two spectral metrics at the output layer, as shown in Figure 4.

- 245 • The spectral norm of the output projection weights , reflecting the scale of activations during
 246 training.
- 247 • The maximum eigenvalues of the input activation covariance and output gradient covariance
 248 matrices, indicating sensitivity to scale perturbations in forward and backward propagation.

250 Since SSM amplifies activations in forward propagation and accumulates over depth, **Norm2** is used
 251 to regulate the activation scale. Prior work has also shown that LayerNorm stabilizes training. We
 252 therefore conduct controlled experiments comparing None→SSM→None and None→SSM→LN, and
 253 analyze the impact of LN on Mamba training stability using the above metrics.

254 These metrics jointly indicate whether normalization reduces distortion in activations and gradients
 255 across layers, thereby stabilizing overall training dynamics. The subsequent experimental results on
 256 Mamba further validate our analysis.

258 3.4 OPTIMIZATION METRICS

260 To evaluate the impact of **Norm1** on model trainability, we analyze the spectral structure of the
 261 Fisher Information Matrix (FIM), which characterizes the curvature of the loss landscape, as shown
 262 in Figure 4. However, due to memory and compute constraints, directly analyzing the full curvature
 263 matrix is infeasible. We instead approximate it using Kronecker-Factored Approximate Curvature
 264 (K-FAC) (Huang et al., 2020; Martens & Grosse, 2015). The FIM can be approximated as a block-
 265 diagonal matrix:

$$266 \quad \mathcal{F} \approx \begin{bmatrix} \mathcal{F}_1 & 0 & \cdots & 0 \\ 0 & \mathcal{F}_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \mathcal{F}_L \end{bmatrix}, \quad (6)$$

270 The k -th block \mathcal{F}_k (or the k -th layer) is approximated as:
 271

$$273 \quad \mathcal{F}_k \approx \mathbb{E}[x_k x_k^\top] \otimes \mathbb{E} \left[\frac{\partial l}{\partial h_k} \left(\frac{\partial l}{\partial h_k} \right)^\top \right], \quad (7)$$

$$274$$

$$275$$

276 where, x_k is the input to the k -th layer, and $\frac{\partial l}{\partial h_k}$ is the output gradient.
 277

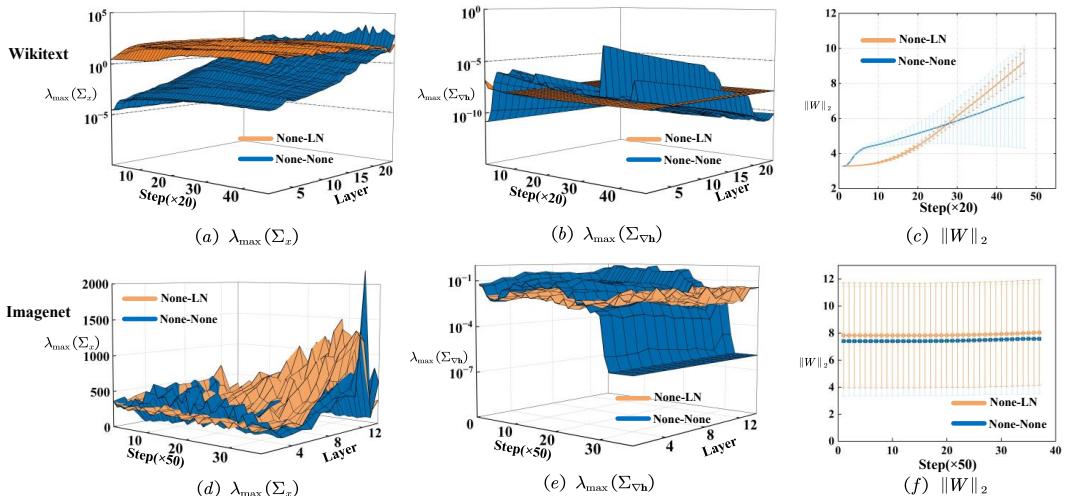
278 To investigate the optimization role of Norm1 in Mamba, we conduct experiments comparing
 279 None \rightarrow SSM \rightarrow LN and BN \rightarrow SSM \rightarrow LN. We analyze the impact of BN using the condition number $\kappa(\mathcal{F}_k)$ ¹:
 280

$$281 \quad \kappa(\mathcal{F}_k) = \frac{\lambda_{\max}(\mathcal{F}_k)}{\lambda_{\min}(\mathcal{F}_k)} \quad (8)$$

$$282$$

$$283$$

284 A lower $\kappa(\mathcal{F}_k)$ implies better conditioning and more efficient gradient-based optimization. A higher
 285 condition number indicates ill-conditioning and potential convergence challenges. The experimental
 286 results on the Mamba architecture presented later also support this analysis.
 287



305 Figure 5: Analysis of layer input magnitude, output gradient magnitude, and weight norm. Yellow
 306 indicates None \rightarrow LN, and blue indicates None \rightarrow None. Subfigures (a), (b), and (c) illustrate the varia-
 307 tions in stability metrics on the WikiText-103 dataset, while (d), (e), and (f) present the corresponding
 308 results on the ImageNet-100 dataset.

309 In the following section, we conduct experiments across diverse tasks to validate the effectiveness
 310 and generalizability of the proposed method.
 311

313 4 EXPERIMENTS

315 In this section, we first introduce the datasets and experimental settings used to evaluate the impact of
 316 normalization on the Mamba architecture across vision, natural language processing, and sequential
 317 tasks. Next, we analyze the normalization results in language modeling and image classification
 318 tasks using output-layer weight norms, eigenvalues of input-gradient covariance matrices, and K-FAC
 319 condition numbers. Finally, we conduct comparison experiments on our proposed composite BN and
 320 LN normalization strategy across various tasks to verify its generalizability.
 321

322 ¹The general condition number with respect to the percentage is defined as: $\kappa_p = \frac{\lambda_{\max}}{\lambda_p}$ where λ_p is the
 323 p -th eigenvalue (in descending order). This measure provides a better characterization of over-parameterized
 324 models.

324
325

4.1 EXPERIMENT SETTINGS

326
327
328

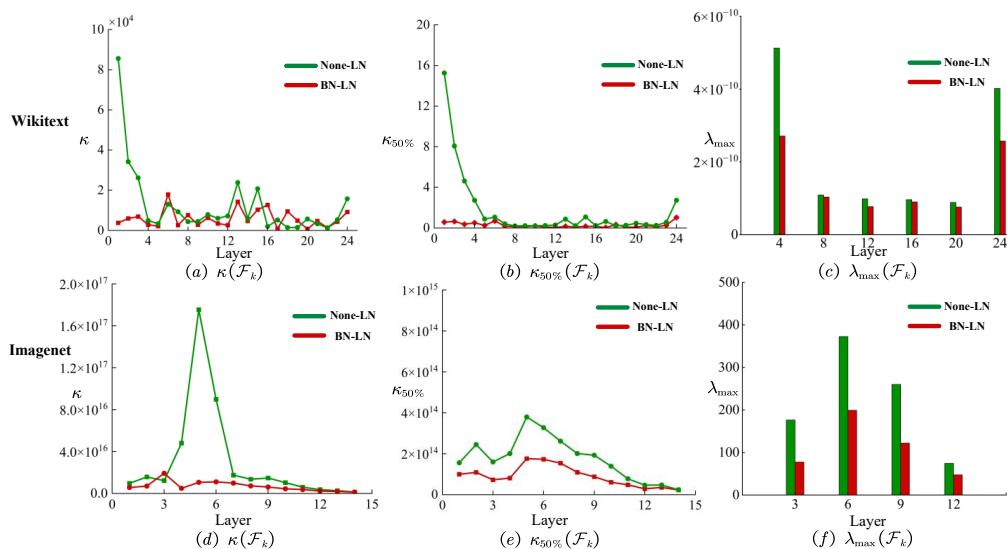
Baselines We select the vanilla Mamba architecture, which adopts RMSNorm-None as the normalization configuration, and the widely used VMamba architecture, which employs LN-LN as its normalization setup. Both serve as baselines for comparison.

329

330
331
332
333
334
335
336
337

Datasets We use a range of datasets to evaluate the performance across different tasks. For stability analysis and optimization analysis, we utilize WikiText-103 (Merity et al., 2016), a widely-used dataset for language modeling, and ImageNet-100 (ima, 2019), a subset of ImageNet for image classification. For generalization verification, we evaluate the combined normalization strategy across a variety of benchmark datasets, including sequence tasks from the LRA Benchmark (Tay et al., 2021), NLP tasks with WikiText-103, and computer vision tasks such as ImageNet-100, COCO (Lin et al., 2014) and ADE-20K (Zhou et al., 2019). The dataset and experimental configurations are described in detail in the Appendix 1.

338



356

357

358

359

Figure 6: Analysis of the condition of K-FAC (indicated by κ and $\kappa_{50\%}$) and magnitude of K-FAC (indicated by $\lambda_{\max}(\mathcal{F}_k)$). The green line represents None \rightarrow LN, and red line indicates BN \rightarrow LN. Subfigures (a), (b), and (c) illustrate the corresponding optimization metric changes on the WikiText-103 dataset, while (d), (e), and (f) are on the ImageNet-100 dataset.

360

361

362

4.2 STABILITY ANALYSIS

363

364

365

366

We begin by examining the impact of normalization strategies on training stability. Following the setup described in the Method section, we compare two configurations: None \rightarrow SSM \rightarrow LN and None \rightarrow SSM \rightarrow None, which correspond to applying LayerNorm after the SSM versus no normalization at all.

367

368

369

370

On the WikiText-103 and ImageNet-100 dataset, we track the spectral norm of output projection weights, as well as the maximum eigenvalues of the input activation covariance and output gradient covariance matrices across Mamba layers, as shown in Figure 5. The results are summarized below:

371

372

373

374

375

376

377

- **Weight Norms:** Under the None \rightarrow SSM \rightarrow None configuration, the weight norms of deeper layers (e.g., layer 20) increase significantly, far exceeding earlier layers. This results in gradient explosion and even training divergence. In contrast, with LayerNorm (None \rightarrow SSM \rightarrow LN), the norm trends remain consistent across layers, and gradients maintain scale invariance, enabling smoother training, as shown in Figures 5(a) and (d).
- **Output Gradient Eigenvalues:** Compared to the None \rightarrow SSM \rightarrow None, None \rightarrow SSM \rightarrow LN exhibits more consistent gradient eigenvalue distributions and reduced fluctuations during training, suggesting smoother gradient flow, as shown in Figures 5(b) and (e).

378 • **Input Covariance Eigenvalues:** The $\text{None} \rightarrow \text{SSM} \rightarrow \text{LN}$ setup maintains consistent and relatively high eigenvalues across layers, with minimal variation over training iterations, indicating effective suppression of forward-pass scale perturbation. Without normalization, inter-layer eigenvalue differences are large, reducing numerical stability, as shown in Figures 5(c) and (f).

383
384 These results confirm that the normalization after SSM (**Norm2**) significantly suppresses activation
385 and gradient explosion, thereby improving the training stability of deep Mamba networks. This also
386 validates the theoretical insights in Section 3, where Norm2 was shown to alleviate scale inflation
387 caused by the SSM.

388 4.3 OPTIMIZATION ANALYSIS

390 We further investigate the effect of input-side normalization (**Norm1**) on optimization efficiency
391 by applying BN before the SSM. We compare $\text{BN} \rightarrow \text{SSM} \rightarrow \text{LN}$ against $\text{None} \rightarrow \text{SSM} \rightarrow \text{LN}$, using the
392 maximum eigenvalue and condition number of the K-FAC-approximated Fisher Information Matrix
393 as evaluation metrics.

394 Results on the WikiText-103 and ImageNet-100 datasets show that:

396 • **K-FAC Condition Number:** Across 100% and 50% thresholds, the condition numbers under
397 $\text{BN} \rightarrow \text{SSM} \rightarrow \text{LN}$ (with BN) are significantly lower than those without BN ($\text{None} \rightarrow \text{SSM} \rightarrow \text{LN}$),
398 indicating faster gradient convergence and improved training efficiency, as shown in Figures 6(a) and (d).

400 • **Convergence Performance:** Compared to the $\text{None} \rightarrow \text{SSM} \rightarrow \text{LN}$ (without BN), $\text{BN} \rightarrow \text{SSM} \rightarrow \text{LN}$
401 (with BN) helps the Mamba reach lower training loss and better generalization performance
402 more rapidly, as shown in Figures 6(b) and (e).

403 • **K-FAC Maximum Eigenvalue:** The K-FAC Maximum Eigenvalue under $\text{BN} \rightarrow \text{SSM} \rightarrow \text{LN}$
404 are lower than under $\text{None} \rightarrow \text{SSM} \rightarrow \text{LN}$, suggesting better alignment in parameter update
405 directions and a smoother optimization landscape, as shown in Figures 6(c) and (f).

407 These results indicate that input-side BN not only accelerates convergence but also improves numerical
408 conditioning during optimization, thereby enhancing the trainability of Mamba models.

410 4.4 VALIDATION OF BN-LN COMPOSITE NORMALIZATION

412 Building on the above theoretical and empirical analyses, we propose the composite normalization
413 strategy $\text{BN} \rightarrow \text{SSM} \rightarrow \text{LN}$, and conduct systematic comparisons across tasks including vision clas-
414 sification, segmentation, and reasoning, sequence modeling, natural language processing,. The
415 datasets include ImageNet-100, COCO, ADE-20K, Pathfinder, ListOps, CIFAR-10, IMDB (Text),
416 and WikiText-103. Results are summarized in Tables 1, 2, and 3, respectively.

417
418 Table 1: Results of different normalization strategies on sequence tasks. Configurations that result in
419 divergent (NaN) losses during training are marked with an asterisk (*).

Method	ListOps	CIFAR	Pathfinder
None \rightarrow None	38.61*	56.4*	49.95
RMSN \rightarrow None	39.51	62.74	51.00
BN \rightarrow BN	37.50*	63.09	50.80*
LN \rightarrow LN	42.18	58.80	50.80
BN \rightarrow LN (Ours)	43.75	63.41	51.43

421
422 We can observe that single-use BN or LN strategies lead to unstable or divergent behavior in certain
423 tasks. In contrast, the BN-LN composite strategy not only significantly accelerates convergence but
424 also achieves the best (or even state-of-the-art) performance across all evaluated tasks. Particularly
425 in deeper Mamba models, BN-LN effectively balances optimization speed and training stability,
426 demonstrating stronger generalization.

Table 2: Results of different normalization strategies on NLP task WikiText-103. Configurations that result in divergent (NaN) losses during training are marked with an asterisk (*).

Method	WikiText-103	IMDB
None→None	201.07*	77.2*
RMSN→None	28.9	78.40
BN→BN	201.3*	70.24
LN→LN	27.59	79.87
BN→LN (Ours)	27.57	81.48

Table 3: Results of different normalization strategies on visual tasks. Configurations that result in divergent (NaN) losses during training are marked with an asterisk (*).

Method	ImageNet100	COCO	ADE20K
None→None	11.52*	0*	0*
RMSN→None	87.04	24.2*	26.17
BN→BN	44.92*	20.1	25.78
LN→LN	87.04	34.5	26.92
BN→LN (Ours)	87.74	34.9	27.32

Moreover, the evaluation metrics curves during training are shown in 7. These figures also demonstrate that combined normalization leads to faster convergence. For example, in the segmentation task, the combined normalization consistently outperforms single normalization methods in terms of accuracy and reaches the highest accuracy earlier during training.

To further evaluate the effectiveness of different normalization strategies in accelerating convergence, we replaced **Norm1** with several commonly used normalization methods, as shown in Figure 8. It can be seen that the combined normalization configuration of BN+LN not only maintains high final accuracy but also achieves the fastest convergence, making it the optimal choice for efficient training.

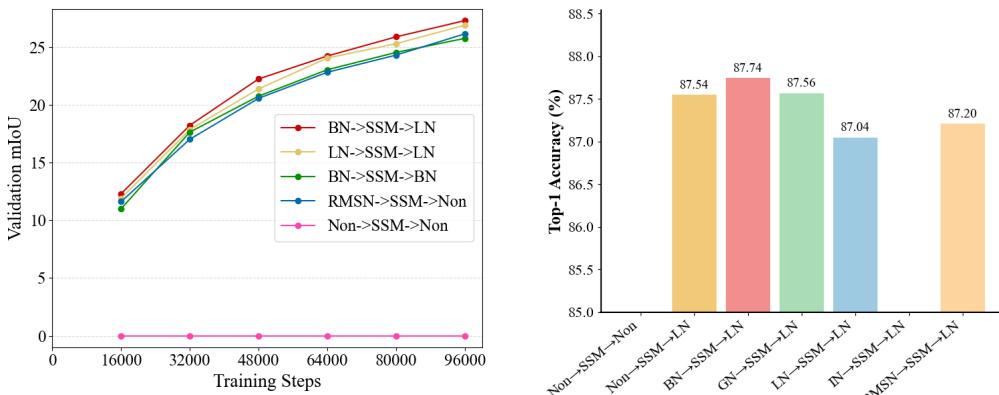


Figure 7: Training stability and convergence on ADE-20K segmentation.

Figure 8: Comparison with various Norm1 methods.

5 CONCLUSION

In this paper, we investigate the training stability and optimization convergence of normalization in the Mamba architecture. For training stability, we monitor the spectral norm of the output projection weights and the maximum eigenvalue of the output layer covariance. These analyses show that

486 post-SSM LayerNorm is essential for suppressing activation and gradient amplification, thereby
 487 preventing gradient explosion in deep networks. For optimization efficiency, through condition-
 488 number estimates of a K-FAC-approximated Fisher Information Matrix, we show that pre-SSM
 489 BatchNorm substantially improves numerical conditioning, accelerating gradient convergence and
 490 training speed. Finally, across tasks such as language modeling, image classification, and semantic
 491 segmentation, our composite strategy not only converges more rapidly but also outperforms baselines.
 492 However, this study is limited by its focus on only two normalization methods and fixed insertion
 493 positions, which may restrict scalability to deeper networks and larger-scale tasks. Future work will
 494 explore broader normalization variants, automated placement strategies, and extend the framework to
 495 more complex architectures and large-scale settings to enhance generality and performance.
 496

497 ETHICS STATEMENT

498
 499 This research strictly adheres to the ICLR Code of Ethics. Our work does not involve human
 500 subjects, nor does it use datasets containing sensitive, private, or discriminatory content. All datasets
 501 employed are publicly available and used in compliance with their licenses and release practices. The
 502 methods and conclusions of this research do not contain potential malicious applications, and we
 503 have carefully evaluated and avoided possible negative societal impacts. There are no conflicts of
 504 interest or inappropriate sponsorship involved, and all experiments and results comply with research
 505 integrity and academic standards.

507 REPRODUCIBILITY STATEMENT

508
 509 We have made every effort to ensure the reproducibility of our results. The paper and appendix
 510 include detailed descriptions of the model architecture, algorithmic procedures, and experimental
 511 settings. All datasets used are publicly available, and the preprocessing steps are documented in the
 512 supplementary materials. We will release our complete source code, training scripts, and experimental
 513 configurations, allowing other researchers to independently reproduce our experiments and main
 514 findings.

516 LLM USAGE STATEMENT

517
 518 A large language model (LLM) was employed solely for grammatical error checking during the
 519 preparation of this manuscript. The LLM was not used for generating research ideas, designing
 520 experiments, analyzing results, or writing substantive scientific content. All methodological and
 521 experimental contributions are the authors' own work.

524 IMPACT STATEMENT

525
 526 This paper presents work whose goal is to advance the field of Deep Learning. There are many
 527 potential social consequences of our work, none which feel must be specifically highlighted here.

529 REFERENCES

530
 531 Imagenet-100: A subset of imagenet-1k with 100 randomly selected classes. <https://github.com/HobbitLong/CMC>, 2019. HuggingFace dataset “clane9/imagenet-100”, derived from
 532 ImageNet-1K.
 533
 534 Jimmy Lei Ba. Layer normalization. *ArXiv preprint*, abs/1607.06450, 2016. URL <https://arxiv.org/abs/1607.06450>.
 535
 536 Hung-Yueh Chiang, Chi-Chih Chang, Natalia Frumkin, Kai-Chiang Wu, and Diana Marculescu.
 537 Quamba: A post-training quantization recipe for selective state space models. *ArXiv preprint*,
 538 abs/2410.13229, 2024. URL <https://arxiv.org/abs/2410.13229>.
 539

540 Krzysztof Choromanski, Valerii Likhoshesterov, David Dohan, Xingyou Song, Andreea Gane, Tamas
 541 Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking attention
 542 with performers. *arXiv preprint arXiv:2009.14794*, 2020.

543

544 Tri Dao and Albert Gu. Transformers are ssms: Generalized models and efficient algorithms through
 545 structured state space duality. *ICML*, 2024.

546

547 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
 548 hierarchical image database. *2009 IEEE Conference on Computer Vision and Pattern Recognition*,
 549 pp. 248–255, 2009. doi: 10.1109/CVPR.2009.5206848.

550

551 Guillaume Desjardins, Karen Simonyan, Razvan Pascanu, and Koray Kavukcuoglu. Natural neural
 552 networks. In Corinna Cortes, Neil D. Lawrence, Daniel D. Lee, Masashi Sugiyama, and Roman
 553 Garnett (eds.), *Advances in Neural Information Processing Systems 28: Annual Conference on Neu-*

554 *ral Information Processing Systems 2015, December 7-12, 2015, Montreal, Quebec, Canada*, pp.
 555 2071–2079, 2015. URL <https://proceedings.neurips.cc/paper/2015/hash/2de5d16682c3c35007e4e92982f1a2ba-Abstract.html>.

556

557 Oluwadamilola Fasina, Guillaume Huguet, Alexander Tong, Yanlei Zhang, Guy Wolf, Maximilian
 558 Nickel, Ian Adelstein, and Smita Krishnaswamy. Neural fm for learning fisher information metrics
 559 from point cloud data. In *International Conference on Machine Learning*, pp. 9814–9826. PMLR,
 560 2023.

561

562 Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. *ArXiv
 preprint*, abs/2312.00752, 2023. URL <https://arxiv.org/abs/2312.00752>.

563

564 Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
 565 state spaces. *ArXiv preprint*, abs/2111.00396, 2021. URL <https://arxiv.org/abs/2111.00396>.

566

567 Kai Han, An Xiao, Enhua Wu, Jianyuan Guo, Chunjing Xu, and Yunhe Wang. Transformer in
 568 transformer. *Advances in neural information processing systems*, 34:15908–15919, 2021.

569

570 Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data with neural
 571 networks. *science*, 313(5786):504–507, 2006.

572

573 Lei Huang. *Normalization Techniques in Deep Learning*. Springer, 2022.

574

575 Lei Huang, Jie Qin, Li Liu, Fan Zhu, and Ling Shao. Layer-wise conditioning analysis in exploring
 576 the learning dynamics of dnns. In *Computer Vision–ECCV 2020: 16th European Conference,
 577 Glasgow, UK, August 23–28, 2020, Proceedings, Part II* 16, pp. 384–401. Springer, 2020.

578

579 Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
 580 reducing internal covariate shift. In Francis R. Bach and David M. Blei (eds.), *Proceedings of the
 581 32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015*,
 582 volume 37 of *JMLR Workshop and Conference Proceedings*, pp. 448–456. JMLR.org, 2015. URL
 583 <http://proceedings.mlr.press/v37/ioffe15.html>.

584

585 Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are rnns:
 586 Fast autoregressive transformers with linear attention. In *International conference on machine
 587 learning*, pp. 5156–5165. PMLR, 2020.

588

589 Jeonghoon Kim, Byeongchan Lee, Cheonbok Park, Yeontaek Oh, Beomjun Kim, Taehwan Yoo,
 590 Seongjin Shin, Dongyoon Han, Jinwoo Shin, and Kang Min Yoo. Peri-In: Revisiting layer
 591 normalization in the transformer architecture. *arXiv e-prints*, pp. arXiv–2502, 2025.

592

593 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
 594 Bengio and Yann LeCun (eds.), *3rd International Conference on Learning Representations, ICLR
 595 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings*, 2015. URL <http://arxiv.org/abs/1412.6980>.

596

597 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 1(4):
 598 7, 2009.

594 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 595 Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. *Computer Vision–*
 596 *ECCV 2014*, pp. 740–755, 2014. doi: 10.1007/978-3-319-10602-1_48.

597

598 Drew Linsley, Alekh Ashok, Lakshmi Govindarajan, Rex Liu, and Thomas Serre. Learning long-
 599 range spatial dependencies with horizontal gated recurrent units. *Advances in Neural Information*
 600 *Processing Systems*, 31, 2018.

601

602 Yue Liu, Yunjie Tian, Yuzhong Zhao, Hongtian Yu, Lingxi Xie, Yaowei Wang, Qixiang Ye, and
 603 Yunfan Liu. Vmamba: Visual state space model 2024. *CVPR*, 2024.

604

605 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint*
 606 *arXiv:1711.05101*, 2017.

607

608 Shusen Ma, Yu Kang, Peng Bai, and Yun-Bo Zhao. Fmamba: Mamba based on fast-attention
 609 for multivariate time-series forecasting. *ArXiv preprint*, abs/2407.14814, 2024. URL <https://arxiv.org/abs/2407.14814>.

610

611 Andrew L Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng, and Christopher
 612 Potts. Learning word vectors for sentiment analysis. In *Proceedings of the 49th annual meeting*
 613 *of the association for computational linguistics: Human language technologies*, pp. 142–150.
 Association for Computational Linguistics, 2011.

614

615 James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approximate
 616 curvature. In *International conference on machine learning*, pp. 2408–2417. PMLR, 2015.

617

618 Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
 619 models, 2016.

620

621 Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In
 622 *Proceedings of the 27th international conference on machine learning (ICML-10)*, pp. 807–814,
 2010.

623

624 Nikita Nangia and Samuel R Bowman. Listops: A diagnostic dataset for latent tree learning.
 625 In *Proceedings of the 2018 Conference of the North American Chapter of the Association for*
626 Computational Linguistics: Student Research Workshop, pp. 92–99, 2018.

627

628 Wieslaw J Oczkowski and Susan Barreca. Neural network modeling accurately predicts the func-
 629 tional outcome of stroke survivors with moderate disabilities. *Archives of physical medicine and*
rehabilitation, 78(4):340–345, 1997.

630

631 Hao Phung, Quan Dao, Trung Dao, Hoang Phan, Dimitris Metaxas, and Anh Tran. Dimsum:
 632 Diffusion mamba—a scalable and unified spatial-frequency method for image generation. *ArXiv*
 633 *preprint*, abs/2411.04168, 2024. URL <https://arxiv.org/abs/2411.04168>.

634

635 Alessandro Pierro and Steven Abreu. Mamba-ptq: Outlier channels in recurrent large language models.
 636 *ArXiv preprint*, abs/2407.12397, 2024. URL <https://arxiv.org/abs/2407.12397>.

637

638 Wenze Ren, Haibin Wu, Yi-Cheng Lin, Xuanjun Chen, Rong Chao, Kuo-Hsuan Hung, You-Jin Li,
 639 Wen-Yuan Ting, Hsin-Min Wang, and Yu Tsao. Leveraging joint spectral and spatial learning
 640 with mamba for multichannel speech enhancement. In *ICASSP 2025-2025 IEEE International*
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1–5. IEEE, 2025.

641

642 Sirpa Saarinen, Randall Bramley, and George Cybenko. Ill-conditioning in neural network training
 643 problems. *SIAM Journal on Scientific Computing*, 14(3):693–714, 1993.

644

645 Sam Shleifer, Jason Weston, and Myle Ott. Normformer: Improved transformer pretraining with
 646 extra normalization. *ICLR*, 2022.

647

648 Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. Long range arena: A benchmark for
 649 efficient transformers. In *Proceedings of the International Conference on Learning Representations*
 650 *(ICLR)*, 2021.

648 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
 649 Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing*
 650 *systems*, 30, 2017.

651

652 Jiaxi Wang, Ji Wu, and Lei Huang. Understanding the failure of batch normalization for transformers
 653 in nlp. *Advances in Neural Information Processing Systems*, 35:37617–37630, 2022.

654

655 Yuxiang Wei, Anees Abrol, Reihaneh Hassanzadeh, and Vince Calhoun. Hierarchical spatio-temporal
 656 state-space modeling for fmri analysis. *ArXiv preprint*, abs/2408.13074, 2024. URL <https://arxiv.org/abs/2408.13074>.

657

658 Donghang Wu, Yiwen Wang, Xihong Wu, and Tianshu Qu. Cross-attention inspired selective
 659 state space models for target sound extraction. *ArXiv preprint*, abs/2409.04803, 2024. URL <https://arxiv.org/abs/2409.04803>.

660

661 Yuxin Wu and Kaiming He. Group normalization. In *Proceedings of the European conference on*
 662 *computer vision (ECCV)*, pp. 3–19, 2018.

663

664 Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai Zhang,
 665 Yanyan Lan, Liwei Wang, and Tieyan Liu. On layer normalization in the transformer architecture.
 666 In *International conference on machine learning*, pp. 10524–10533. PMLR, 2020.

667

668 Jingjing Xu, Xu Sun, Zhiyuan Zhang, Guangxiang Zhao, and Junyang Lin. Understanding and
 669 improving layer normalization. *Advances in neural information processing systems*, 32, 2019.

670

671 Chaolv Zeng, Zhanyu Liu, Guanjie Zheng, and Linghe Kong. C-mamba: Channel correlation en-
 672 hanced state space models for multivariate time series forecasting. *ArXiv preprint*, abs/2406.05316,
 673 2024. URL <https://arxiv.org/abs/2406.05316>.

674

675 Biao Zhang and Rico Sennrich. Root mean square layer normalization. In Hanna M. Wallach, Hugo
 676 Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.),
 677 *Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information*
 678 *Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada*, pp.
 12360–12371, 2019. URL <https://proceedings.neurips.cc/paper/2019/hash/1e8a19426224ca89e83cef47f1e7f53b-Abstract.html>.

679

680 Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio Torralba. Semantic
 681 understanding of scenes through the ade20k dataset. *International Journal of Computer Vision*,
 682 127:302–321, 2019. doi: 10.1007/s11263-018-1140-0.

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702
703

A APPENDIX

704
705
706
In this appendix, we provide additional details that could not be included in the main paper due
to limited space, which comprises the details of our experiment settings, theoretical backgrounds,
empirical experiments, and theoretical analysis. We discuss:
707708
709
710
711
712
713
714
• Datasets and experiment settings.
• Supplementary Theoretical Backgrounds
• Empirical evidence for the role of **Norm2** in enhancing **training stability**.
• Empirical evidence for the role of **Norm1** in improving **optimization condition**.
• Discussion of other composite Strategy cases.
715716
717

A DATASETS AND EXPERIMENT SETTINGS

718
719
We conduct experiments on benchmark datasets spanning three domains: sequential modeling, natural
language processing (NLP), and computer vision (CV).720
721

A.1 NLP TASK

722
723
724
725
726
727
Dataset WikiText-103 (Merity et al., 2016) is a large-scale English word-level language modeling
benchmark consisting of 28,475 high-quality Wikipedia articles. It retains original casing, punctuation,
and numerical content, with the training set comprising approximately 103 million words and a
vocabulary of over 260,000 tokens. The validation and test sets each contain 60 full articles. Notably,
the dataset preserves paragraph continuity within articles, making it well-suited for evaluating a
model’s ability to capture long-range dependencies across thousands of tokens.
728729
730
731
732
733
734
735
736
737
Experiment Setting Our Mamba-based language model comprises 24 layers with a hidden dimension
of 768, totaling approximately 125 million parameters. The model adopts the Mambal state
space architecture, without employing RMS normalization or tying input and output embeddings. We
trained the 24-layer Mamba for 150 epochs using Distributed Data Parallel (DDP) across 8 GPUs,
with a global batch size of 128. We use the AdamW optimizer (Loshchilov & Hutter, 2017) with
a peak learning rate of 1.5×10^{-3} and a weight decay of 0.25. The learning rate follows a cosine
annealing schedule with 1% linear warm-up steps, starting from 1×10^{-6} and decaying to 10% of
the peak value. Gradient clipping is applied with a maximum norm of 1.0. All computations are
performed using FP32 precision.738
739

A.2 SEQUENTIAL MODELING BENCHMARK

740
741
742
743
744
In Long range arena(LRA) benchmark (Tay et al., 2021), we use a 8-layer Mambal-based sequence
classification model with a hidden size of 128 and approximately 1.4M parameters. It uses a state
dimension of 64, kernel size of 4, expansion factor of 2, and no normalization layers. Positional
encodings are added to capture sequence order.745
746
747
748
749
750
Dataset ListOps (Nangia & Bowman, 2018) contains approximately 90,000 training samples,
10,000 validation samples, and 10,000 test samples, totaling around 110,000 prefix-style arithmetic
expressions with nested operations. Each sequence has an average length of 130 tokens, with some
exceeding 200 tokens. The task requires outputting a single integer between 0–9, with operators such
as MAX, MIN, MED, and SUM.MOD (SM). This dataset evaluates a model’s ability to reason over
long-distance dependencies and recursive tree structures, using accuracy as the evaluation metric.
751752
753
754
755
Experiment Setting The model is trained on LISTOps for 40 epochs using AdamW (learning
rate 1×10^{-4} , weight decay 0.05) with a constant schedule and 2,000 warm-up steps. Training is
performed with DDP over 8 GPUs, batch size 64, and no gradient clipping. Inputs are padded to
2,048 tokens with a vocabulary size of 18. End-of-sequence tokens are appended, and outputs are
aggregated via pooling with length-aware processing.

756 **Dataset** IMDB (Maas et al., 2011) is a sentiment analysis dataset consisting of English movie
 757 reviews. It provides 25,000 labeled training samples, 25,000 labeled test samples, and an additional
 758 50,000 unlabeled reviews for semi-supervised learning. Review lengths range from 200 to 1,000
 759 words, and labels are binary: positive or negative. The dataset features a balanced sentiment
 760 distribution and linguistic diversity, including slang, negation, and sarcasm, making it a standard
 761 benchmark for assessing a model’s capacity to capture fine-grained sentiment in long-form text.
 762 Accuracy is used as the evaluation metric.

763
 764 **Experiment Setting** The model is trained on the IMDB dataset for 65 epochs with a batch size
 765 of 32. We use the AdamW optimizer with a learning rate of 1×10^{-4} , a weight decay of 0.1, and a
 766 constant learning rate schedule with 2,000 linear warm-up steps (approximately one epoch). Input
 767 sequences are tokenized at the character level using a minimum frequency threshold of 15, yielding a
 768 vocabulary of 135 characters. Sequences are padded to a maximum length of 4,096 characters, and
 769 end-of-sequence tokens are appended. The final outputs are computed via pooling-based sequence
 770 classification with length-aware aggregation to effectively handle variable-length movie reviews.

771
 772 **Dataset** CIFAR-10 (Krizhevsky et al., 2009) consists of 50,000 training images and 10,000 test
 773 images, totaling 60,000 32×32 RGB images across 10 common categories: airplane, automobile, bird,
 774 cat, deer, dog, frog, horse, ship, and truck. The low resolution and cluttered backgrounds demand that
 775 models learn discriminative features from limited pixels. Each class contains 5,000 training samples.
 776 The dataset is widely used to assess image classification capabilities, with accuracy serving as the
 777 evaluation metric.

778
 779 **Experiment Setting** The model processes CIFAR-10 images converted to grayscale and serialized
 780 into 1,024-token sequences (32×32 pixels), without any data augmentation. Training is conducted for
 781 150 epochs with a batch size of 50. We use the AdamW optimizer with a learning rate of 1×10^{-3} ,
 782 weight decay of 0.1, and β parameters set to (0.9, 0.95). The learning rate follows a cosine annealing
 783 schedule with 2,000 linear warm-up steps. Gradient clipping is applied with a maximum norm of 1.0
 784 to further stabilize training. Each pixel is treated as a discrete token, allowing sequence modeling
 785 techniques to be applied to vision tasks through this serialization-based approach.

786
 787 **Dataset** Pathfinder (Linsley et al., 2018) is a visual reasoning benchmark designed to assess
 788 topological reasoning. The task is to determine whether two marked circles in a binary image are
 789 connected by a single continuous path. The dataset includes approximately 100,000 training images
 790 and 20,000 validation/test images, with each image sized at 64×64 pixels. As the number of path
 791 segments increases, so does task difficulty. Since no semantic cues are available, models must rely on
 792 global receptive fields and spatial reasoning. Evaluation is based on accuracy.

793
 794 **Experiment Setting** The model processes PATHFINDER images converted to grayscale and serialized
 795 into sequences of varying lengths: 1,024 tokens (32×32), 4,096 tokens (64×64), and 65,536
 796 tokens (256×256). Training is conducted for 200 epochs with a batch size of 32. We employ the
 797 AdamW optimizer with learning rates of 1×10^{-4} for lower resolutions and 1×10^{-3} for the 256×256
 798 setting, using weight decay values between 0.05 and 0.1, and β parameters set to (0.9, 0.95). The
 799 learning rate follows either a constant or cosine annealing schedule with 5,000 linear warm-up steps.
 800 Gradient clipping with a maximum norm of 1.0 is applied for higher-resolution inputs. Each pixel is
 801 treated as a discrete token in the serialized sequence, allowing us to evaluate the model’s capacity to
 802 capture long-range dependencies across different input lengths.

803 A.3 COMPUTER VISION(CV) TASK

804
 805 We conduct experiments on the ImageNet-100, COCO2017, and ADE20K datasets using the open-
 806 source Vanilla-VMamba-Tiny model. To ensure a fair comparison, we retrain each configuration
 807 from scratch on an 8-GPU server without employing any pre-trained weights. This avoids inconsi-
 808 stencies caused by potential mismatches between modified normalization layers and pre-trained
 809 parameters. Furthermore, for each dataset, we adopt the same hyperparameter settings as in the
 original implementation. The details are as follows:

810 **Dataset** ImageNet-100 (ima, 2019) is a curated subset of ImageNet-1k (Deng et al., 2009) ,
 811 comprising 100 randomly selected and semantically coherent classes. Each class contains 1,300
 812 training images and 50 validation images, totaling 130,000 training and 5,000 validation samples.
 813 Image resolution follows that of the original ImageNet, commonly resized by cropping or scaling
 814 the short edge to 160–224 pixels. It is used to evaluate image classification performance, covering
 815 common entities such as animals, objects, and scenes, with Top-1 accuracy as the evaluation metric.
 816

817 **Experiment Setting** The backbone consists of 14 Mamba blocks with three downsampling stages,
 818 and the layer configuration is set to [2, 2, 8, 2]. We train the model using the AdamW optimizer with
 819 a weight decay of 0.05, an initial learning rate of 5×10^{-3} , a batch size of 256, and a total of 300
 820 epochs.
 821

822 **Dataset** COCO 2017 (Lin et al., 2014) is one of the most widely used benchmarks for multi-task
 823 vision evaluation, featuring approximately 330,000 images, including 118,000 for training, 5,000 for
 824 validation, and 20,000 for test-dev. It includes 80 object detection categories and 91 stuff categories,
 825 with 1.5 million object instances annotated with bounding boxes. The images depict real-world
 826 scenarios with dense object layouts, occlusions, and large scale variations. It serves as a standard
 827 benchmark for object detection and instance segmentation, with mean Average Precision (mAP) used
 828 for evaluation.
 829

830 **Experiment Setting** The backbone consists of 14 Mamba blocks with three downsampling stages,
 831 and the layer configuration is [2, 2, 9, 2]. For object detection and instance segmentation, we employ
 832 the Mask R-CNN head. The training is performed using the AdamW optimizer with a weight decay
 833 of 0.05, an initial learning rate of 1×10^{-4} , a batch size of 8, and a total of 12 epochs.
 834

835 **Dataset** ADE-20K (Zhou et al., 2019) is a benchmark for semantic segmentation and scene
 836 parsing, aggregating over 27,000 scene images from the SUN and Places datasets. All images are
 837 annotated with pixel-level polygons, covering 150 semantic classes and over 3,000 instance-level
 838 object categories. The dataset spans a wide variety of environments, including indoor, outdoor,
 839 natural, and urban scenes, with annotations for both visible and occluded object regions. It is the
 840 standard evaluation set for fine-grained segmentation and multi-scale understanding, using mean
 841 Intersection over Union (mIoU) as the evaluation metric.
 842

843 **Experiment Setting** The backbone consists of 14 Mamba blocks with three downsampling stages,
 844 and the layer configuration is [2, 2, 8, 2]. For semantic segmentation, we use the UPerHead as the
 845 decoding head. Training is conducted using the AdamW optimizer with a weight decay of 0.01, an
 846 initial learning rate of 6×10^{-5} , a batch size of 32, and a total of 160,000 training iterations.
 847

848 A.4 SUPPLEMENTARY THEORETICAL BACKGROUNDS

849 In our section Method, we presented the definitions of the stability and optimization metrics along
 850 with the associated empirical conclusions. In this appendix, we provide supplementary theoretical
 851 discussion to further substantiate the principles underlying our analysis of training stability and
 852 optimization behavior in neural networks.
 853

854 A.5 STABILITY ANALYSIS

855 In gradient-based neural network training, instability often manifests as exploding gradients, where
 856 gradients grow excessively and lead to numerical failures. Intuitively, this phenomenon typically
 857 arises from two sources: the explosion of hidden activations (e.g., large spectral values in forward
 858 inputs or backward gradients causing NaNs in the loss), or unbounded growth in network weights
 859 due to overly large updates during backpropagation. Accordingly, our stability analysis considers
 860 both activation dynamics and weight behavior.
 861

862 Due to the cumulative feature of transformations across multiple layers, the *out*-*put* layers in deep
 863 neural networks are particularly susceptible to numerical instabilities. Moreover, we observed a
 864 similar phenomenon in Mamba, as illustrated in Figure 10. The figure compares the activation
 865 magnitude range of the SSM outputs before and after applying normalization. It can be seen that the
 866

864 State Space Model (SSM) tends to amplify activation magnitudes during the forward pass, and such
 865 amplification accumulates progressively in deep networks, eventually leading to gradient explosion.
 866 Notably, in computer vision (CV) tasks, the amplification of the input \mathbf{x} by the SSM module in
 867 the absence of normalization at the `Norm2` position is significantly greater than in sequential data
 868 tasks. As a result, CV models are more susceptible to gradient explosion, as shown in Figure11.
 869 Chiang et al. (2024) similarly observed this property of Mamba. Introducing normalization effectively
 870 mitigates this accumulation and constrains the numerical range. Therefore, we focus our analysis on
 871 the spectral properties of the forward inputs, backward gradients, and output-layer weight matrices of
 872 *out-proj* layer in each Mamba block.

873 Previous studies have shown that spectral analysis of activations and monitoring the norms of weight
 874 matrices are effective methods for evaluating training stability in deep neural networks(DNNs) Huang
 875 et al. (2020). Motivated by this, we adopt two representative indicators to analyze the stability of
 876 the Mamba architecture: (1) the maximum eigenvalue of the activation covariance matrix, which
 877 captures the scale and distributional dynamics of the hidden activations, and (2) the spectral norm
 878 of the output-layer weight matrices, which reflects the model’s scaling behavior and its tendency to
 879 produce unstable updates.

880 We denote the covariance matrix of the layer input as $\Sigma_{\mathbf{x}}^l = \mathbb{E}_{p(x)q(y|x)} \left[\mathbf{x}^{l-1} (\mathbf{x}^{l-1})^T \right]$ and the
 881 covariance matrix of the layer output-gradient as $\Sigma_{\nabla \mathbf{h}}^l = \mathbb{E}_{q(y|x)} \left[\frac{\partial \ell^T}{\partial \mathbf{h}^l} \frac{\partial \ell}{\partial \mathbf{h}^l} \right]$, where l is the l -th
 882 mamba layer.

885 • **Maximum eigenvalue of the input covariance matrix:**

$$\begin{aligned} \lambda_{\max}(\Sigma_{\mathbf{x}}^l) &= \max \{ \lambda \in \text{Spec}(\Sigma_{\mathbf{x}}^l) \}, \\ \Sigma_{\mathbf{x}}^l &= \mathbb{E}_{p(x)q(y|x)} \left[\mathbf{x}^{l-1} (\mathbf{x}^{l-1})^T \right], \end{aligned} \quad (9)$$

886 which measures the second-order statistics of the forward input to the layer.

887 • **Maximum eigenvalue of the output-gradient covariance matrix:**

$$\begin{aligned} \lambda_{\max}(\Sigma_{\nabla \mathbf{h}}^l) &= \max \{ \lambda \in \text{Spec}(\Sigma_{\nabla \mathbf{h}}^l) \}, \\ \Sigma_{\nabla \mathbf{h}}^l &= \mathbb{E}_{q(y|x)} \left[\frac{\partial \ell^T}{\partial \mathbf{h}^l} \frac{\partial \ell}{\partial \mathbf{h}^l} \right], \end{aligned} \quad (10)$$

888 which reflects the second-order sensitivity of the loss with respect to the layer outputs.

889 **A.6 OPTIMIZATION ANALYSIS**

900 In prior work, the condition number has been widely regarded as a key indicator for monitoring the
 901 optimization behavior of deep neural networks Saarinen et al. (1993); Desjardins et al. (2015); Huang
 902 et al. (2020). It is formally defined as:

$$\kappa(\mathcal{F}_k) = \frac{\lambda_{\max}(\mathcal{F}_k)}{\lambda_{\min}(\mathcal{F}_k)}, \quad (11)$$

903 where \mathcal{F}_k denotes the Fisher Information Matrix (FIM) or its approximation for the k -th layer.

904 Intuitively, a condition number closer to 1 implies that the optimization landscape is more isotropic
 905 (i.e., closer to a spherical shape). This indicates that weight updates are more evenly distributed
 906 across the principal directions of the data, thereby facilitating more stable and efficient convergence.

907 FIM characterizes the curvature of the loss landscape very well (Oczkowski & Barreca, 1997; Fasina
 908 et al., 2023). One successful example is approximating the Fisher Information Matrix (FIM) of DNNs
 909 using the Kronecker-factored Approximate Curvature (K-FAC) method Martens & Grosse (2015). In
 910 the K-FAC approach, two assumptions are made: (1) weight gradients in different layers are assumed
 911 to be uncorrelated; (2) the input and output gradients in each layer are approximated as independent.

912 Under these assumptions, the full FIM can be approximated as a block diagonal matrix:

$$\mathbf{F} \approx \text{diag}(F^1, F^2, \dots, F^L),$$

918 where F^l is the sub-FIM corresponding to the parameters in the l -th layer, computed as:
 919

$$920 \quad F^l = \mathbb{E}_{p(\mathbf{x}), q(\mathbf{y}|\mathbf{x})} \left(\left(\mathbf{x}^{l-1} (\mathbf{x}^{l-1})^T \right) \otimes \left(\frac{\partial \ell^T}{\partial \mathbf{h}^l} \frac{\partial \ell}{\partial \mathbf{h}^l} \right) \right) \\ 921 \\ 923 \quad \approx \mathbb{E}_{\mathbf{x} \sim p(\mathbf{x})} \left[\mathbf{x}^{l-1} (\mathbf{x}^{l-1})^T \right] \otimes \mathbb{E}_{(\mathbf{x}, \mathbf{y}) \sim p(\mathbf{x})q(\mathbf{y}|\mathbf{x})} \left[\frac{\partial \ell^T}{\partial \mathbf{h}^l} \frac{\partial \ell}{\partial \mathbf{h}^l} \right] \\ 924 \\ 925$$

926 **Properties of the Kronecker-structured FIM.** Given the Kronecker-factored approximation of
 927 the Fisher Information Matrix (FIM) for the l -th layer as
 928

$$F^l = A \otimes B,$$

930 where A and B are symmetric positive semi-definite matrices representing the input and output
 931 gradient statistics respectively, the spectral properties of F^l satisfy the following:
 932

- 933 • **Eigenvalues.** The eigenvalues of F^l are the pairwise products of the eigenvalues of A and
 934 B :

$$935 \quad \lambda(F^l) = \{ \lambda_i(A) \cdot \lambda_j(B) \mid \lambda_i \in \lambda(A), \lambda_j \in \lambda(B) \}.$$

936 In particular, the maximum eigenvalue satisfies:
 937

$$938 \quad \lambda_{\max}(F^l) = \lambda_{\max}(A) \cdot \lambda_{\max}(B).$$

- 939 • **Condition Number.** The condition number of F^l equals the product of the condition
 940 numbers of A and B :

$$941 \quad \kappa(F^l) = \kappa(A \otimes B) = \kappa(A) \cdot \kappa(B).$$

944 B EMPIRICAL EVIDENCE FOR THE ROLE OF **NORM2** IN ENHANCING 945 TRAINING STABILITY

947 Previous studies have shown that Layer Normalization (LN) effectively stabilizes model convergence
 948 Ba (2016); Xu et al. (2019); Zhang & Sennrich (2019). In particular, research within Trans-
 949 former architectures has demonstrated that applying LN before the attention module can yield superior
 950 performance Kim et al. (2025); Xiong et al. (2020); Shleifer et al. (2022). This raises the question:
 951 does a similar principle hold for the Mamba architecture? Specifically, is LN more effective when
 952 placed before the SSM block (Norm1), after the SSM block (Norm2), or on both sides?
 953

954 To investigate this, we conducted experiments on the ImageNet-100 dataset with three configurations:
 955 applying LN before the SSM module (Norm1), after the SSM module (Norm2), and on both sides
 956 (Norm1 and Norm2). All experiments were conducted using the same model architecture and training
 957 settings to ensure fairness. The results are presented in Figure 12.

958 Key observations from Figure 12:

- 959 1. **Normalization can stabilize model training:** The baseline configuration (Non \rightarrow SSM \rightarrow Non)
 960 fails to converge, achieving only 23.08% Top-1 accuracy. This indicates that without
 961 normalization, the amplification of activations and gradient explosion in the SSM severely
 962 disrupt training. In contrast, all configurations with normalization successfully converge and
 963 achieve Top-1 accuracy above 86%.
- 964 2. **Post-SSM LN (Norm2) yields the best performance:** When LN is applied only after
 965 the SSM (Non \rightarrow SSM \rightarrow LN), the model achieves the highest Top-1 accuracy of **86.36%** and
 966 exhibits the steepest convergence curve. This suggests that Norm2 directly suppresses the
 967 activation norm explosion from the SSM, significantly improving training stability and
 968 convergence speed.
- 969 3. **Pre-SSM LN (Norm1) is slightly less effective:** Applying LN only before the SSM
 970 (LN \rightarrow SSM \rightarrow Non) results in a slightly lower peak accuracy of **86.04%** and slower convergence.
 971 This implies that Norm1 helps improve the numerical condition of the input features but is
 972 less effective than post-normalization in stabilizing the network.

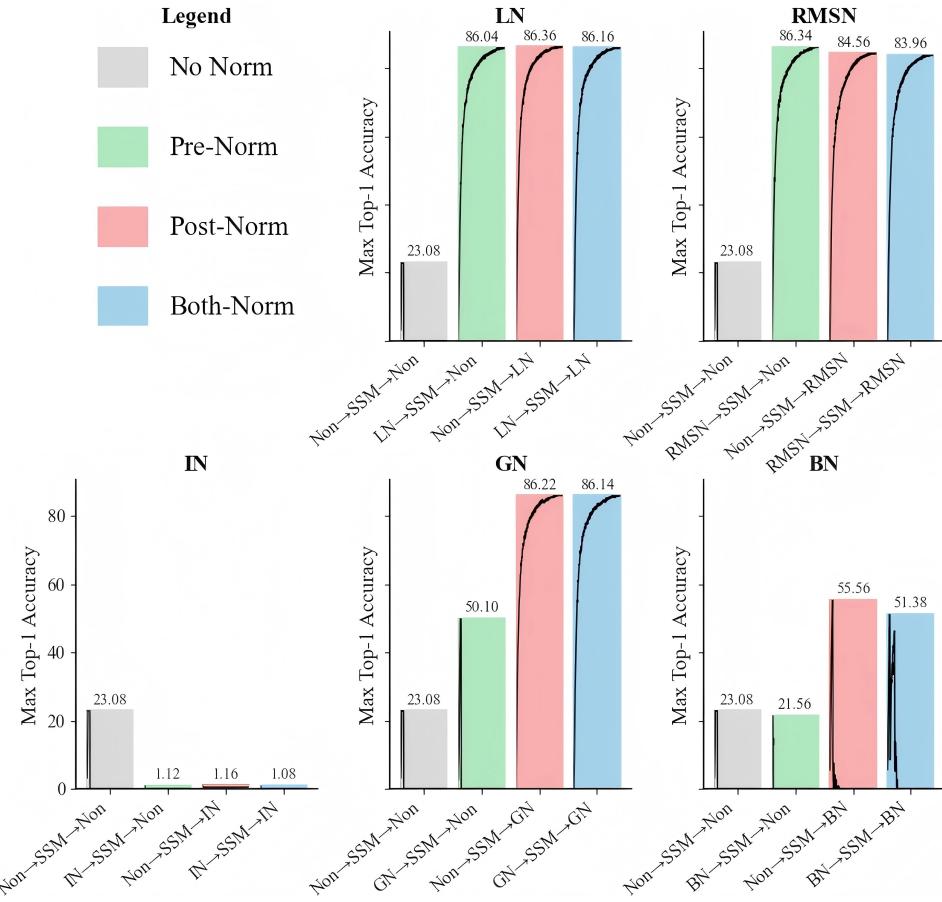


Figure 9: Stability comparison across different normalization methods applied to the SSM block.

4. **Dual LN provides stable convergence but no additional benefit:** Using LN on both sides of the SSM ($\text{LN} \rightarrow \text{SSM} \rightarrow \text{LN}$) yields a final accuracy of **86.16%**, which is between the performances of Norm1 and Norm2 alone. The convergence speed is also intermediate. This suggests that dual normalization does not provide additive benefits and may slightly impair feature expressiveness due to over-normalization.

In summary, LN is effective in stabilizing training in Mamba-based models. However, unlike Transformer models where pre-normalization is often optimal, **post-normalization (Norm2) after the SSM block achieves better stability and performance in Mamba**. While pre-normalization (Norm1) accelerates convergence, it is slightly less effective, and dual normalization brings no additional gains.

B.1 COMPARISON WITH OTHER NORMALIZATION METHODS

To further validate the generality of post-normalization effectiveness beyond LN, we also evaluated other commonly used normalization strategies, including RMSNorm and GroupNorm. The experimental results are shown in Figure 9.

Key observations from Figure 9:

- **RMSNorm and LayerNorm:** Both normalization methods are capable of stabilizing training regardless of placement (pre or post-SSM). For GroupNorm, however, only post-normalization configurations ($\text{Non} \rightarrow \text{SSM} \rightarrow \text{GN}$ and $\text{GN} \rightarrow \text{SSM} \rightarrow \text{GN}$) result in stable convergence with Top-1 accuracy exceeding **86.0%**. The pre-normalization setting ($\text{GN} \rightarrow \text{SSM} \rightarrow \text{Non}$) diverges after several training steps, reaching only **50.1%** accuracy.

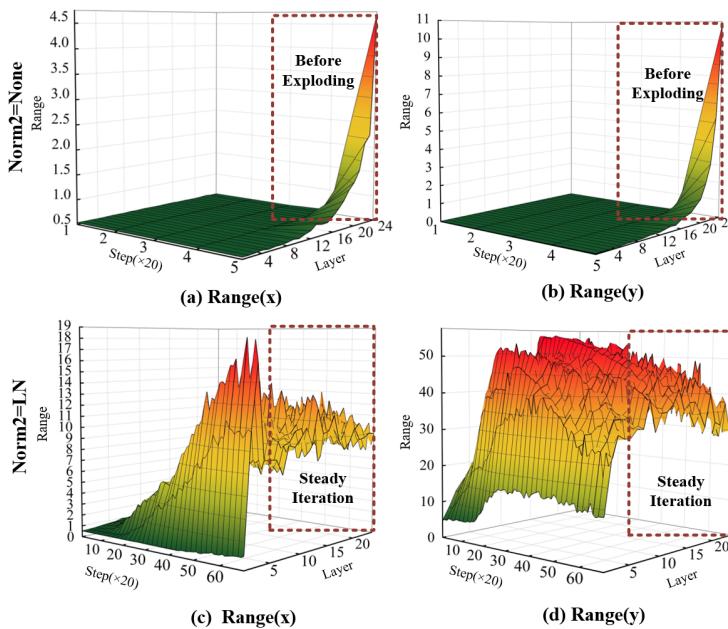


Figure 10: Comparison of the input (x) and output (y) range of the SSM module on the WIKITEXT-103 dataset. The x -axis denotes training steps (logged every 20 steps), and the y -axis indicates the layer index of the Mamba block. Subfigures (a) and (b) show the range evolution when no normalization is applied after the SSM layer ($\text{Norm2}=\text{None}$), while (c) and (d) present the results with LayerNorm applied at Norm2. Applying LN leads to steady iteration dynamics across layers, whereas the absence of normalization results in unstable growth before divergence.

- **InstanceNorm and BatchNorm:** Neither method achieves convergence under any configuration. Post-normalization variants ($\text{Non} \rightarrow \text{SSM} \rightarrow \text{IN}$ and $\text{Non} \rightarrow \text{SSM} \rightarrow \text{BN}$) initially improve performance but subsequently diverge, with Top-1 accuracy peaking at only **1.12%** and **21.56%**, respectively, before collapsing.

These results reinforce the finding that, unlike in Transformer architectures, **post-SSM normalization (Norm2) is particularly effective for ensuring training stability in Mamba models**, especially when using LayerNorm. Accordingly, we adopt $\text{Norm2} = \text{LN}$ as the default normalization configuration in our main experiments.

C EMPIRICAL EVIDENCE FOR THE ROLE OF **NORM1** IN IMPROVING OPTIMIZATION CONDITION

C.1 EFFECT OF BATCH NORMALIZATION ON ACCELERATING CONVERGENCE AND COMPARISON WITH OTHER NORMALIZATION TECHNIQUES

Having established a stable training setup with post-SSM Layer Normalization ($\text{Norm2} = \text{LN}$), we further investigate the effect of Batch Normalization (BN) on accelerating convergence. Specifically, we use the $\text{Non} \rightarrow \text{SSM} \rightarrow \text{LN}$ configuration as our baseline, and introduce BN before the SSM block ($\text{BN} \rightarrow \text{SSM} \rightarrow \text{LN}$, i.e., $\text{Norm1} = \text{BN}$). The experimental results are illustrated in Figure 13.

Observations from Figure 13:

With Norm2 fixed as LN to ensure stable training, introducing BN at Norm1 (red line) significantly accelerates convergence compared to the baseline Non+LN (blue line):

- **Faster early-stage convergence:**

- At epoch 10, BN+LN achieves a Top-1 accuracy of approximately 35.6%, compared to 34.8% for Non+LN.

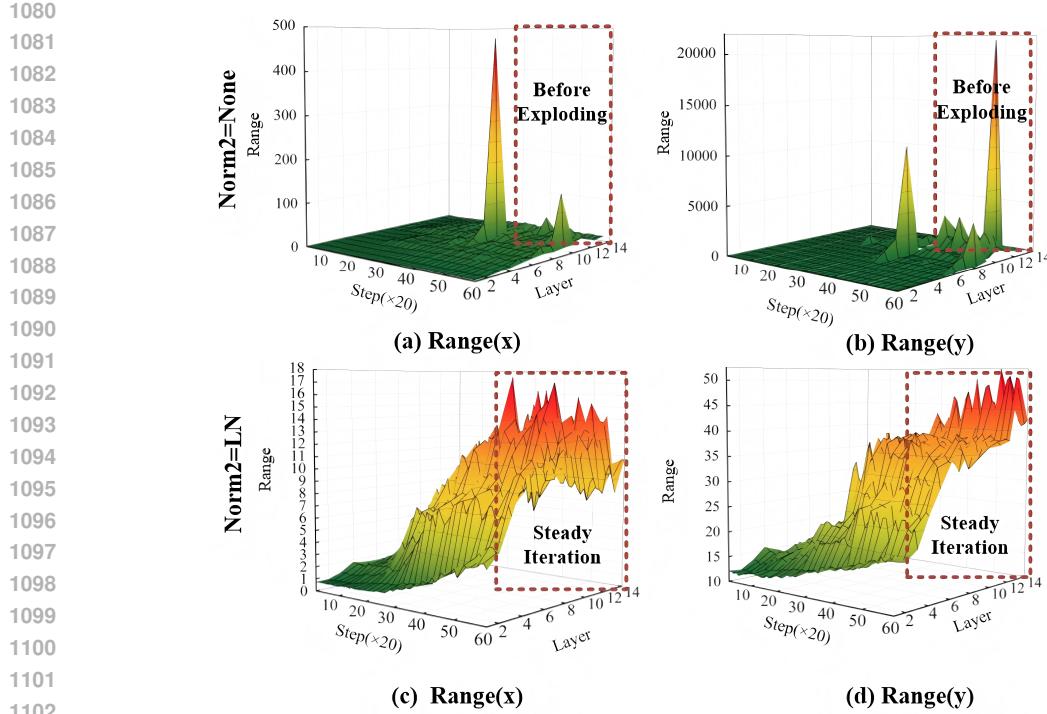


Figure 11: Comparison of the input (x) and output (y) range of the SSM module on the IMAGENET dataset. The x -axis denotes training steps (logged every 20 steps), and the y -axis indicates the layer index of the Mamba block. Subfigures (a) and (b) show the range evolution when no normalization is applied after the SSM layer ($\text{Norm2}=\text{None}$), while (c) and (d) present the results with LayerNorm applied at Norm2. Applying LN leads to steady iteration dynamics across layers, whereas the absence of normalization results in unstable growth before divergence.

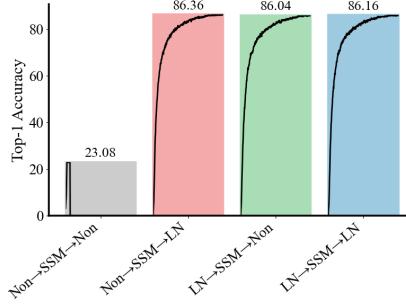


Figure 12: Comparison of training stability with LN applied at different positions in the SSM block. Each bar represents the final Top-1 accuracy, and the inner curve shows the accuracy evolution during training.

- At epoch 20, BN+LN reaches about 62.3%, approximately 4 percentage points higher than the baseline.

- **Mid-stage acceleration:**

- From epoch 20 to 50, BN+LN maintains a steeper ascent, surpassing 70% accuracy earlier than the baseline.
- By epoch 60, the accuracy curve of BN+LN stabilizes around 75%, with reduced oscillation.

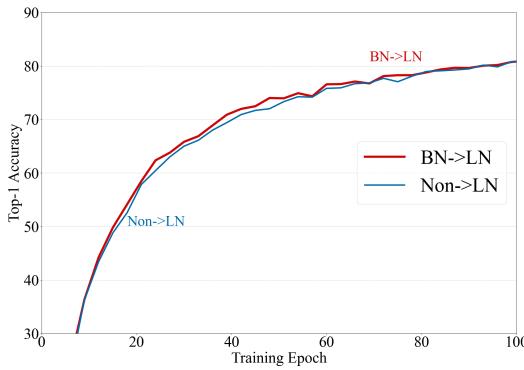


Figure 13: Convergence speed comparison between BN+LN and Non+LN configurations.

These findings suggest that BN \rightarrow SSM \rightarrow LN enables larger gradient steps during the early training phase, allowing the model to enter the high-accuracy regime faster and resulting in significantly improved convergence speed over Non \rightarrow SSM \rightarrow LN.

C.1.1 COMPARISON WITH OTHER NORM1 CONFIGURATIONS

To further assess the acceleration effect across different normalization strategies, we replaced Norm1 with other commonly used normalization methods, including Group Normalization (GN), Root Mean Square Normalization (RMSN), Instance Normalization (IN), and Layer Normalization (LN). We compared their Top-1 accuracy and the steepness of the convergence curves. The results are presented in Figure 14.

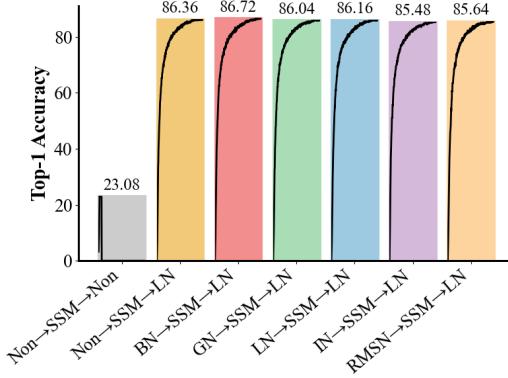


Figure 14: Convergence speed comparison with various Norm1 methods combined with Norm2 = LN.

Key findings from Figure 14:

- **BN+LN achieves the best performance:**
 - Final Top-1 accuracy reaches **86.72%**, surpassing the baseline Non+LN (86.36%).
 - The learning curve exhibits the steepest slope in the 0–80% range, indicating the most significant early acceleration.
- **Other combinations:**
 - GN \rightarrow SSM \rightarrow LN and LN \rightarrow SSM \rightarrow LN also provide faster convergence than the baseline, but with gentler slopes during the first 20–30 epochs.
 - IN \rightarrow SSM \rightarrow LN and RMSN \rightarrow SSM \rightarrow LN exhibit the flattest early-stage slopes and the slowest overall convergence, with the lowest final accuracy.

1188 In summary, among all evaluated Norm1 strategies, the **BatchNorm** → **SSM** → **LayerNorm**
1189 configuration not only maintains high final accuracy but also maximizes convergence speed, making
1190 it the most effective combination for efficient training.
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241