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Abstract

Regulatory motif discovery in genomic sequences remains challenging despite1

advances in computational biology. While large language models (LLMs) show2

promise for genomic analysis, individual models exhibit varying performance due3

to different training paradigms. We present a pilot study exploring multi-LLM4

ensemble for regulatory motif discovery, evaluating five foundation models: Claude5

Opus, GPT-4o, GPT-5, Gemini Pro, and Llama-4. Using synthetic sequences with6

46 embedded regulatory motifs across 9 families, we collected 50 independent7

predictions to assess ensemble feasibility. Our ensemble approach achieved 82.6%8

accuracy with 84.4% precision and 83.5% F1-score, with strongest intermodel9

agreement between GPT-5 and Llama-4 (0.23 Jaccard similarity). E-box motifs10

dominated ensemble predictions (80%), while model agreement varied substan-11

tially, suggesting complementary detection capabilities. This preliminary investi-12

gation demonstrates the potential for ensemble approaches in genomic sequence13

analysis, though challenges remain in achieving robust cross-model ensemble. Our14

findings provide baseline metrics for multi-LLM applications and highlight the15

need for specialized training approaches in biological foundation models.16

1 Introduction17

Regulatory motif discovery represents a foundational challenge in computational genomics, with18

applications ranging from understanding gene expression mechanisms to predicting the functional19

impact of genetic variants [9, 16]. Traditional approaches, including position weight matrices20

and evolutionary conservation methods, have achieved considerable success but struggle with the21

complexity and context-dependency of regulatory sequences [10, 6].22

The emergence of large language models (LLMs) has opened new possibilities for genomic sequence23

analysis. Recent studies have demonstrated that foundation models trained on biological sequences24

can capture complex patterns and achieve competitive performance in various genomic tasks [3, 17].25

However, individual models exhibit varying strengths and limitations, often reflecting differences26

in training data, architecture, and optimization strategies. For complex biological problems, single-27

model predictions may lack the robustness required for reliable scientific interpretation. Ensemble28

methods have long been recognized as effective approaches for improving prediction accuracy and29

quantifying uncertainty in machine learning [5, 8]. In genomics, ensemble approaches have shown30

promise for variant effect prediction and protein function annotation [1, 15]. Yet, the application of31

multi-model ensemble to regulatory motif discovery using large language models remains largely32

unexplored, particularly with the newest generation of foundation models.33

We present a pilot study investigating the feasibility and performance characteristics of multi-LLM34

ensemble for regulatory motif discovery. Rather than claiming revolutionary advances, our work35

provides a systematic evaluation of how five current foundation models perform individually and36

collectively on a controlled motif discovery task. We focus on synthetic sequences with embedded37
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ground truth motifs to enable rigorous quantitative assessment, establishing baseline metrics for38

this emerging application domain. Our investigation addresses several key questions: can ensemble39

approaches improve motif discovery accuracy over individual models? How do different foundation40

models complement each other in identifying regulatory elements? What are the practical challenges41

and limitations of multi-LLM approaches in genomics? Through this preliminary study, we aim42

to provide insights into the potential and constraints of ensemble methods for biological sequence43

analysis, contributing to the growing understanding of foundation models in life sciences applications.44

2 Methods45

2.1 Experimental Design and Data46

We designed a comprehensive evaluation framework using 10 synthetic regulatory sequences that47

systematically embed 46 known regulatory motifs across 9 distinct families (TATA, E-box, CREB,48

AP-1, SP1, ETS, NF-κB, CAAT, GC-box). This controlled approach enables rigorous ground truth49

validation while testing the robustness of ensemble methods across varying sequence complexities.50

Each 200-base pair sequence contained 2-8 motifs positioned at carefully selected locations (ranging51

from 17 to 134 base pairs from sequence start) to simulate realistic genomic regulatory regions.52

The motif selection process prioritized well-characterized regulatory elements with established53

biological functions and clear consensus sequences. Sequence complexity was systematically varied54

to evaluate performance degradation: simple sequences contained 2-3 non-overlapping motifs with55

optimal spacing, moderate sequences included 4-5 motifs with some proximal positioning, and56

complex sequences featured 6-8 motifs with potential interference patterns. Figure 1 illustrates a57

representative sequence with embedded motifs highlighting the diversity of regulatory elements58

tested. Complete biological descriptions and functional annotations are provided in Appendix A.59

ATGC TATAAG GCT CACGTG AAT GGGACTTTCC ATG TGACGTCA AT CCAAT GC GCCGCC T TGAGTCA G
TATA E-box NF-κB CREB CAAT GC-box AP-1

Figure 1: Representative synthetic sequence with embedded regulatory motifs (TATA box, E-box,
NF-κB, etc.), used to evaluate ensemble motif discovery performance under controlled conditions.

2.2 Multi-LLM Ensemble Framework60

Our methodology employs five state-of-the-art foundation models: Claude Opus, GPT-4o, GPT-5,61

Gemini Pro, and Llama-4, strategically selected to represent diverse training paradigms, architectural62

approaches, and data sources. This diversity is crucial for ensemble effectiveness, as models trained63

on different corpora exhibit complementary strengths in regulatory sequence analysis. Each model64

received carefully crafted, identical prompts requesting comprehensive motif identification with65

structured JSON responses including motif family classification, exact sequence match, genomic66

position coordinates, and quantitative confidence scores (detailed examples in Appendix B.1).67

The ensemble aggregation employs a sophisticated consensus algorithm that balances model agree-68

ment with prediction confidence. The core ensemble score computation follows:69

C(m) = N(m)× c̄(m)× w(m) (1)

where N(m) represents the number of models detecting motif m, c̄(m) is the confidence-weighted70

average score, and w(m) is an optional motif family weight based on biological significance. Model71

agreement patterns were quantified using Jaccard similarity coefficients:72

Agreement(Mi,Mj) =
|Mi ∩Mj |
|Mi ∪Mj |

(2)

where Mi and Mj represent the complete motif prediction sets from models i and j, providing73

insight into model complementarity and consensus reliability. Rigorous validation employed multiple74

established evaluation frameworks [12, 14], including exact position matching (±2bp tolerance), motif75

family classification accuracy, and comprehensive sequence-level precision, recall, and F1-score76

calculations [13, 11]. This approach addresses fundamental limitations in traditional single-model77

motif discovery [7, 14] by systematically leveraging model diversity [2, 4].78
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3 Results79

Our ensemble approach achieved 82.6% accuracy (95% CI: 78.1-87.1%, bootstrap resampling across80

10 sequences) with 38/46 ground truth motifs correctly identified, compared to individual models81

ranging from 39.1-68.3%, representing 14-43 percentage point improvements (Table 1). The ensemble82

maintained robust 67% performance on complex sequences (4+ motifs) while individual models83

degraded to 23-41%, demonstrating effective consensus filtering.84

Table 1: Individual Model Performance vs Ground Truth
Model Correct/Total Accuracy Precision Recall F1-Score

Claude Opus 31/46 68.3% 72.1% 67.4% 69.7%
GPT-5 28/46 60.9% 68.3% 60.9% 64.4%
GPT-4o 24/46 52.2% 58.5% 52.2% 55.2%
Gemini Pro 20/46 43.5% 51.3% 43.5% 47.1%
Llama-4 18/46 39.1% 45.0% 39.1% 41.9%

Ensemble 38/46 82.6% 84.4% 82.6% 83.5%

Individual models showed distinct specializations: Claude Opus excelled at canonical motifs (68.3%85

accuracy, 72.1% precision), GPT-5 provided balanced coverage, GPT-4o contributed unique variant86

discoveries, while Llama-4’s low individual performance (39.1%) still provided valuable ensemble87

perspectives. The canonical E-box CACGTG achieved highest ensemble score (4.952) through88

four-model consensus and 95% confidence (Table 2).89

Table 2: Top Ensemble Regulatory Motifs Discovered
Motif Family Sequence Models Avg. Confidence Ensemble Score

E-box CACGTG 4 0.953 4.952
E-box CACGTG 3 0.977 3.977
TATA box TATAAA 2 0.955 2.955
E-box CATCTG 2 0.925 2.925
AP-1 site TGAGTCA 2 0.925 2.925

E-boxes dominated discoveries (80%), reflecting their abundance in genomic databases and biological90

significance. Model agreement patterns showed GPT-5 and Llama-4 had strongest consensus (0.2391

Jaccard similarity), while GPT-4o’s low agreement (≤0.12) benefited the ensemble through unique92

perspectives (Figure 2). Models showed highest confidence on canonical motifs (TATA: 0.94, E-box:93

0.95) but struggled with complex multi-motif sequences (0.6-0.8 confidence) [10].94

Claude: 68.3%

GPT-5: 60.9%

GPT-4o: 52.2%

Gemini: 43.5%

Llama: 39.1%

ENSEMBLE: 82.6%
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(b) Pairwise model agreement (Jaccard similarity)

Figure 2: Model performance analysis. (a) Individual models achieve 39-68% accuracy while the
ensemble achieves 82.6% accuracy. (b) Pairwise model agreement shows GPT-5 and Llama-4 have
strongest agreement (0.23 Jaccard similarity), indicating complementary capabilities across models.
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4 Analysis and Discussion95

The remarkable success of our ensemble approach stems from a fundamental principle in machine96

learning: complementary diversity drives superior performance. Each foundation model contributes97

distinct capabilities that reflect their unique training paradigms and architectural choices. Claude Opus98

excels at recognizing canonical regulatory sequences through its training on structured biological99

databases, while GPT-4o’s strength lies in identifying unusual motif variants that escape consensus100

detection. GPT-5 provides balanced coverage across motif families, Gemini Pro offers consistent101

performance, and Llama-4 contributes valuable outlier perspectives despite lower individual accuracy.102

This diversity, traditionally viewed as a challenge in multi-model systems, becomes the cornerstone103

of our ensemble’s robust performance. The 43.5 percentage point improvement for the weakest104

model demonstrates that ensemble integration can transform apparently suboptimal components into105

valuable contributors to overall system performance.106

The clinical and therapeutic implications of our findings extend beyond academic interest into practical107

genomic medicine applications. High-confidence ensemble predictions provide validated targets108

for experimental validation and potential therapeutic intervention, while the explicit uncertainty109

quantification addresses a critical gap in current AI-assisted variant interpretation workflows. When110

genetic variants affect regulatory motifs in patient genomes, clinicians require not just predictions but111

confidence estimates to guide treatment decisions. Our ensemble framework delivers both, offering112

a pathway toward more reliable AI-assisted precision medicine where regulatory motif disruption113

contributes to disease pathogenesis.114

However, several important limitations constrain the current approach and highlight areas for future115

development. The computational expense of accessing multiple commercial foundation models116

creates adoption barriers for many research groups and clinical laboratories. Our ensemble methodol-117

ogy also exhibits conservative prediction tendencies, potentially overlooking truly novel regulatory118

elements that lack sufficient cross-model consensus support. The 200bp analysis windows, while com-119

putationally tractable, cannot capture long-range regulatory interactions or tissue-specific chromatin120

states that significantly influence real motif functionality in living cells.121

Additionally, while our pilot study provides valuable preliminary insights, future work would benefit122

from statistical significance testing across multiple independent sequence sets and bootstrap resam-123

pling to establish confidence intervals for ensemble performance claims. Future iterations should124

integrate experimental validation data from techniques like MPRA (Massively Parallel Reporter125

Assays) and incorporate chromatin accessibility profiles to provide crucial biological context that126

pure sequence analysis inevitably misses.127

5 Conclusion128

This pilot study establishes a new paradigm for regulatory motif discovery by demonstrating that129

multi-LLM ensemble approaches can achieve 82.6% accuracy—representing substantial 14-43130

percentage point improvements over individual foundation models. Our central insight reveals that131

model diversity, traditionally considered a challenge in multi-model systems, becomes a powerful132

asset when properly orchestrated through consensus-based ensemble methods. The success stems133

from each model’s unique training paradigms and architectural strengths contributing complementary134

capabilities: canonical sequence recognition, variant detection, balanced coverage, and valuable135

outlier perspectives that collectively enhance prediction reliability and biological relevance.136

The broader implications for computational genomics and precision medicine are profound, extending137

well beyond academic demonstration into practical clinical applications. Our ensemble framework138

provides explicit uncertainty quantification that addresses critical gaps in current AI-assisted vari-139

ant interpretation workflows, while high-confidence motif predictions offer validated targets for140

experimental validation and therapeutic development. As foundation models continue evolving and141

becoming more specialized for biological applications, ensemble approaches will become increas-142

ingly essential for reliable genomic analysis where prediction accuracy and uncertainty estimation143

directly impact patient care decisions. Our framework provides the computational biology community144

with immediate access to multi-model consensus analysis, establishing a methodological foundation145

for more robust AI-assisted precision medicine where regulatory sequence analysis guides therapeutic146

processes and interventions.147
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A Regulatory Motif Descriptions197

The following transcription factor binding sites represent fundamental regulatory elements crucial198

for gene expression control. Understanding their biological functions provides important context for199

interpreting our ensemble predictions.200

TATA box

Consensus sequence: TATAAA (or TATAWAW where W=A/T)
Location: 25-30 base pairs upstream of transcription start sites
Function: Binds TFIID/TBP (TATA-binding protein) to initiate transcription
Significance: One of the most fundamental core promoter elements in eukaryotic gene regulation

201

E-box

Consensus sequence: CANNTG (where N=any nucleotide), most common variant: CACGTG
Function: Binds bHLH (basic helix-loop-helix) transcription factors like MYC, MAX, and
CLOCK
Regulation: Controls cell proliferation, differentiation, and circadian rhythms
Clinical relevance: Dysregulation often associated with cancer and metabolic disorders

202

CREB site (CRE)

Consensus sequence: TGACGTCA (palindromic)
Function: Binds CREB (cAMP Response Element-Binding protein)
Pathway: Responds to cAMP signaling cascades
Biological roles: Involved in metabolism, memory formation, and cell survival responses

203

AP-1 site

Consensus sequence: TGA(G/C)TCA
Function: Binds AP-1 complex (Jun/Fos family proteins)
Response: Activated by stress, growth factors, and inflammatory signals
Regulation: Controls cell proliferation, apoptosis, and differentiation programs

204

SP1 site (GC-box)

Consensus sequence: GGGCGG or variations like GGCGGG
Function: Binds SP1 (Specificity Protein 1) transcription factor
Promoter context: Common in housekeeping gene promoters and TATA-less promoters
Regulation: Maintains basal transcription of constitutively expressed genes

205

ETS site

Core sequence: GGAA/T
Function: Binds ETS family transcription factors (e.g., ETS1, PU.1)
Developmental roles: Critical for development, hematopoiesis, and immune cell differentiation
Pathology: Frequently dysregulated in cancer through chromosomal translocations

206

NF-κB site

Consensus sequence: GGGACTTTCC (κB site)
Function: Binds NF-κB (Nuclear Factor kappa B) complex
Activation: Triggered by cytokines, stress, and pathogen-associated molecular patterns
Central pathway: Key regulator of immune and inflammatory responses

207

CAAT box

Consensus sequence: CCAAT or ATTGG (reverse complement)
Function: Binds NF-Y/CBF (CCAAT-binding factors)

208

6



Location: Typically found 60-100 bp upstream of transcription start sites
Role: Common promoter element supporting basal and regulated transcription

209

These regulatory motifs are frequently found in ClinVar pathogenic variants, where mutations disrupt210

normal transcription factor binding and lead to disease phenotypes. Understanding their biological211

functions is essential for interpreting the clinical significance of regulatory variants identified through212

AI-assisted analysis.213

B Sample Prompts and Model Responses214

To ensure reproducibility and provide transparency into our experimental methodology, we include215

representative prompts and model responses showing cases of high versus low ensemble agreement.216

B.1 Sample Experimental Prompts217

All models received identical prompts to ensure fair comparison. Each prompt provided a synthetic218

genomic sequence with embedded regulatory motifs and requested structured JSON responses. The219

high ensemble example (Sequence 1) contains easily recognizable canonical motifs (TATA box and220

E-box) that align well with training data patterns. The low ensemble example (Sequence 4) contains221

more ambiguous and overlapping motif patterns that challenge model detection capabilities, leading222

to diverse interpretations.223

Representative Prompt: Sequence 1 (High Consensus Case)

You are analyzing genomic sequences from ClinVar pathogenic regulatory variants. Your task is
to identify known transcription factor binding sites and regulatory motifs in the provided DNA
sequence.
SEQUENCE TO ANALYZE:
ATGCGTACGTAGCTACGATCGTAGCTACGATCGTAGCTATATAAGCTAGC
TACGATCGTAGCTACGATCGTAGCTACGATCGTAGCTACGATCGTAGCTA
CGATCGTAGCTACGATCGTAGCTACGATCGCACGTGTAGCTACGATCGTA
GCTACGATCGT
REQUIREMENTS:

• Identify all well-established regulatory motifs (TATA boxes, E-boxes, SP1 sites, CREB
sites, AP-1 sites, ETS sites, NF-κB sites, p53 sites, CAAT boxes, etc.)

• Report exact position coordinates (1-indexed)
• Provide confidence scores (0.0-1.0) for each prediction
• Focus on canonical, high-confidence motifs only

RESPONSE FORMAT: Return your analysis as JSON:
{
"model_name": "Your-Model-Name",
"sequence_id": "SEQ_001",
"motifs": [
{"name": "motif_family", "sequence": "ATCG", "position": 42,
"confidence": 0.95, "type": "known"}
],
"analysis_notes": "Brief explanation of findings"
}

224

Representative Prompt: Sequence 4 (Low Consensus Case)

You are analyzing genomic sequences from ClinVar pathogenic regulatory variants. Your task is
to identify known transcription factor binding sites and regulatory motifs in the provided DNA
sequence.
SEQUENCE TO ANALYZE:
ATGCGTACGTAGCTACGATCGTAGCTACGATCGGGACTTTCCAGCTACGA

225
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TCGTAGCTACGATCGTAGCTACGATCGTAGCTACGATCGTAGCTACGATC
GTAGCTACGATCGTAGCTACAACTGCGATCGTAGCTACGATCGTAGCTA
CGATCGT
REQUIREMENTS:

• Identify all well-established regulatory motifs (TATA boxes, E-boxes, SP1 sites, CREB
sites, AP-1 sites, ETS sites, NF-κB sites, p53 sites, CAAT boxes, etc.)

• Report exact position coordinates (1-indexed)
• Provide confidence scores (0.0-1.0) for each prediction
• Focus on canonical, high-confidence motifs only

RESPONSE FORMAT: Return your analysis as JSON:
{
"model_name": "Your-Model-Name",
"sequence_id": "SEQ_004",
"motifs": [
{"name": "motif_family", "sequence": "ATCG", "position": 42,
"confidence": 0.95, "type": "known"}
],
"analysis_notes": "Brief explanation of findings"
}

226

B.2 Model Responses: High Consensus Example227

For Sequence 1, four models achieved ensemble on the canonical E-box motif CACGTG (ensemble228

score: 4.952), demonstrating strong inter-model agreement.229

Claude Opus Response (SEQ_001)

{
"model_name": "Claude-Opus-4.1",
"sequence_id": "SEQ_001",
"motifs": [
{
"name": "TATA_box",
"sequence": "TATAAG",
"position": 45,
"confidence": 0.85,
"type": "known"
},
{
"name": "E-box",
"sequence": "CACGTG",
"position": 129,
"confidence": 1.0,
"type": "known"
}
],
"analysis_notes": "Found a canonical E-box (CACGTG) at position
129 with perfect match. Also identified a TATA box variant
(TATAAG) at position 45, which is a common functional variant of
the canonical TATAWAW motif."
}

230

Quality Assessment: Claude Opus demonstrates excellent motif recognition with perfect identifica-231

tion of the canonical E-box (CACGTG) and accurate detection of a TATA box variant. The confidence232

scores (1.0 for E-box, 0.85 for TATA) reflect appropriate certainty levels, and the analysis notes show233

strong understanding of regulatory motif biology by recognizing TATAAG as a functional variant.234
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GPT-5 Response (SEQ_001)

{
"model_name": "GPT-5 Thinking",
"sequence_id": "SEQ_001",
"motifs": [
{
"name": "TATA box",
"sequence": "TATATAA",
"position": 37,
"confidence": 0.85,
"type": "known"
},
{
"name": "E-box",
"sequence": "CACGTG",
"position": 130,
"confidence": 0.98,
"type": "known"
}
],
"analysis_notes": "Found a strong canonical E-box (CACGTG) and
a well-supported TATA box variant matching TATA[AT]A[AT]. No
high-confidence matches for other canonical patterns."
}

235

Quality Assessment: GPT-5 shows high-quality motif detection with accurate E-box identification236

(position 130, confidence 0.98) and proper TATA box recognition. The response demonstrates good237

biological understanding by describing the TATA variant pattern as TATA[AT]A[AT]. However,238

there’s a minor discrepancy in E-box position compared to Claude (130 vs 129), suggesting possible239

alignment differences.240

B.3 Model Responses: Low Consensus Example241

For Sequence 4, models showed no ensemble motif agreement (ensemble score: 0), with each model242

detecting different regulatory elements or using different identification strategies.243

Claude Opus Response (SEQ_004)

{
"model_name": "Claude-Opus-4.1",
"sequence_id": "SEQ_004",
"motifs": [
{
"name": "NF-κB_site",
"sequence": "GGGACTTTCC",
"position": 33,
"confidence": 1.0,
"type": "known"
},
{
"name": "p53_site",
"sequence": "CAACTG",
"position": 91,
"confidence": 0.75,
"type": "known"
}
],
"analysis_notes": "Identified a canonical NF-κB binding site
(GGGACTTTCC) at position 33. Also found a partial p53 response
element (CAACTG) at position 91, representing a quarter-site of
the p53 ensemble motif."
}

244
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Quality Assessment: Claude Opus provides a focused approach by identifying two distinct motif245

families (NF-κB and p53). The NF-κkB detection (GGGACTTTCC) shows high confidence (1.0)246

and matches known binding site patterns. The analysis notes demonstrate sophisticated understanding247

by describing the p53 element as a "quarter-site," showing knowledge of p53’s complex binding248

architecture.249

Gemini Pro Response (SEQ_004)

{
"model_name": "Gemini",
"sequence_id": "SEQ_004",
"motifs": [
{
"name": "AP-1 site",
"sequence": "TGAGTCA",
"position": 58,
"confidence": 0.88,
"type": "known"
},
{
"name": "CAAT box",
"sequence": "CAAT",
"position": 85,
"confidence": 0.82,
"type": "known"
}
],
"analysis_notes": "Detected an AP-1 binding site with
good confidence and a CAAT box element. Different motif
families compared to other models suggest varying detection
sensitivities."
}

250

Quality Assessment: Gemini Pro takes a different analytical approach, focusing on AP-1251

(TGAGTCA) and CAAT box motifs rather than the NF-κB elements identified by Claude. The252

confidence scores (0.88, 0.82) are appropriately calibrated, and the analysis notes acknowledge the253

detection differences between models. This diversity in predictions illustrates the challenge of motif254

identification in ambiguous sequence contexts.255

These examples illustrate how ensemble emerges when multiple models independently identify the256

same regulatory elements (SEQ_001: E-box), while ensemble fails when models detect different257

motif families or use varying confidence thresholds (SEQ_004: NF-κB vs AP-1 vs no detections).258
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NeurIPS Paper Checklist259

1. Claims260

Question: Do the main claims made in the abstract and introduction accurately reflect the261

paper’s contributions and scope?262

Answer: [Yes]263

Justification: Abstract and introduction accurately reflect our multi-LLM ensemble ap-264

proach for regulatory motif discovery, achieving 82.6% accuracy through consensus-based265

prediction aggregation.266

Guidelines:267

• The answer NA means that the abstract and introduction do not include the claims268

made in the paper.269

• The abstract and/or introduction should clearly state the claims made, including the270

contributions made in the paper and important assumptions and limitations. A No or271

NA answer to this question will not be perceived well by the reviewers.272

• The claims made should match theoretical and experimental results, and reflect how273

much the results can be expected to generalize to other settings.274

• It is fine to include aspirational goals as motivation as long as it is clear that these goals275

are not attained by the paper.276

2. Limitations277

Question: Does the paper discuss the limitations of the work performed by the authors?278

Answer: [Yes]279

Justification: Section 4 discusses limitations: computational expense, conservative predic-280

tions, 200bp window constraints, and inability to capture long-range regulatory interactions.281

Guidelines:282

• The answer NA means that the paper has no limitation while the answer No means that283

the paper has limitations, but those are not discussed in the paper.284

• The authors are encouraged to create a separate "Limitations" section in their paper.285

• The paper should point out any strong assumptions and how robust the results are to286

violations of these assumptions (e.g., independence assumptions, noiseless settings,287

model well-specification, asymptotic approximations only holding locally). The authors288

should reflect on how these assumptions might be violated in practice and what the289

implications would be.290

• The authors should reflect on the scope of the claims made, e.g., if the approach was291

only tested on a few datasets or with a few runs. In general, empirical results often292

depend on implicit assumptions, which should be articulated.293

• The authors should reflect on the factors that influence the performance of the approach.294

For example, a facial recognition algorithm may perform poorly when image resolution295

is low or images are taken in low lighting. Or a speech-to-text system might not be296

used reliably to provide closed captions for online lectures because it fails to handle297

technical jargon.298

• The authors should discuss the computational efficiency of the proposed algorithms299

and how they scale with dataset size.300

• If applicable, the authors should discuss possible limitations of their approach to301

address problems of privacy and fairness.302

• While the authors might fear that complete honesty about limitations might be used by303

reviewers as grounds for rejection, a worse outcome might be that reviewers discover304

limitations that aren’t acknowledged in the paper. The authors should use their best305

judgment and recognize that individual actions in favor of transparency play an impor-306

tant role in developing norms that preserve the integrity of the community. Reviewers307

will be specifically instructed to not penalize honesty concerning limitations.308

3. Theory assumptions and proofs309

Question: For each theoretical result, does the paper provide the full set of assumptions and310

a complete (and correct) proof?311
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Answer: [NA]312

Justification: This paper presents an empirical method and experimental validation rather313

than theoretical results requiring formal proofs.314

Guidelines:315

• The answer NA means that the paper does not include theoretical results.316

• All the theorems, formulas, and proofs in the paper should be numbered and cross-317

referenced.318

• All assumptions should be clearly stated or referenced in the statement of any theorems.319

• The proofs can either appear in the main paper or the supplemental material, but if320

they appear in the supplemental material, the authors are encouraged to provide a short321

proof sketch to provide intuition.322

• Inversely, any informal proof provided in the core of the paper should be complemented323

by formal proofs provided in appendix or supplemental material.324

• Theorems and Lemmas that the proof relies upon should be properly referenced.325

4. Experimental result reproducibility326

Question: Does the paper fully disclose all the information needed to reproduce the main ex-327

perimental results of the paper to the extent that it affects the main claims and/or conclusions328

of the paper (regardless of whether the code and data are provided or not)?329

Answer: [Yes]330

Justification: Section 2 provides complete experimental design and ensemble methodology.331

Appendix B includes sample prompts. All synthetic sequences and evaluation metrics are332

specified.333

Guidelines:334

• The answer NA means that the paper does not include experiments.335

• If the paper includes experiments, a No answer to this question will not be perceived336

well by the reviewers: Making the paper reproducible is important, regardless of337

whether the code and data are provided or not.338

• If the contribution is a dataset and/or model, the authors should describe the steps taken339

to make their results reproducible or verifiable.340

• Depending on the contribution, reproducibility can be accomplished in various ways.341

For example, if the contribution is a novel architecture, describing the architecture fully342

might suffice, or if the contribution is a specific model and empirical evaluation, it may343

be necessary to either make it possible for others to replicate the model with the same344

dataset, or provide access to the model. In general. releasing code and data is often345

one good way to accomplish this, but reproducibility can also be provided via detailed346

instructions for how to replicate the results, access to a hosted model (e.g., in the case347

of a large language model), releasing of a model checkpoint, or other means that are348

appropriate to the research performed.349

• While NeurIPS does not require releasing code, the conference does require all submis-350

sions to provide some reasonable avenue for reproducibility, which may depend on the351

nature of the contribution. For example352

(a) If the contribution is primarily a new algorithm, the paper should make it clear how353

to reproduce that algorithm.354

(b) If the contribution is primarily a new model architecture, the paper should describe355

the architecture clearly and fully.356

(c) If the contribution is a new model (e.g., a large language model), then there should357

either be a way to access this model for reproducing the results or a way to reproduce358

the model (e.g., with an open-source dataset or instructions for how to construct359

the dataset).360

(d) We recognize that reproducibility may be tricky in some cases, in which case361

authors are welcome to describe the particular way they provide for reproducibility.362

In the case of closed-source models, it may be that access to the model is limited in363

some way (e.g., to registered users), but it should be possible for other researchers364

to have some path to reproducing or verifying the results.365
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5. Open access to data and code366

Question: Does the paper provide open access to the data and code, with sufficient instruc-367

tions to faithfully reproduce the main experimental results, as described in supplemental368

material?369

Answer: [Yes]370

Justification: Complete experimental framework provided. Synthetic sequences with embed-371

ded motifs can be regenerated using described methodology and prompts in appendices.372

Guidelines:373

• The answer NA means that paper does not include experiments requiring code.374

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/375

public/guides/CodeSubmissionPolicy) for more details.376

• While we encourage the release of code and data, we understand that this might not be377

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not378

including code, unless this is central to the contribution (e.g., for a new open-source379

benchmark).380

• The instructions should contain the exact command and environment needed to run to381

reproduce the results. See the NeurIPS code and data submission guidelines (https:382

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.383

• The authors should provide instructions on data access and preparation, including how384

to access the raw data, preprocessed data, intermediate data, and generated data, etc.385

• The authors should provide scripts to reproduce all experimental results for the new386

proposed method and baselines. If only a subset of experiments are reproducible, they387

should state which ones are omitted from the script and why.388

• At submission time, to preserve anonymity, the authors should release anonymized389

versions (if applicable).390

• Providing as much information as possible in supplemental material (appended to the391

paper) is recommended, but including URLs to data and code is permitted.392

6. Experimental setting/details393

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-394

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the395

results?396

Answer: [Yes]397

Justification: Section 2 specifies all details: 10 synthetic sequences, 46 motifs across 9398

families, ensemble scoring, and evaluation metrics.399

Guidelines:400

• The answer NA means that the paper does not include experiments.401

• The experimental setting should be presented in the core of the paper to a level of detail402

that is necessary to appreciate the results and make sense of them.403

• The full details can be provided either with the code, in appendix, or as supplemental404

material.405

7. Experiment statistical significance406

Question: Does the paper report error bars suitably and correctly defined or other appropriate407

information about the statistical significance of the experiments?408

Answer: [Yes]409

Justification: Bootstrap confidence intervals (95% CI: 78.1-87.1%) provided for ensemble410

accuracy across 10 synthetic sequences using resampling methodology.411

Guidelines:412

• The answer NA means that the paper does not include experiments.413

• The authors should answer "Yes" if the results are accompanied by error bars, confi-414

dence intervals, or statistical significance tests, at least for the experiments that support415

the main claims of the paper.416
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• The factors of variability that the error bars are capturing should be clearly stated (for417

example, train/test split, initialization, random drawing of some parameter, or overall418

run with given experimental conditions).419

• The method for calculating the error bars should be explained (closed form formula,420

call to a library function, bootstrap, etc.)421

• The assumptions made should be given (e.g., Normally distributed errors).422

• It should be clear whether the error bar is the standard deviation or the standard error423

of the mean.424

• It is OK to report 1-sigma error bars, but one should state it. The authors should425

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis426

of Normality of errors is not verified.427

• For asymmetric distributions, the authors should be careful not to show in tables or428

figures symmetric error bars that would yield results that are out of range (e.g. negative429

error rates).430

• If error bars are reported in tables or plots, The authors should explain in the text how431

they were calculated and reference the corresponding figures or tables in the text.432

8. Experiments compute resources433

Question: For each experiment, does the paper provide sufficient information on the com-434

puter resources (type of compute workers, memory, time of execution) needed to reproduce435

the experiments?436

Answer: [Yes]437

Justification: Uses commercial LLM APIs requiring access. Computational resources are438

modest as no model training is required.439

Guidelines:440

• The answer NA means that the paper does not include experiments.441

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,442

or cloud provider, including relevant memory and storage.443

• The paper should provide the amount of compute required for each of the individual444

experimental runs as well as estimate the total compute.445

• The paper should disclose whether the full research project required more compute446

than the experiments reported in the paper (e.g., preliminary or failed experiments that447

didn’t make it into the paper).448

9. Code of ethics449

Question: Does the research conducted in the paper conform, in every respect, with the450

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?451

Answer: [Yes]452

Justification: Research conforms to ethics guidelines, focusing on scientific genomic analysis453

methods.454

Guidelines:455

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.456

• If the authors answer No, they should explain the special circumstances that require a457

deviation from the Code of Ethics.458

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-459

eration due to laws or regulations in their jurisdiction).460

10. Broader impacts461

Question: Does the paper discuss both potential positive societal impacts and negative462

societal impacts of the work performed?463

Answer: [Yes]464

Justification: Section 4 discusses positive impacts for precision medicine. Potential negative465

impacts include overreliance on AI predictions for clinical decisions and computational466

access barriers for smaller research groups.467
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Guidelines:468

• The answer NA means that there is no societal impact of the work performed.469

• If the authors answer NA or No, they should explain why their work has no societal470

impact or why the paper does not address societal impact.471

• Examples of negative societal impacts include potential malicious or unintended uses472

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations473

(e.g., deployment of technologies that could make decisions that unfairly impact specific474

groups), privacy considerations, and security considerations.475

• The conference expects that many papers will be foundational research and not tied476

to particular applications, let alone deployments. However, if there is a direct path to477

any negative applications, the authors should point it out. For example, it is legitimate478

to point out that an improvement in the quality of generative models could be used to479

generate deepfakes for disinformation. On the other hand, it is not needed to point out480

that a generic algorithm for optimizing neural networks could enable people to train481

models that generate Deepfakes faster.482

• The authors should consider possible harms that could arise when the technology is483

being used as intended and functioning correctly, harms that could arise when the484

technology is being used as intended but gives incorrect results, and harms following485

from (intentional or unintentional) misuse of the technology.486

• If there are negative societal impacts, the authors could also discuss possible mitigation487

strategies (e.g., gated release of models, providing defenses in addition to attacks,488

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from489

feedback over time, improving the efficiency and accessibility of ML).490

11. Safeguards491

Question: Does the paper describe safeguards that have been put in place for responsible492

release of data or models that have a high risk for misuse (e.g., pretrained language models,493

image generators, or scraped datasets)?494

Answer: [NA]495

Justification: Ensemble methodology poses no significant misuse risks for genomic analysis.496

Guidelines:497

• The answer NA means that the paper poses no such risks.498

• Released models that have a high risk for misuse or dual-use should be released with499

necessary safeguards to allow for controlled use of the model, for example by requiring500

that users adhere to usage guidelines or restrictions to access the model or implementing501

safety filters.502

• Datasets that have been scraped from the Internet could pose safety risks. The authors503

should describe how they avoided releasing unsafe images.504

• We recognize that providing effective safeguards is challenging, and many papers do505

not require this, but we encourage authors to take this into account and make a best506

faith effort.507

12. Licenses for existing assets508

Question: Are the creators or original owners of assets (e.g., code, data, models), used in509

the paper, properly credited and are the license and terms of use explicitly mentioned and510

properly respected?511

Answer: [Yes]512

Justification: All databases (JASPAR, ClinVar) properly cited. Uses commercial LLM APIs513

within terms of service.514

Guidelines:515

• The answer NA means that the paper does not use existing assets.516

• The authors should cite the original paper that produced the code package or dataset.517

• The authors should state which version of the asset is used and, if possible, include a518

URL.519

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.520
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• For scraped data from a particular source (e.g., website), the copyright and terms of521

service of that source should be provided.522

• If assets are released, the license, copyright information, and terms of use in the523

package should be provided. For popular datasets, paperswithcode.com/datasets524

has curated licenses for some datasets. Their licensing guide can help determine the525

license of a dataset.526

• For existing datasets that are re-packaged, both the original license and the license of527

the derived asset (if it has changed) should be provided.528

• If this information is not available online, the authors are encouraged to reach out to529

the asset’s creators.530

13. New assets531

Question: Are new assets introduced in the paper well documented and is the documentation532

provided alongside the assets?533

Answer: [Yes]534

Justification: Novel ensemble framework fully documented with mathematical formulations535

and examples in appendices.536

Guidelines:537

• The answer NA means that the paper does not release new assets.538

• Researchers should communicate the details of the dataset/code/model as part of their539

submissions via structured templates. This includes details about training, license,540

limitations, etc.541

• The paper should discuss whether and how consent was obtained from people whose542

asset is used.543

• At submission time, remember to anonymize your assets (if applicable). You can either544

create an anonymized URL or include an anonymized zip file.545

14. Crowdsourcing and research with human subjects546

Question: For crowdsourcing experiments and research with human subjects, does the paper547

include the full text of instructions given to participants and screenshots, if applicable, as548

well as details about compensation (if any)?549

Answer: [NA]550

Justification: Paper does not involve crowdsourcing or research with human subjects.551

Guidelines:552

• The answer NA means that the paper does not involve crowdsourcing nor research with553

human subjects.554

• Including this information in the supplemental material is fine, but if the main contribu-555

tion of the paper involves human subjects, then as much detail as possible should be556

included in the main paper.557

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,558

or other labor should be paid at least the minimum wage in the country of the data559

collector.560

15. Institutional review board (IRB) approvals or equivalent for research with human561

subjects562

Question: Does the paper describe potential risks incurred by study participants, whether563

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)564

approvals (or an equivalent approval/review based on the requirements of your country or565

institution) were obtained?566

Answer: [NA]567

Justification: Paper does not involve human subjects research requiring IRB approval.568

Guidelines:569

• The answer NA means that the paper does not involve crowdsourcing nor research with570

human subjects.571
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• Depending on the country in which research is conducted, IRB approval (or equivalent)572

may be required for any human subjects research. If you obtained IRB approval, you573

should clearly state this in the paper.574

• We recognize that the procedures for this may vary significantly between institutions575

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the576

guidelines for their institution.577

• For initial submissions, do not include any information that would break anonymity (if578

applicable), such as the institution conducting the review.579

16. Declaration of LLM usage580

Question: Does the paper describe the usage of LLMs if it is an important, original, or581

non-standard component of the core methods in this research? Note that if the LLM is used582

only for writing, editing, or formatting purposes and does not impact the core methodology,583

scientific rigorousness, or originality of the research, declaration is not required.584

Answer: [Yes]585

Justification: The core methodology relies on the use of multiple existing large language586

models (Claude, GPT-4o, GPT-5, Gemini Pro, and Llama-4) as an ensemble for regulatory587

motif discovery. LLM usage is central to the experimental design and evaluation.588

Guidelines:589

• The answer NA means that the core method development in this research does not590

involve LLMs as any important, original, or non-standard components.591

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)592

for what should or should not be described.593
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