
Published in Transactions on Machine Learning Research (11/2022)

COIN++: Neural Compression Across Modalities

Emilien Dupont* dupont@stats.ox.ac.uk
Hrushikesh Loya* loya@stats.ox.ac.uk
Milad Alizadeh milad.alizadeh@cs.ox.ac.uk
Adam Goliński adamg@robots.ox.ac.uk
Yee Whye Teh y.w.teh@stats.ox.ac.uk
Arnaud Doucet doucet@stats.ox.ac.uk
University of Oxford

Reviewed on OpenReview: https: // openreview. net/ forum? id= NXB0rEM2Tq

Abstract

Neural compression algorithms are typically based on autoencoders that require specialized
encoder and decoder architectures for different data modalities. In this paper, we propose
COIN++, a neural compression framework that seamlessly handles a wide range of data
modalities. Our approach is based on converting data to implicit neural representations, i.e.
neural functions that map coordinates (such as pixel locations) to features (such as RGB
values). Then, instead of storing the weights of the implicit neural representation directly,
we store modulations applied to a meta-learned base network as a compressed code for the
data. We further quantize and entropy code these modulations, leading to large compression
gains while reducing encoding time by two orders of magnitude compared to baselines. We
empirically demonstrate the feasibility of our method by compressing various data modalities,
from images and audio to medical and climate data.

1 Introduction

It is estimated that several exabytes of data are created everyday (Domo, 2018). This data is comprised of a
wide variety of data modalities, each of which could benefit from compression. However, the vast majority of
work in neural compression has focused only on image and video data (Ma et al., 2019). In this paper, we
introduce a new approach for neural compression, called COIN++, which is applicable to a wide range of
data modalities, from images and audio to medical and climate data (see Figure 1).

Most neural compression algorithms are based on autoencoders (Theis et al., 2017; Ballé et al., 2018; Minnen
et al., 2018; Lee et al., 2019). An encoder maps an image to a latent representation which is quantized and
entropy coded into a bitstream. The bitstream is then transmitted to a decoder that reconstructs the image.
The parameters of the encoder and decoder are trained to jointly minimize reconstruction error, or distortion,
and the length of the compressed code, or rate. To achieve good performance, these algorithms heavily rely
on encoder and decoder architectures that are specialized to images (Cheng et al., 2020b; Xie et al., 2021;
Zou et al., 2022; Wang et al., 2022). Applying these models to new data modalities then requires designing
new encoders and decoders which is usually challenging.

Figure 1: COIN++ converts a wide range of data modalities to neural networks via optimization and then
stores the parameters of these neural networks as compressed codes for the data. Different data modalities
can be compressed by simply changing the input and output dimensions of the neural networks.

1

https://openreview.net/forum?id=NXB0rEM2Tq

Published in Transactions on Machine Learning Research (11/2022)

Recently, a new framework for neural compression, calledCOIN (COmpression with Implicit Neural
representations), was proposed which bypasses the need for specialized encoders and decoders (Dupont et al.,
2021a). Instead of compressing images directly,COIN �ts a neural network mapping pixel locations to RGB
values to an image and stores the quantized weights of this network as a compressed code for the image.
While Dupont et al. (2021a) only apply COIN to images, it holds promise for storing other data modalities.
Indeed, neural networks mapping coordinates (such as pixel locations) to features (such as RGB values),
typically called implicit neural representations (INR), have been used to represent signed distance functions
(Park et al., 2019), voxel grids (Mescheder et al., 2019), 3D scenes (Sitzmann et al., 2019; Mildenhall et al.,
2020), temperature �elds (Dupont et al., 2021b), videos (Li et al., 2021b), audio (Sitzmann et al., 2020b) and
many more. COIN -like approaches that convert data to INRs and compress these are therefore promising for
building �exible neural codecs applicable to a range of modalities.

In this paper, we identify and address several key problems withCOIN and propose a compression algorithm
applicable to multiple modalities, which we call COIN++ . More speci�cally, we identify the following issues
with COIN : 1. Encoding is slow: compressing a single image can take up to an hour,2. Lack of shared
structure: as each image is compressed independently, there is no shared information between networks,3.
Performance is well below state of the art (SOTA) image codecs. We address these issues by:1. Using
meta-learning to reduce encoding time by more than two orders of magnitude to less than a second, compared
to minutes or hours for COIN , 2. Learning a base network that encodes shared structure and applying
modulations to this network to encode instance speci�c information, 3. Quantizing and entropy coding the
modulations. While our method signi�cantly exceeds COIN both in terms of compression and speed, it only
partially closes the gap to SOTA codecs on well-studied modalities such as images. However,COIN++ is
applicable to a wide range of data modalities where traditional methods are di�cult to use, making it a
promising tool for neural compression in non-standard domains.

2 Method

In this paper, we consider compressing data that can be expressed in terms of sets of coordinatesx 2 X and
features y 2 Y . An image for example can be described by a set of pixel locationsx = (x; y) in R2 and their
corresponding RGB valuesy = (r; g; b) in f 0; 1; :::; 255g3. Similarly, an MRI scan can be described by a set of
positions in 3D spacex = (x; y; z) and an intensity value y 2 R+ . Given a single datapoint as a collection of
coordinate and feature pairsd = f (x i ; y i)gn

i =1 (for example an image as a collection ofn pixel locations and
RGB values), the COIN approach consists in �tting a neural network f � : X ! Y with parameters � to the
datapoint by minimizing

L (�; d) =
nX

i =1

kf � (x i) � y i k2: (1)

The weights � are then quantized and stored as a compressed representation of the datapointd. The neural
network f � is parameterized by a SIREN (Sitzmann et al., 2020b), i.e. an MLP with sine activation functions,
which is necessary to �t high frequency data such as natural images (Mildenhall et al., 2020; Tancik et al.,
2020b; Sitzmann et al., 2020b). More speci�cally, a SIREN layer is de�ned by an elementwisesin applied to
a hidden feature vectorh 2 Rd as

SIREN(h) = sin(! 0(W h + b)) (2)

where W 2 Rd� d is a weight matrix, b 2 Rd a bias vector and! 0 2 R+ a positive scaling factor.

While this approach is very general, there are several key issues. Firstly, as compression involves minimizing
equation 1, encoding is extremely slow. For example, compressing a single image from the Kodak dataset
(Kodak, 1991) takes nearly an hour on a 1080Ti GPU (Dupont et al., 2021a). Secondly, as each datapointd
is �tted with a separate neural network f � , there is no information shared across datapoints. This is clearly
suboptimal when several datapoints are available: natural images for example share a lot of common structure
that does not need to be repeatedly stored for each individual image. In the following sections, we show how
our proposed approach,COIN++ , addresses these problems while maintaining the generality ofCOIN .

2

Published in Transactions on Machine Learning Research (11/2022)

2.1 Storing modulations

While COIN stores each image as a separate neural network, we instead train a base network shared across
datapoints and apply modulations to this network to parameterize individual datapoints. Given a base
network, such as a multi-layer perceptron (MLP), we use FiLM layers (Perez et al., 2018), to modulate the
hidden featuresh 2 Rd of the network by applying elementwise scales 2 Rd and shifts � 2 Rd as

FiLM (h) = � h + � : (3)

Figure 2: COIN++ architecture. La-
tent modulations � (in green) are mapped
through a hypernetwork to modulations
(in blue) which are added to activations
of the base networkf � (in white) to pa-
rameterize a single function that can be
evaluated at coordinatesx to obtain fea-
tures y.

Given a �xed base MLP, we can therefore parameterize families
of neural networks by applying di�erent scales and shifts at each
layer. Each neural network function is therefore speci�ed by
a set of scales and shifts, which are collectively referred to as
modulations (Perez et al., 2018). Recently, the FiLM approach
has also been applied in the context of INRs. Chan et al. (2021)
parameterize the generator in a generative adversarial network by
a SIREN network and generate samples by applying modulations
to this network as sin(� (Wh + b) + �). Similarly, Mehta
et al. (2021) parameterize families of INRs using a scale factor via
� � sin(W h + b). Both of these approaches can be modi�ed to use
a low dimensional latent vector mapped to a set of modulations
instead of directly applying modulations. Chan et al. (2021) map
a latent vector to scales and shifts with an MLP, while Mehta et al.
(2021) map the latent vector through an MLP of the same shape
as the base network and use the hidden activations of this network
as modulations. However, we found that both of these approaches
performed poorly in terms of compressibility, requiring a large
number of modulations to achieve satisfying reconstructions.

Figure 3: By applying modulations � (1) , � (2) , � (3)

to a base network f � , we obtain di�erent functions
that can be decoded into datapointsd (1) , d (2) , d (3) by
evaluating the functions at various coordinates. While
we show images in this �gure, the same principle can
be applied to a range of data modalities.

Instead, we propose a new parameterization of mod-
ulations for INRs which, on top of yielding better
compression rates, is also more stable to train. More
speci�cally, given a base SIREN network, we only
apply shifts � 2 Rd as modulations using

sin(! 0(W h + b + �)) (4)

at every layer of the MLP. To further reduce storage,
we use a latent vector which is linearly mapped to
the modulations as shown in Figure 2. In a slight
overload of notation, we also refer to this vector as
modulations or latent modulations. Indeed, we found
empirically that using only shifts gave the same per-
formance as using both shifts and scales while using
only scales yielded considerably worse performance.
In addition, linearly mapping the latent vector to
modulations worked better than using a deep MLP
as in Chan et al. (2021). Given this parameteriza-
tion, we then store a datapoint d (such as an image)
as a set of (latent) modulations � . To decode the
datapoint, we simply evaluate the modulated base
network f � (�; �) at every coordinate x,

y = f � (x ; �) (5)

as shown in Figure 3. To �t a set of modulations �
to a datapoint d, we keep the parameters� of the

3

Published in Transactions on Machine Learning Research (11/2022)

base network �xed and minimize

L (�; �; d) =
nX

i =1

kf � (x i ; �) � y i k2 (6)

over � . In contrast to COIN , where each datapointd is stored as a separate neural networkf � , COIN++
only requires storing O(k) modulations (or less when using latents) as opposed toO(k2) weights, wherek is
the width of the MLP. In addition, this approach allows us to store shared information in the base network
and instance speci�c information in the modulations. For natural images for example, the base network
encodes structure that is common to natural images while the modulations store the information required to
reconstruct individual images.

2.2 Meta-learning modulations

Given a base networkf � , we can encode a datapointd by minimizing equation 6. However, we are still faced
with two problems: 1. We need to learn the weights� of the base network,2. Encoding a datapoint via
equation 6 is slow, requiring thousands of iterations of gradient descent.COIN++ solves both of these
problems with meta-learning.

Recently, Sitzmann et al. (2020a); Tancik et al. (2020a) have shown that applying Model-Agnostic Meta-
Learning (MAML) (Finn et al., 2017) to INRs can reduce �tting at test time to just a few gradient steps.
Instead of minimizing L (�; d) directly via gradient descent from a random initialization, we can meta-learn an
initialization � � such that minimizing L (�; d) can be done in a few gradient steps. More speci�cally, assume
we are given a dataset ofN points f d (j) gN

j =1 . Starting from an initialization � , a step of the MAML inner
loop on a datapoint d (j) is given by

� (j) = � � � r � L (�; d (j)); (7)

where � is the inner loop learning rate. We are then interested in learning a good initialization� � such that
the lossL (�; d (j)) is minimized after a few gradient steps across the entire set of datapointsf d (j) gN

j =1 . To
update the initalization � , we then perform a step of the outer loop, with an outer loop learning rate� , via

� � � � r �
P N

j =1 L (� (j) ; d (j)): (8)

In our case, MAML cannot be used directly since at test time we only �t the modulations � and not the
shared parameters� . We therefore need to meta-learn an initialization for � and � such that, given a new
datapoint, the modulations � can rapidly be computed while keeping� constant. Indeed, we only store the
modulations for each datapoint and share the parameters� across all datapoints. ForCOIN++ , a single
step of the inner loop is then given by

� (j) = � � � r � L (�; �; d (j)); (9)

where � is kept �xed. Performing the inner loop on a subset of parameters has previously been explored by
Zintgraf et al. (2019) and is referred to as CAVIA. As observed in CAVIA, meta-learning the initialization for
� is redundant as it can be absorbed into a bias parameter of the base network weights� . We therefore only
need to meta-learn the shared parameter initialization� . The update rule for the outer loop is then given by

� � � � r �
P N

j =1 L (�; � (j) ; d (j)): (10)

The inner loop then updates the modulations� while the outer loop updates the shared parameters� . This
algorithm allows us to meta-learn a base network such that each set of modulations can easily and rapidly be
�tted (see Figure 4). In practice, we �nd that as few as 3 gradient steps gives us compelling results, compared
with thousands for COIN .

2.3 Patches, quantization and entropy coding for modulations

Patches for large scale data . While meta-learning the base network allows us to rapidly encode new
datapoints into modulations, the training procedure is expensive, as MAML must take gradients through the

4

Published in Transactions on Machine Learning Research (11/2022)

Figure 4: (Left) Starting from a random initialization � , we meta-learn parameters� � of the base network
(with training progress shown as a solid line) such that modulations� can easily be �t in a few gradient steps
(with �tting shown in dashed lines). (Right) During training we sample patches randomly, while at test time
we partition the datapoint into patches and �t modulations to each patch.

inner loop (Finn et al., 2017). For large datapoints (such as high resolution images or MRI scans), this can
become prohibitively expensive. While �rst-order approximations exist (Finn et al., 2017; Nichol et al., 2018;
Rajeswaran et al., 2019), we found that they severely hindered performance. Instead, to reduce memory
usage, we split datapoints into random patches during training. For large scale images for example, we train
on 32� 32 patches. At train time, we then learn a base network such that modulations can easily be �t to
patches. At test time, we split a new image into patches and compute modulations for each of them. The
image is then represented by the set of modulations for all patches (see Figure 4). We use a similar approach
for other data modalities, e.g. MRI scans are split into 3D patches.

Quantization . While COIN quantizes the neural network weights from 32 bits to 16 bits to reduce storage,
quantizing beyond this severely hinders performance (Dupont et al., 2021a). In contrast, we �nd that
modulations are surprisingly quantizable. During meta-learning, modulations are represented by 32 bit �oats.
To quantize these to shorter bitwidths, we simply use uniform quantization. We �rst clip the modulations to
lie within 3 standard deviations of their mean. We then split this interval into 2b equally sized bins (whereb
is the number of bits). Remarkably, we found that reducing the number of bits from 32 to 5 (i.e. reducing
the number of symbols from more than109 to only 32) resulted only in small decreases in reconstruction
accuracy. Simply applying uniform quantization then improves compression by a factor of 6 at little cost in
reconstruction quality.

Entropy coding . A core component of almost all codecs is entropy coding, which allows for lossless
compression of the quantized code, using e.g. arithmetic coding (Rissanen & Langdon, 1979). This relies on
a model of the distribution of the quantized codes. As with quantization, we use a very simple approach for
modeling this distribution: we count the frequency of each quantized modulation value in the training set
and use this distribution for arithmetic coding at test time. In our experiments, this reduced storage 8-15%
at no cost in reconstruction quality. While this simple entropy coding scheme works well, we expect more
sophisticated methods to signi�cantly improve performance, which is an exciting direction for future work.

Finally, we note that we only transmit the modulations and assume the receiver has access to the shared base
network. As such, only the modulations are quantized, entropy coded and count towards the �nal compressed
�le size. This is similar to the typical neural compression setting where the receiver is assumed to have access
to the autoencoder and only the quantized and entropy coded latent vector is transmitted.

3 Related Work

Neural compression . Learned compression approaches are typically based on autoencoders that jointly
minimize rate and distortion, as initially introduced in Ballé et al. (2017); Theis et al. (2017). Ballé et al.
(2018) extend this by adding a hyperprior, while Mentzer et al. (2018); Minnen et al. (2018); Lee et al. (2019)
use an autoregressive model to improve entropy coding. Cheng et al. (2020b) improve the accuracy of the
entropy models by adding attention and Gaussian mixture models for the distribution of latent codes, while
Xie et al. (2021) use invertible convolutional layers to further enhance performance. While most of these
are optimized on traditional distortion metrics such as MSE or SSIM, other works have explored the use of

5

Published in Transactions on Machine Learning Research (11/2022)

Figure 5: (Left) Test PSNR on CIFAR10 during training using a �xed number of modulations (see appendix
for experimental details). Our method outperforms both baselines, improving PSNR by 2dB for the same
number of parameters. (Right) Comparison of using shifts, scales and scales & shifts for modulations on
MNIST (note that shifts and scales & shifts overlap). As can be seen, shifts perform signi�cantly better than
scales.

generative adversarial networks for optimizing perceptual metrics (Agustsson et al., 2019; Mentzer et al.,
2020). Neural compression has also been applied to video (Lu et al., 2019; Goli«ski et al., 2020; Agustsson
et al., 2020) and audio (Kleijn et al., 2018; Valin & Skoglund, 2019; Zeghidour et al., 2021).

Implicit neural representations and compression . In addition to COIN , several recent works have
explored the use of INRs for compression. Davies et al. (2020) encode 3D shapes with neural networks and
show that this can reduce memory usage compared with traditional decimated meshes. Chen et al. (2021)
represent videos by convolutional neural networks that take as input a time index and output a frame in
the video. By pruning, quantizing and entropy coding the weights of this network, the authors achieve
compression performance close to standard video codecs. Lee et al. (2021) meta-learn sparse and parameter
e�cient initializations for INRs and show that this can reduce the number of parameters required to store
an image at a given reconstruction quality, although it is not yet competitive with image codecs such as
JPEG. Lu et al. (2021); Isik et al. (2021) explore the use of INRs for volumetric compression. Zhang et al.
(2021) compress frames in videos using INRs (which are quantized and entropy coded) while learning a �ow
warping to model di�erences between frames. Results on video benchmarks are promising although the
performance still lags behind standard video codecs. In concurrent work, Strümpler et al. (2021) propose
a method for image compression with INRs which is closely related to ours. The authors also meta-learn
an MLP initialization and subsequently quantize and entropy code the weights of MLPs �tted to images,
leading to large performance gains overCOIN . In particular, for large scale images their method signi�cantly
outperforms both COIN and COIN++ as they do not use patches. However, their approach still requires
tens of thousands of iterations at test time to fully converge, unlike ours which requires 10 iterations (three
orders of magnitude faster). Further, the authors do not employ modulations but directly learn the weights of
the MLPs at test time. Finally, unlike our work, their approach is not applied to a wide range of modalities,
including audio, medical and climate data. Indeed, to the best of our knowledge, none of these works have
considered INRs for building a uni�ed compression framework across data modalities.

4 Experiments

We evaluateCOIN++ on four data modalities: images, audio, medical data and climate data. We implement
all models in PyTorch (Paszke et al., 2019) and train on a single GPU. We use SGD for the inner loop with
a learning rate of 1e-2 and Adam for the outer loop with a learning rate of 1e-6 or 3e-6. We normalize
coordinatesx to lie in [� 1; 1] and featuresy to lie in [0; 1]. Full experimental details required to reproduce
all the results can be found in the appendix. We train COIN++ using MSE between the compressed and
ground truth data. As is standard, we measure reconstruction performance (or distortion) using PSNR
(in dB), which is de�ned as PSNR = � 10log10(MSE). We measure the size of the compressed data (or

6

Published in Transactions on Machine Learning Research (11/2022)

Original COIN++ Residual BPG Residual

Figure 6: (Left) Rate distortion plot on CIFAR10. COIN++ outperforms COIN, JPEG and JPEG2000
while partially closing the gap to state of the art codecs. (Right) Qualitative comparison of compression
artifacts for models at similar reconstruction quality. COIN++ achieves 32.4dB at 3.29 bpp while BPG
achieves 31.9dB at 1.88 bpp.

rate) in terms of bits-per-pixel (bpp) which is given by number of bits
number of pixels

1 and kilobits per second (kpbs) for
audio. We benchmark COIN++ against a large number of baselines including standard image codecs -
JPEG (Wallace, 1992), JPEG2000 (Skodras et al., 2001), BPG (Bellard, 2014) and VTM (Bross et al.,
2021) - autoencoder based neural compression - BMS (Ballé et al., 2018), MBT (Minnen et al., 2018)
and CST (Cheng et al., 2020b) - standard audio codecs - MP3 (MP3, 1993) - andCOIN (Dupont et al.,
2021a). For clarity, we use consistent colors for di�erent codecs and plot learned codecs with solid lines and
standard codecs with dashed lines. The code to reproduce all experiments in the paper can be found at
https://github.com/EmilienDupont/coinpp .

4.1 Comparisons to other INR parameterizations

We �rst compare our parameterization of INRs with the methods proposed by Chan et al. (2021) and Mehta
et al. (2021) as described in Section 2.1. As can be seen in Figure 5, our method signi�cantly outperforms
both in terms of compressibility, improving PSNR by 2dB with the same number of parameters2. Further,
using shift modulations is more e�ective than using scales and shifts, and performs signi�cantly better than
scales alone. We also note that our method allows us to quickly �t INRs using only a few hundred parameters.
This is in contrast to existing works on meta-learning for INRs (Sitzmann et al., 2020a; Tancik et al., 2020a),
which typically require �tting 3 orders of magnitude more parameters at test time.

4.2 Images: CIFAR10

We train COIN++ on CIFAR10 using 128, 256, 384, 512, 768 and 1024 latent modulations. As can be seen
in Figure 6, COIN++ vastly outperforms COIN , JPEG and JPEG2000 while partially closing the gap to
BPG, particularly at low bitrates. To the best of our knowledge, this is the �rst time compression with
INRs has outperformed image codecs like JPEG2000. Part of the gap betweenCOIN++ and SOTA codecs
(BMS, CST) is likely due to entropy coding: we use the simple scheme described in Section 2.3, while BMS
and CST use deep generative models. We hypothesize that using deep entropy coding for the modulations
would signi�cantly reduce this gap. Figure 6 shows qualitative comparisons between our model and BPG to
highlight the types of compression artifacts obtained with COIN++ . In order to thoroughly analyse and
evaluate each component ofCOIN++ , we perform a number of ablation studies.

Quantization bitwidth . Quantizing the modulations to a lower bitwidth yields more compressed codes at
the cost of reconstruction accuracy. To understand the tradeo� between these, we show rate distortion plots
when quantizing from 3 to 8 bits in Figure 7a. As can be seen, the optimal bitwidths are surprisingly low:

1For non image data a �pixel� corresponds to a single dimension of the data.
2Despite signi�cant experimental e�ort, we were unable to achieve better performance using meta-learning with Mehta et al.

(2021).

7

Published in Transactions on Machine Learning Research (11/2022)

(a) (b)

(c) (d)

Figure 7: (a) Rate distortion plot on CIFAR10 when quantizing the modulations � to various bitwidths.
As can be seen, using 5 or 6 bits is optimal. (b) Drop in PSNR forCOIN and COIN++ quantization.
COIN++ is signi�cantly more robust to quantization. (c) Drop in PSNR when quantizing the modulations
� to various bitwidths, for various latent dimensions. Larger latent dimensions have larger drops in PSNR.
(d) E�ect of of quantization (to 5 bits) and entropy coding on CIFAR10. As can be seen, both quantization
and entropy coding improve rate distortion performance.

5 bits is optimal at low bitrates while 6 is optimal at higher bitrates. Qualitative artifacts obtained from
quantizing the modulations are shown in Figure 14 in the appendix.

Quantization COINvs COIN++ . We compare the drop in PSNR due to quantization forCOIN and
COIN++ in Figure 7b. As can be seen, modulations are remarkably quantizable: when quantizing the
COIN weights directly, performance decreases signi�cantly around 14 bits, whereas quantizing modulations
yields small drops in PSNR even when using 5 bits. However, as shown in Figure 7c, the drop in PSNR from
quantization is larger for larger models.

Entropy coding . Figure 7d shows rate distortion plots for full precision, quantized and entropy coded
modulations. As can be seen, both quantization and entropy coding signi�cantly improve performance.

Encoding/decoding speed . Table 1 shows the average encoding and decoding time for BPG,COIN and
COIN++ on CIFAR10. As BPG runs on CPU while COIN and COIN++ run on GPU, these times are
not directly comparable. However, we follow standard practice in the literature and run all neural codecs on
GPU and standard codecs on CPU (see appendix B.1 for hardware details). In terms of encoding,COIN++
compresses images 300� faster than COIN while achieving a 4� better compression rate. Note that these
results are obtained from compressing each image separately. When using batches of images, we can compress
the entire CIFAR10 test set (10k images) in 4mins when using 10 inner loop steps (and in just over a minute
when using 3 steps). In addition, as shown in Figure 15 in the appendix,COIN++ requires only 3 gradient
steps to reach the same performance asCOIN does in 10,000 steps, while using 4� less storage. In terms of
decoding,COIN++ is slower than COIN as it uses a larger shared network and entropy coding. However,
decoding with COIN++ remains fast (on the order of a millisecond).

8

Published in Transactions on Machine Learning Research (11/2022)

BPG COIN COIN++
Encoding (ms) 5.19 2:97� 104 94.9
Decoding (ms) 1.25 0.46 1.29

Table 1: Average encoding and decoding time on CIFAR10 for BPG,COIN and COIN++ . As can be seen,
COIN++ encodes images orders of magnitude faster than COIN, while only being marginally slower than
BPG at decoding time.

Original COIN++ Residual

Figure 8: (Left) Rate distortion plot on ERA5. COIN++ vastly outperforms all baselines. (Right) COIN++
compression artifacts on ERA5. See appendix E.5 for more samples.

4.3 Climate data: ERA5 global temperature measurements

To demonstrate the �exibility of our approach, we also useCOIN++ to compress data lying on a manifold.
We use global temperature measurements from the ERA5 dataset (Hersbach et al., 2019) with the processing
and splits from Dupont et al. (2021b). The dataset contains 8510 train and 2420 test globes of size
46� 90, with temperature measurements at equally spaced latitudes� and longitudes ' on the Earth
from 1979 to 2020. To model this data, we follow Dupont et al. (2021b) and use spherical coordinates
x = (cos� cos'; cos� sin '; sin �) for the inputs. As a baseline, we compareCOIN++ against JPEG,
JPEG2000 and BPG applied to �at map projections of the data. As can be seen in Figure 8,COIN++
vastly outperforms all baselines. These strong results highlight the versatility of theCOIN++ approach:
unlike traditional codecs and autoencoder based methods (which would require spherical convolutions for
the encoder), we can easily apply our method to a wide range of data modalities, including data lying on a
manifold. Indeed, COIN++ achieves a 3000� compression rate while having an RMSE of 0.5� C, highlighting
the potential for compressing climate data. More generally, it is likely that many highly compressible data
modalities are not compressed in practice, simply because an applicable codec does not exist. We hope the
�exibility of COIN++ will help make neural compression more generally applicable to such modalities.

We also note that very few baselines exist for compressing data on manifolds. A notable exception is McEwen
et al. (2011) which builds a codec analogous to JPEG2000 by using wavelet transforms on the sphere. However,
their method is not likely to outperform ours as it is not a learned codec and so cannot take advantage of the
low entropy of the climate data. Further, their method is only applicable to the sphere, while our method is
applicable to any manifold where a coordinate system can be de�ned to pass as input to the INR. Finally, we
note that, while autoencoder based methods may be able to outperformCOIN++ on this data modality,
building such an autoencoder would require a non-trivial amount of work (including the use of spherical
convolutions both for the encoder/decoder and hyperprior). In contrast, with COIN++ we simply change
the input coordinates.

9

	Introduction
	Method
	Storing modulations
	Meta-learning modulations
	Patches, quantization and entropy coding for modulations

	Related Work
	Experiments
	Comparisons to other INR parameterizations
	Images: CIFAR10
	Climate data: ERA5 global temperature measurements
	Compression with patches

	Conclusion, limitations and future work
	Dataset details
	Vimeo90k
	FastMRI
	ERA5
	LibriSpeech

	Experimental details
	CIFAR10
	Kodak and Vimeo90k
	FastMRI
	ERA5
	LibriSpeech

	Figure details
	Things we tried that didn't work
	Additional results
	Meta-learning curves
	CIFAR10 ablations
	Qualitative quantization results
	Encoding curves
	Additional qualitative results

