Session: Exploiting GPUs

HPDC ’20, June 23-26, 2020, Stockholm, Sweden

gRemote: API-Forwarding Powered Cloud Rendering

Dongjie Tang, Yun Wang, Linsheng Li
Shanghai Jiao Tong University
Shanghai, China
{018033210001,yunwang94,lilinsheng1}@sjtu.edu.cn

Xue Liu
McGill University
Montreal, Canada

xueliu@cs.mcgill.ca

ABSTRACT

Traditional GPU resource allocation approaches, widely adopted
in today’s data centers, only focus on the server-side functions
while ignoring the client-side. These approaches waste client-side
hardware resources. To solve this problem, remote API-forwarding
architectures appear. Through running applications on the client-
side, remote API-forwarding architectures offload some workloads
to the client. However, many remote API-forwarding systems
suffer from one big issue: shared-resource interference, stemming
from two reasons: (a) GPU resource racing caused by resource
overuse for a single client, and (b) CPU resource racing caused
by resource shortage among clients. This paper presents gRemote,
an open-source GPU-remoting system that can address this issue.
To mitigate the CPU resource shortage, gRemote improves CPU
configurations by expanding CPU resources from the server-side
to both server- and client-side. To maintain the reasonable GPU
usage for individual tasks, we innovate a new resource-sharing
mechanism called GPU throttle. gRemote supports 1,228 OpenGL
commands with around 10% shared-resource interference.

KEYWORDS
gRemote, Cloud Rendering, API-Forwarding, OpenGL

ACM Reference Format:

Dongjie Tang, Yun Wang, Linsheng Li, Jiacheng Ma, Xue Liu, and Zhengwei
Qi, Haibing Guan. 2020. gRemote: API-Forwarding Powered Cloud Render-
ing. In Proceedings of the 29th International Symposium on High-Performance
Parallel and Distributed Computing (HPDC ’20), June 23-26, 2020, Stockholm,
Sweden. ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3369583.
3392676

1 INTRODUCTION

With the rapid development of computing resources in personal
devices, leaving all workloads to servers is not the only choice.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

HPDC °20, June 23-26, 2020, Stockholm, Sweden

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7052-3/20/06....$15.00
https://doi.org/10.1145/3369583.3392676

197

Jiacheng Ma
University of Michigan
Michigan, USA
jema@umich.edu

Zhengwei Qi, Haibing Guan
Shanghai Jiao Tong University
Shanghai, China
{qizhwei,hbguan}@sjtu.edu.cn

Unlike the thin-client architecture! pushing the entire application to
the server, the API-forwarding architecture only pushes acceleration
tasks to the cloud. Thus, the remote API-forwarding system has the
potential to fully utilize the client-side resources and offers GPU
acceleration for both intra-cloud and cloud-edge scenarios, making
itself an alternative of the thin-client architecture. In this paper, we
focus on optimizing this architecture.

Previous work on API-forwarding systems either focuses on
GPGPU computation (e.g., tCUDA [1]), or optimization of command
and data transmission (e.g., LiveRender [6]). Thus, the problem of
shared-resource interference, which hurts the performance of API-
forwarding powered cloud rendering systems, remains unsolved.
Shared-resource interference is a scenario that applications race
for resources on the server. It stems from one of the two aspects:
(a) GPU resource racing, and (b) CPU resource racing. GPU resource
racing happens when the GPU resource is rich enough; with an
ineffective sharing method, one of the applications sharing the
same GPU may overuse the whole GPU. This behavior may hurt
the performance of other applications. CPU resource racing happens
when the CPU resource becomes fully-utilized; in this scenario,
applications on the server race for resources to perform CPU-
related tasks (e.g., transferring commands to standard GPU APIs
and compressing frames). Although there are mechanisms [5, 7]
seeking to solve the resource-sharing problem by putting different
applications onto one server, none of them works on remote API-
forwarding systems.

This paper presents gRemote, the first open-source remote API-
forwarding system for cloud rendering that can mitigate shared-
resource interference. To containerize each application within a
reasonable GPU usage, gRemote proposes GPU throttle, a technique
that helps to share a GPU resource evenly among different rendering
workloads. To alleviate CPU resource racing, gRemote reduces the
server-side CPU resource requirement by forwarding only GPU-
related APIs rather than all graphics commands, leaving as many
CPU tasks done in the client-side as possible. Through network
transmission, clients and servers work together to complete each
task. We call this behavior cloud-edge cooperation.

2 MOTIVATION

In this section, we describe the motivation of gRemote and
demonstrate the problem of shared-resource interference.

1Xbox Play Anywhere. https://www.xbox.com/en-SG/games/xbox-play-anywhere

https://doi.org/10.1145/3369583.3392676
https://doi.org/10.1145/3369583.3392676
https://doi.org/10.1145/3369583.3392676

Session: Exploiting GPUs

B 1client EEE 2clients M 4clients
100
= 90
8 %0
S 70
§ 60
« 50
S 40
> 30
£ 2
10
0
blender dinoshade scube spot glxgears

(a) Performance variation for different applications

HPDC ’20, June 23-26, 2020, Stockholm, Sweden

B 1 client Bl 2 clients Il 4 clients
< 100
o)
% 80
3217
g 60
5 50
2 40
& 30
o 20
& 10
0 blender dinoshade scube spot glxgears

(b) GPU resource ratio taken by different applications

Figure 1: Performance degradation under the intra-cloud scenario

2.1 Inefficiency of GPU Resource Sharing

We conducted the experiments on two machines: one configured
with Nvidia Geforce 1050 Ti as the server and the other without
any dedicated graphics card as the client. Both machines are
configured with RDMA. As shown in Fig. 1 (a), we choose four
applications: glxgears widely used in previous research [2, 3], and
three microbenchmarks from the OpenGL official site?. We take
FPS, a well-recognized metric [7] to measure the performance of
graphics applications and nvidia-smi ® to measure the GPU usage.
Due to different FPS values of different benchmarks, we take the FPS
of every single application as 100% and normalize the remaining
values based on this FPS for the same application. In this experiment,
we make sure hardware resources are rich enough to handle these
tasks.

Despite rich hardware resources, performance degradation
happens when the number of clients increases. The biggest drop
happens when client number increases from 1 to 2, reaching more
than 60%. Glxgears even has more than 80% loss. Thus, performance
degradation appears even if hardware resources are rich enough.

We monitor the hardware status when running four applications.
As shown in Fig. 1 (b), even if different applications have different
GPU resource requirements to meet its QoS (around 30 FPS ~
60 FPS), GPU resources are almost fully-utilized, leading to an
unreasonable high FPS (e.g., blender reaches more than 10000 FPS).
A new application tends to steal resources from the original one
and causes great performance loss.

Based on these experiments, we conclude that without an
effective sharing mechanism, each application tends to overuse
the entire GPU resource and causes performance degradation when
anew application arrives. This kind of shared-resource interference
happens when hardware resources are enough.

2.2 CPU Resource Bottleneck

Another type of shared-resource interference comes when the CPU
resource is fully utilized.

Algorithm 1 shows the execution steps of applications, except
for PipelineCreated and GPURendering, the remaining tasks belong

Zhttps://www.khronos.org/opengl/wiki/Code_Resources
3https://developer.nvidia.com/nvidia-system-management-interface

198

System_call_IOProcessing();

TransCommands_to_GPU();

Context_establish_Initialization();

while true do
PipelineCreated_FrameSetup();
GPURendering_BufferReady();
Present();

end

Algorithm 1: Workloads of Rendering Applications

to the CPU. Furthermore, for some special applications includ-
ing human-interactive ones, IOProcessing is required periodically,
which means that the CPU needs to handle more workloads.

Based on the workload distributions, all rendering tasks require
more CPU than GPU. However, current remote API-forwarding
systems tend to forward all rendering commands to the cloud. Many
of them are done by CPU including context creation and command
translations. Thus, the server-side CPU is still overwhelmed. Many
remote API-forwarding systems intensify the CPU bottleneck issue
by allowing multiple applications to share on one server.

Thus, gRemote goes one further step to improve CPU resources
for each application. At the same time, gRemote innovates its
mechanism to avoid GPU racing happen.

3 ARCHITECTURE

In this section, we present the whole architecture of gRemote
and discuss how gRemote lowers resource-sharing interference
from two aspects: 1) alleviating the server-side CPU bottleneck; 2)
containerizing each application within a reasonable GPU usage. As
shown in Fig. 2, gRemote can be divided into two parts: computing
part (client-side) and rendering part (server-side). The computing
side includes graphics context establishment and commands trans-
lations. Rendering side incorporates 2D or 3D graphics rendering
and pipeline creation. On the computing part, gRemote leaves as
many CPU workloads as possible to mitigate CPU racing caused by
CPU shortage. On the rendering part, gRemote uses GPU throttle, a
resource-sharing mechanism, to minimize GPU racing caused by
GPU resource overuse.

Session: Exploiting GPUs

—_— e o — — — ————

Computing Side

(Library Stub) App |
@ O¥
Compressor API Router | |

[oX ! ek]
Computing CPU

Command

Buffer

Command stream

HPDC ’20, June 23-26, 2020, Stockholm, Sweden

(Original Stack] [Command Stack]

________________ ~

| Rendering Side |

:[vGPU1 | [vGPU2 | eee [vGPUN]:

)
I

Frame
Buffer [
-/

l Library Proxy/GPU Throttle

(Ethernet/RDMA)

Figure 2: The detailed architecture of gRemote

3.1 Client-Side Architecture

Instead of exhausting every effort to save tiny server-side CPU
resources, gRemote offloads CPU-computing tasks to the client-side.
Through cooperation between the cloud and the edge, gRemote
greatly mitigates the server-side CPU pressure.

API Router: gRemote provides an API router, responsible for
dividing applications into two parts: the computing part and
the rendering part. Through the API router, these two parts are
dispatched to different places. For instance, computing workloads
leave on the client-side; rendering workloads are remoted to the
server-side. Instead of sending all rendering commands to the
server-side immediately, gRemote leaves them on the local-side.

Command Buffer: Instead of transmitting commands one by
one, gRemote establishes a command buffer as a transmitting unit.
gRemote stores all the prepared commands into the buffer. Then,
gRemote sends it to the library stub.

Library Stub: In gRemote, library stub divides applications
further into the GPU-related part and the CPU-related part. Even
though the API router already did application divisions, there are
still many CPU workloads left (e.g., context establishment, window
setting, and I/O processing). Thus, we leave these to the computing
side locally and send the rest to servers after compression.

However, gRemote cannot eliminate CPU workloads on the
server-side because applications still need CPU to drive GPU and
GPU still needs CPU to process standard OpenGL commands
to GPU-recognized ones. Besides minimizing server-side CPU
requirements, such a behavior saves the server-side execution time,
paving a way for more clients using one hardware resource.

3.2 Server-Side Architecture

Besides the CPU resource bottleneck, another reason causing
shared-resource interference comes from GPU resource overuse.
We will analyze why GPU resource overuse appears and how GPU
Throttle solves it.

For many rendering applications, execution time completely
depends on user behaviors. However, without effective methods,
the speed mismatch between frame creation and rendering [4]
makes GPU use more cores to cover. Thus, any application can take
almost all the GPU resources and force new applications to steal

199

Input: [Qlow , Qhigh], sched_interval

sync frame of client;;
T = CalcTimeSpent();
if T > sched_interval then
FPS|[client;] = GetFPS(client;);
while FPS[client;] not belong to [Qlow, Qhigh] do
Readjust frame creation speed;
if failed allocation then
FPS|[client;] =0;
Response_value[client;]=0;
end

end
end
Yield();

Algorithm 2: GPU Throttle

resources. Such a stealing behavior causes original applications
to lose resources without any notification, leading to serious
performance degradation.

Based on the GPU characteristics, we propose our mechanism:
GPU throttle, dynamically containerizing resources based on current
resource usage of each client and its QoS. As shown in Algorithm 2,
GPU throttle uses FPS as a signal to control the GPU usage of each
client. Since it is hard to regulate the speed of one application to
a certain value, we establish a speed range (Qlow ~ Qhigh). Qlow
means the QoS of each application and Qhigh means the 1.2*QoS of
each application. As long as FPS falls into that range, GPU throttle
sends a success signal. Otherwise, it fails. Based on the analysis
before, when FPS does not fall into the speed range, GPU throttle
adjusts the speed of frame creation until it succeeds. There is one
failing case that the application fails to reach its Qlow without
any speed reduction. In that case, GPU throttle will not spare any
resource to that application and set FPS to 0.

GPU Throttle isolates different instances using vGPUs of various
sizes, independent from hardware and operating systems. From the
server-side, each vGPU represents a client’s requirement.

Session: Exploiting GPUs

—=— gRemote

—=— gRemote_base

HPDC ’20, June 23-26, 2020, Stockholm, Sweden

—— Amazon Elastic GPU

Blender Dinoshade Scube Spot
120 120 120
120
2 100 = 100 = 100 2 100
k3 8 g 8
S g0 S 80 S 80 S 80
L5 5)]
= = = =
S 601 S 60 S 60 S e
(=] (=] (=} =}
B 401 & 40 B 40 B 40
z z z z
£ 204 & 20 & 20 20
0 0 0 0
01 2 4 6 8 10 01 2 4 6 8 10 01 2 4 6 8 10 0 1 2 4 6 8 10
Number of Blender Number of Dinoshade Number of Scube Number of Spot
Stars Surfgrid Glxgears Drawelements
120 120 120
— 1207 — — —
B 2 100 2 100 2 100
& 1001 & ke 8
S S 80 S 80 S 80
g ™ g g g
s | S 60 S 60 S 60
5 s s s
& o) g o £ g
1°¢] 1°¢] %2} %2}
& 20 20 & 20 & 20
0 0 0 0
0 1 2 4 6 8 10 01 2 4 6 8 10 0 1 2 4 6 8 10 0 1 2 4 6 8 10

Number of Stars Number of Surfgrid

Number of Glxgears Number of Drawelements

Figure 3: Performance interference of multi-clients among gRemote, gRemote_base, and Amazon Elastic GPU

4 EVALUATION

In this section, we evaluate gRemote to see the shared-resource
interference and hardware usage of one application.

4.1 Experimental Setup

Hardware configuration: gRemote has two components: a
gRemote server (for rendering and streaming videos), a gRemote
client (for sending graphic commands and showing results). We
establish a gRemote server with one NVIDIA 1060 and Intel Core
i5. We configure a gRemote client only with Intel Core i5.

Baseline: To make sure the fairness and comprehensiveness,
we take two baselines: gRemote_base, a traditional remote API-
forwarding system(i.e., without GPU throttle and CPU resource
improvement) and Amazon Elastic GPU (a closed-source and state-
of-art commercial product which has similar targets with gRemote).

Benchmarks: We use 8 benchmarks to evaluate gRemote,
gRemote_base, and Amazon Elastic GPU: 6 micro-benchmarks
obtained from OpenGL official site and 2 famous benchmarks,
glxgears and drawelements.

—eB--

gRemote GPU

Il gRemote_base (CPU)
I gRemote (CPU)

@ N ® 0
S © S S

GPU Utilization(%)

50

CPU Utilization(%)

Figure 4: The optimization of hardware utilization

200

4.2 Shared-resource Interference

To evaluate performance interference in gRemote, Amazon Elastic
GPU, and gRemote_base, we take FPS as a metric. However, we do
not directly use real FPS values because Amazon Elastic GPU is
closed-source and no technical information can be obtained from its
server-side. Thus, we take FPS of every single application as 100%
and normalize the remaining values based on this FPS for the same
application. Fig. 3 presents the comparing results. For gRemote, the
performance variation from the different numbers of applications
is within 10%. For Amazon Elastic GPU and gRemote_base, when
clients number exceeds 2, the performance loss appears. There are
two exceptions in Fig. 3. For Stars applications in the Amazon part,
FPS of a single one is worse than that of two applications because
data caching speeds up the whole execution [4]. For drawelements,
it has its mechanisms to do resource control. Thus, gRemote doesn’t
do anything for this benchmark.

Fig. 4 presents the hardware resource usage of a single applica-
tion in gRemote and gRemote_base.

Because no server information can be obtained from Amazon
Elastic GPU, we only represent the hardware usage of gRemote
and gRemote_base. On the CPU part, we can see the optimization
brought by gRemote. In the gRemote_base, all the applications, both
micro and macro ones, tend to occupy more than 50% of CPU.
Through offloading the server-side CPU workloads to the client-
side, gRemote lowers the CPU usage by more than 60%. On the GPU
part, instead of maximizing GPU resources for each application,
GPU throttle containerizes each application within a reasonable
GPU part to meet the QoS of each application.

ACKNOWLEDGEMENT

Thanks for the help from our shepherd: Douglas Thain. This work
was supported in part by National Key Research & Development
Program of China (No.2016YFB1000502), National NSF of China
(NO. 61672344, 61525204, 61732010), and Shanghai Key Laboratory
of Scalable Computing and Systems.

Session: Exploiting GPUs

REFERENCES

[1] José Duato, Antonio J. Pefia, Federico Silla, Rafael Mayo, and Enrique S. Quintana-
Orti. 2010. rCUDA: Reducing the number of GPU-based accelerators in high
performance clusters. In Proceedings of the 2010 International Conference on High
Performance Computing & Simulation, HPCS 2010, June 28 - July 2, 2010, Caen,
France, Waleed W. Smari and John P. McIntire (Eds.). IEEE, 224-231. https:
//doi.org/10.1109/HPCS.2010.5547126

Cheol-Ho Hong, Ivor T. A. Spence, and Dimitrios S. Nikolopoulos. 2017. FairGV:
Fair and Fast GPU Virtualization. IEEE Trans. Parallel Distrib. Syst. 28, 12 (2017),
3472-3485. https://doi.org/10.1109/TPDS.2017.2717908

Greg Humphreys, Mike Houston, Ren Ng, Randall Frank, Sean Ahern, Peter D.
Kirchner, and James T. Klosowski. 2002. Chromium: a stream-processing
framework for interactive rendering on clusters. ACM Trans. Graph. 21, 3 (2002),
693-702. https://doi.org/10.1145/566654.566639

&,

=

201

HPDC ’20, June 23-26, 2020, Stockholm, Sweden

[4] John Kessenich, Graham Sellers, and Dave Shreiner. 2016. OpenGL Programming
Guide: The Official Guide to Learning Opengl, Version 4.5 with Spir-V. Addison-
Wesley.

[5] Yusen Li, Chuxu Shan, Ruobing Chen, Xueyan Tang, Wentong Cai, Shanjiang
Tang, Xiaoguang Liu, Gang Wang, Xiaoli Gong, and Ying Zhang. 2019. GAugur:
Quantifying Performance Interference of Colocated Games for Improving Resource
Utilization in Cloud Gaming. In Proceedings of the 28th International Symposium
on High-Performance Parallel and Distributed Computing - HPDC °19. 231-242.

[6] LiLin, Xiaofei Liao, Guang Tan, Hai Jin, Xiaobin Yang, Wei Zhang, and Bo Li. 2014.
LiveRender: A Cloud Gaming System Based on Compressed Graphics Streaming.
In Proceedings of the 22nd ACM international conference on Multimedia. 347-356.

[7] Miao Yu, Chao Zhang, Zhengwei Qi, Jianguo Yao, Yin Wang, and Haibing Guan.
2013. VGRIS: virtualized GPU resource isolation and scheduling in cloud gaming.
In The 22nd International Symposium on High-Performance Parallel and Distributed
Computing, HPDC’13, New York, NY, USA - June 17 - 21, 2013, Manish Parashar,
Jon B. Weissman, Dick H. J. Epema, and Renato J. O. Figueiredo (Eds.). ACM,
203-214. https://dl.acm.org/citation.cfm?id=2462914

https://doi.org/10.1109/HPCS.2010.5547126
https://doi.org/10.1109/HPCS.2010.5547126
https://doi.org/10.1109/TPDS.2017.2717908
https://doi.org/10.1145/566654.566639
https://dl.acm.org/citation.cfm?id=2462914

	Abstract
	1 Introduction
	2 Motivation
	2.1 Inefficiency of GPU Resource Sharing
	2.2 CPU Resource Bottleneck

	3 Architecture
	3.1 Client-Side Architecture
	3.2 Server-Side Architecture

	4 Evaluation
	4.1 Experimental Setup
	4.2 Shared-resource Interference

	References

