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Abstract

Policy gradient methods can solve complex tasks but often fail when the dimension-
ality of the action-space or objective multiplicity grow very large. This occurs, in
part, because the variance on score-based gradient estimators scales quadratically.
In this paper, we address this problem through a factor baseline which exploits in-
dependence structure encoded in a novel action-target influence network. Factored
policy gradients (FPGs), which follow, provide a common framework for analysing
key state-of-the-art algorithms, are shown to generalise traditional policy gradients,
and yield a principled way of incorporating prior knowledge of a problem domain’s
generative processes. We provide an analysis of the proposed estimator and iden-
tify the conditions under which variance is reduced. The algorithmic aspects of
FPGs are discussed, including optimal policy factorisation, as characterised by
minimum biclique coverings, and the implications for the bias-variance trade-off
of incorrectly specifying the network. Finally, we demonstrate the performance
advantages of our algorithm on large-scale bandit and traffic intersection problems,
providing a novel contribution to the latter in the form of a spatial approximation.

1 Introduction

Many sequential decision-making problems in the real-world have objectives that can be naturally
decomposed into a set of conditionally independent targets. Control of water reservoirs, energy
consumption optimisation, market making, cloud computing allocation, sewage flow systems, and
robotics are but a few examples [36]. While many optimisation methods have been proposed [25, 34]
— perhaps most prominently using Lagrangian scalarisation [46] — multi-agent learning has emerged
as a promising new paradigm for sample-efficient learning [6]. In this class of algorithms, the
multi-objective learning problem is cast into a centralised, co-operative stochastic game in which
co-ordination is achieved through global coupling terms in each agent’s objective/reward functions.
For example, a grocer who must manage their stock could be decomposed into a collection of sub-
agents that each manage a single type of produce, but are subject to a global constraint on inventory.
This approach has been shown to be very effective in a number of domains [20, 50, 30, 24, 52], but
presents both conceptual and technical issues.

The transformation of a multi-objective Markov decision process (MOMDP) [36] into a stochastic
game is a non-trivial design challenge. In many cases there is no clear delineation between agents
in the new system, nor an established way of performing the decomposition. What’s more, it’s
unclear in many domains that a multi-agent perspective is appropriate, even as a technical trick. For
example, the concurrent problems studied by Silver et al. [39] exhibit great levels of homogeneity,
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lending themselves to the use of a shared policy which conditions on contextual information. The
key challenge that we address in this paper is precisely how to scale these single-agent methods —
specifically, policy gradients — in a principled way. As we shall see, this study reveals that existing
methods in both single- and multi-agent multi-objective optimisation can be formulated as special
cases of a wider family of algorithms we entitle factored policy gradients. The contributions of this
paper are summarised below:

1. We introduce influence networks as a framework for modelling probabilistic relationships
between actions and objectives in an MOMDP, and show how they can be combined with
policy factorisation via graph partitioning.

2. We propose a new control variate — the factor baseline — that exploits independence
structures within a (factored) influence network, and show how this gives rise to a novel
class of algorithms to which we ascribe the name factored policy gradients.

3. We show that FPGs generalise traditional policy gradient estimators and provide a com-
mon framework for analysing state-of-the-art algorithms in the literature including action-
dependent baselines and counterfactual policy gradients.

4. The variance properties of our family of algorithms are studied, and minimum factorisation
is put forward as a principled way of applying FPGs, with theoretical results around the
existence and uniqueness of the characterisation.

5. The final contribution is to illustrate the effectiveness of our approach over traditional
estimators on two high-dimensional benchmark domains.

1.1 Related Work

Policy gradients. Variance reduction techniques in the context of policy gradient methods have been
studied for some time. The seminal work of Konda and Tsitsiklis [19] was one of the earliest works
that identified the use of a critic as beneficial for learning. Since then, baselines (or, control variates)
have received much attention. In 2001, Weaver and Tao [53] presented the first formal analysis of
their properties, and later Greensmith et al. [13] proved several key results around optimality. More
recently, these techniques have been extended to include action-dependent baselines [47, 22, 12, 57, 9],
though the source of their apparent success has been questioned by some [49] who suggest that
subtle implementation details were the true driver. It has also been shown that one can reduce
variance by better accounting for the structure of the action-space, such as bounds [4, 10] or more
general topological properties [7]. The SVRPG approach of Papini et al. [29] also addresses variance
concerns in policy gradients by leveraging advances in supervised learning, and the generalised
advantage estimator of Schulman et al. [37] has been proposed as a method for reducing variance in
actor-critic methods with fantastic empirical results; both of these can be combined with baselines
and the techniques we present in this work. Factorisation. In a related, but distinct line of work,
factorisation has been proposed to better leverage the transition structure of MDPs; see e.g. [2, 15, 44].
Indeed, the notion of causality has also been utilised in work by Jonsson and Barto [16]. Most
recently, Oliehoek et al. [27] presented an elegant framework for harnessing the influence of other
agents (from the perspective of self) in multi-agent systems. This approach is complementary to the
work presented in this paper, and more recent extensions have significantly advanced the state-of-the-
art [41, 5, 28]; we build upon these principles. There is also a long line of research on “influence
diagrams” that is pertinent to this work. While the majority of this effort has been focused on
dynamic programming, the ideas are very closely related to ours and indeed we see this work as a
natural extension of these concepts [45]. Miscellaneous. Causal/graphical modelling has seen past
applications in reinforcement learning [11]. Indeed, our proposed influence network is related to, but
distinct from, the action influence models introduced by Madumal et al. [23] for explainability. There,
the intention was to construct policies that can justify actions with respect to the observation space.
Here, the intention was to exploit independence structure in MOMDPs for scalability and efficiency.

2 Background

A regular discrete-time Markov decision process (MDP) is a tupleM .
= (S,A,R, p, p0), comprising:

a state space S , action space A, and set of rewardsR ⊆ R. The dynamics of the MDP are driven by
an initial state distribution such that s0 ∼ p0(·) and a stationary transition kernel where (rt, st+1) ∼
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p(·, · | st,at) satisfies the Markov property, p(rt, st+1 |ht) = p(rt, st+1 | st,at), for any history
ht

.
= (s0,a0, r0, s1, . . . , st,at). Given an MDP, a (stochastic) policy, parameterised by θ ∈ Rn, is

a mapping πθ : S × Rn → P(A) from states and weights to the set of probability measures on A.
The conditional probability density of an action a is denoted by πθ(a | s) .

= P(a ∈ da | s,θ) and we
assume throughout that πθ is continuously differentiable with respect to θ. For a given policy, the
return starting from time t is defined as the discounted sum of future rewards, Gt

.
=
∑T
k=0 γ

krt+k+1,
where γ ∈ [0, 1] is the discount rate and T is the terminal time [42]. Value functions express the
expected value of returns generated from a given state or state-action pair under the MDP’s transition
dynamics and policy π: that is, vπ(s)

.
= Eπ[Gt | st = s] and qπ(s,a)

.
= Eπ[Gt | st = s,at = a].

The objective in control is to find a policy that maximises vπ for all states with non-zero measure
under p0, denoted by the Lesbesgue integral J(θ)

.
= Ep0 [vπθ

(s0)] =
∫
S vπθ

(s0) dp0(s0).

2.1 Policy Search

In this paper, we focus on policy gradient methods which optimise the parameters θ directly. This is
achieved, in general, by performing gradient ascent on J(θ), for which Sutton et al. [43] derived

∇θJ(θ) = Eπθ,ρπθ
[(qπθ

(s,a)− b(s)) z] , (1)

where z .
= ∇θ lnπθ(a | s) is the policy’s score vector, ρπθ

(s)
.
=
∫
S
∑∞
t=0 γ

tp(st = s | ds0, πθ)
denotes the (improper) discounted-ergodic occupancy measure, and b(s) is a state-dependent baseline
(or, control variate) [33]. Here, p(st = s | s0, πθ) is the probability of transitioning from s0 → s in t
steps under πθ . Equation 1 is convenient for a number of reasons: 1. it is a score-based estimator [26];
and 2. it falls under the class of stochastic approximation algorithms [1]. This is important as
it means qπ(s,a) may be replaced by any unbiased quantity, say ψ : S × A → R, such that
Eπ,ρπ [ψ(s,a)] = qπ(s,a), while retaining convergence guarantees. It also implies that optimisation
can be performed using stochastic gradient estimates, the standard variant of which is defined below.

Definition 2.1 (VPGs). The vanilla policy gradient estimator for target-baseline pair (ψ, b) is denoted

gV(s,a)
.
= [ψ(s,a)− b(s)] z, (2)

where ∇θJ(θ) = Eπθ,ρπθ

[
gV(s,a)

]
.

2.2 Factored (Action-Space) MDPs

In this paper, we consider the class of MDPs in which the action-space factors into a product,
A .

=
⊗n

i=1Ai = A1 × · · · × An, for some n. This is satisfied trivially when n = 1 and A1 = A,
but also holds in many common settings, such as A .

= Rn, which factorises n times as
⊗n

i=1 R. This
is equivalent to requiring that actions, a ∈ A, admit a “subscript” operation; without necessarily
having A be a vector space. For example, one could have an action-space of the form A .

= R× N
such that, for any a ∈ A, a1 ∈ R and a2 ∈ N. To this end, we introduce the notion of partition maps
which will feature throughout the paper.

Definition 2.2 (Partition Map). Define X .
=
⊗n

i=1 Xi and J ⊆ [n] with XJ
.
=
⊗

j∈J Xj such that
a partition map (PM) for a pair (X , J) is a function σ : X → XJ with complement σ̄ : X → X[n]\J .

Partition maps are an extension of the canonical projections of the product topology, and are equivalent
to the scope operator used by Tian et al. [48]. For example, if (a1, a2, a3)

.
= a ∈ A .

= R3 denotes
a three-dimensional real action-space, then one possible PM is given by σ(a) = (a1, a3) with
complement σ̄(a) = (a2). Note that there should always exist a unique inverse operation that
recovers the original space; in this case, it would be expressed as f((a1, a3) , (a2)) = (a1, a2, a3).

3 Influence Networks

Consider an MOMDP with scalarised objective given by

J(θ)
.
= Ep0

ψ(s,a)
.
=

m∑
j=1

λjψj(s, σj(a))

 , (3)
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ψ2ψ1

a1

(a) Fork.

a2a1

ψ1

(b) Collider.

a2a1

ψ1 ψ2

(c) Fork/Collider.

a2a1

ψ1 ψ2

(d) Complete.

Figure 1: Influence network prototypes and action-target junction patterns [31, 32]. Edges depict
dependencies between factors ai ∈ A and targets ψj ∈ Ψ; and dashed lines a partition induced by
the minimum factorisation.

where λj ∈ R for all 1 ≤ j ≤ m and each ψj(s, σj(a)) denotes some target that depends on a
single partition of the action components. Traditional MDPs can be seen as a special case in which
m = 1, and ψ = ψ1

.
= qπ . The vector ψ(s,a) comprises the concatenation of all m targets and each

partitioning is dictated by the non-empty maps σj(a), the form of which is intrinsic to the MOMDP.
For convenience, let us denote the collection of targets comprising ψ(s,a) by

Ψ
.
= {ψj : ψ(s,a) = 〈λ,ψ(s,a)〉} . (4)

The intuition behind FPGs is derived from the observation that each factor of the action-space only
influences a subset of the m targets. Take, for example, Figure 1c which depicts an instance of an
influence network between a 2-dimensional action vector and a 2-dimensional target. The edges
suggest that a1 affects the value of both ψ1 and ψ2, whereas a2 only affects ψ2. This corresponds
to an objective of the form λ1ψ1(s, a1) + λ2ψ2(s,a), where each goal’s domain derives from the
edges of the graph. This is formalised in Definition 3.1 below.
Definition 3.1 (Influence Network). A bipartite graph G(M,Ψ)

.
= (IA, IΨ, E) is said to be the

influence network of an MDPM and target set Ψ if for IA
.
= [|A|] and IΨ

.
= [|Ψ|], the presence of

an edge, e ∈ E, between nodes i ∈ IA and j ∈ IΨ defines a causal relationship between the ith factor
of A and the jth target ψj(s, σj(a)).

An influence network can be seen as a structural equation model [31] in which each vertex in IA has
a single, unique parent which is exogenous and drives the randomness in action sampling, and each
vertex in IΨ has parents only in the set IA as defined by the set of edges E. The structural equations
along each edge (i, j) ∈ E are given by the target functions themselves and the partition maps σj
mirror the parents of each node j. Some examples of influence networks are illustrated in Figure 1;
see also the appendix. We now define the key concept of influence matrices.
Definition 3.2 (Influence Matrix). LetKG denote the biadjacency matrix of an influence network
G, defined as the |IA| × |IΨ| boolean matrix with Kij = 1 ⇐⇒ (i, j) ∈ E for i ∈ IA and j ∈ IΨ.

Together, these definitions form a calculus for expressing the relationships between the factors of
an action-space and the targets of an objective of the form in Equation 3. We remark that, from an
algorithmic perspective, we are free to choose between two representations: graph-based, or partition
map-based. The duality between G and K, and the set {σj : j ∈ IΨ}, is intrinsic to our choice of
notation and serves as a useful correspondence during analysis.

3.1 Policy Factorisation

Influence networks capture the relationships between A and Ψ, but policies are typically defined
over groups of actions rather than the individual axes of A. Consider, for example, a multi-asset
trading problem in which an agent must quote buy and sell prices for each of n distinct assets [14, 40].
There is a natural partitioning between each pair of prices and the n sources of profit/loss, and
one might therefore define the policy as a product of n bivariate distributions as opposed to a full
joint, or fully factored model. This choice over policy factorisation relates to the independence
assumptions we make on the distribution πθ for the sake of performance. Indeed, in the majority
of the literature, policies are defined using an isotropic distribution [57] since there is no domain
knowledge to motivate more complex covariance structure. We formalise this below.
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ψ1ψ0 ψ2

a1 a2 a3

(a) Original Influence Network, G.

ψ1ψ0 ψ2

σπ1 σπ2

(b) Factored Influence Network, GΣ.

Figure 2: Influence network transformation under a Σ-factorisation with σπ1 (a)
.
= (a1, a2) and

σπ2 (a)
.
= (a3). Here, Σ corresponds to a minimum factorisation of the policy; i.e. Σ = Σ?.

Definition 3.3 (Policy Factorisation). An n-fold policy factorisation, Σ
.
= {σπi : i ∈ [n]}, is a set

of disjoint partition maps that form a complete partitioning over the action space.

The definition above provides a means of expressing any joint policy distribution in terms of PMs,

πθ(a | s) .
=

n∏
i=1

πi,θ(σπi (a) | s) , (5)

where σπi ∈ Σ and n = |Σ|. This corresponds to a transformation of the underlying influence network
where the action vertices are grouped under the n policy factors and, for any i, j ∈ [n], i 6= j, we
have mutual independence: σπi (a) |= σπj (a). This is captured in the following concept.
Definition 3.4 (Factored Influence Network). For a given influence network G and policy factori-
sation Σ, we define a factored influence network, GΣ, by replacing IA with IΣ, the set of partitioned
vertices, and merge the corresponding edges to give EΣ. Similarly, denote by KΣ the influence
matrix with respect to the Σ-factorisation.

Factored influence networks ascribe links between the policy factors in Equation 5 and the targets
ψj ∈ Ψ. They play an important role in Section 4 and provide a refinement of Definition 3.1 which
allows us to design more efficient algorithms. As an example, Figure 2 shows how one possible
policy factorisation transforms an influence network G into GΣ. Note that while the action nodes
and edges have been partitioned into policy factors, the fundamental topology with respect to the
attribution of influence remains unchanged; i.e. no dependencies are lost.

4 Factored Policy Gradients

Factored policy gradients exploit factored influence networks by attributing each ψj ∈ Ψ only to the
policy factors that were probabilistically responsible for generating it; that is, those with a connecting
edge in the given GΣ. The intuition is that the extraneous targets in the objective do not contribute to
learning, but do contribute towards variance. For example, it would be counter-intuitive to include ψ2

of Figure 2b in the update for π1 since it played no generative role. Naturally, by removing these
terms from the gradient estimator, we can improve the signal to noise ratio and yield more stable
algorithms. This idea can be formulated into a set of baselines which are defined and validated below.
Definition 4.1 (Factor Baselines). For a given GΣ, the factor baselines (FBs) are defined as

bF
i (s, σ̄

π
i (a))

.
= [(1−KΣ)λ ◦ψ(s,a)]i , (6)

for all i ∈ [|Σ|], where ◦ denotes the Hadamard product and 1 is to be taken as an all-ones matrix.
Lemma 4.1. FBs are valid control variates if GΣ is true to the MDP (i.e. unbiased).

Factor baselines are related to the action-dependent baselines studied by Wu et al. [57] and Tucker
et al. [49], as well as the methods employed by COMA [9] and DRPGs [3] in multi-agent systems.
Note, however, that FBs are distinct in two key ways: 1. they adhere to the structure of the influence
network and account not only for policy factorisation, but also the target multiplicity of MOMDPs;
and 2. unlike past work, factor baselines were defined using an ansatz based on the structure implied
by a given GΣ as opposed to explicitly deriving the arg min of the variance, or approximation thereof;
see the appendix. This means that, unlike optimal baselines, FBs can be computed efficiently and

5



thus yield practical algorithms. Indeed, this very fact is why the state-value function is used so
ubiquitously in traditional actor-critic methods as a state-dependent control variate despite being
sub-optimal. It follows that we can define an analogous family of methods for MOMDPs with zero
computational overhead.
Proposition 1 (FPGs). Take a Σ-factored policy πθ(a|s) and |θ| × |Σ| matrix of scores S(s,a).
Then, for target vector ψ(s,a) and multipliers λ, the FPG estimator

gF(s,a)
.
= S(s,a)KΣ λ ◦ψ(s,a) , (7)

is an unbiased estimator of the true policy gradient; i.e.∇θJ(θ) = Eπθ,ρπθ

[
gF(s,a)

]
.

Proposition 1 above shows that the VPG estimator given in Definition 2.1 can be expressed in our
calculus as S1λ ◦ψ, where 1 is an all-ones matrix and, traditionally, ψ .

= qπ; note that one can still
include other baselines in Equation 7 such as vπ. In other words, Proposition 1 strictly generalises
the policy gradient theorem [43] and, by virtue of it’s unbiasedness, thus retains all convergence
guarantees. We also see that both COMA [9] and DRPGs [3] are special cases in which the influence
network reflects the separation of agents withKΣ a square, and often diagonal matrix.

4.1 Variance Analysis

The variance reducing effect of FBs comprises two terms: 1. a quadratic and thus non-negative
component which scales with the second moments of bF

i ; and 2. a linear term which scales with the
expected values of bF

i . This is shown in the following result.

Proposition 2 (Variance Decomposition). Let gi denote a gradient estimate for the ith factor of a
Σ-factored policy πθ (Equation 5). Then, ∆Vi

.
= V

[
gV
i

]
− V

[
gF
i

]
, satisfies

∆Vi = αi Eσ̄πi (a)

[(
bF
i

)2]
+ 2βiEσ̄πi (a)

[
bF
i

]
, (8)

where zi
.
= ∇θ lnπi,θ(a | s), αi

.
= Eσπi (a)[〈zi, zi〉] ≥ 0 and βi

.
= Eσπi (a)

[
〈zi, zi〉

(
ψ + bF

i

)]
.

The first of these two terms is a “free lunch” which removes the targets that are not probabilistically
related to each factor. The linear term, on the other hand, couples the adjusted target with the
entries that were removed by the baseline. This suggests that asymmetry and covariance can have a
regularising effect in VPGs that is not present in FPGs — a manifestation of the properties of control
variates [26]. Now, if we do not assume that the target functions are bounded, then the linear term in
Equation 8 can grow arbitrarily in either direction, but we typically require that rewards are restricted
to some compact subset R ⊂ R to avoid this. Below, we show that if a similar requirement holds
for each target function — namely, that infS,A ψj is well defined for each ψj ∈ Ψ — then we can
always construct a set of mappings that constrain (8) to be non-negative without biasing the gradient.
Corollary 4.1 (Non-Negative Variance Reduction). Let ψ(s,a) be of the form in Equation 3. If
ψj(s,a) ≥ ψj for all (s,a) ∈ S × A and j ∈ [m], with |ψj | < ∞, then there exists a linear
translation, ψi → ψi −

∑m
j=1 λjψj , which leaves the gradient unbiased but yields ∆Vi ≥ 0.1

Interestingly, numerical experiments on a pair of continuum armed bandits suggest that this transfor-
mation is seldom necessary; see Figure 3. As the number of policy factors and targets grow, so too
does the potential discrepancy in magnitude between the quadratic and linear terms in Equation 8.
The former starts to dominate even for small |Σ|. This is particularly prevalent when the influence
matrix KΣ is very sparse and the baselines have wide coverage over Ψ. In other words, applying
FBs when the influence network is very dense or even complete will not yield tangible benefits (e.g.
in Atari games), but applying them to a problem with a rich structure, such as traffic networks, will
almost certainly yield a significant net reduction in variance.

Bias-Variance Trade-Off. It is important to note that, in real-world problems, one does not always
know the exact structure of the influence network underling an MDP ex ante. This poses a challenge
since incorrectly removing edges can introduce bias and thus constrain the space of solutions that
can be found by FPGs. Note, however, that this may not always be a problem, since a small amount

1This inequality can be made strict if either αi > 0 or βi > 0 — where the former equates to having a
non-zero trace of the Fisher information matrix — and a small ε > 0 is added to the translation.
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(a) Search bandit: Cost(a) .
= − ||a− c||1 with

fixed centroid vector c ∈ Rn.
(b) ReLU bandit: Cost(a) .= −

∑n
i=1 max (eiai, 0)

with fixed sign vector e ∈ {−1, 1}n.

Figure 3: Variance decomposition on a symmetric log scale for two bandit problems as a function
of action-space dimensionality. Each term was computed using Monte-Carlo estimation with 105

samples and taking the arithmetic mean across all policy factors.

bias for a large reduction in variance can be desirable. Furthermore, one could leverage curriculum
learning to train the policy on (presumed) influence networks with increasing connectedness over
time. This trade-off between bias and variance is present in many machine learning settings, and
depends strongly on the problem at hand; we explore this empirically in Section 5.2.

4.2 Minimum Factorisation

For many classes of fully-observable MDPs, any policy factorisation is theoretically viable: we can
fully factor the policy such that each action dimension is independent of all others; or, at the other
extreme, treat the policy as a full joint distribution over A. This holds because, in many classes
of (fully-observable) MDPs, there exists at least one deterministic optimal policy [55, 35]. The
covariance acts as a driver of exploration, and it’s initial value only affects the rate of convergence.2
As a result, most research uses an isotropic Gaussian with diagonal covariance to avoid the cost of
matrix inversion. This poses an interesting question: is there an “optimal” policy factorisation, Σ?G ,
associated with an influence network G? Below we offer a possible characterisation.

Definition 4.2 (Minimum Factorisation). A minimum factorisation (MF), Σ?G , of an influence net-
work, G, is the minimum biclique vertex cover, disjoint amongst IA.

It follows from Definition 4.2 that for any Σ?G , each σi ∈ Σ?G is a biclique (i.e. complete bipartite
subgraph) of the original influence network G, and that the bipartite dimension is equal to the number
of policy factors. For example, one can trivially verify that Figure 2b is an MF of the original graph;
see also the reductions in Figure 1. In essence, an MF describes a complete partitioning over action
vertices — so as to define a proper distribution — where each group is a biclique with the same set
of outgoing edges. The “minimum” qualifier then ensures that the maximum number of nodes are
included in each of these groups, a property which allows us to prove the following result:

Theorem 4.1. The MF Σ?G always exists and is unique.

Minimum factorisation is a natural construction for the problem domains studied in this paper; see
Section 5. It also yields factored policies which, generally, expose the minimum infimum bound on
variance for a given influence network. This follows from the fact that an MF yields the greatest
freedom to express covariance structure within each of the policy factors whilst also maximising the
quadratic term in Equation 8. In fact, when each action corresponds to a single unique target, the
MF enjoys a lower bound on variance that is linear in the number of factors. Finally, we remark that,
whilst closely related to vertex covering problems (which are known to be NP-complete [18]), we
observed experimentally that finding the MF can be done trivially in polynomial time; see e.g. [8].

2Note that this is not true in general: the policy’s covariance structure impacts the set of reachable solutions
in partially-observable MDPs and stochastic games, for example.
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(a) Convergence of CPGs (with and w/o additional
state-dependent baseline) compared with VPGs us-
ing different baselines. The error bands denote the
standard error on the mean over 10 random seeds.

(b) Squared error between an and cn during learning
for the search bandit with k = n− 1.

Figure 4: Performance analysis of CPGs on the search bandit domain.

Table 1: Empirical wall-clock estimates for the time-complexity (iterations per second) of VPGs and
FPGs, with and without additional baselines. For each algorithm, the mean and sample standard
deviation were computed across the 10 random seeds used to generate Figure 4a.

Method Baseline Mean [it / s] Std Dev [it / s]

VPGs
- 10534 87
b(s) 9885 81
b(s, a) 80 1

FPGs - 9950 157
b(s) 9670 126

5 Numerical Experiments

5.1 Search Bandits

Consider an n .
= 1000 dimensional continuum armed bandit with action space in Rn, and cost

function: Cost(a)
.
= ||a− c||1 + λ ζ(a), where c ∈ Rn, λ ≥ 0 and ζ : A → R+ is a penalty

function. This describes a search problem in which the agent must locate the centroid c subject
to an action-regularisation penalty. It abstracts away the prediction aspects of MDP settings, and
allows us to focus only on scalability; note that this problem is closely related to the bandit studied
by Wu et al. [57] for the same purpose. In our experiments, the centroids were initialised with a
uniform distribution, c ∼ U (−5, 5) and were held fixed between episodes. The policy was defined
as an isotropic Gaussian with fixed covariance, diag(1), and initial location vector µ .

= 0. The
influence network was specified such that each policy factor, πi,θ for i ∈ [n], used a reward target
ψi(a)

.
= −∆i(ai)−λζ(ai), with ∆i(a)

.
= |a− ci|, amounting to a collection of n forks (Figure 1a).

The parameter vector, µ, was updated at each time step, and the hyperparameters are provided in the
appendix.

We began by examining the case where λ = 0 and the co-ordinate axes were fully decoupled. For
VPGs, we note that stability was only possible without a baseline if an extremely low learning
rate was used; see the appendix. Including a baseline dramatically improved performance, with
the action-dependent case, b(s, a), also leading to better asymptotic behaviour at the expense of
a two orders of magnitude longer train-time according to the wall-clock compared with all other
algorithms (VPGs and FPGs); see Table 1. In comparison, FPGs, both with and without a learnt
state-dependent baseline, yielded significantly reduced variance, leading to faster learning, more
consistent convergence and highly robust asymptotic stability.

We then studied the impact of coupling terms in the cost function; i.e. λ > 0. For this, we considered

a family of penalties taking the form of partially applied `2 norms: ζk(a)
.
=
√∑k

i=1 a
2
i , with

1 ≤ k ≤ n. This set of functions allowed us to vary the penalty attribution across the n factors of
A. Further examples demonstrating the performance advantage of FPGs — for k = n and k = n/2
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(a) Convergence of joint/factored policies for the
global reward, and using FPGs with the spatial base-
line. Each curve depicts the mean value across 5
random seeds with standard error bands.

(b) Performance degradation as a function of the n-
level spatial baseline approximation in a 2 × 6 grid
network. Each point is the average terminal value
across 5 seeds and with standard error bands.

Figure 5: Performance analysis of FPGs (with PPO and GAE) on the traffic network domain.

— are given in the appendix. In both cases, the improvement due to FB adjustments was found to
be non-negative for every combination of learning rate and action space. This confirms that FPGs
can indeed handle coupled targets and retains the variance reduction benefits that were explored in
Section 4.1. As an illustrative example, consider the case where k = n− 1 and all but the last action
dimension are subject to a penalty. This is a particularly challenging setting for VPGs because the
magnitude of the combined cost function is much greater than ∆n(an), leading to an aliasing of the
final component of the action vector in the gradient. The result, as exemplified in Figure 4b, was
that VPGs favoured reduction of overall error, and was therefore exposed to poor per-dimension
performance; hence the increased noise in the an error process. FPGs avoid this effect by attributing
gradients directly.

5.2 Traffic Networks

We now consider a classic traffic optimisation domain to demonstrate the scalability of our approach
to large real-world problems. In particular, we consider variants of the (3×3) grid network benchmark
environment — as originally proposed by Vinitsky et al. [51] — that is provided by the outstanding
Flow framework [56, 21]. In this setting, the RL agent is challenged with managing a set of
traffic lights with the objective of minimising the delay to vehicles travelling in the network; the
configuration should be taken as identical unless explicitly stated. This requires a significant level
of co-ordination, and indeed multi-agent approaches have shown exemplary performance in this
space [51, 54]. However, much as with the search bandit, the probability of aliasing effects increases
substantially with the number of lights/intersections; i.e. the dimensionality of the action-space. This
affects both single- and multi-agent approaches when the global reward is used to optimise the policy.

To this end, we propose a “baseline” that removes reward terms derived from streets/edges that are
not directly connected to a given traffic light. This is based on the hypothesis that the local problem is
sufficiently isolated from the rest of the system that we may still find a (near)-optimal solution; much
as with local-form models [27]. Of course, this could introduce bias at the cost of variance if we are
incorrect (see Section 4.1), but this turns out to be an effective trade-off as exemplified in Figure 5a.3
In this plot we compare the performance of three policies learnt using PPO [38] and GAE [37] (with
an additional state-dependent baseline): (1) a naïve joint policy over the 9-dimensional action-space
trained against the global reward; (2) a shared policy trained on the global reward; and (3) a shared
policy using the local spatial baseline. In methods 2 and 3, a shared policy refers to the use of a single
univariate policy across all nine traffic lights, where only local information and identity variables are
provided. The global reward in this case was defined as the negative of the mean delay introduced in
the system minus a scaled penalty on vehicles at near standstill; see the appendix for more details.

As expected, we observe that the FBs improve learning efficiency, but, perhaps surprisingly, we also
find that the asymptotic behaviour is also superior. We posit that this relates to the fact that, with
a fixed learning rate, stochastic gradient descent cannot distinguish between points within a ball
of the optimum solution with radius that scales with the variance on the estimator. In other words,
significant reductions in variance, even if they introduce a small amount of bias, may increase the
likelihood of reaching the true optimal solution by virtue of having much greater precision.

3Note that the standard errors may slightly underestimate the population level due to the low sample size.
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To better understand this trade-off, we also explored the impact of “expanding” the local baseline in a
larger system of 2 × 6 intersections. With this new baseline we retain reward terms derived from
lights up to n edges away in either the east or west directions. The variable n thus provides a dial
to directly tweak the bias and variance of the policy gradient estimator (i.e. increasing n reduces
bias but increases variance). The result, as shown in Figure 5b, suggest that performance decreases
monotonically as a function of n. This corroborates the claim in Section 4.1 that introducing some
bias in exchange for a reduction in variance can be a worthwhile trade-off in large problems.

6 Conclusion

Factored policy gradients derive from the observation that many MOMDPs exhibit redundancy in
their reward structure. Here, we have characterised this phenomenon using graphical modelling, and
demonstrated that conditional independence between factors of the action-space and the optimisation
targets can be exploited. The resulting family of algorithms subsume many existing approaches in the
literature. Our results in large-scale bandit and concurrent traffic management problems suggest that
FPGs are highly suited to real-world problems, and may provide a way of scaling RL to domains that
have hitherto remained intractable. What’s more, FPGs are compatible with other techniques that
improve policy gradient performance. For example, they can be extended to use natural gradients by
pre-multiplying Equation 7 by the inverse Fisher information matrix [17], and can even use additional
baselines to reduce variance even further, as in Section 5.2. In future work we intend to address the
following interesting questions: (a) Can we infer/adapt the structure of influence networks? (b) Are
there canonical structures within S andK? (c) What theoretical insights can be derived from a more
detailed analysis of the variance properties of FPGs? We argue that factored approaches such as
FPGs — which are complementary to ideas like influence-based abstraction [27] — are a promising
direction for practical RL. Addressing some of these questions, we believe, would thus be of great
value to the community.
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