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Abstract

Vision Transformers (ViT) have shown rapid progress in computer vision tasks,
achieving promising results on various benchmarks. However, due to the massive
number of parameters and model design, e.g., attention mechanism, ViT-based
models are generally times slower than lightweight convolutional networks. There-
fore, the deployment of ViT for real-time applications is particularly challenging,
especially on resource-constrained hardware such as mobile devices. Recent efforts
try to reduce the computation complexity of ViT through network architecture
search or hybrid design with MobileNet block, yet the inference speed is still
unsatisfactory. This leads to an important question: can transformers run as fast
as MobileNet while obtaining high performance? To answer this, we first revisit
the network architecture and operators used in ViT-based models and identify
inefficient designs. Then we introduce a dimension-consistent pure transformer
(without MobileNet blocks) as a design paradigm. Finally, we perform latency-
driven slimming to get a series of final models dubbed EfficientFormer. Extensive
experiments show the superiority of EfficientFormer in performance and speed on
mobile devices. Our fastest model, EfficientFormer-L1, achieves 79.2% top-1 accu-
racy on ImageNet-1K with only 1.6 ms inference latency on iPhone 12 (compiled
with CoreML), which runs as fast as MobileNetV2×1.4 (1.6 ms, 74.7% top-1), and
our largest model, EfficientFormer-L7, obtains 83.3% accuracy with only 7.0 ms
latency. Our work proves that properly designed transformers can reach extremely
low latency on mobile devices while maintaining high performance1.

1 Introduction

The transformer architecture [1], initially designed for Natural Language Processing (NLP) tasks,
introduces the Multi-Head Self Attention (MHSA) mechanism that allows the network to model
long-term dependencies and is easy to parallelize. In this context, Dosovitskiy et al. [2] adapt
the attention mechanism to 2D images and propose Vision Transformer (ViT): the input image
is divided into non-overlapping patches, and the inter-patch representations are learned through
MHSA without inductive bias. ViTs demonstrate promising results compared to convolutional neural
networks (CNNs) on computer vision tasks. Following this success, several efforts explore the
potential of ViT by improving training strategies [3, 4, 5], introducing architecture changes [6, 7],
redesigning attention mechanisms [8, 9], and elevating the performance of various vision tasks such
as classification [10, 11, 12], segmentation [13, 14], and detection [15, 16].

On the downside, transformer models are usually times slower than competitive CNNs [17, 18].
There are many factors that limit the inference speed of ViT, including the massive number of
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Figure 1: Inference Speed vs. Accuracy. All models are trained on ImageNet-1K and measured
by iPhone 12 with CoreMLTools to get latency. Compared to CNNs, EfficientFormer-L1 runs 40%
faster than EfficientNet-B0, while achieves 2.1% higher accuracy. For the latest MobileViT-XS,
EfficientFormer-L7 runs 0.2 ms faster with 8.5% higher accuracy.

parameters, quadratic-increasing computation complexity with respect to token length, non-foldable
normalization layers, and lack of compiler level optimizations (e.g., Winograd for CNN [19]). The
high latency makes transformers impractical for real-world applications on resource-constrained
hardware, such as augmented or virtual reality applications on mobile devices and wearables. As a
result, lightweight CNNs [20, 21, 22] remain the default choice for real-time inference.

To alleviate the latency bottleneck of transformers, many approaches have been proposed. For
instance, some efforts consider designing new architectures or operations by changing the linear
layers with convolutional layers (CONV) [23], combining self-attention with MobileNet blocks [24],
or introducing sparse attention [25, 26, 27], to reduce the computational cost, while other efforts
leverage network searching algorithm [28] or pruning [29] to improve efficiency. Although the
computation-performance trade-off has been improved by existing works, the fundamental question
that relates to the applicability of transformer models remains unanswered: Can powerful vision
transformers run at MobileNet speed and become a default option for edge applications? This work
provides a study towards the answer through the following contributions:

• First, we revisit the design principles of ViT and its variants through latency analysis (Sec. 3). Fol-
lowing existing work [18], we utilize iPhone 12 as the testbed and publicly available CoreML [30]
as the compiler, since the mobile device is widely used and the results can be easily reproduced.

• Second, based on our analysis, we identify inefficient designs and operators in ViT and propose a
new dimension-consistent design paradigm for vision transformers (Sec. 4.1).

• Third, starting from a supernet with the new design paradigm, we propose a simple yet effective
latency-driven slimming method to obtain a new family of models, namely, EfficientFormers
(Sec. 4.2). We directly optimize for inference speed instead of MACs or number of parameters [31,
32, 33].

Our fastest model, EfficientFormer-L1, achieves 79.2% top-1 accuracy on ImageNet-1K [34] clas-
sification task with only 1.6 ms inference time (averaged over 1,000 runs), which runs as fast as
MobileNetV2×1.4 and wields 4.5% higher top-1 accuracy (more results in Fig. 1 and Tab. 1). The
promising results demonstrate that latency is no longer an obstacle for the widespread adoption of
vision transformers. Our largest model, EfficientFormer-L7, achieves 83.3% accuracy with only
7.0 ms latency, outperforms ViT×MobileNet hybrid designs (MobileViT-XS, 74.8%, 7.2ms) by a
large margin. Additionally, we observe superior performance by employing EfficientFormer as
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the backbone in image detection and segmentation benchmarks (Tab. 2). We provide a preliminary
answer to the aforementioned question, ViTs can achieve ultra fast inference speed and wield powerful
performance at the same time. We hope our EfficientFormer can serve as a strong baseline and
inspire followup works on the edge deployment of vision transformers.

2 Related Work

Transformers are initially proposed to handle the learning of long sequences in NLP tasks [1].
Dosovitskiy et al. [2] and Carion et al. [15] adapt the transformer architecture to classification and
detection, respectively, and achieve competitive performance against CNN counterparts with stronger
training techniques and larger-scale datasets. DeiT [3] further improves the training pipeline with the
aid of distillation, eliminating the need for large-scale pretraining [35]. Inspired by the competitive
performance and global receptive field of transformer models, follow-up works are proposed to refine
the architecture [36, 37], explore the relationship between CONV nets and ViT [38, 39, 40], and
adapt ViT to different computer vision tasks [13, 41, 42, 43, 44, 45, 46]. Other research efforts
explore the essence of attention mechanism and propose insightful variants of token mixer, e.g., local
attention [8], spatial MLP [47, 48], and pooling-mixer [6].

Despite the success in most vision tasks, ViT-based models cannot compete with the well-studied
lightweight CNNs [21, 49] when the inference speed is the major concern [50, 51, 52], especially on
resource-constrained edge devices [17]. To accelerate ViT, many approaches have been introduced
with different methodologies, such as proposing new architectures or modules [53, 54, 55, 56, 57, 58],
re-thinking self-attention and sparse-attention mechanisms [59, 60, 61, 62, 63, 64, 65], and utilizing
search algorithms that are widely explored in CNNs to find smaller and faster ViTs [66, 28, 29, 67].
Recently, LeViT [23] proposes a CONV-clothing design to accelerate vision transformer. However,
in order to perform MHSA, the 4D features need to be frequently reshaped into flat patches, which is
still expensive to compute on edge resources (Fig. 2). Likewise, MobileViT [18] introduces a hybrid
architecture that combines lightweight MobileNet blocks (with point-wise and depth-wise CONV)
and MHSA blocks; the former is placed at early stages in the network pipeline to extract low-level
features, while the latter is placed in late stages to enjoy the global receptive field. Similar approach
has been explored by several works [24, 28] as a straightforward strategy to reduce computation.

Different from existing works, we aim at pushing the latency-performance boundary of pure vision
transformers instead of relying on hybrid designs, and directly optimize for mobile latency. Through
our detailed analysis (Sec. 3), we propose a new design paradigm (Sec. 4.1), which can be further
elevated through architecture search (Sec. 4.2).

3 On-Device Latency Analysis of Vision Transformers

Most existing approaches optimize the inference speed of transformers through computation com-
plexity (MACs) or throughput (images/sec) obtained from server GPU [23, 28]. While such metrics
do not reflect the real on-device latency. To have a clear understanding of which operations and
design choices slow down the inference of ViTs on edge devices, we perform a comprehensive
latency analysis over a number of models and operations, as shown in Fig. 2, whereby the following
observations are drawn.

Observation 1: Patch embedding with large kernel and stride is a speed bottleneck on mobile devices.

Patch embedding is often implemented with a non-overlapping convolution layer that has large kernel
size and stride [3, 55]. A common belief is that the computation cost of the patch embedding layer in a
transformer network is unremarkable or negligible [2, 6]. However, our comparison in Fig. 2 between
models with large kernel and stride for patch embedding, i.e., DeiT-S [3] and PoolFormer-S24 [6],
and the models without it, i.e., LeViT-256 [23] and EfficientFormer, shows that patch embedding is
instead a speed bottleneck on mobile devices.

Large-kernel convolutions are not well supported by most compilers and cannot be accelerated
through existing algorithms like Winograd [19]. Alternatively, the non-overlapping patch embedding
can be replaced by a convolution stem with fast downsampling [68, 69, 23] that consists of several
hardware-efficient 3 × 3 convolutions (Fig. 3).
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Figure 2: Latency profiling. Results are obtained on iPhone 12 with CoreML. The on-device
speed for CNN (MobileNetV2×1.4, ResNet50, and EfficientNet-B0), ViT-based models (DeiT-Small,
LeViT-256, PoolFormer-S24, and EfficientFormer), and various operators are reported. The latency
of models and operations are denoted with different color. (⋅) is the top-1 accuracy on ImageNet-1K.
†LeViT uses HardSwish which is not well supported by CoreML, we replace it with GeLU for fair
comparison.

Observation 2: Consistent feature dimension is important for the choice of token mixer. MHSA is
not necessarily a speed bottleneck.

Recent work extends ViT-based models to the MetaFormer architecture [6] consisting of MLP blocks
and unspecified token mixers. Selecting a token mixer is an essential design choice when building
ViT-based models. The options are many—the conventional MHSA mixer with a global receptive
field, more sophisticated shifted window attention [8], or a non-parametric operator like pooling [6].

We narrow the comparison to the two token mixers, pooling and MHSA, where we choose the former
for its simplicity and efficiency, while the latter for better performance. More complicated token
mixers like shifted window [8] are currently not supported by most public mobile compilers and we
leave them outside our scope. Furthermore, we do not use depth-wise convolution to replace pooling
[70] as we focus on building architecture without the aid of lightweight convolutions.

To understand the latency of the two token mixers, we perform the following two comparisons:

• First, by comparing PoolFormer-s24 [6] and LeViT-256 [23], we observe that the Reshape

operation is a bottleneck for LeViT-256. The majority of LeViT-256 is implemented with CONV
on 4D tensor, requiring frequent reshaping operations when forwarding features into MHSA since
the attention has to be performed on patchified 3D tensor (discarding the extra dimension of
attention heads). The extensive usage of Reshape limits the speed of LeViT on mobile devices
(Fig. 2). On the other hand, pooling naturally suits the 4D tensor when the network primarily
consists of CONV-based implementations, e.g., CONV 1 × 1 as MLP implementation and CONV
stem for downsampling. As a result, PoolFormer exhibits faster inference speed.

• Second, by comparing DeiT-Small [3] and LeViT-256 [23], we find that MHSA does not bring
significant overhead on mobiles if the feature dimensions are consistent and Reshape is not
required. Though much more computation intensive, DeiT-Small with a consistent 3D feature can
achieve comparable speed to the new ViT variant, i.e., LeViT-256.

In this work, we propose a dimension-consistent network (Sec. 4.1) with both 4D feature implemen-
tation and 3D MHSA, but the inefficient frequent Reshape operations are eliminated.

Observation 3: CONV-BN is more latency-favorable than LN (GN)-Linear and the accuracy draw-
back is generally acceptable.
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Figure 3: Overview of EfficientFormer. The network starts with a convolution stem as patch embed-
ding, followed by MetaBlock (MB). The MB4D and MB

3D contain different token mixer configurations,
i.e., local pooling or global multi-head self-attention, arranged in a dimension-consistent manner.

Choosing the MLP implementation is another essential design choice. Usually, one of the two
options is selected: layer normalization (LN) with 3D linear projection (proj.) and CONV 1 × 1 with
batch normalization (BN). CONV-BN is more latency favorable because BN can be folded into the
preceding convolution for inference speedup, while dynamic normalizations, such as LN and GN,
still collects running statistics at the inference phase, thus contributing to latency. From the analysis
of DeiT-Small and PoolFormer-S24 in Fig. 2 and previous work [17], the latency introduced by LN
constitutes around 10% − 20% latency of the whole network.

Based on our ablation study in Appendix Tab. 3, CONV-BN only slightly downgrades performance
compared to GN and achieves comparable results to channel-wise LN. In this work, we apply CONV-
BN as much as possible (in all latent 4D features) for the latency gain with a negligible performance
drop, while using LN for the 3D features, which aligns with the original MHSA design in ViT and
yields better accuracy.

Observation 4: The latency of nonlinearity is hardware and compiler dependent.

Lastly, we study nonlinearity, including GeLU, ReLU, and HardSwish. Previous work [17] suggests
GeLU is not efficient on hardware and slows down inference. However, we observe GeLU is well
supported by iPhone 12 and hardly slower than its counterpart, ReLU. On the contrary, HardSwish
is surprisingly slow in our experiments and may not be well supported by the compiler (LeViT-256
latency with HardSwish is 44.5 ms while with GeLU 11.9 ms). We conclude that nonlinearity should
be determined on a case-by-case basis given specific hardware and compiler at hand. We believe that
most of the activations will be supported in the future. In this work, we employ GeLU activations.

4 Design of EfficientFormer

Based on the latency analysis, we propose the design of EfficientFormer, demonstrated in Fig. 3. The
network consists of a patch embedding (PatchEmbed) and stack of meta transformer blocks, denoted
as MB:

Y = m�
i

MBi(PatchEmbed(XB,3,H,W

0 )), (1)

where X0 is the input image with batch size as B and spatial size as [H,W ], Y is the desired output,
and m is the total number of blocks (depth). MB consists of unspecified token mixer (TokenMixer)
followed by a MLP block and can be expressed as follows:

Xi+1 = MBi(Xi) = MLP(TokenMixer(Xi)), (2)

where Xi�i>0 is the intermediate feature that forwarded into the i
th

MB. We further define Stage (or S)
as the stack of several MetaBlocks that processes the features with the same spatial size, such as N1×
in Fig. 3 denoting S1 has N1 MetaBlocks. The network includes 4 Stages. Among each Stage, there
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is an embedding operation to project embedding dimension and downsample token length, denoted
as Embedding in Fig. 3. With the above architecture, EfficientFormer is a fully transformer-based
model without integrating MobileNet structures. Next, we dive into the details of the network design,
specifically, the architecture details and the search algorithm.

4.1 Dimension-Consistent Design

With the observations in Sec. 3, we propose a dimension consistent design which splits the network
into a 4D partition where operators are implemented in CONV-net style (MB4D), and a 3D partition
where linear projections and attentions are performed over 3D tensor to enjoy the global modeling
power of MHSA without sacrificing efficiency (MB3D), as shown in Fig. 3. Specifically, the network
starts with 4D partition, while 3D partition is applied in the last stages. Note that Fig. 3 is just an
instance, the actual length of 4D and 3D partition is specified later through architecture search.

First, input images are processed by a CONV stem with two 3 × 3 convolutions with stride 2 as patch
embedding,

XB,Cj�j=1,H4 ,
W

4
1 = PatchEmbed(XB,3,H,W

0 ), (3)

where Cj is the channel number (width) of the j th stage. Then the network starts with MB
4D with a

simple Pool mixer to extract low level features,

Ii = Pool(XB,Cj ,
H

2j+1 ,
W

2j+1
i

) +XB,Cj ,
H

2j+1 ,
W

2j+1
i

,

XB,Cj ,
H

2j+1 ,
W

2j+1
i+1 = ConvB(ConvB,G(Ii)) + Ii,

(4)

where ConvB,G refers to whether the convolution is followed by BN and GeLU, respectively. Note
here we do not employ Group or Layer Normalization (LN) before the Pool mixer as in [6], since the
4D partition is CONV-BN based design, thus there exists a BN in front of each Pool mixer.

After processing all the MB4D blocks, we perform a one-time reshaping to transform the features size
and enter 3D partition. MB3D follows conventional ViT structure, as in Fig. 3. Formally,

Ii = Linear(MHSA(Linear(LN(XB,
HW

4j+1 ,Cj

i
)))) +XB,

HW

4j+1 ,Cj

i
,

XB,
HW

4j+1 ,Cj

i+1 = Linear(LinearG(LN(Ii))) + Ii,
(5)

where LinearG denotes the Linear followed by GeLU, and

MHSA(Q,K,V ) = Softmax(Q ⋅KT�
Cj

+ b) ⋅ V, (6)

where Q,K,V represents query, key, and values learned by the linear projection, and b is parameter-
ized attention bias as position encodings.

4.2 Latency Driven Slimming

Design of Supernet. Based on the dimension-consistent design, we build a supernet for searching
efficient models of the network architecture shown in Fig. 3 (Fig. 3 shows an example of searched
final network). In order to represent such a supernet, we define the MetaPath (MP), which is the
collection of possible blocks:

MPi,j=1,2 ∈ {MB4Di , Ii},
MPi,j=3,4 ∈ {MB4Di ,MB

3D
i

, Ii}, (7)

where I represents identity path, j denotes the j
th Stage, and i denotes the i

th block. The supernet
can be illustrated by replacing MB in Fig. 3 with MP.

As in Eqn. 7, in S1 and S2 of the supernet, each block can select from MB
4D or I , while in S3 and

S4, the block can be MB3D, MB4D, or I . We only enable MB3D in the last two Stages for two reasons.
First, since the computation of MHSA grows quadratically with respect to token length, integrating it
in early Stages would largely increase the computation cost. Second, applying the global MHSA to
the last Stages aligns with the intuition that early stages in the networks capture low-level features,
while late layers learn long-term dependencies.
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Searching Space. Our searching space includes Cj (the width of each Stage), Nj (the number of
blocks in each Stage, i.e., depth), and last N blocks to apply MB

3D.

Searching Algorithm. Previous hardware-aware network searching methods generally rely on
hardware deployment of each candidate in search space to obtain the latency, which is time consuming
[71]. In this work, we propose a simple, fast yet effective gradient-based search algorithm to obtain a
candidate network that just needs to train the supernet for once. The algorithm has three major steps.

First, we train the supernet with Gumbel Softmax sampling [72] to get the importance score for the
blocks within each MP, which can be expressed as

Xi+1 =�
n

e
(↵n

i
+✏n

i
)�⌧

∑n e
(↵n

i
+✏n

i
)�⌧ ⋅ MPi,j(Xi), (8)

where ↵ evaluates the importance of each block in MP as it represents the probability to select a block,
e.g., MB4D or MB3D for the i

th block. ✏ ∼ U(0,1) ensures exploration, ⌧ is the temperature, and n

represents the type of blocks in MP, i.e., n ∈ {4D, I} for S1 and S2, and n ∈ {4D,3D, I} for S3 and
S4. By using Eqn. 8, the derivatives with respect to network weights and ↵ can be computed easily.
The training follows the standard recipe (see Sec. 5.1) to obtain the trained weights and architecture
parameter ↵.

Second, we build a latency lookup table by collecting the on-device latency of MB4D and MB
3D with

different widths (multiples of 16).

Finally, we perform network slimming on the supernet obtained from the first step through latency
evaluation using the lookup table. Note that a typical gradient-based searching algorithm simply
select the block with largest ↵ [72], which does not fit our scope as it cannot search the width Cj . In
fact, constructing a multiple-width supernet is memory-consuming and even unrealistic given that
each MP has several branches in our design. Instead of directly searching on the complex searching
space, we perform a gradual slimming on the single-width supernet as follows.

We first define the importance score for MPi as ↵
4D
i

↵I

i

and ↵
3D
i
+↵4D

i

↵I

i

for S1,2 and S3,4, respectively.
Similarly, the importance score for each Stage can be obtained by summing up the scores for all MP
within the Stage. With the importance score, we define the action space that includes three options:
1) select I for the least important MP, 2) remove the first MB3D, and 3) reduce the width of the least
important Stage (by multiples of 16). Then, we calculate the resulting latency of each action through
lookup table, and evaluate the accuracy drop of each action. Lastly, we choose the action based on
per-latency accuracy drop (−%

ms
). This process is performed iteratively until target latency is achieved.

We show more details of the algorithm in Appendix.

5 Experiments and Discussion

We implement EfficientFormer through PyTorch 1.11 [73] and Timm library [74], which is the
common practice in recent arts [18, 6]. Our models are trained on a cluster with NVIDIA A100 and
V100 GPUs. The inference speed on iPhone 12 (A14 bionic chip) is measured with iOS version
15 and averaged over 1,000 runs, with all available computing resources (NPU), or CPU only.
CoreMLTools is used to deploy the run-time model. In addition, we provide latency analysis on
Nvidia A100 GPU with batch size 64 to exploit hardware roofline. The trained PyTorch models are
deployed in ONNX format and are compiled with TensorRT. We report GPU runtime that excludes
preprocessing. We provide the detailed network architecture and more ablation studies in Appendix
6.

5.1 Image Classification

All EfficientFormer models are trained from scratch on ImageNet-1K dataset [34] to perform the
image classification task. We employ standard image size (224 × 224) for both training and testing.
We follow the training recipe from DeiT [3] but mainly report results with 300 training epochs to
have the comparison with other ViT-based models. We use AdamW optimizer [75, 76], warm-up
training with 5 epochs, and a cosine annealing learning rate schedule. The initial learning rate is set as
10−3 × (batch size�1024) and the minimum learning rate is 10−5. The teacher model for distillation
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Table 1: Comparison results on ImgeNet-1K. The latency results are tested on iPhone Neural
Engine (NPU), iPhone CPU and Nvidia A100 GPU correspondingly. Note that for mobile speed,
we report latency per frame, while on A100 GPU, we report latency per batch size 64 to maximum
resource utilization. Hybrid refers to a mixture of MobileNet blocks and ViT blocks. (-) refers to
unrevealed or unsupported models. †Latency measured with GeLU activation for fair comparison, the
original LeViT-256 model with HardSwish activations runs at 44.5 ms. Different training seeds lead
to less than ±0.2% fluctuation in accuracy for EfficientFormer, and the error for latency benchmark is
less than ±0.1 ms.

Model Type Params(M) GMACs Train. Epoch Top-1(%) Latency (ms)
NPU CPU A100

MobileNetV2×1.0 CONV 3.5 0.3 300 71.8 1.3 8.0 5.0
MobileNetV2×1.4 CONV 6.1 0.6 300 74.7 1.6 10.7 7.3

ResNet50 CONV 25.5 4.1 300 78.5 3.0 29.4 9.0
EfficientNet-B0 CONV 5.3 0.4 350 77.1 2.7 14.5 10.0
EfficientNet-B3 CONV 12.0 1.8 350 81.6 6.6 52.6 35.0
EfficientNet-B5 CONV 30.0 9.9 350 83.6 23.0 258.8 141.0

DeiT-T Attention 5.9 1.2 300/1000 74.5/76.6 9.2 16.7 7.1
DeiT-S Attention 22.5 4.5 300/1000 81.2/82.6 11.8 41.0 15.5

PVT-Small Attention 24.5 3.8 300 79.8 24.4 89.5 23.8
T2T-ViT-14 Attention 21.5 4.8 310 81.5 - - 21.0
Swin-Tiny Attention 29 4.5 300 81.3 - - 22.0
CSwin-T Attention 23 4.3 300 82.7 - - 28.7

PoolFormer-s12 Pool 12 2.0 300 77.2 6.1 59.0 14.5
PoolFormer-s24 Pool 21 3.6 300 80.3 6.2 126.7 28.2
PoolFormer-s36 Pool 31 5.2 300 81.4 6.7 192.6 41.2

ResMLP-S24 SMLP 30 6.0 300 79.4 7.6 40.2 17.4
Convmixer-768 Hybrid 21.1 20.7 300 80.2 11.6 29.3 -

LeViT-256 Hybrid 18.9 1.1 1000 81.6 11.9 † 13.5 4.5
NASViT-A5 Hybrid - 0.76 360 81.8 - - -

MobileViT-XS Hybrid 2.3 0.7 300 74.8 7.2 26.5 11.7
MobileFormer-508M Hybrid 14.0 0.51 450 79.3 13.2 22.2 14.6
EfficientFormer-L1 MetaBlock 12.3 1.3 300/1000 79.2/80.2 1.6 11.5 6.2
EfficientFormer-L3 MetaBlock 31.3 3.9 300 82.4 3.0 28.2 13.9
EfficientFormer-L7 MetaBlock 82.1 10.2 300 83.3 7.0 67.7 30.7

is RegNetY-16GF [77] pretrained on ImageNet with 82.9% top-1 accuracy. Results are demonstrated
in Tab. 1 and Fig. 1

Comparison to CNNs. Compared with the widely used CNN-based models, EfficientFormer
achieves a better trade-off between accuracy and latency. On iPhone Neural Engine, EfficientFormer-
L1 runs at MobileNetV2×1.4 speed while achieving 4.5% higher top-1 accuracy. In addition,
EfficientFormer-L3 runs at a similar speed to EfficientNet-B0 while achieving relative 5.3% higher
top-1 accuracy. For the models with high performance (> 83% top-1), EfficientFormer-L7 runs more
than 3× faster than EfficientNet-B5, demonstrating the advantageous performance of our models.
Moreover on desktop GPU (A100), EfficientFormer-L1 runs 38% faster than EfficientNet-B0 while
achieving 2.1% higher top-1 accuracy. EfficientFormer-L7 runs 4.6× faster than EfficientNet-B5.
These results allow us to answer the central question raised earlier; ViTs do not need to sacrifice
latency to achieve good performance, and an accurate ViT can still have ultra-fast inference speed as
lightweight CNNs do.

Comparison to ViTs. Conventional ViTs are still under-performing CNNs in terms of latency. For
instance, DeiT-Tiny achieves similar accuracy to EfficientNet-B0 while it runs 3.4× slower. However,
EfficientFormer performs like other transformer models while running times faster. EfficientFormer-
L3 achieves higher accuracy than DeiT-Small (82.4% vs. 81.2%) while being 4× faster. It is notable
that though the recent transformer variant, PoolFormer [6], naturally has a consistent 4D architecture
and runs faster compared to typical ViTs, the absence of global MHSA greatly limits the performance
upper-bound. EfficientFormer-L3 achieves 1% higher top-1 accuracy than PoolFormer-S36, while
being 3× faster on Nvidia A100 GPU, 2.2× faster on iPhone NPU and 6.8× faster on iPhone CPU.

Comparison to Hybrid Designs. Existing hybrid designs, e.g., LeViT-256 and MobileViT, still
struggle with the latency bottleneck of ViTs and can hardly outperform lightweight CNNs. For
example, LeViT-256 runs slower than DeiT-Small while having 1% lower top-1 accuracy. For
MobileViT, which is a hybrid model with both MHSA and MobileNet blocks, we observe that it
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Table 2: Comparison results using EfficientFormer as backbone. Results on object detection &
instance segmentation are obtained from COCO 2017. Results on semantic segmentation are obtained
from ADE20K.

Backbone Detection & Instance Segmentation Semantic
APbox APbox

50 APbox

75 APmask APmask

50 APmask

75 mIoU(%)
ResNet18 34.0 54.0 36.7 31.2 51.0 32.7 32.9

PoolFormer-S12 37.3 59.0 40.1 34.6 55.8 36.9 37.2
EfficientFormer-L1 37.9 60.3 41.0 35.4 57.3 37.3 38.9

ResNet50 38.0 58.6 41.4 34.4 55.1 36.7 36.7
PoolFormer-S24 40.1 62.2 43.4 37.0 59.1 39.6 40.3

EfficientFormer-L3 41.4 63.9 44.7 38.1 61.0 40.4 43.5
ResNet101 40.4 61.1 44.2 36.4 57.7 38.8 38.8

PoolFormer-S36 41.0 63.1 44.8 37.7 60.1 40.0 42.0
EfficientFormer-L7 42.6 65.1 46.1 39.0 62.2 41.7 45.1

is significantly slower than CNN counterparts, e.g., MobileNetV2 and EfficientNet-B0, while the
accuracy is not satisfactory either (2.3% lower than EfficientNet-B0). Thus, simply trading-off
MHSA with MobileNet blocks can hardly push forward the Pareto curve, as in Fig. 1. In contrast,
EfficientFormer, as pure transformer-based model, can maintain high performance while achieving
ultra-fast inference speed. EfficientFormer-L1 has 4.4% higher top-1 accuracy than MobileViT-XS
and runs much faster across different hardware and compilers (1.9× faster on Nvidia A100 GPU
Computing, 2.3× faster on iPhone CPU, and 4.5× faster on iPhone NPU). At a similar inference time,
EfficientFormer-L7 outperforms MobileViT-XS by 8.5% top-1 accuracy on ImageNet, demonstrating
the superiority of our design.

5.2 EfficientFormer as Backbone

Object Detection and Instance Segmentation. We follow the implementation of Mask-RCNN [78]
to integrate EfficientFormer as the backbone and verify performance. We experiment over COCO-
2017 [79] which contains training and validations sets of 118K and 5K images, respectively. The
EfficientFormer backbone is initialized with ImageNet-1K pretrained weights. Similar to prior
work [6], we use AdamW optimizer [75, 76] with initial learning rate of 2×10−4, and train the model
for 12 epochs. We set the input size as 1333 × 800.

The results for detection and instance segmentation are shown in Tab. 2. EfficientFormers consistently
outperform CNN (ResNet) and transformer (PoolFormer) backbones. With similar computation cost,
EfficientFormer-L3 outperforms ResNet50 backbone by 3.4 box AP and 3.7 mask AP, and outper-
forms PoolFormer-S24 backbone with 1.3 box AP and 1.1 mask AP, proving that EfficientFormer
generalizes well as a strong backbone in vision tasks.

Semantic Segmentation. We further validate the performance of EfficientFormer on the semantic
segmentation task. We use the challenging scene parsing dataset, ADE20K [80, 81], which contains
20K training images and 2K validation ones covering 150 class categories. Similar to existing
work [6], we build EfficientFormer as backbone along with Semantic FPN [82] as segmentation
decoder for fair comparison. The backbone is initialized with pretrained weights on ImageNet-1K
and the model is trained for 40K iterations with a total batch size of 32 over 8 GPUs. We follow the
common practice in segmentation [6, 13], use AdamW optimizer [75, 76], and apply a poly learning
rate schedule with power 0.9, starting from a initial learning rate 2 × 10−4. We resize and crop input
images to 512 × 512 for training and shorter side as 512 for testing (on validation set).

As shown in Tab. 2, EfficientFormer consistently outperforms CNN- and transformer-based backbones
by a large margin under a similar computation budget. For example, EfficientFormer-L3 outperforms
PoolFormer-S24 by 3.2 mIoU. We show that with global attention, EfficientFormer learns better
long-term dependencies, which is beneficial in high-resolution dense prediction tasks.

5.3 Discussion

Relations to MetaFormer. The design of EfficientFormer is partly inspired by the MetaFormer
concept [6]. Compared to PoolFormer, EfficientFormer addresses the dimension mismatch problem,
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which is a root cause of inefficient edge inference, thus being capable of utilizing global MHSA with-
out sacrificing speed. Consequently, EfficientFormer exhibits advantageous accuracy performance
over PoolFormer. In spite of its fully 4D design, PoolFormer employs inefficient patch embedding
and group normalization (Fig. 2), leading to increased latency. Instead, our redesigned 4D partition
of EfficientFormer (Fig. 3) is more hardware friendly and exhibits better performance across several
tasks.

Limitations. (i) Though most designs in EfficientFormer are general-purposed, e.g., dimension-
consistent design and 4D block with CONV-BN fusion, the actual speed of EfficientFormer may
vary on other platforms. For instance, if GeLU is not well supported while HardSwish is efficiently
implemented on specific hardware and compiler, the operator may need to be modified accordingly.
(ii) The proposed latency-driven slimming is simple and fast. However, better results may be achieved
if search cost is not a concern and an enumeration-based brute search is performed.

6 Conclusion

In this work, we show that Vision Transformer can operate at MobileNet speed on mobile devices.
Starting from a comprehensive latency analysis, we identify inefficient operators in a series of ViT-
based architectures, whereby we draw important observations that guide our new design paradigm.
The proposed EfficientFormer complies with a dimension consistent design that smoothly leverages
hardware-friendly 4D MetaBlocks and powerful 3D MHSA blocks. We further propose a fast latency-
driven slimming method to derive optimized configurations based on our design space. Extensive
experiments on image classification, object detection, and segmentation tasks show that Efficient-
Former models outperform existing transformer models while being faster than most competitive
CNNs. The latency-driven analysis of ViT architecture and the experimental results validate our
claim: powerful vision transformers can achieve ultra-fast inference speed on the edge. Future
research will further explore the potential of EfficientFormer on several resource-constrained devices.
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