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Abstract

Dynamic Magnetic Resonance Imaging (MRI) is known to be a powerful and reliable tech-
nique for the dynamic imaging of internal organs and tissues, making it a leading diagnos-
tic tool. A major difficulty in using MRI in this setting is the relatively long acquisition
time (and, hence, increased cost) required for imaging in high spatio-temporal resolution,
leading to the appearance of related motion artifacts and decrease in resolution. Com-
pressed Sensing (CS) techniques have become a common tool to reduce MRI acquisition
time by subsampling images in the k-space according to some acquisition trajectory. Sev-
eral studies have particularly focused on applying deep learning techniques to learn these
acquisition trajectories in order to attain better image reconstruction, rather than using
some predefined set of trajectories. To the best of our knowledge, learning acquisition
trajectories has been only explored in the context of static MRI. In this study, we consider
acquisition trajectory learning in the dynamic imaging setting. We design an end-to-end
pipeline for the joint optimization of multiple per-frame acquisition trajectories along with
a reconstruction neural network, and demonstrate improved image reconstruction quality
in shorter acquisition times. The code for reproducing all experiments is accessible at
https://github.com/tamirshor7/MultiPILOT.

Keywords: Magnetic Resonance Imaging (MRI), fast image acquisition, image recon-
struction, dynamic MRI, deep learning.

1. Introduction

Magnetic Resonance Imaging (MRI) has become one of the most popular medical imaging
techniques. It is often favored over other technologies due to its non-invasiveness, lack of
harmful radiation, and excellent soft-tissue contrast. In particular, for some tasks, dynamic
MRI was shown to be substantially better applicable than static MRI. Such tasks include but
are not limited to cardiac MRI, tissue motion, and cerebrospinal fluid (CSF) flow analysis.

A major drawback of MRI, however, is that it requires relatively long scan times. This
not only makes MRI scans expensive but also requires patients to remain still for long
periods of time. Aside from causing discomfort, prolonged scanning is more susceptible to
the appearance of imaging artifacts originating from the patient’s movement. In the setting
of dynamic MRI, reducing frame acquisition time directly increases the temporal resolution
and reduces the in-frame motion artifact of the organ of interest (e.g., the heart).

A popular approach for reducing scan time is Compressed Sensing (CS) techniques
- these methods subsample the Fourier space (k-space) of the image according to some
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predefined trajectory. CS is usually used in a pipeline prior to applying some reconstruction
logic for the recovery of information lost in subsampling and for filtering blurring and
aliasing artifacts caused by violating the Nyquist sampling criterion (Zaitsev et al., 2015).

Previous work Following recent years’ developments in deep learning and its applica-
bility in inverse problem solving (Ongie et al., 2020), many recent studies opted for fixing
some predefined handcrafted acquisition trajectory (e.g., Cartesian, Radial, Golden Angle,
— henceforth collectively referred to as fized trajectories in this paper) and focusing on devel-
oping deep learning models for denoising and restoring the image data lost in undersampling
(Hammernik et al., 2018; Hyun et al., 2018), or performing super-resolution reconstruction
(Chen et al., 2020b; Masutani et al., 2020).

Extensive research had also been made to design good handcrafted acquisition trajecto-
ries, both in the context of static ((Larson et al., 2007; Yiasemis et al., 2023)) and dynamic
((Utzschneider et al., 2021; Bliesener et al., 2020) MRI. Despite its crucial impact on the
resulting image, learning the acquisition trajectories within the k-space has been so far
studied to a much lesser extent. While trajectory optimization can be performed over a
set of Cartesian subsampling schemes (Weiss et al., 2020; Bahadir et al., 2020), recent re-
search unveiled the potential in optimizing over more general, non-Cartesian acquisition
trajectories (Alush-Aben et al., 2020; Weiss et al., 2021; Wang et al., 2021; Chaithya et al.,
2022). The latter case is considered more complex as the optimization procedure must
impose hardware-dictated kinematic feasibility constraints that every sampling trajectory
must satisfy. Without constraining the optimization, trajectories could violate these re-
quirements and be unrealizable in real MRI machines.

Our work focuses on expanding PILOT — an end-to-end framework for joint optimiza-
tion of physically feasible k-space acquisition trajectories and image reconstruction neural
network previously introduced by (Weiss et al., 2021) in the static MR imaging setting. We
extend this framework to the dynamic MRI setting. While one can naively adapt PILOT
for dynamic MRI image reconstruction by using a single learned trajectory across multiple
consecutive frames, learning distinct trajectories across the frames hides the potential for
improved image reconstruction which is exploited and demonstrated in the present study.

From this perspective, dynamic MRI differs from its static counterpart in two important
aspects. Firstly, in dynamic MRI, each data sample consists of some integer number n of
frames. This implies generalizing the trajectory learning problem to learning n independent
trajectories. As we later show, jointly learning n feasible trajectories along with a recon-
struction network is a harder optimization problem that requires non-trivial extensions of
the initial pipeline and training regime presented in PILOT. Secondly, dynamic MRI data
samples the images of the same organ across time, resulting in high cross-frame redundancy,
which we exploit for more efficient sampling.

Contributions This paper makes the following contributions:

1. We present Multi-PILOT — an end-to-end pipeline for the joint optimization of mul-
tiple per-frame feasible acquisition trajectories along with a reconstruction model
capable of taking cross-frame data redundancy into consideration. We demonstrate
Multi-PILOT’s ability to achieve superior cross-frame image reconstruction results
compared to that of PILOT (that learns a single learned trajectory for all frames)
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and to that of constant trajectory-based reconstruction. Our improvement is shown
to be expressed both in sampling time and reconstruction quality.

2. We present two trajectory learning-related training techniques that we refer to as
trajectory freezing and reconstruction resets. While we demonstrate the contribution
of these methods to reconstruction results for static and dynamic MRI using only
our pipeline, these techniques are generalizable to other joint sampling-reconstruction
optimization tasks.

3. Our work demonstrates the intricacy of jointly learning the acquisition trajectories and
the reconstruction network. We present quantitative evidence for the shortcomings
of 'naive’ learning of independent per-frame trajectories without incorporating any of
the additional considerations proposed in this paper.

2. Methods
We adopt the approach employed by (Weiss et al., 2021) in PILOT — a pipeline consisting of
a subsampling layer simulating the data acquisition, a regridding layer creating the subsam-
pled image on a Cartesian grid, and a reconstruction layer for recovering the subsampled
image. The subsampling and regridding layers are parametrized by the k-space acquisition
trajectory coordinates which are jointly learned with the reconstruction parameters in order
to find the optimal trajectory. In the remainder of this section, we present how each layer is
used to within our end-to-end pipeline for multi-trajectory learning and detail the training
regime.

Machine constraints

Feasible
trajectory
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Figure 1: Multi-PILOT Pipeline Fully sampled frames Z are fed into our model, sub-
sampled based on our trajectories and reconstructed.

2.1. Subsampling layer

Given a data sample composed of n fully sampled frames, Z = [Z, Zsy...Z,], this layer re-

turns a set X = f"K(Z) of the n subsampled frames in the frequency domain. We note the as-

sumption our input is composed of a discrete set of frames is a simplifying assumption, more
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applicable to the case of prospectively gated MRI acquisition. To perform subsampling, the
layer maintains a representation of the acquisition trajectory K & RNiamesXNshotsXm g
learnable parameters, where Nfames 1S the number of frames per data sample (along the
temporal dimension), Ngpots i the number of RF excitations and m is the number of sam-
pling points within each shot. For each frame, we use the non-uniform FFT (NUFFT)
algorithm (Dutt and Rokhlin, 1993) to obtain the subsampled image in the frequency do-
main at the non-Cartesian locations. To impose machine-related kinematic constraints for
each sampling trajectory, we employ the projection algorithm proposed by (Chauffert et al.,
2016; Radhakrishna and Ciuciu, 2023).

2.2. Regridding layer
We use the adjoint NUFFT (Dutt and Rokhlin, 1993) to tran§foronur~subsampled k-space
data points into n subsampled frames in the image domain, Z = F(X).

2.3. Reconstruction model

The goal of the reconstruction model is, given the downsampled frames Z in the image
domain, to output a set of reconstructed frames 7 = Rg(Z), where Rg is the reconstruction
network parametrized with learnable weights 8. Note that the network reconstructs a
sequence of n frames at once (collectively denoted as Z) given n corresponding inputs
(collectively denoted as Z). To embody Rg, we use the ACNN model proposed by (Du
et al., 2021). ACNN is basically a U-Net (Ronneberger et al., 2015) model with attention and
batch normalization layers applied throughout the pipeline, aimed at learning the optimal
k-space interpolation for recovering data lost in undersampling the frequency domain. As
mentioned above, an important aspect of dynamic MRI reconstruction is the opportunity
to utilize data redundancy across different frames. ACNN addresses this need by learning
the k-space interpolation for each frame based on several adjacent frames. Although ACNN
was initially presented as a model for the undersampled reconstruction of static 3D MRI
samples, in our work we adapt ACNN to reconstruct temporal sequences of two-dimensional
images. It is important to emphasize that the principal focus of this work is not a specific
reconstruction model; the proposed algorithm can be used with any differentiable model.
2.4. Training regime

The training of the trajectories and the reconstruction model is performed by solving the
following optimization problem

min ZE(Re(ff‘((fK(Zi))), Zy), (1)

where the loss £ (MSE in our experiments) is summed over a training set of fully sampled
sequences Z; each comprising n frames. We emphasize that our goal was not to find an
optimal loss function, having in mind that the proposed algorithm can be used with more
complicated, possibly task-specific, loss functions.

The principal goal of training in such a multi-frame setting is to exploit the similarities
across frames in order to achieve subsampling and reconstruction results superior to those
of using a single subsampling trajectory, shared across all frames. As we later show in
Section 3, naively feeding sequences of frames through our pipeline fails to achieve that. To
our belief, this is due to the increased complexity of jointly optimizing a set of independent
trajectories along with a reconstruction network. We found that the two training techniques
described in the sequel were particularly beneficial to overcome this difficulty.
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Reconstruction resets Jointly optimizing acquisition trajectories and the reconstruction
model is a complicated optimization task, even within the setting of static MRI. Each
optimization step over one component also induces an update in the other. This means,
for example, that the current state of the reconstruction model is inherently dependent not
only on the current subsampling trajectories but also, possibly, on much earlier states of the
subsampling model. This dependency is not desired, as we mainly want the reconstruction
model to perform the best only with the recent states of the acquisition model. Furthermore,
this joint optimization is more susceptible to local minima. For this reason, in Multi-PILOT,
we chose to reset the weights of our reconstruction model every ¢ training epochs, with ¢
being a hyper-parameter kept fixed throughout the training procedure. In Section 3, we
show that this method is not only beneficial in the dynamic setting but also improves
results in the static case. We believe that a similar technique can be applied in various joint
sampling-reconstruction optimization efforts.

Trajectory freezing As previously stated, a key goal in multi-trajectory learning is to
utilize cross-frame data redundancy and adjust learned trajectories to capture the unique
features required for each frame. We observed that applying the optimization step over all
trajectories at once complicates the task, as each trajectory is optimized under constant
variations of the data acquired for neighboring frames. As a remedy, given some set of
frames Z = [Z1,Zs...Z,], we propose to optimize each trajectory within our set of frames
separately. Every trajectory is only optimized for some given number of epochs, and during
that time all other trajectories are fixed. After optimizing each trajectory separately, we
jointly fine-tune all trajectories for several epochs. The exact details of trajectory freezing
method are further explicated in Appendix B. In our experiments, we restricted the freezing
schedule to chronological order, deferring the investigation of the optimal optimization order
for future work.

3. Experimental evaluation
3.1. Dataset

We used the OCMR dataset (Chen et al., 2020a), containing a total of 265 anonymized
cardiovascular MRI (CMR) scans, both fully sampled and undersampled. Each sample
consists of a set of a sequence of 384 x 144 2D images with a variable number of frames.
The data was acquired using Siemens MAGNETOM’s Prisma, Avanto and Sola scanners.
From this dataset, we only included a total of 62 scans containing fully-sampled multi-coil
data.

Given the small amount of fully-sampled data, we augmented the data using vertical
and horizontal flips, image re-scaling, and modulation of the frames with Gaussian masks to
highlight varying image regions. Each of the augmentation operations was applied indepen-
dently at random with a probability of 0.4 in each sample. Finally, we created our training,
test, and evaluation samples by splitting all of the available videos into units of 8 frames.
This was done to allow training on a larger set of data samples. We note that inference
with a higher number of frames currently requires retraining the model. We aim to improve
this in future work. After augmentation and splitting, 4170 samples were obtained. 80% of
the data were allocated for training, 17.5% for testing, and 2.5% for the validation set.
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3.2. Training setting

All experiments were run on a single Nvidia RTX A4000 GPU. Optimization in all experi-
ments was done using the Adam optimizer (Kingma and Ba, 2014). For the reconstruction
model, we applied dropout with a probability of 0.1 and used an initial learning rate of
10~* with a decay of 5 x 1073 every 30 epochs. For trajectory learning, we used an initial
learning rate of 0.2, decaying by a factor of 0.7 every 3 epochs. When applying reconstruc-
tion resets, we reset the reconstruction model every 35 epochs. When applying trajectory
freezing, we optimized each trajectory for 35 epochs. When neither was applied, we exe-
cuted each experiment for 315 epochs, so that all of our experiments ran for a total of 315
epochs (with or without resets and freezing). In all experiments batches of 12 samples each
containing 8 384 x 144 frames. Using this setting, our GPU memory consumption is up to
9.2GB, single epoch training time is around 13 minutes. Machine physical constraints for
all experiments were Gmax = 40mT/m for the peak gradient, Smax = 200T/m/s for the
maximum slew-rate, and dt = 10usec for the sampling time.

3.3. Quality metrics

For quantitative evaluation, we used peak signal-to-noise ratio (PSNR), visual information
fidelity (VIF) (Sheikh and Bovik, 2006), and feature similarity indexing method (FSIM)(Zhang
et al., 2011). PSNR measures pixel-wise similarity between images. VIF relies on statistical
attributes expected to be shared between the target and the reconstructed image. FSIM
compares images based on phase congruency and gradient magnitude that are known to be
related to dominant features in the human visual system. According to the study of (Mason
et al., 2019), VIF and FSIM were shown to be best correlated with the image quality scores
assigned to a set of reconstructed MR images by expert radiologists. In spite of its popu-
larity in other imaging and vision tasks, we chose not to include the structural similarity
index measure (SSIM) within our metrics. This is because recent evaluations (Pambrun and
Noumeir, 2015; Mason et al., 2019) as well as our own findings point to SSIM’s inability to
credibly represent similarity in medical imaging tasks.

3.4. Reconstruction results

In this section, we provide an ablation study (Table 1) showing that Multi-PILOT achieves
superior per-frame image reconstruction compared to two baselines: 1. Golden Angle ro-
tated stack of stars (GAR) k-space acquisition (Zhou et al., 2017) — a fixed (non-learned)
k-space subsampling strategy, that according to the study of (Bliesener et al., 2020) pro-
vides state-of-the-art results in non-Cartesian dynamic MRI subsampling; and 2. PILOT
(with a single trajectory applied to the acquisition of all frames) is brought as the trajec-
tory learning baseline that most resembles ours, only without our proposed adaptations to
the dynamic case. We additionally conduct an ablation study to learn the contribution of
reconstruction resets and trajectory freezing.

In all of our experiments that include PILOT, we used the projection algorithm proposed
by (Chauffert et al., 2016) to impose kinematic constraints, in spite of the fact that the
original PILOT algorithm was penalty-based. This choice is dictated by the improved per-
formance of projection-based version of PILOT, and also provides better grounds for com-
parison to Multi-PILOT which also utilizes the projection algorithm. In all experiments
other than GAR, radial trajectory initialization was used. Golden Angle initialization was
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Learr.led Recon. | Traj. PINR VIF FSIM
traj. Resets | Freeze
GAR X X X 34.30 + 0.61 0.772 £ 0.011 0.822 + 0.009
PILOT | Single X X 35.87+0.74 0.699 + 0.015 0.8554 4+ 0.006
Single X 36.72 +0.74 0.705 £ 0.013 0.871 + 0.005
Multi X X 34.06 + 0.62 0.725 + 0.015 0.806 + 0.011
Multi X 33.44 + 0.63 0.684 + 0.01 0.790 + 0.009
Multi X 37.18 +0.72 0.806 + 0.009 0.875 + 0.008
Ours Multi 38.72 £ 0.77 | 0.823 + 0.009 | 0.906 + 0.006

Table 1: Reconstruction results comparison.The proposed Multi-PILOT method (denoted as
Ours) shows favorable reconstruction in all evaluation metrics.

also attempted, however empirically this initialization lead to sub-optimal results using our

method.

Table 1 summarizes the performance of the compared reconstruction algorithms. The
following conclusions are evident from the table. Firstly, the performance of the proposed
method, trained with trajectory freezing and reconstruction resets surpasses both of our
baselines according to all evaluated metrics. Our method achieves a 2 dB PSNR improve-
ment, a 0.05 point VIF score improvement, and a 0.03 point FSIM score improvement
compared to those achieved by our baselines. This suggests that independent per-frame tra-
jectory learning achieves better reconstruction quality in dynamic MRI using our pipeline.

Secondly, the evaluation demonstrated the advantage of using reconstruction resets both
for single and multi-trajectory learning. For single trajectory learning, we observed a 0.85
dB PSNR improvement. For multi-trajectory learning, the improvement exceeded 3.12
dB and 5.28 dB with and without trajectory freezing, respectively. Similar trends are
manifested in the VIF and FSIM scores. The incorporation of trajectory freezing increased
the metrics by 1.54 dB PSNR, 0.02 VIF points, and 0.03 FSIM points.

Thirdly, the evaluation shows that 'naively’ learning multiple per-frame acquisition tra-
jectories (without using reconstruction resets or trajectory freeze) achieves inferior recon-
struction capabilities. This is true even in comparison to learning a single trajectory shared
amongst all frames. We view this outcome as surprising since the solution to our optimiza-
tion problem found by PILOT resides within the solution space of learning independent
per-frame trajectories. We hypothesize that the reason for this result is the increased com-
plexity of solving the optimization problem in its generalized multi-trajectory version. This
assumption is supported by the noticeable improvement seen by incorporating reconstruc-
tion resets and trajectory freezing. Nonetheless, we believe that further investigation is
required to elucidate this effect.

The favorable performance of our method is also shown in Figure 2. Compared to
PILOT’s reconstruction, Multi-PILOT exhibits significantly less imaging noise and artifacts.
The corresponding acquisition trajectories and correlation with visual results are further
explained in Appendix C.7. Additional visual results are presented in Appendix A.1.

3.5. Acquisition time minimization

In this section, we evaluate Multi-PILOT’s potential in reducing MRI scan acquisition
times by comparing the number of shots required for a certain reconstruction quality. As
mentioned before, we sample every frame of the k-space using a constant pre-defined number
of shots — each shot comprises a sequence of independently acquired 512 frequency samples.



SHOR WEISS NOTI BRONSTEIN

Figure 2: Representative visual reconstruction results. Fully sampled frame (A);
reconstruction from undersampled data using Multi-PILOT (B), PILOT (C) and

GAR (D).
Nopot PILOT Multi-PILOT
Shots PSNR VIF FSIM PSNR VIF FSIM
10 35.33 £0.752 | 0.629 £ 0.014 | 0.841 & 0.006 | 36.32 £0.70 | 0.753 & 0.011 | 0.855 £ 0.008
12 | 35.94+0.73 | 0.672 % 0.014 | 0.854 + 0.006 | 37.35 = 0.72 | 0.774+£0.01 | 0.878 £ 0.008
14 | 36.45+0.74 | 0.685 % 0.012 | 0.866 % 0.006 | 37.16 = 0.72 | 0.775 £ 0.011 | 0.873 = 0.009
16 | 36.72 + 0.743 | 0.705 % 0.013 | 0.871 % 0.005 | 38.72 + 0.77 | 0.823 = 0.009 | 0.906 - 0.006

Table 2: Acquisition time minimization. Using 10 — 12 shots, our method achieves reconstruc-
tion quality similar to that of our 16 shot baseline.

For our comparison, we explore the performance of our method and that of the next-best
baseline: PILOT that uses a single trajectory shared across all frames, with reconstruction
resets employed during training. We vary the number of shots used to sample the k-space.

Evaluation results are summarized in Table 2. Our primary conclusion is the potential
of our method in reducing acquisition times. For example, in all metrics, a 12-shot version
of Multi-PILOT achieves better reconstruction than a 16-shot PILOT, while 10-shot Multi-
PILOT achieves comparable performance. This means that for a given required level of
reconstruction, our method can use 25 — 35% fewer shots/sample points compared to what
our baseline would have to use. The results in Table 2 also support our results from Section
3.4 and show that our method provides substantially better reconstruction PSNR, VIF, and
FSIM values compared to our baseline in additional settings. Visual reconstruction results
are presented in Section A.2, and the depiction of corresponding learned trajectories can be
found in Appendix C.

4. Conclusion

We investigated the task of dynamic MRI subsampling and restoration and discussed some
of the challenges and unique considerations required when approaching this problem. As
our solution to this problem, we proposed Multi-PILOT — an end-to-end pipeline for jointly
learning optimal per-frame feasible k-space acquisition trajectories along with a multi-frame
reconstruction model. Multi-PILOT is designed to address the distinct features of our prob-
lem within the dynamic setting (cross-frame data redundancy and complex optimization
landscape). Our evaluation showed Multi-PILOT’s potential for improving the reconstruc-
tion quality of dynamic MRI and reducing its acquisition time. We furthermore introduced
reconstruction resets and trajectory freezing — two training methods that consistently and
substantially improved reconstruction results within PILOT and Multi-PILOT training,
and could be applicable to other subsampling and restoration pipelines.
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Appendix A. Visual Results

A.1. Reconstruction Quality

Figure A.3: Visual reconstruction results for Multi-PILOT (B), PILOT (C) and 'Naive’
multi-trajectory learning (D), along with the ground truth frames (A). Our
method both reconstructs finer details of each frame and output substantially
cleaner images compared to PILOT and ’Naive’ multiple trajectory learning.

13
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A.2. Acquisition Time Minimization

Figure A.4: Visual reconstruction results for acquisition time minimization.
Ground truth frames (row A), Multi-PILOT with 10 (B) and 12 (C) shots
produces cleaner reconstruction compared to PILOT with 16 shots (row D).
Spatial resolution seems not to be compromised.

Appendix B. Trajectory Freezing

In this section we elaborate on our trajectory freezing algorithm.

14



Mvurti PILOT

Algorithm 1: Trajectory Freezing Optimization

Input: Frame Sequence Z1,...,Z,

1. Optimize only the reconstruction model and the first trajectory (matching frame
Z1). All other trajectories remain ‘frozen’.;

2. for i < 2 to n do

for j < 1toi—1do

Set the previously learned trajectory j as the acquisition trajectory for frame
Zj;

end

Initialize trajectory for Z; as the learned trajectory for Z; 1;

Optimize only the reconstruction model and the ith trajectory (matching frame
Z;). All other trajectories remain ‘frozen’.;

end
3. Jointly optimize all learned trajectories and the reconstruction model (no frozen
trajectories);

Stage 1 is done to initialize some starting point for our trajectory learning. In stage
2 we learn the trajectory for every frame based on all preceding frames. This is to allow
the optimization to consider data already acquired by other frames. In stage 3 we jointly
fine-tune our trajectories to allow each trajectory to be optimized based on information
from all other acquisition trajectories.
As we show in 3, using trajectory freezing is optimal when combined with reconstruction
resets. We reset the reconstruction network after stage 1 and after every running of stage
2.c.

Appendix C. Trajectories

In this section, we present learned trajectories using PILOT and Multi-PILOT. In our train-
ing each data sample is consisted of 8 frames, therefore we start by initializing 8 identical
radial acquisition trajectories.

Figure C.6 shows Multi-PILOT learns different acquisition trajectories across frames. This
implies the optimal acquisition trajectories differ among frames along the temporal dimen-
sion, emphasizing the advantage of Multi-PILOT over applying static MRI pipelines in the
dynamic setting.
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Figure C.5: Trajectories shared across all frames. A shows the radial initialization
used to for every frame. B shows the learned shared trajectory obtained by
applying PILOT in the dynamic setting

16
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Figure C.6: Learned per-frame trajectories using Multi-PILOT.

We also present a more detailed explanation of 2.

17
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Fully
Sampled

Figure C.7: Representative visual reconstruction results. Top row: fully sampled
frame (A); reconstruction from undersampled data using Multi-PILOT (B),
PILOT (C) and GAR initialization (D) (without trajectory optimization). Bot-
tom row: corresponding trajectories with color-coded shots.

Figure C.7 shows the trajectories used to acquire the corresponding frames from 2.
Many of the data in each frame is encapsulated at the center of the k-space. The learned
trajectories show that while PILOT s single trajectory must allocate many acquisition points
for capturing central frequencies, the Multi-PILOT trajectory can afford using trajectories
more spread around the k-space, as data represented using the center frequencies are also
captured by other frames. MultiPILOT does better in reconstructing the finer details
compared to GAR initialization and PILOT reconstruction.
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