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Abstract

End-to-end autonomous driving (E2E-AD) has emerged as a promising paradigm
that unifies perception, prediction, and planning into a holistic, data-driven frame-
work. However, achieving robustness to varying camera viewpoints, a common
real-world challenge due to diverse vehicle configurations, remains an open prob-
lem. In this work, we propose VR-Drive, a novel E2E-AD framework that addresses
viewpoint generalization by jointly learning 3D scene reconstruction as an auxiliary
task to enable planning-aware view synthesis. Unlike prior scene-specific synthe-
sis approaches, VR-Drive adopts a feed-forward inference strategy that supports
online training-time augmentation from sparse views without additional annota-
tions. To further improve viewpoint consistency, we introduce a viewpoint-mixed
memory bank that facilitates temporal interaction across multiple viewpoints and a
viewpoint-consistent distillation strategy that transfers knowledge from original
to synthesized views. Trained in a fully end-to-end manner, VR-Drive effectively
mitigates synthesis-induced noise and improves planning under viewpoint shifts.
In addition, we release a new benchmark dataset to evaluate E2E-AD performance
under novel camera viewpoints, enabling comprehensive analysis. Our results
demonstrate that VR-Drive is a scalable and robust solution for the real-world
deployment of end-to-end autonomous driving systems.

1 Introduction

The end-to-end autonomous driving (E2E-AD) system refers to the integration of all modules,
including perception, prediction, and planning nodes. The end-to-end driving paradigm [9, 11, 55, 10,
47, 4, 16, 54, 17, 72] has consistently gained attention as a holistic approach, wherein the perception
and prediction tasks are effectively integrated to support planning. This integration enhances both
performance and efficiency, favoring a unified model for the entire driving task. This data-driven
approach, compared to traditional rule-based planning, is designed to function robustly in complex
scenarios by integrating various perception tasks (e.g., detection, tracking, mapping, etc.). During the
training process, it incorporates vast amounts of data and annotations to enhance its capabilities.

Despite significant advancements and strong performance across various scenarios, existing end-to-
end autonomous driving (E2E-AD) must evolve into scalable and flexible holistic models to become
viable industry solutions. Recent E2E-AD systems [14, 67, 63, 31, 73, 50, 8, 32], in particular, aim
to achieve comparable performance using only raw camera input. However, the viewpoint of the
camera [30, 45] can vary depending on the vehicle’s type and make, and systems that can effectively
adapt to these changes are crucial from a real-world application perspective. A straightforward
solution to this challenge would be to collect data using a variety of vehicles and camera rigs, and
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Figure 1: Example scenario where surrounding vehicles have stopped at a traffic signal. In
the original training view, both our VR-Drive and DiffusionDrive [35] perform well in perceiving
nearby vehicles and planning. However, with a lowered camera height, DiffusionDrive fails to detect
surrounding vehicles, leading to a trajectory that collides with the front vehicle, posing a safety risk.
In contrast, VR-Drive maintains accurate perception (except for those occluded due to the lowered
camera height) and plans trajectories as effectively as in the original view.

then use this data during the training process. However, this approach is impractical because it is
impossible to pre-build camera viewpoints for every type of vehicle. Additionally, E2E-AD networks
require annotations for various tasks, which incur significant costs, making it an impractical direction.
Furthermore, to be deployable across different types of vehicles, the model must be flexible and
robust not only to the predefined data but also to out-of-distribution (OOD) data. Therefore, the
network must also ensure its generalization ability during the training process.

To this end, we tackle the critical real-world challenge of generalization to diverse camera rigs
in end-to-end autonomous driving (E2E-AD) systems. Specifically, we propose VR-Drive, which
jointly learns 3D scene reconstruction as an auxiliary modular task within E2E-AD to augment
the diversity of camera viewpoints. While numerous prior works [22, 43, 74, 29] have explored
novel view synthesis through 3D reconstruction, these methods are typically scene-optimized and
require significant computational resources, making them unsuitable for real-time downstream tasks.
Therefore, we advocate for an online scene reconstruction approach that operates effectively with
sparse views. To this end, we adopt a feed-forward inference strategy [53, 58, 6, 3] to ensure
efficiency. Rather than training a separate novel view synthesis model, we integrate it as a joint
modular task within the end-to-end framework, thereby reducing training complexity. Moreover,
to prevent errors in view synthesis from propagating and degrading the final planning performance,
VR-Drive introduces a unified framework that incorporates 3D reconstruction as an auxiliary task
within E2E-AD, enabling novel view synthesis without requiring additional annotations. To learn a
viewpoint-robust and consistent feature space, VR-Drive utilizes a viewpoint-mixed memory bank
that encourages interaction between features from different viewpoints in the sequential training
process by allowing them to mix in 3D space. Additionally, to mitigate the potential noise embedded
in the features extracted from viewpoint-augmented images, we propose a distillation strategy that
transfers knowledge from the original view features to guide the learning of these synthesized features.
Benefiting from its end-to-end joint training, this planning-aware synthesis strategy ensures that the
model remains effective under viewpoint shifts and contributes to improved downstream planning.
As shown in Fig. 1, VR-Drive maintains robust performance under varying camera viewpoints, unlike
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existing E2E-AD methods that are sensitive to such changes, demonstrating its potential as a scalable
and reliable end-to-end autonomous driving solution for real-world deployment.

The main contributions and unique aspects of our work are summarized as follows:

• We tackle viewpoint robustness in end-to-end autonomous driving (E2E-AD) by jointly learning
3D reconstruction for planning-aware view synthesis, enabling training data augmentation across
diverse viewpoints and improving generalization to unseen camera configurations.

• We propose a viewpoint-mixed memory bank that enables temporal interaction between features
from different viewpoints, and introduce a viewpoint-consistent distillation strategy that transfers
knowledge from original viewpoint images to their corresponding augmented novel view synthesis
images in a 3D space.

• We introduce a new benchmark dataset for E2E-AD to evaluate robustness under novel camera
viewpoints unseen during training.

2 Related Works

2.1 End-to-End Autonomous Driving

End-to-end autonomous driving (E2E-AD) aims to generate final driving plans directly from raw
sensor inputs within an integrated framework, in contrast to conventional methods that separately train
perception, prediction, and planning modules. Previous E2E-AD works can be largely categorized
into two major directions: (1) focusing on architecture and task exploration, and (2) leveraging
high-level information distillation. Architecture-based approaches, such as [21, 23, 69], demonstrate
that submodules within an integrated framework can be optimized to enhance the final planning
performance. The following works [27, 33] further improved planning accuracy by removing certain
auxiliary tasks, such as occupancy prediction and motion prediction. In contrast, [60] reorganized
traditionally sequential auxiliary tasks into a parallel structure, while [33] proposed a task-aware
training strategy to better leverage task relationships in parallel settings.

Architecture-based methods rely on large-scale annotated data, but often struggle in diverse scenarios
due to biased training distributions, leading to issues such as causal confusion and long-tail errors.
To address this, several studies have explored distilling actions and feature information from rule-
based or reinforcement learning (RL)-based experts trained in privileged settings [62, 70, 25, 24].
Additionally, there has been research on utilizing language models for scene representation, prediction,
and planning, enhancing situational understanding and adaptability through the general knowledge
embedded in large-scale foundation models [48, 49, 42, 44, 5, 64].

Despite various research directions in E2E-AD, no prior work has addressed the development of
model architectures that are robust to novel sensor viewpoints. This challenge is particularly critical,
as sensor viewpoint variation is an inevitable and realistic factor in real-world deployments, arising
from differences in vehicle types, sensor configurations, and mounting positions. However, it remains
difficult to address within existing E2E-AD architectures and training paradigms, which are heavily
dependent on the sensor inputs seen during training. In this work, we take the first step toward
overcoming this limitation by proposing a method that enhances robustness to unseen sensor views.

2.2 Viewpoint-Robust Representations and Scene Reconstruction

Early studies [40, 41, 12, 13] have shown that neural networks are vulnerable to viewpoint changes,
especially under distribution shifts. While these studies explored adversarial viewpoints in 2D
perception, more recent efforts [30, 18, 2] have extended this line of research to address viewpoint
robustness in 3D perception tasks. They typically leverage novel view synthesis to generate images
under varying camera viewpoints, aiming to train perception algorithms that are robust across diverse
views. Research on novel view synthesis via 3D scene reconstruction [65, 74, 61, 36, 56] has
advanced significantly, particularly with the emergence of Neural Radiance Fields (NeRF) [43] and
3D Gaussian Splatting (3DGS) [28]. However, most methods are scene-specific and require long
training times, as they rely on scene-by-scene optimization.

To be applicable to scalable E2E-AD, a view augmentation strategy must satisfy two key requirements.
(1) Since the test-time camera viewpoint is not fixed and can vary widely, the model must be robust
to arbitrary views. This requires synthesizing diverse novel views during training, which in turn
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Figure 2: Overall framework of VR-Drive. Our overall framework consists of three main components,
as follows: (1) original-view learning, (2) novel-view learning, and (3) perception-planning learning.
For novel-view learning, the perception-planning head is randomly assigned to either the original or a
novel view during training, allowing the model to generalize across different viewpoints.

demands real-time online processing for both training and inference. (2) To be effective in driving
scenes, the method must support 3D reconstruction even with sparse or low-overlap observations. To
meet these requirements, we adopt a feed-forward 3D gaussian splatting [52, 71, 3, 6, 53] that is both
generalizable and capable of online training and inference. By incorporating 3D scene reconstruction
as a sub-task within E2E-AD, we enhance scene-level understanding and achieve performance gains
even for the original viewpoints. Furthermore, by jointly training the view synthesis and driving tasks
in an end-to-end manner, we account for potential synthesis errors and demonstrate the feasibility of
extending novel view synthesis as a practical means to improve viewpoint robustness in E2E-AD.

3 Methods

3.1 Overall Framework

Given multi-view images, end-to-end autonomous driving (E2E-AD) models jointly learn perception
and motion prediction to produce accurate motion plans for the ego vehicle. In addition to the standard
pipeline of existing E2E-AD approaches, the proposed VR-Drive incorporates scene reconstruction as
an auxiliary task, leveraging 3D Gaussian Splatting (3DGS) [28]. The overall framework of VR-Drive
is shown in Fig. 2. VR-Drive comprises three components, each targeting a distinct objective: (1)
original-view learning, (2) novel-view learning, and (3) perception-planning learning.

Original-view learning: During training, we use the original view as the default input of the pipeline.
Given multi-view images, the image encoder (ResNet50 [19]) first extracts original multi-view feature
maps, I ∈ RN×C×H×W , where N is the number of camera views. These generated feature maps
are utilized not only for perception and planning in autonomous driving, but also for learning and
rendering novel views via 3DGS. We build on the original 3DGS framework [28], which represents a
scene using Gaussian primitives g = (µ,Σ, α, c), defined by position µ, covariance Σ, opacity α, and
spherical harmonics for color c. The covariance matrix Σ is constructed by combining the scaling
factor s and rotation quaternion r. Unlike the original 3DGS that relies on structure-from-motion
for optimizing µ, we predict primitives in a feed-forward [53], pixel-wise manner directly from
input images. Similar to previous work [51] that treated depth estimation as an auxiliary task within
E2E-AD, we jointly learn depth as part of the E2E-AD framework. The estimated depth D is then
used to infer the position of Gaussian primitives µ ∈ R3. We use the predicted depth map D and
the image feature map I , as input to a Gaussian network composed of multiple convolutional layers.
This network predicts the remaining parameters of each Gaussian primitive, including the scaling
factor s ∈ R3

+, rotation quaternion r ∈ R4, opacity α ∈ [0, 1], and color c ∈ Rk represented by
k-degree spherical harmonics. To ensure valid ranges, we apply softplus to Hs and softmax to Hα,
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Figure 3: Illustration of the perception pipeline. VR-Drive includes two complementary techniques
to ensure consistent feature representations across camera viewpoints: Viewpoint-Mixed Memory
Bank and Viewpoint-Consistent Distillation.

enforcing s ∈ R3
+ and α ∈ [0, 1]. The feed-forward design enables online inference on novel views

and generalization to new inputs without scene-specific constraints.

Novel-view learning: VR-Drive aims to achieve robust planning performance by generating con-
sistent feature representations even for camera viewpoints that were not observed during training.
Specifically, at test time, it seeks to replicate the feature space of the original view across diverse,
unseen viewpoints. To this end, we randomly sample camera extrinsics and render multi-view
feature maps from arbitrary perspectives using the Gaussian primitives generated from the original
view. Given the rendered multi-view images from a novel view, we generate novel view features,
Ĩ ∈ RN×C×H×W , using a shared image encoder with the original view. Since the novel view features
may differ in distribution from the original, we guide the model to generate feature representations
that closely align with those of the original view. We observe that feed-forward 3DGS facilitates
scene-level 3D understanding, which proves beneficial even under novel viewpoints. To encourage
robustness, we additionally employ a cyclic reconstruction loss that trains the model to regenerate the
original view from a novel one.

Perception-planning learning: VR-Drive selectively trains on original and novel views during the
training to achieve robustness across diverse camera viewpoints. The image features extracted from
the selected view are passed to the perception and planning heads, enabling planning based on the
corresponding perception representation. Following [35, 26, 27], we adopt 3D object detection and
mapping as our perception tasks. More specifically, to achieve efficient representation, we utilize a
same sparse architecture that leverages anchor- and instance feature-based designs [38, 39] for both
detection and mapping tasks. Since the two tasks differ only in the dimensionality of the anchors,
we provide all descriptions and definitions in the context of detection, which are equally applicable
to mapping. We first generate initial bounding box proposals using the detection module [38],
denoted as B = {B1, B2, . . . , BM} ∈ RM×NB , where M is the number of anchors and NB is
the dimensionality of each anchor. For each proposal, we also extract the corresponding instance
features F = {F 1, F 2, . . . , FM} ∈ RM×Ni , where Ni is the dimension of the instance feature. This
allows us to encode the surrounding agents in the 3D space based on the extracted image features. As
illustrated in Fig. 3, we insert viewpoint-robust modules into the perception pipeline for detection
and mapping, in addition to the conventional detection components. Specifically, we introduce two
dedicated components within the perception stage of VR-Drive: the Viewpoint-Mixed Memory
Bank and the Viewpoint-Consistent Distillation strategy, designed to address feature variations
across viewpoints and promote canonical feature learning. We obtain the final perception results by
refining the viewpoint-robust features through an additional detection decoder. Finally, to enable
planning that interacts with the predicted agents, we adopt the motion planner proposed in [35].
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3.2 Viewpoint-Mixed Memory Bank

As mentioned in Sec. 3.1, the perception and planning pipeline randomly receives features from either
the original view or a novel view during training. To promote canonical 3D feature learning from
image inputs across diverse viewpoints with different distributions, we encourage interaction between
3D features extracted from diverse view during training. Rather than simply using a single pair of
original and novel views, limiting the model to observing only two viewpoints within a single forward
pass, we adopt a memory bank strategy that stores and updates features from continuously changing
novel views to promote broader viewpoint generalization. Let F ′ ∈ RM ′×Ni be the instance features
retrieved from the viewpoint-mixed memory bank, where M ′ is the number of sampled features.
Following the method proposed in [38], we align F ′ to the current frame by leveraging the velocities
of the anchor box and the status of the ego vehicle to compensate for temporal shifts between
viewpoints. Our objective is to generate interactive features between F ′ and the instance features
from the current view F . To achieve this, we leverage attention mechanisms [57] to fuse features
from the memory bank and the current view, resulting in the following mixed feature representation:

F = Cross-Attention(Query = F, Key = F ′, V alue = F ′). (1)
The mixed feature, F, is further processed through a self-attention mechanism to model interactions
among agents, and are then passed to the viewpoint-consistent distillation module. The viewpoint-
mixed memory bank is updated by selecting the top-K high-confidence instances after the final
refinement, while the oldest instances in the bank are discarded in an FIFO manner.

3.3 Viewpoint-Consistent Distillation

One potential challenge in learning viewpoint robustness through novel view synthesis is that the
synthesized images may contain rendering artifacts, especially in occluded or texture-less regions.
Moreover, novel view settings often involve more extreme or side-facing camera angles, which can be
more challenging for autonomous driving due to reduced visibility or increased uncertainty in object
localization. To address this, we adopt a distillation strategy in which the original view, typically
containing more reliable and informative features due to better visibility and camera positioning,
guides the learning of novel views. One simple strategy is to force alignment between two view
features by projecting one onto the other using depth and pose. However, such alignment often
excludes regions that are perceptually important for downstream tasks. Instead, we utilize the instance
features F and their corresponding anchor boxes B to selectively distill information that is crucial
from a planning perspective. Motivated by [59], we aim to extract representative object features by
computing a learnable offset p and weight w for each instance i based on its instance feature Fi,
defined as pi = f(Fi) ∈ Rs×3 and wi = g(Fi) ∈ RN×s, where f and g are a learnable keypoint and
weight generations. Here, s and N denote the number of sampled points and cameras, respectively.
Then, we compute the j-th 3D sampled point as follows:

p∗
i,j = pi,j + position(Bi), (2)

where position(Bi) denotes the 3D center coordinates (x, y, z) of the bounding box Bi. We project the
sampled 3D points onto the image plane of each camera view using the corresponding transformation
matrix, and extract image features at the n-th camera view via bilinear sampling, defined as:

fn,i,j = BilinearSample(In,Πnp
∗
i,j) ∈ RC (3)

where Πn is the camera transformation matrix and In is the original view 2D image feature map from
the n-th camera. Then, we define the aggregated feature at anchor index i as:

Si =

N∑
n

s∑
j

wn,i,j · fn,i,j . (4)

The same procedure is applied to the novel view image feature map Ĩ , resulting in S̃. To align the
sampled features S̃i from the novel view with the corresponding features Si from the original view,
we apply a mean squared error (MSE) loss between features. We restrict the loss of distillation
to high-confidence anchors to avoid distillation in the background or noisy boxes. Let I∗ be the
set of anchors whose confidence scores exceed a predefined threshold τ . The viewpoint-consistent
distillation loss is defined as:

Ldistill =
1

|I∗|
∑
i∈I∗

∥∥∥S̃i − stopgrad(Si)
∥∥∥2
2
, (5)
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Figure 4: Variant camera viewpoints at test time, differing from the original training distribution.

where stopgrad(·) indicates gradient detachment.

Note that the viewpoint-mixed memory bank is always used, whereas the viewpoint-consistent
distillation is only applied when a novel view image is used as the input for perception and planning.

3.4 Loss Functions

The loss functions consist of various tasks. For motion prediction and planning, we apply the winner-
takes-all strategy [34]. In the planning task, an extra regression loss is introduced to handle ego status.
For classification, we utilize focal loss [37], while L1 loss is used for regression in both detection
and mapping tasks. Furthermore, L1 loss is also employed for depth estimation. Additionally,
we incorporate the viewpoint-consistent distillation loss. We also use a rendering loss for scene
reconstruction, as described below.

Rendering Loss. We use both L2 and LPIPS [68] losses as the rendering objective. Since ground
truth for various viewpoints is unavailable during training, we apply rendering loss through two
alternative strategies, depending on whether novel view augmentation is used.

- Original Reconstruction Loss. The reconstruction loss encourages the model to render novel
views from input images using Gaussian primitives. As real data lacks paired novel views, we
simulate them by synthesizing adjacent-time views via splat-based rendering and apply the loss to
the generated outputs.

- Cyclic Reconstruction Loss. When a novel view is given as input for perception-planning heads,
supervision using adjacent time-step images, as done with the original view, is not feasible due to
the absence of paired frames. To support effective 3D scene learning with Gaussian primitives and
depth, we adopt a cyclic rendering strategy that reconstructs the original view from the novel view.

The overall loss function for end-to-end training is:

L = Ldet + Lmap + Ldepth + Lmotion + Lplan + Lrender. (6)

4 End-to-End Autonomous Driving Benchmark with Viewpoint Variations

4.1 Training and Evaluation Setup

Our work pioneers research on camera viewpoint variations in end-to-end autonomous driving (E2E-
AD) and aims to establish a framework for training and evaluation in future studies. Considering the
challenges of acquiring data with varying rigs during vehicle operation in real-world applications,
we fix the rig to a single setup during the training process. Furthermore, our goal is to evaluate the
model’s robustness across various out-of-distribution data and assess its performance under different
camera settings with distinct distributions. To achieve this, we introduce sensor variations at test time,
deviating from the original camera configuration used during training, including: +5◦ pitch, -10◦

pitch, +1.0m height, -0.7m height, and +1.0m depth. These variations are configured based on the
sensor settings from [30] to evaluate robustness.
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Table 1: Open-loop planning performance in nuScenes dataset. Metric calculation follows ST-P3 [20].
The best performance in each setting is highlighted in bold. * denotes the usage of ego-status.

Camera Setting Methods L2 (m) ↓ Collision Rate (%) ↓
1s 2s 3s Avg. 1s 2s 3s Avg.

Original

AD-MLP* [66] 0.20 0.26 0.41 0.29 0.17 0.18 0.24 0.19
BEV-Planner* [33] 0.28 0.52 0.84 0.55 0.13 0.17 0.36 0.22

VAD [27] 0.41 0.70 1.05 0.72 0.07 0.17 0.41 0.22
SparseDrive [51] 0.29 0.58 0.96 0.61 0.01 0.05 0.18 0.08

DiffusionDrive [35] 0.27 0.54 0.90 0.57 0.03 0.05 0.16 0.08
VR-Drive (Ours) 0.29 0.57 0.95 0.60 0.01 0.03 0.14 0.06

pitch +5◦

AD-MLP* [66] 0.20 0.26 0.41 0.29 0.17 0.18 0.24 0.19
BEV-Planner* [33] 0.29 0.56 0.91 0.59 0.27 0.31 0.54 0.37

VAD [27] 0.38 0.66 1.00 0.68 0.11 0.21 0.51 0.28
SparseDrive [51] 0.32 0.63 1.03 0.66 0.02 0.08 0.35 0.15

DiffusionDrive [35] 0.33 0.64 1.04 0.67 0.00 0.09 0.24 0.11
VR-Drive (Ours) 0.29 0.57 0.94 0.60 0.00 0.02 0.14 0.06

pitch -10◦

AD-MLP* [66] 0.20 0.26 0.41 0.29 0.17 0.18 0.24 0.19
BEV-Planner* [33] 0.27 0.51 0.86 0.54 0.64 0.73 0.93 0.76

VAD [27] 0.70 1.01 1.35 1.02 0.55 0.82 1.27 0.88
SparseDrive [51] 0.46 0.91 1.50 0.96 0.03 0.15 0.50 0.23

DiffusionDrive [35] 0.45 0.91 1.52 0.96 0.02 0.16 0.55 0.24
VR-Drive (Ours) 0.34 0.66 1.10 0.70 0.02 0.08 0.24 0.11

height +1.0 m

AD-MLP* [66] 0.20 0.26 0.41 0.29 0.17 0.18 0.24 0.19
BEV-Planner* [33] 0.28 0.54 0.88 0.57 0.20 0.22 0.44 0.29

VAD [27] 0.41 0.70 1.07 0.73 0.14 0.45 0.80 0.47
SparseDrive [51] 0.42 0.83 1.36 0.87 0.10 0.45 1.08 0.54

DiffusionDrive [35] 0.81 1.44 2.14 1.46 0.17 0.78 1.47 0.81
VR-Drive (Ours) 0.34 0.66 1.07 0.69 0.00 0.05 0.28 0.11

height -0.7 m

AD-MLP* [66] 0.20 0.26 0.41 0.29 0.17 0.18 0.24 0.19
BEV-Planner* [33] 0.29 0.55 0.89 0.58 0.49 0.61 0.82 0.64

VAD [27] 0.41 0.71 1.09 0.74 0.09 0.17 0.39 0.22
SparseDrive [51] 0.50 0.97 1.56 1.01 0.01 0.20 0.68 0.30

DiffusionDrive [35] 0.64 1.18 1.82 1.21 0.00 0.12 0.49 0.20
VR-Drive (Ours) 0.34 0.66 1.09 0.69 0.03 0.11 0.28 0.14

depth +1.0 m

AD-MLP* [66] 0.20 0.26 0.41 0.29 0.17 0.18 0.24 0.19
BEV-Planner* [33] 0.29 0.55 0.89 0.58 0.17 0.23 0.43 0.28

VAD [27] 0.39 0.68 1.05 0.71 0.09 0.19 0.48 0.26
SparseDrive [51] 0.66 1.23 1.91 1.27 0.05 0.25 0.62 0.31

DiffusionDrive [35] 0.87 1.55 2.30 1.57 0.12 0.37 0.75 0.41
VR-Drive (Ours) 0.37 0.69 1.11 0.72 0.02 0.11 0.27 0.13

Average

AD-MLP* [66] 0.20 0.26 0.41 0.29 0.17 0.18 0.24 0.19
BEV-Planner* [33] 0.28 0.54 0.88 0.57 0.36 0.42 0.63 0.47

VAD [27] 0.46 0.75 1.11 0.78 0.20 0.37 0.69 0.42
SparseDrive [51] 0.47 0.91 1.47 0.95 0.04 0.23 0.65 0.31

DiffusionDrive [35] 0.62 1.14 1.76 1.17 0.07 0.36 0.80 0.41

Unseen

VR-Drive (Ours) 0.34 0.65 1.06 0.68 0.01 0.07 0.24 0.11

4.2 Dataset Generation Protocol

We use the nuScenes [1] benchmark, which is widely used in recent E2E-AD works [38, 26, 5].
However, since the nuScenes dataset does not provide images from variant camera viewpoints, we
performed offline scene optimization as a method to obtain data from various viewpoints. We per-
formed offline scene optimization [7], showcasing high-performance and strong geometric alignment,
on nuScenes test sequences. This process enabled rendering various views for each sequence, as
shown in Fig. 4. After manually inspecting the test sequences, we excluded 4 sequences from the
original 150 due to unsatisfactory quality, leaving 146 test sequences for unseen viewpoints. Note that
this offline scene optimization requires significant training time for each scene, making it impractical
for datasets with a large number of sequences. On an NVIDIA TITAN RTX, each sequence took
over 8 hours to train, and the total time of optimization and rendering took more than 3 weeks. This
underscores the practicality of our online novel view synthesis approach for training.

5 Experiments

Experiment Setup. We evaluate the model using Average Displacement Error (ADE) and Col-
lision Rate. For comparison, we use existing end-to-end models, including AD-MLP [66], BEV-
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Table 2: Ablation for design choices. “SR” and “VMM” indicate scene reconstruction and viewpoint-
mixed memory bank. “CR” and “VCD” indicate cyclic reconstruction loss and viewpoint-consistent
distillation, respectively. △ indicates that scene reconstruction is learned jointly, but the generated
novel view images are not used as perception and planning input.

Modules Seen Unseen Average

ID SR VMM CR VCD L2 (m) ↓ Collision (%) ↓ L2 (m) ↓ Collision (%) ↓
1s 2s 3s Avg. 1s 2s 3s Avg. 1s 2s 3s Avg. 1s 2s 3s Avg.

1 - - - - 0.31 0.60 0.98 0.63 0.13 0.10 0.19 0.14 0.47 0.88 1.38 0.91 0.17 0.25 0.48 0.30
2 △ - - - 0.28 0.56 0.93 0.59 0.00 0.05 0.17 0.07 0.46 0.87 1.36 0.90 0.04 0.20 0.53 0.26
3 ✓ - - - 0.31 0.60 0.97 0.63 0.03 0.08 0.20 0.10 0.40 0.76 1.20 0.79 0.04 0.16 0.36 0.19
4 ✓ ✓ - - 0.31 0.59 0.95 0.62 0.02 0.06 0.19 0.09 0.37 0.70 1.12 0.73 0.03 0.13 0.36 0.17
5 ✓ ✓ ✓ - 0.29 0.56 0.93 0.59 0.04 0.06 0.19 0.09 0.33 0.64 1.06 0.68 0.04 0.13 0.31 0.16
6 ✓ ✓ - ✓ 0.31 0.59 0.94 0.61 0.02 0.05 0.16 0.08 0.37 0.70 1.14 0.73 0.02 0.09 0.31 0.14
7 ✓ ✓ ✓ ✓ 0.29 0.57 0.95 0.60 0.01 0.03 0.14 0.06 0.34 0.65 1.06 0.68 0.01 0.07 0.24 0.11

Table 3: Analysis of the range of random extrinsics for novel views during the training process.

Seen Unseen Average

Settings L2 (m) ↓ Collision (%) ↓ L2 (m) ↓ Collision (%) ↓
1s 2s 3s Avg. 1s 2s 3s Avg. 1s 2s 3s Avg. 1s 2s 3s Avg.

- 0.29 0.57 0.95 0.60 0.01 0.03 0.14 0.06 0.34 0.65 1.06 0.68 0.01 0.07 0.24 0.11
Superset 0.29 0.57 0.95 0.60 0.00 0.03 0.15 0.06 0.33 0.65 1.06 0.68 0.03 0.09 0.25 0.12
Subset 0.30 0.60 0.99 0.63 0.00 0.05 0.16 0.07 0.41 0.79 1.27 0.82 0.02 0.09 0.27 0.13

Planner [33], VAD [27], SparseDrive [51], and DiffusionDrive [35]. During training, we rendered
random novel view images with pitch in the range [−10◦, 5◦], height in [−0.7m, 1.0m], and depth in
[−0.2m, 1.0m], which broadly covers the test configurations. Additional implementation details will
be described in the supplementary material.

Experimental Results. Table 1 shows the performance of E2E-AD models on both original and novel
views, where “unseen” refers to data that was not provided during training. When focusing on the
performance in both the original and unseen domains, we begin by comparing the performance of our
proposed VR-Drive with DiffusionDrive as an example. On the original domain, both models show
similar performance. However, when evaluated on the unseen domain, DiffusionDrive experiences a
significant increase in both ADE and collision rate. In contrast, our method demonstrates performance
comparable to the original view, even in more challenging camera viewpoints under previously unseen
distributions.

6 Ablation Study

Effect of the components. We conducted an ablation study on each module, as shown in Table 2.
Notably, comparing ID-1 and ID-2 reveals that simply enabling joint learning of scene reconstruction
already improves performance on both original viewpoints. This suggests that online joint optimiza-
tion with 3DGS contributes to improving the scalability of E2E-AD systems, likely by encouraging a
more precise comprehension of 3D geometry. Such enhanced geometric understanding facilitates
more informed and reliable planning decisions. The most significant performance gain emerges
at ID-3, where the novel view generated via scene reconstruction is used as an additional input to
the model. Beyond this, the proposed modules further contribute to performance improvements.
Interestingly, our method does not suffer from a trade-off where improved performance on novel
views comes at the cost of degraded performance on original views. Instead, the proposed components
enhance the model’s overall capability, even in the original views. This suggests that novel views
serve as an effective form of augmentation during training, and the introduced modules help guide
the model to learn better representations, ultimately benefiting both original and novel view settings.

Range of random extrinsics. We study the distribution shift between training and testing in terms
of camera viewpoint diversity, as summarized in Table 3. For the experiments in Table 1, we
set the training-time random extrinsic ranges to pitch ∈ [−10◦, 5◦], height ∈ [−0.7m, 1.0m], and
depth ∈ [−0.2m, 1.0m]. To examine generalization beyond the test distribution, the “Superset”
setting expands the training sensor range to pitch ∈ [−15◦, 10◦], height ∈ [−1.0m, 1.5m], and
depth ∈ [−0.5m, 1.5m], covering viewpoints that go beyond the test distribution. This allows us
to investigate whether the model remains robust when trained with a broader range of viewpoints.
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Conversely, the “Subset” setting limits the sensor range to pitch ∈ [−5◦, 2◦], height ∈ [−0.3m, 0.5m],
and depth ∈ [−0.1m, 0.5m], ensuring that the training views do not overlap with any of the test-time
configurations. Our model performs consistently across the Superset, Subset, and original settings,
demonstrating robustness to continuous viewpoint variation.

7 Closed-loop Evaluation on the CARLA dataset

Table 4: Closed-loop test on CARLA dataset.

Methods
Original

Unseen
pitch +5◦ pitch -10◦ height +1.0 m height -0.7 m depth +1.0 m Average

DS RC DS RC DS RC DS RC DS RC DS RC DS RC

Town05-Nov

ST-P3 [20] 44.24 100.00 41.00 100.00 23.85 100.00 25.83 100.00 28.60 100.00 32.06 100.00 30.27 100.00
TCP [62] 92.73 92.73 70.33 80.33 4.65 4.65 88.51 88.51 0.00 0.00 91.11 91.11 50.92 52.92
AD-MLP [66] 13.59 32.83 13.59 32.83 13.59 32.83 13.59 32.83 13.59 32.83 13.59 32.83 13.59 32.83
BEV-Planner [33] 17.25 28.70 7.30 28.89 7.74 28.83 8.51 28.95 7.69 28.70 7.75 28.95 7.80 28.86
Baseline 76.47 99.20 69.41 89.60 45.65 99.38 48.67 100.00 41.59 86.76 35.95 98.60 48.25 94.87
VR-Drive (Ours) 84.04 99.04 75.00 100.00 91.26 98.76 98.44 98.99 80.67 97.32 95.88 96.35 88.25 98.28

We use the CARLA 0.9.10.1 simulator [15] for closed-loop testing. For the closed-loop test, we
evaluate performance using the Town05short benchmark. We collect the training data from Town01,
02, 03, 04, 06, 07, and 10, using scenario routes based on previous work [46]. For the evaluation,
we assessed each model’s performance based on two key metrics: Driving Score (DS) and Route
Completion (RC). To provide a comprehensive comparison, we included several established end-
to-end autonomous driving models. Specifically, we evaluated ST-P3[20], TCP[62], AD-MLP [66],
BEV-Planner [33], and baseline alongside our proposed method. As the baseline, we adopt the ID-1
setting from Table 2, removing all proposed modules.

Following existing works [17, 20, 27, 46], we adopt the Town05 benchmark for simulation. However,
to enable training and evaluation on novel viewpoints, we establish a new benchmark. Specifically,
we sample 20% of sequences from Town05 Short to construct Town05-Nov, which serves as our
novel-view evaluation set. For training data, we follow Transfuser [46] and collect samples using
the autopilot, but only from original viewpoints. For fair comparison with prior works, we handle
baselines based on their available resources. In the case of ST-P3 [20] and TCP [62], since pretrained
checkpoints on Town05 are publicly released, we directly evaluate these models without retraining.

Table 4 shows the closed-loop evaluation results on the Town05-Nov benchmark. Existing end-to-end
autonomous driving approaches tend to struggle with planning in unseen test scenarios, sometimes
failing to initiate driving in particularly challenging cases. Notably, the DS metric is more adversely
affected compared to RC, experiencing degradation in perception performance when faced with
novel viewpoint inputs. In contrast, our method demonstrates performance on unseen tests that is
comparable to that of the original viewpoint.

8 Conclusion

In this work, we present VR-Drive, a unified end-to-end autonomous driving framework that leverages
novel view synthesis and viewpoint-robust learning. To the best of our knowledge, we are the first to
study camera viewpoint variation in E2E-AD for real-world applications. We benchmark VR-Drive
on the nuScenes dataset and the CARLA simulator, achieving state-of-the-art performance across
diverse camera viewpoints and out-of-distribution conditions.

Limitation and Future Work. The performance of VR-Drive is influenced by the accuracy of
camera calibration. While errors in calibration may lead to suboptimal results, the system could be
made more robust to such errors. Addressing this issue and enhancing the system’s robustness to
calibration inaccuracies could be an important focus for future work.

10



Acknowledgement

We thank 42dot for funding this research. We also appreciate the support and valuable dis-
cussions from the members of the 42dot research team. This work was supported by the
National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT)
(NRF2022R1A2B5B03002636).

References
[1] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krishnan, Y. Pan, G. Baldan,

and O. Beijbom. nuscenes: A multimodal dataset for autonomous driving. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 11621–11631, 2020.

[2] G. Chang, J. Lee, D. Kim, J. Kim, D. Lee, D. Ji, S. Jang, and S. Kim. Unified domain gener-
alization and adaptation for multi-view 3d object detection. Advances in Neural Information
Processing Systems, 37:58498–58524, 2024.

[3] D. Charatan, S. L. Li, A. Tagliasacchi, and V. Sitzmann. pixelsplat: 3d gaussian splats from
image pairs for scalable generalizable 3d reconstruction. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 19457–19467, 2024.

[4] L. Chen, P. Wu, K. Chitta, B. Jaeger, A. Geiger, and H. Li. End-to-end autonomous driving:
Challenges and frontiers. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2024.

[5] S. Chen, B. Jiang, H. Gao, B. Liao, Q. Xu, Q. Zhang, C. Huang, W. Liu, and X. Wang.
Vadv2: End-to-end vectorized autonomous driving via probabilistic planning. arXiv preprint
arXiv:2402.13243, 2024.

[6] Y. Chen, H. Xu, C. Zheng, B. Zhuang, M. Pollefeys, A. Geiger, T.-J. Cham, and J. Cai. Mvsplat:
Efficient 3d gaussian splatting from sparse multi-view images. In European Conference on
Computer Vision, pages 370–386. Springer, 2024.

[7] Z. Chen, J. Yang, J. Huang, R. de Lutio, J. M. Esturo, B. Ivanovic, O. Litany, Z. Gojcic, S. Fidler,
M. Pavone, et al. Omnire: Omni urban scene reconstruction. arXiv preprint arXiv:2408.16760,
2024.

[8] Z. Chen, M. Ye, S. Xu, T. Cao, and Q. Chen. Ppad: Iterative interactions of prediction and
planning for end-to-end autonomous driving. In European Conference on Computer Vision,
pages 239–256. Springer, 2024.

[9] Z. Chen, Z. Yu, J. Li, L. You, and X. Tan. Dualat: Dual attention transformer for end-to-end
autonomous driving. In 2024 IEEE International Conference on Robotics and Automation
(ICRA), pages 16353–16359. IEEE, 2024.

[10] K. Chitta, A. Prakash, and A. Geiger. Neat: Neural attention fields for end-to-end autonomous
driving. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
15793–15803, 2021.

[11] F. Codevilla, M. Müller, A. López, V. Koltun, and A. Dosovitskiy. End-to-end driving via
conditional imitation learning. In 2018 IEEE International Conference on Robotics and
Automation (ICRA), pages 4693–4700, 2018. doi: 10.1109/ICRA.2018.8460487.

[12] B. Coors, A. P. Condurache, and A. Geiger. Nova: Learning to see in novel viewpoints and
domains. In 2019 International Conference on 3D Vision (3DV), pages 116–125. IEEE, 2019.

[13] T. Do, K. Vuong, S. I. Roumeliotis, and H. S. Park. Surface normal estimation of tilted images
via spatial rectifier. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK,
August 23–28, 2020, Proceedings, Part IV 16, pages 265–280. Springer, 2020.

[14] S. Doll, N. Hanselmann, L. Schneider, R. Schulz, M. Cordts, M. Enzweiler, and H. Lensch.
Dualad: Disentangling the dynamic and static world for end-to-end driving. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 14728–14737,
2024.

11



[15] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun. Carla: An open urban driving
simulator. In Conference on robot learning, pages 1–16. PMLR, 2017.

[16] Y. Duan, Q. Zhang, and R. Xu. Prompting multi-modal tokens to enhance end-to-end au-
tonomous driving imitation learning with llms. In 2024 IEEE International Conference on
Robotics and Automation (ICRA), pages 6798–6805. IEEE, 2024.

[17] K. Feng, C. Li, D. Ren, Y. Yuan, and G. Wang. On the road to portability: Compressing end-to-
end motion planner for autonomous driving. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 15099–15108, 2024.

[18] R. Gao, K. Chen, Z. Li, L. Hong, Z. Li, and Q. Xu. Magicdrive3d: Controllable 3d generation
for any-view rendering in street scenes. arXiv preprint arXiv:2405.14475, 2024.

[19] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–
778, 2016.

[20] S. Hu, L. Chen, P. Wu, H. Li, J. Yan, and D. Tao. St-p3: End-to-end vision-based autonomous
driving via spatial-temporal feature learning. In European Conference on Computer Vision,
pages 533–549. Springer, 2022.

[21] Y. Hu, J. Yang, L. Chen, K. Li, C. Sima, X. Zhu, S. Chai, S. Du, T. Lin, W. Wang, et al. Planning-
oriented autonomous driving. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 17853–17862, 2023.

[22] N. Huang, X. Wei, W. Zheng, P. An, M. Lu, W. Zhan, M. Tomizuka, K. Keutzer, and
S. Zhang. S3gaussian: Self-supervised street gaussians for autonomous driving. arXiv preprint
arXiv:2405.20323, 2024.

[23] B. Jaeger, K. Chitta, and A. Geiger. Hidden biases of end-to-end driving models. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pages 8240–8249, 2023.

[24] X. Jia, Y. Gao, L. Chen, J. Yan, P. L. Liu, and H. Li. Driveadapter: Breaking the coupling
barrier of perception and planning in end-to-end autonomous driving. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 7953–7963, 2023.

[25] X. Jia, P. Wu, L. Chen, J. Xie, C. He, J. Yan, and H. Li. Think twice before driving: To-
wards scalable decoders for end-to-end autonomous driving. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 21983–21994, 2023.

[26] X. Jia, J. You, Z. Zhang, and J. Yan. Drivetransformer: Unified transformer for scalable
end-to-end autonomous driving. arXiv preprint arXiv:2503.07656, 2025.

[27] B. Jiang, S. Chen, Q. Xu, B. Liao, J. Chen, H. Zhou, Q. Zhang, W. Liu, C. Huang, and X. Wang.
Vad: Vectorized scene representation for efficient autonomous driving. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 8340–8350, 2023.

[28] B. Kerbl, G. Kopanas, T. Leimkühler, and G. Drettakis. 3d gaussian splatting for real-time
radiance field rendering. ACM Trans. Graph., 42(4):139–1, 2023.

[29] M. Khan, H. Fazlali, D. Sharma, T. Cao, D. Bai, Y. Ren, and B. Liu. Autosplat: Constrained gaus-
sian splatting for autonomous driving scene reconstruction. arXiv preprint arXiv:2407.02598,
2024.

[30] T. Klinghoffer, J. Philion, W. Chen, O. Litany, Z. Gojcic, J. Joo, R. Raskar, S. Fidler, and J. M.
Alvarez. Towards viewpoint robustness in bird’s eye view segmentation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 8515–8524, 2023.

[31] P. Li and D. Cui. Navigation-guided sparse scene representation for end-to-end autonomous
driving. In The Thirteenth International Conference on Learning Representations.

[32] Y. Li, L. Fan, J. He, Y. Wang, Y. Chen, Z. Zhang, and T. Tan. Enhancing end-to-end autonomous
driving with latent world model. arXiv preprint arXiv:2406.08481, 2024.

12



[33] Z. Li, Z. Yu, S. Lan, J. Li, J. Kautz, T. Lu, and J. M. Alvarez. Is ego status all you need for
open-loop end-to-end autonomous driving? In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 14864–14873, 2024.

[34] M. Liang, B. Yang, R. Hu, Y. Chen, R. Liao, S. Feng, and R. Urtasun. Learning lane graph
representations for motion forecasting. In Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part II 16, pages 541–556.
Springer, 2020.

[35] B. Liao, S. Chen, H. Yin, B. Jiang, C. Wang, S. Yan, X. Zhang, X. Li, Y. Zhang, Q. Zhang, et al.
Diffusiondrive: Truncated diffusion model for end-to-end autonomous driving. arXiv preprint
arXiv:2411.15139, 2024.

[36] J. Lin, Z. Li, X. Tang, J. Liu, S. Liu, J. Liu, Y. Lu, X. Wu, S. Xu, Y. Yan, et al. Vastgaussian:
Vast 3d gaussians for large scene reconstruction. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 5166–5175, 2024.

[37] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár. Focal loss for dense object detection. In
Proceedings of the IEEE international conference on computer vision, pages 2980–2988, 2017.

[38] X. Lin, T. Lin, Z. Pei, L. Huang, and Z. Su. Sparse4d: Multi-view 3d object detection with
sparse spatial-temporal fusion. arXiv preprint arXiv:2211.10581, 2022.

[39] X. Lin, Z. Pei, T. Lin, L. Huang, and Z. Su. Sparse4d v3: Advancing end-to-end 3d detection
and tracking. arXiv preprint arXiv:2311.11722, 2023.

[40] S. Madan, T. Henry, J. Dozier, H. Ho, N. Bhandari, T. Sasaki, F. Durand, H. Pfister, and X. Boix.
When and how cnns generalize to outof-distribution category-viewpoint combinations. arXiv
preprint arXiv:2007.08032, 2021.

[41] S. Madan, T. Sasaki, T.-M. Li, X. Boix, and H. Pfister. Small in-distribution changes in 3d
perspective and lighting fool both cnns and transformers. arXiv preprint arXiv:2106.16198, 3,
2021.

[42] J. Mao, Y. Qian, J. Ye, H. Zhao, and Y. Wang. Gpt-driver: Learning to drive with gpt. arXiv
preprint arXiv:2310.01415, 2023.

[43] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng. Nerf:
Representing scenes as neural radiance fields for view synthesis. Communications of the ACM,
65(1):99–106, 2021.

[44] C. Pan, B. Yaman, T. Nesti, A. Mallik, A. G. Allievi, S. Velipasalar, and L. Ren. Vlp: Vision
language planning for autonomous driving. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 14760–14769, 2024.

[45] J. Philion and S. Fidler. Lift, splat, shoot: Encoding images from arbitrary camera rigs by
implicitly unprojecting to 3d. In Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part XIV 16, pages 194–210. Springer, 2020.

[46] A. Prakash, K. Chitta, and A. Geiger. Multi-modal fusion transformer for end-to-end au-
tonomous driving. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 7077–7087, 2021.

[47] H. Shao, L. Wang, R. Chen, S. L. Waslander, H. Li, and Y. Liu. Reasonnet: End-to-end driving
with temporal and global reasoning. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 13723–13733, 2023.

[48] H. Shao, Y. Hu, L. Wang, G. Song, S. L. Waslander, Y. Liu, and H. Li. Lmdrive: Closed-loop
end-to-end driving with large language models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 15120–15130, 2024.

[49] C. Sima, K. Renz, K. Chitta, L. Chen, H. Zhang, C. Xie, J. Beißwenger, P. Luo, A. Geiger, and
H. Li. Drivelm: Driving with graph visual question answering. In European Conference on
Computer Vision, pages 256–274. Springer, 2024.

13



[50] Z. Song, C. Jia, L. Liu, H. Pan, Y. Zhang, J. Wang, X. Zhang, S. Xu, L. Yang, and Y. Luo. Don’t
shake the wheel: Momentum-aware planning in end-to-end autonomous driving. arXiv preprint
arXiv:2503.03125, 2025.

[51] W. Sun, X. Lin, Y. Shi, C. Zhang, H. Wu, and S. Zheng. Sparsedrive: End-to-end autonomous
driving via sparse scene representation. arXiv preprint arXiv:2405.19620, 2024.

[52] S. Szymanowicz, C. Rupprecht, and A. Vedaldi. Splatter image: Ultra-fast single-view 3d
reconstruction. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 10208–10217, 2024.

[53] Q. Tian, X. Tan, Y. Xie, and L. Ma. Drivingforward: Feed-forward 3d gaussian splatting for
driving scene reconstruction from flexible surround-view input. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 39, pages 7374–7382, 2025.

[54] W. Tong, C. Sima, T. Wang, L. Chen, S. Wu, H. Deng, Y. Gu, L. Lu, P. Luo, D. Lin, et al. Scene
as occupancy. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 8406–8415, 2023.

[55] M. Toromanoff, E. Wirbel, and F. Moutarde. End-to-end model-free reinforcement learning
for urban driving using implicit affordances. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), June 2020.

[56] H. Turki, V. Agrawal, S. R. Bulò, L. Porzi, P. Kontschieder, D. Ramanan, M. Zollhöfer, and
C. Richardt. Hybridnerf: Efficient neural rendering via adaptive volumetric surfaces. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
19647–19656, 2024.

[57] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin. Attention is all you need. Advances in neural information processing systems,
30, 2017.

[58] L. Wang, S. W. Kim, J. Yang, C. Yu, B. Ivanovic, S. Waslander, Y. Wang, S. Fidler, M. Pavone,
and P. Karkus. Distillnerf: Perceiving 3d scenes from single-glance images by distilling neural
fields and foundation model features. Advances in Neural Information Processing Systems, 37:
62334–62361, 2024.

[59] Y. Wang, V. C. Guizilini, T. Zhang, Y. Wang, H. Zhao, and J. Solomon. Detr3d: 3d object
detection from multi-view images via 3d-to-2d queries. In Conference on Robot Learning,
pages 180–191. PMLR, 2022.

[60] X. Weng, B. Ivanovic, Y. Wang, Y. Wang, and M. Pavone. Para-drive: Parallelized architecture
for real-time autonomous driving. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 15449–15458, 2024.

[61] G. Wu, T. Yi, J. Fang, L. Xie, X. Zhang, W. Wei, W. Liu, Q. Tian, and X. Wang. 4d gaussian
splatting for real-time dynamic scene rendering. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 20310–20320, 2024.

[62] P. Wu, X. Jia, L. Chen, J. Yan, H. Li, and Y. Qiao. Trajectory-guided control prediction for
end-to-end autonomous driving: A simple yet strong baseline. Advances in Neural Information
Processing Systems, 35:6119–6132, 2022.

[63] Z. Xing, X. Zhang, Y. Hu, B. Jiang, T. He, Q. Zhang, X. Long, and W. Yin. Goalflow: Goal-
driven flow matching for multimodal trajectories generation in end-to-end autonomous driving.
arXiv preprint arXiv:2503.05689, 2025.

[64] Y. Xu, Y. Hu, Z. Zhang, G. P. Meyer, S. K. Mustikovela, S. Srinivasa, E. M. Wolff, and X. Huang.
Vlm-ad: End-to-end autonomous driving through vision-language model supervision. arXiv
preprint arXiv:2412.14446, 2024.

[65] Y. Yan, H. Lin, C. Zhou, W. Wang, H. Sun, K. Zhan, X. Lang, X. Zhou, and S. Peng. Street
gaussians: Modeling dynamic urban scenes with gaussian splatting. In European Conference
on Computer Vision, pages 156–173. Springer, 2024.

14



[66] J.-T. Zhai, Z. Feng, J. Du, Y. Mao, J.-J. Liu, Z. Tan, Y. Zhang, X. Ye, and J. Wang. Rethink-
ing the open-loop evaluation of end-to-end autonomous driving in nuscenes. arXiv preprint
arXiv:2305.10430, 2023.

[67] B. Zhang, N. Song, X. Jin, and L. Zhang. Bridging past and future: End-to-end autonomous
driving with historical prediction and planning. arXiv preprint arXiv:2503.14182, 2025.

[68] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang. The unreasonable effectiveness of
deep features as a perceptual metric. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 586–595, 2018.

[69] Y. Zhang, D. Qian, D. Li, Y. Pan, Y. Chen, Z. Liang, Z. Zhang, S. Zhang, H. Li, M. Fu,
et al. Graphad: Interaction scene graph for end-to-end autonomous driving. arXiv preprint
arXiv:2403.19098, 2024.

[70] Z. Zhang, A. Liniger, D. Dai, F. Yu, and L. Van Gool. End-to-end urban driving by imitating a
reinforcement learning coach. In Proceedings of the IEEE/CVF international conference on
computer vision, pages 15222–15232, 2021.

[71] S. Zheng, B. Zhou, R. Shao, B. Liu, S. Zhang, L. Nie, and Y. Liu. Gps-gaussian: Generalizable
pixel-wise 3d gaussian splatting for real-time human novel view synthesis. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pages 19680–19690,
2024.

[72] W. Zheng, W. Chen, Y. Huang, B. Zhang, Y. Duan, and J. Lu. Occworld: Learning a 3d
occupancy world model for autonomous driving. In European conference on computer vision,
pages 55–72. Springer, 2024.

[73] W. Zheng, R. Song, X. Guo, C. Zhang, and L. Chen. Genad: Generative end-to-end autonomous
driving. In European Conference on Computer Vision, pages 87–104. Springer, 2024.

[74] X. Zhou, Z. Lin, X. Shan, Y. Wang, D. Sun, and M.-H. Yang. Drivinggaussian: Composite
gaussian splatting for surrounding dynamic autonomous driving scenes. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 21634–21643, 2024.

15



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We clearly state the claims and contributions in the abstract and the introduction
of this paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We clearly state the limitations of this paper in the conclusion.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: This paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide the experimental settings needed to reproduce the experimental
results in the main section and supplementary material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]
Justification: We do not provide the code and dataset at the time of submission, but we will
provide open access to the code and dataset after acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We specify all the experimental details, including datasets, and hyperparame-
ters.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Error bars are not reported because it would be too computationally expensive,
but we report the results on various settings for validation of generalization ability.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide information related to the computer resources used for the experi-
ments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We confirm the NeurIPS Code of Ethics and follow it in our paper.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss the social impacts of our paper in the broader impact section.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We discuss the license of assets in the Dataset Licenses section.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We discuss the new asset of our paper.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our research does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [No]
Justification: LLMs were used only for minor editing and translation purposes, which do
not affect the core methodology or scientific contributions.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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