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ABSTRACT

As 3D Gaussian Splatting (3DGS) is increasingly adopted in various academic
and commercial applications due to its high-quality and real-time rendering capa-
bilities, the need for copyright protection is growing. At the same time, its large
model size requires efficient compression for storage and transmission. However,
compression techniques, especially quantization-based methods, degrade the in-
tegrity of existing 3DGS watermarking methods, thus creating the need for a novel
methodology that is robust against compression. To ensure reliable watermark
detection under compression, we propose a compression-tolerant 3DGS water-
marking method that preserves watermark integrity and rendering quality. Our
approach utilizes an anchor-based 3DGS, embedding the watermark into anchor
attributes, particularly the anchor feature, to enhance security and rendering qual-
ity. We also propose a quantization distortion layer that injects quantization noise
during training, preserving the watermark after quantization-based compression.
Moreover, we employ a frequency-aware anchor growing strategy that enhances
rendering quality by effectively identifying Gaussians in high-frequency regions,
and an HSV loss to mitigate color artifacts for further rendering quality improve-
ment. Extensive experiments demonstrate that our proposed method preserves the
watermark even under compression and maintains high rendering quality.

1 INTRODUCTION

3D Gaussian Splatting (3DGS) (Kerbl et al., 2023) has recently emerged as an impactful method
for novel view synthesis, offering real-time and photorealistic rendering capabilities. Since its in-
troduction, 3DGS has undergone rapid advancements in the field of image-based 3D reconstruc-
tion (Charatan et al., 2024; Lin et al., 2024; Zhang et al., 2024), attracting significant attention from
academia and industry. One drawback of 3DGS is that it is composed of a vast number of 3D Gaus-
sians, requiring substantial storage space. This limitation has motivated the development of 3DGS
compression techniques to reduce storage requirements and facilitate efficient transmission of 3DGS
models. In parallel, its growing commercial adoption in areas such as digital twin construction and
AR/VR applications has raised critical concerns regarding the copyright protection of trained 3DGS
models. These concerns have led to increased research interest in 3DGS watermarking. However,
to the best of our knowledge, no prior work has specifically addressed the challenge of creating a
3DGS watermark that can withstand model compression, a scenario illustrated in Fig. 1.

Existing 3DGS watermarking methods (Chen et al., 2024b; Guo et al., 2024; Huang et al., 2025;
Jang et al., 2025; Tan et al., 2024) embed watermarks by directly modifying Gaussian attributes,
which makes the watermark vulnerable to loss when those attributes are altered during compression.
In particular, quantization-based compression shifts the distribution of model parameters during the
compression process, severely degrading watermark performance. As a result, existing methods fail
to provide adequate copyright protection for compressed 3DGS models.

To handle this problem, we propose CompMarkGS, an anchor-based 3DGS watermarking method.
Our method leverages the anchor-based 3DGS architecture, which dynamically predicts Gaussian
attributes from anchor points via multiple implicit multi-layer perceptrons (MLPs). This implicit
representation makes it extremely difficult for a malicious user to detect the presence of a water-
mark by directly analyzing the point cloud or Gaussian attributes. We seamlessly integrate the
watermark by embedding a learnable watermark feature into the anchor feature, which is one of
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Figure 1: Application scenario of CompMarkGS. Owners embed the watermark into a 3DGS asset
using our proposed method, then compress and distribute the model across various digital environ-
ments. The owner can extract the hidden message to verify ownership even if an unauthorized user
alters the distributed model or its rendered images.

the anchor attributes, without altering the original model architecture. Unlike prior work focusing
on image-domain distortions, we tackle the novel challenge of watermark robustness against model
quantization. We propose a quantization distortion layer (QDL) that injects quantization noise into
anchor attributes during training, teaching the watermark to be resilient. As a result, our model
achieves both high rendering quality and robust watermark integrity after compression.

To further improve rendering quality, we introduce a frequency-aware anchor growing strategy.
Specifically, we identify high-frequency regions in the rendered image, map them to Gaussian coor-
dinates, and selectively apply anchor growing in those regions. In addition to this structural enhance-
ment, we design an HSV loss to address color artifacts that occur when embedding the watermark.
This loss function operates by constructing a binary mask over regions with noticeable color arti-
facts, identified by analyzing the hue (H), saturation (S), and value (V) components. This mask
guides the loss computation by focusing on these specific regions, improving the rendering quality.

Our extensive experiments on the Blender (Mildenhall et al., 2021), LLFF (Mildenhall et al., 2019),
and Mip-NeRF 360 (Barron et al., 2022) datasets show that CompMarkGS preserves watermark
integrity and rendering quality more effectively both before and after compression. Each compo-
nent of our method—anchor-based 3DGS watermarking, the quantization distortion layer, and the
frequency-aware anchor growing strategy—independently enhances watermark fidelity while pre-
serving rendering quality, even under compression and various watermarking attacks. Furthermore,
our method outperforms state-of-the-art approaches across various watermark message lengths. Our
main contributions are as follows:

• We propose CompMarkGS, a compression-tolerant anchor-based watermarking method for 3DGS
that embeds a learnable watermark embedding feature into the anchor feature, preserving the
model structure while ensuring high rendering quality and bit accuracy.

• We introduce a quantization distortion layer that injects quantization noise during training, en-
abling 3DGS watermarking to remain robust against quantization-based compression while main-
taining high rendering quality.

• We propose a frequency-aware anchor growing strategy that selectively expands anchors in high-
frequency regions, which enhances rendering quality, and an HSV loss that mitigates color arti-
facts to further improve rendering quality.

2 RELATED WORKS

3D Gaussian Splatting representation. 3D Gaussian Splatting (3DGS) (Kerbl et al., 2023) is an
innovative 3D representation technique that models scenes using explicit primitives. It renders im-
ages by projecting these primitives into arbitrary viewpoints and seamlessly blending pixel colors
via an α-blending, achieving high-quality results while substantially accelerating real-time render-
ing. Thanks to these advantages, 3DGS has been widely adopted in various research areas, includ-
ing avatars (Abdal et al., 2024; Chen et al., 2025a; Qian et al., 2024; Yuan et al., 2024), dynamic
scenes (Li et al., 2024; Wu et al., 2024; Yan et al., 2025; Zhu et al., 2025), and 3D generation (Tang
et al., 2023; Xie et al., 2024b; Yi et al., 2024; Zhou et al., 2024). Recently, Scaffold-GS (Lu et al.,
2024) has advanced the 3DGS framework by introducing anchor points to construct a hierarchical
3D representation. Anchor-based methods (Lee et al., 2024b; Ren et al., 2024; Wang et al., 2024b)
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effectively minimize redundant Gaussians, enhancing rendering quality and increasing robustness
against view changes. This representation approach is promising for 3DGS compression optimiza-
tion, as it reduces parameter counts while maintaining high-quality rendering.

3D Gaussian Splatting compression. To achieve high-quality rendering images, 3DGS generates
a considerable number of Gaussians, leading to significant storage overhead. To address the storage
overhead, vector quantization methods (Fan et al., 2025; Lee et al., 2024a; Navaneet et al., 2024; Xie
et al., 2024a) have been widely explored. These methods prune Gaussians with minimal impact on
rendering quality and use codebooks to encode the attributes of Gaussians compactly. More recently,
anchor-based representations have gained significant attention in 3DGS (Chen et al., 2024a; Lu et al.,
2024; Wang et al., 2024a). Compression methods (Chen et al., 2025b; 2024a; Wang et al., 2024a;
Zhan et al., 2025) that leverage the structural relationships between anchors have shown superior
performance. For example, HAC (Chen et al., 2024a) reduces spatial redundancies among anchors
by utilizing hash grids for parameter quantization and enabling entropy modeling. ContextGS (Wang
et al., 2024a) introduces a unified compression framework with a factorized prior, enabling entropy
modeling of anchor features while leveraging hierarchical anchor relations to reduce redundancy
among anchors. CAT-3DGS (Zhan et al., 2025) projects Gaussian primitives onto PCA-aligned
triplanes and applies spatial autoregressive coding to capture spatial correlations, thereby enhancing
entropy coding efficiency. Given their compression efficiency, anchor-based representations are
especially advantageous for real-world applications.

Steganography and digital watermarking. Information hiding research is primarily divided into
two categories: digital watermarking and steganography, which differ in their core objectives.
Steganography aims to conceal information in digital assets with invisibility as the primary met-
ric. Driven by advances in deep learning, various methods (Tancik et al., 2020; Biswal et al., 2024)
have been proposed to hide information in media such as images and videos, with recent work (Dong
et al., 2024; Li et al., 2023) extending into 3D scene representation. For example, GS-Hider (Zhang
et al., 2025a) introduces the first steganography technique for 3D Gaussian Splatting (3DGS), and
SecureGS (Zhang et al., 2025b) proposes an anchor-based steganographic framework that hides in-
formation using a private MLP. In contrast, digital watermarking embeds ownership data to protect
assets and prioritizes robustness to distortions. Early watermarking research focused on the pixel
domain (Van Schyndel et al., 1994; Wolfgang & Delp, 1996) or the frequency domain (Barni et al.,
2001; Navas et al., 2008). Subsequently, deep learning-based methodologies (Luo et al., 2020; Zhu
et al., 2018) demonstrated superior robustness against a variety of distortions. This research has re-
cently expanded to protect radiance field models like NeRF (Mildenhall et al., 2021). WateRF (Jang
et al., 2024) proposes a plug-and-play method that uses the frequency domain for robust watermark-
ing. With the advent of 3DGS, GaussianMarker (Huang et al., 2025) embeds the watermark by
estimating Gaussian uncertainties and integrating specific Gaussians. 3D-GSW (Jang et al., 2025)
embeds the watermark by selectively removing Gaussians to minimize the impact on rendering qual-
ity. GuardSplat (Chen et al., 2024b) introduces an SH-aware embedding mechanism. However, these
works only consider traditional distortions and do not account for real-world attacks such as model
compression. In this paper, we propose a watermarking method that is robust to model compression.

3 PRELIMINARIES

Scaffold-GS. Scaffold-GS (Lu et al., 2024) clusters adjacent Gaussians using anchor points, re-
ducing redundancy. Initial anchor points are placed at voxel centers, and the attributes for each an-
chor consist of an anchor feature f ∈ Rd, scaling factor l ∈ R3, and K learnable offsets O ∈ RK×3,
where K is the number of Gaussians. Visible anchor points within the viewing frustum generate K
Gaussians, with their positions computed as follows:

µk = xa +Ok ⊙ l, (1)

where xa ∈ R3 is the anchor point position, Ok ∈ R3 denotes the k-th offset vector, µk is the gen-
erated k-th Gaussian position, and ⊙ represents the element-wise product. The Gaussian attributes
opacity αi, color ci, quaternion qi and scale si are predicted using separate MLPs:

{αi, ci, qi, si}Ki=1 = MLP(f, δav, d⃗av), (2)

where δav =∥ xa − xv ∥2 and d⃗av = xa−xv

∥xa−xv∥2
denote the relative distance and viewing direction

between the camera (xv) and the anchor (xa) positions.
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Figure 2: Overview of CompMarkGS. A learnable watermark embedding feature fwf is added to
the anchor feature f to create a watermarked anchor feature fw. The quantized watermarked anchor
feature from the quantization distortion layer is then fed into individual MLPs to predict Gaussian
attributes. The watermark is extracted from the low-frequency band of the rendered image via a pre-
trained decoder. A frequency-aware anchor growing strategy identifies Gaussians in high-frequency
regions to introduce additional anchors. Moreover, an HSV loss Lhsv , and a frequency loss Lfreq ,
are applied to mitigate visual artifacts. The entire model is optimized via the total loss Ltotal.

4 METHOD

4.1 ANCHOR-BASED 3DGS WATERMARKING

Anchor-based 3DGS (Lu et al., 2024) enhances the security of embedded watermarks by hiding
explicit Gaussian attributes behind anchor features processed by implicit MLPs. This property of
anchor-based 3DGS makes it more difficult for attackers to directly manipulate embedded water-
marks and Gaussian attributes. Moreover, the anchor feature f influences the rendering quality
indirectly through MLPs rather than directly controlling Gaussian attributes. On the other hand,
attributes such as position x, scaling factor l, and offsets O directly determine Gaussian attributes,
and modifying them leads to visible distortions in the rendered images. To embed a watermark into
the anchor feature while preserving rendering quality, we introduce a learnable watermark embed-
ding feature f ′ ∈ Rd, with the same dimension as the anchor feature f ∈ Rd. This design aims
to achieve an optimal balance between rendering quality and watermark robustness. The resulting
watermarked anchor feature fw is defined as follows:

fw = f + tanh(f ′), where f, f ′ ∈ Rd, (3)

where the watermarked anchor feature fw is generated by the element-wise sum of the anchor fea-
ture f and a learnable watermark embedding feature f ′. The term tanh(·) denotes the element-wise
hyperbolic tangent function, which we apply to the watermark embedding feature f ′ to bound its
values within the range [−1, 1] before addition. This bounding process is crucial for stabilizing
gradients and preserving rendering quality. In a well-trained anchor-based 3DGS model, the com-
ponents of the anchor attributes are known to follow a normal distribution (Lu et al., 2024). Adding
an unbounded feature would increase the variance of this distribution, leading to unstable gradients,
slower convergence, and degraded rendering quality. While a sigmoid function could be used, its
[0, 1] output range would introduce a directional bias by only adding positive values. The symmet-
ric [−1, 1] range of the tanh function prevents this bias, ensuring the watermark is added with a
consistent magnitude. As a result, our method achieves stable convergence and efficient embedding
without degrading rendering quality. A detailed analysis is provided in Appendix E.1.

4.2 ROBUSTNESS TO QUANTIZATION-BASED COMPRESSION

In digital watermarking research, differentiable distortion layers have long been used to enhance
robustness by simulating traditional distortions, such as JPEG and cropping, during training (Zhu
et al., 2018). However, this method has not been applied in existing 3DGS watermarking research
to the problem of model compression, leading to significant watermark loss during quantization.

4
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To overcome this limitation, we propose a quantization distortion layer (QDL) that simulates
quantization-induced distortions, encompassing losses in watermark robustness and rendering fi-
delity. Our QDL leverages quantization techniques from prior anchor-based 3DGS compression
methods (Chen et al., 2024a). While the original method uses this mechanism for model compres-
sion, our work is the first to adapt it as a form of data augmentation to train a robust watermark.
During watermark training, the QDL simulates the quantization process by injecting noise into the
watermarked anchor feature fw. By integrating the QDL into the embedding stage, the watermark
is thus optimized to remain robust against subsequent compression attacks. The quantized water-
marked anchor feature for the i-th anchor f̃w

i is defined as follows:

f̃w
i = fw

i +U
(
−1

2
,
1

2

)
· qi, where qi = Q0 ·

(
1 + tanh(ri)

)
, ri = MLPq(f

w
i ), (4)

where qi ∈ R denotes the quantization scale restricted to [0, 2Q0], and ri ∈ R is the refinement
output from an MLPq that takes fw

i as input to adjust the initial quantization scale Q0. By scaling
a randomly generated d-dimensional noise vector from a uniform distribution over [− 1

2 ,
1
2 ] by qi

and adding it to the watermarked anchor feature fw, we simulate the rounding errors caused by
quantization. This process forces the watermark to become resilient to the specific distortions it will
encounter during a real compression attack.

4.3 FREQUENCY-AWARE ANCHOR GROWING

We apply a Discrete Wavelet Transform (DWT) to the rendered image and feed its low-frequency
Low-Low (LL) subband, ILL, into the pre-trained HiDDeN (Zhu et al., 2018) decoder D to extract
the watermark message M ′ = D(ILL). The low-frequency band is ideal for embedding watermarks
to ensure robustness, but it is also critical for overall quality as it contains the image’s global struc-
ture. This creates a fundamental conflict. If we attempt to embed a watermark and enhance quality
in the same low-frequency band, the quality enhancement algorithm may treat the watermark as
unwanted noise and remove it, thereby degrading the watermark’s robustness.

Based on this insight, we propose a frequency-aware anchor growing (FAG) strategy. To selectively
grow anchors in detail-rich, high-frequency regions, our method first transforms the rendered image
I ′ and the ground truth image I into the frequency domain using the Discrete Fourier Transform
(DFT), as shown in Fig. 2. We then apply a high-pass filter to isolate the high-frequency components
and reconstruct the corresponding high-frequency images I ′hf , and Ihf using the Inverse Discrete
Fourier Transform (IDFT). To generate a binary mask that selects pixels in these high-frequency
regions, we define the pixel-wise SSIM loss Perror as follows:

Perror(p) = 1− SSIM(Ihf (p), I
′
hf (p)), (5)

where p is a pixel coordinate, I ′hf (p) is the pixel value in the high-frequency region of the rendered
image, and Ihf (p) is the corresponding value in the ground truth. After computing the median of
all pixel-wise SSIM losses, denoted as P̃error, we create a binary mask by selecting pixels within
the range [P̃error − ϵ, P̃error + ϵ]. This mask is then used to extract the 2D coordinates of high-
frequency regions. Subsequently, each 3D Gaussian is projected onto the 2D image plane, and its
continuous coordinates are rounded to obtain integer pixel-level coordinates. By matching these 2D
Gaussian coordinates with the high-frequency pixel coordinates, we generate a boolean mask Fmask

that identifies anchors located in the high-frequency regions. Only the Gaussians selected by Fmask

are activated for the anchor growing process. More implementation details are in Appendix C.4, C.5.

4.4 OBJECTIVE FUNCTION

Watermark message loss. As described in Sec.4.3, we use the pre-trained HiDDeN (Zhu et al.,
2018) decoder to produce the watermark message M ′, and the watermark message loss Lmsg is
defined as a binary cross entropy (BCE) loss:

Lmsg = −
L∑

i=1

[
Milog(σ(M

′
i)) + (1−Mi)log(1− σ(M ′

i))
]
, (6)

where M ∈ {0, 1}L is the ground truth message, and a sigmoid function σ constrains M ′ to [0, 1].

5
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Ground Truth  Ours 3D-GSW GaussianMarker WateRF

Bit Acc : 89.71 / PSNR : 26.19 Bit Acc : 70.31 / PSNR : 21.06 Bit Acc : 79.94 / PSNR : 24.05 Bit Acc : 74.34 / PSNR : 24.39

Bit Acc : 98.21 / PSNR : 27.40 Bit Acc : 82.44 / PSNR : 6.26 Bit Acc : 98.21 / PSNR : 26.95 Bit Acc : 96.42 / PSNR : 27.17

Bit Acc : 93.75 / PSNR : 30.31 Bit Acc : 85.42 / PSNR : 29.91 Bit Acc : 89.59 / PSNR : 28.19 Bit Acc : 91.67 / PSNR : 28.01

GuardSplat

Bit Acc : 79.17 / PSNR : 13.92

Bit Acc : 70.83 / PSNR : 19.06

Bit Acc : 58.33 / PSNR : 15.78

Figure 3: Qualitative comparison of rendering quality after compression between our method and
baselines. For each method, the rendered image (left) and the difference map (right) are shown.
Note that the difference maps are magnified five times. This result is based on 48-bit messages.

HSV Loss. We incorporate the HSV loss Lhsv term to minimize color artifacts during watermark
embedding. Previous studies (Huang et al., 2025; Jang et al., 2024; 2025) typically computed image
loss in the RGB space to improve rendering quality. However, since the RGB space calculates loss
based on independent pixel-level color information, it does not accurately reflect the human visual
system. Therefore, we compute image loss in the HSV space, which represents colors in a manner
more similar to the human visual system. First, we construct binary masks based on hue ranges for
each color to localize color artifacts. Binary mask is defined as follows:

Mc(p) =

{
1, if Hue(p) ∈ Hc

0, otherwise
, (7)

where Hc denotes the hue range corresponding to color c ∈ C, with C = {R,G,B}. R, G, and B
represent the red, green, and blue color channels, respectively. Then, HSV loss Lhsv is computed as
the mean squared error (MSE) between the pixel value of rendered image I(p) and the ground truth
Igt(p) over the pixels in the set Ω where Mc(p) = 1:

Lhsv =
1

|C||Ω|
∑
c∈C

∑
p∈Ω

∥Mc(p) · (I(p)− Igt(p))∥2 . (8)

The overall color loss is defined as the average of the losses for each target color in the set C. More
implementation details are in Appendix C.6.

Total Loss. Additionally, we employ frequency loss Lfreq to reduce high-frequency distortions
during watermark embedding. The overall training loss for our method is given by:

Ltotal = λimg(Lscaffold + λhsvLhsv + λfreqLfreq) + λmsgLmsg, (9)

where Lfreq = 1
|P|

∑
p∈P Perror(p), as the mean of all pixel-wise SSIM losses. Lscaffold repre-

sents the reconstruction loss defined in Scaffold-GS (Lu et al., 2024), which consists of one scale
regularization and two rendering fidelity terms.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTING

Datasets. Following previous works Huang et al. (2025); Jang et al. (2025), we evaluate our
method using the Blender Mildenhall et al. (2021), LLFF Mildenhall et al. (2019), and Mip-NeRF
360 Barron et al. (2022) datasets, comprising a total of 25 scenes. These include 8 synthetic bounded
scenes from Blender, 8 forward-facing real-world scenes from LLFF, and 9 bounded real-world
scenes from Mip-NeRF 360. We evaluate performance using 200 test images from Blender. For the
LLFF and Mip-NeRF 360 datasets, we adopt the same data split strategy as Mip-NeRF 360.

Implementation details. Our method trains end-to-end on a single A6000 GPU. We conduct ex-
periments for watermark bit-lengths of 32, 48, and 64, focusing on the 48-bit case, where we evaluate
performance both before and after compression. For the decoder, we use a pre-trained HiDDeN (Zhu
et al., 2018) decoder for each bit-length and keep its parameters fixed during watermark training.
We use the following parameters: λimg = 10, λhsv = 0.6, λfreq = 0.1, λmsg = 0.45. For the
quantization scale and anchor growing range in high-frequency regions, we set Q0 = 1, ϵ = 0.3.
More implementation details are in Appendix C.3.
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Table 1: Quantitative comparison of before (left) and after (right) compression bit accuracy and
rendering quality. Evaluations are performed using a 48-bit setting, averaged over the Blender,
LLFF, and Mip-NeRF 360 datasets. Baselines are tested within an anchor-based 3DGS framework
with HAC and ContextGS compression. The best results are in bold.

Methods Bit Accuracy(%) ↑ PSNR ↑ SSIM ↑ LPIPS ↓ Size(MB) ↓

HAC + WateRF 91.02 / 54.40 27.36 / 13.63 0.850 / 0.457 0.174 / 0.574 207.72 / 13.66

HAC + GaussianMarker 92.00 / 58.34 27.05 / 13.54 0.840 / 0.460 0.193 / 0.571 341.30 / 24.33

HAC + 3D-GSW 90.96 / 53.48 19.57 / 13.13 0.628 / 0.439 0.295 / 0.572 173.64 / 12.93

HAC + GuardSplat 79.77 / 52.72 16.29 / 12.28 0.584 / 0.425 0.417 / 0.609 215.69 / 13.15

HAC + CompMarkGS 95.95 / 95.92 27.68 / 27.65 0.856 / 0.852 0.171 / 0.177 208.96 / 12.23

ContextGS + WateRF 92.01 / 90.36 26.64 / 26.47 0.843 / 0.832 0.183 / 0.185 219.48 / 9.88

ContextGS + GaussianMarker 91.24 / 87.95 26.89 / 26.54 0.839 / 0.827 0.195 / 0.200 342.38 / 17.86

ContextGS + 3D-GSW 88.28 / 79.75 19.50 / 19.83 0.627 / 0.617 0.294 / 0.299 177.19 / 9.24

ContextGS + GuardSplat 73.20 / 67.16 16.90 / 16.86 0.653 / 0.628 0.353 / 0.360 219.82 / 9.33

ContextGS + CompMarkGS 94.36 / 94.03 27.60 / 27.55 0.845 / 0.844 0.172 / 0.173 73.39 / 5.72

No Distortion

Gaussian Noise
(𝜎 = 0.1)

Rotation
(±𝜋/6)

Scaling
(75%)Gaussian Blur

(𝜎 = 0.1)

Crop
(40%)

JPEG
(50%	

quality)

No Distortion

Gaussian Noise
(𝜎 = 0.1)

Rotation
(±𝜋/6)

Scaling
(75%)Gaussian Blur

(𝜎 = 0.1)

Crop
(40%)

JPEG
(50%	

quality)

WateRF GaussianMarker 3D-GSW GuardSplat CompMarkGS

HAC ContextGSBefore
After

Figure 4: Robustness to image distortion. Based
on 48-bit, the results are averaged over three
datasets.

Table 2: Robustness to model distortion. Based
on 48-bit, results are averaged over three datasets
with both HAC&ContextGS before (left) and af-
ter (right) compression.

Bit Accuracy(%) ↑

Methods
No

Distortion

Gaussian Noise

(σ=0.005)

Clone

(50%)

Prune

(20%)

WateRF 91.52 / 72.38 81.70 / 63.27 90.23 / 67.45 87.81 / 66.25

GaussianMarker 91.62 / 73.15 73.01 / 65.07 89.83 / 72.17 87.43 / 85.73

3D-GSW 89.62 / 62.89 78.56 / 57.72 88.26 / 62.14 84.84 / 59.76

GuardSplat 76.49 / 59.94 65.28 / 55.53 73.76 / 63.20 69.19 / 65.19

CompMarkGS 95.16 / 94.98 84.58 / 80.10 94.35 / 94.16 93.53 / 93.42

Baselines. To validate our method, we evaluate watermark extraction before and after
quantization-based compression in an anchor-based 3DGS framework. For comparison, we eval-
uate against the following four baselines: 1) WateRF (Jang et al., 2024): Embedding water-
mark into NeRF (Mildenhall et al., 2021) via frequency-domain (DWT) techniques; 2) Gaussian-
Marker (Huang et al., 2025): Integrating watermark-specific Gaussians into the 3D Gaussian Splat-
ting (3DGS) (Kerbl et al., 2023) based on per-Gaussian uncertainty estimates; 3) 3D-GSW (Jang
et al., 2025): Embedding the watermark message by selectively removing Gaussians with low im-
pact on rendering quality; 4) GuardSplat (Chen et al., 2024b): Leveraging Spherical Harmonics
(SH) coefficients to embed the message. All baselines originally designed for NeRF or 3DGS are
adapted to the anchor-based 3DGS framework for our experiments. Notably, GuardSplat requires
specific modifications due to architectural incompatibilities, which are detailed in Appendix D.1.
We compare performance before and after compression using two quantization-based compression
schemes: HAC (Chen et al., 2024a) and ContextGS (Wang et al., 2024a).
Evaluation. We evaluate the watermark performance of our proposed method, CompMarkGS, and
the baselines according to three aspects: 1) Fidelity: We measure PSNR, SSIM, and LPIPS (Zhang
et al., 2018) to assess the rendering quality of watermarked models before and after compression by
comparing rendered images to the original images. 2) Robustness: We evaluate bit accuracy under
various distortions before and after compression. We evaluate performance under distortions for
rendered images, including Gaussian noise, rotation, scaling, Gaussian blur, cropping, and JPEG
compression. We assess robustness against Gaussian noise, cloning, and pruning attacks for water-
marked models. 3) Capacity: We measure bit accuracy for 32, 48, and 64-bit message lengths.

5.2 EXPERIMENTAL RESULTS

Fidelity of before and after compression. We compare rendering quality and bit accuracy be-
fore and after compression against baselines. The compression technique compresses anchor-based
3DGS models using quantization and entropy encoding. As shown in Tab.1, our proposed method
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exhibits strong robustness to compression. While some baselines achieve excellent rendering quality
and over 90% bit accuracy before compression, conventional methods not designed for compression
robustness suffer from severe degradation in both watermark and scene information after compres-
sion (See Fig.3). The performance degradation is particularly noticeable in the HAC Chen et al.
(2024a) compression. HAC suffers a more significant performance drop because it uses anchor-
Gaussian interpolation. This is because previous methods failed to account for errors introduced not
only during quantization but also during the interpolation step, creating a compounding problem.
Moreover, 3D-GSW Jang et al. (2025) selectively removes components based on their rendering
contributions before watermark training. This process eliminates both anchors and their associated
Gaussians, significantly degrading rendering quality. These results confirm that our proposed water-
marking method is better suited to model compression than existing methods.
Robustness for the image distortion. We evaluate the robustness of our method against the loss
of the embedded watermark when the rendered image is subjected to various distortions. We test
robustness against six different image post-processing techniques: Gaussian noise (σ = 0.1), rota-
tion (random selection within ±π/6), scaling (75% of the original), Gaussian blur (σ = 0.1), crop
(40% of the original area), and JPEG compression (50% with a quality factor of 50). As shown in
Fig.4, we assess the watermark bit accuracy after post-processing and observe a decrease in bit ac-
curacy, but the performance degradation is relatively minor compared to the baselines. These results
demonstrate that our proposed watermark embedding technique is robust against image distortion.
Robustness for the model distortion. We evaluate our method’s robustness against three model
distortion attacks designed to alter the embedded watermark: adding Gaussian noise (σ = 0.005) to
the model parameters, randomly cloning 50% of the anchors, and randomly pruning 20% of the an-
chors. As shown in Tab.2, our method demonstrates superior bit accuracy and robustness compared
to existing approaches under these attacks. These results confirm that our proposed method reliably
preserves the watermark even when the model itself is directly manipulated. A detailed analysis is
provided in Appendix E.6.

Table 3: Comparison of bit accuracy for our
method and baselines at 32, 48, and 64-bit.
Results are averaged over three datasets with
both HAC&ContextGS before compression.

Bit Accuracy(%) ↑

Methods 32 bits 48 bits 64 bits

WateRF 92.46 91.52 88.21
GaussianMarker 95.07 91.62 79.81
3D-GSW 93.00 89.62 86.31
GuardSplat 79.64 76.49 72.83
CompMarkGS 96.52 95.16 91.29

Capacity. Increasing a watermark message capac-
ity leaves less embedding budget per bit and makes
it more vulnerable to noise and compression, which
lowers the bit accuracy. We test bit accuracy for mes-
sage lengths of 32, 48, and 64 bits. As shown in
Tab. 3, while the accuracy for all methods decreases
with longer messages, our method maintains signifi-
cantly higher bit accuracy. In stark contrast to other
methods, its minimal performance drop even at a 64-
bit messages demonstrates our method’s higher ef-
fective messages capacity and greater robustness.

Ground Truth Feature (Ours) Position Scaling Offsets

Bit Acc : 93.65
SSIM : 0.805

Bit Acc : 51.03
SSIM : 0.573

Bit Acc : 62.82
SSIM : 0.686

Bit Acc : 94.16
SSIM : 0.892

Figure 5: Qualitative comparison of rendered images with watermarks embedded into different
anchor attributes. Rendered images are obtained with 48-bit watermark embedding.

Ground Truth w/o FAGOurs

Bit Acc : 97.02
PSNR : 30.62

Bit Acc : 94.29
PSNR : 28.96

Ground Truth w/o Ours

Bit Acc : 91.98
PSNR : 34.88

Bit Acc : 89.89
PSNR : 31.06

Figure 6: Qualitative comparison of rendering quality with full method (ours), without FAG (left),
without Lhsv (right). Rendered images are obtained with 48-bit watermark embedding.
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Table 4: Ablations of watermark embedding into different anchor attributes. Results are reported for
48-bit messages and averaged over three datasets using HAC and ContextGS after compression.

HAC ContextGS

Target Parameter Bit Acc (%)↑ PSNR ↑ SSIM ↑ LPIPS ↓ Bit Acc (%)↑ PSNR ↑ SSIM ↑ LPIPS ↓

Position 67.91 12.05 0.625 0.350 82.37 18.49 0.632 0.432
Scaling 65.06 19.35 0.615 0.323 64.68 13.40 0.466 0.474
Offsets 94.88 24.61 0.792 0.226 93.98 25.32 0.755 0.322

Anchor Feature (Ours) 95.92 27.65 0.852 0.177 94.03 27.55 0.844 0.173

Table 5: Ablation studies on frequency-aware anchor growing (FAG), quantization distortion layer
(QDL), and HSV loss Lhsv . Results are reported for 48-bit messages and averaged over three
datasets under HAC and ContextGS after compression.

HAC ContextGS

FAG QDL Lhsv Bit Acc(%)↑ PSNR ↑ SSIM ↑ LPIPS ↓ Bit Acc(%)↑ PSNR ↑ SSIM ↑ LPIPS ↓

– – – 90.67 26.44 0.827 0.196 87.63 25.56 0.812 0.223

– ✓ ✓ 93.95 27.54 0.849 0.178 90.35 27.15 0.841 0.198

✓ – ✓ 90.75 26.75 0.844 0.182 88.09 25.04 0.801 0.229

✓ ✓ – 92.57 27.49 0.852 0.179 90.23 27.19 0.841 0.200

✓ ✓ ✓ 95.92 27.65 0.852 0.177 94.03 27.55 0.844 0.173

5.3 ABLATION STUDY

Anchor-based 3DGS watermark embedding. We embed the watermark into different anchor
attributes (position, scaling, and offsets) and compare the rendering quality and bit accuracy. As
discussed in the previous section (Sec.4.1), since the watermark embedding feature shares the same
dimensions as the anchor feature, when we embed the watermark into a different attribute, we set the
watermark feature to match the dimensions of that specific attribute for the experiment. As shown in
Fig.5 and Tab.4, embedding the watermark into anchor attributes such as position and scaling leads
to significant quality degradation, as these attributes directly adjust the Gaussian pose and shape. In
contrast, our method embeds the watermark into the anchor feature, seamlessly concealing it without
significantly degrading scene information.
Effectiveness of our contributions. We conduct an ablation study to analyze the individual con-
tribution of our key components: frequency-aware anchor growing (FAG), quantization distortion
layer (QDL), and the HSV loss Lhsv . The experiments are performed under HAC and ContextGS
compression settings, with the results reported in Tab.5. Removing QDL causes the most signifi-
cant drop in bit accuracy, demonstrating its crucial role in preventing watermark loss during quan-
tization. Removing FAG degrades both rendering quality and bit accuracy. This indicates that
by growing anchors exclusively in high-frequency regions, FAG mitigates conflicts between low-
frequency watermarks and quality enhancement algorithms, thereby securing both rendering quality
and watermark robustness (See Fig.6). Finally, removing the HSV loss worsens the LPIPS score
and introduces subtle color artifacts. This suggests that the HSV loss effectively mitigates color
artifacts that are difficult to handle with an RGB-space loss function alone (See Fig.6). Effective
watermarking must strike a balance among three competing goals: robustness, invisibility, and ca-
pacity. Our experiments show that FAG, QDL, and the HSV loss not only serve unique roles but
also work complementarily to significantly improve this balance between bit accuracy and rendering
quality in compressed environments.

6 CONCLUSION

We propose CompMarkGS, a compression-robust watermarking method. By integrating a quanti-
zation distortion layer, we train the watermark to withstand quantization-based compression, and
we introduce a learnable watermark embedding feature for anchor-based insertion, achieving both
high security and high fidelity. Additionally, our frequency-aware anchor growing and HSV loss
preserve high-quality rendering performance. To the best of our knowledge, CompMarkGS is the
first compression-robust watermarking framework for 3DGS, making it well-suited for protecting
3D assets on resource-constrained devices.
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ETHICS STATEMENT

Provenance. We only used publicly released datasets from academic publications
(Blender (Mildenhall et al., 2021), LLFF (Mildenhall et al., 2019), and Mip-NeRF 360 (Bar-
ron et al., 2022)). Additionally, the Blender and LLFF datasets are distributed under the CC BY 3.0
Unported license, while the Mip-NeRF 360 dataset is available under the Apache License 2.0.
Anonymous. The Blender (Mildenhall et al., 2021), LLFF (Mildenhall et al., 2019), and Mip-
NeRF 360 (Barron et al., 2022) datasets represent synthetic and real-world data, respectively. The
Blender dataset consists of 3D object scenes, while LLFF and Mip-NeRF 360 comprise indoor and
outdoor real-world scenes. None of these datasets contains any human subjects. The details of each
dataset are as shown in Tab.6.
Table 6: Dataset composition used for evaluation. Blender is synthetic, whereas LLFF and Mip-
NeRF 360 are real-world scenes, with no human subjects included.

Dataset Scene1 Scene2 Scene3 Scene4 Scene5 Scene6 Scene7 Scene8 Scene9

Blender chair drums ficus hotdog lego materials mic ship –
LLFF fern flower fortress horns leaves orchids room trex –

Mip-NeRF 360 bicycle bonsai counter flowers garden kitchen room stump treehill

THE USE OF LARGE LANGUAGE MODELS

We used an LLM in a limited manner for grammar and style polishing only. It did not contribute to
research ideation, experimental design, analysis. The authors take full responsibility for all content.
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APPENDIX

A BROADER IMPACTS

Our proposed CompMarkGS is an invisible watermarking method for 3D assets, such as 3D Gaus-
sian Splatting (3DGS), which remains recoverable even after aggressive compression. Our work has
three key social impacts:

• Security: CompMarkGS enables copyright protection of 3D assets distributed across diverse digi-
tal environments without compromising visual quality. This capability supports copyright protec-
tion and sustainable revenue generation across a wide range of 3D content creators.

• Applicability: CompMarkGS ensures watermark robustness under high-ratio compression, en-
abling protected 3DGS to be reliably utilized on resource-constrained devices, such as mobile
phones and head-mounted displays. These protected 3DGS can be safely deployed in virtual
reality (VR), augmented reality (AR), medical imaging, and other 3D applications without com-
promising watermark integrity.

• Sustainability: To the best of our knowledge, CompMarkGS is the first watermarking method
to achieve watermark robustness against compression. Building on this work, it will provide
a foundation for other researchers and practitioners to extend the approach, contributing to the
advancement of watermarking research across a variety of compression formats.

B LIMITATIONS AND FUTURE WORKS.

B.1 LIMITATIONS

One limitation of our proposed method, CompMarkGS, is its reliance on a pre-trained decoder for
the watermark extraction process. However, this dependency constitutes a manageable, one-time
computational cost. The decoder is trained only once for a specific message length (e.g., 32, 48, or
64 bits) and can then be universally applied to any 3D Gaussian Splatting model without the need
for model-specific fine-tuning. This design choice significantly enhances the method’s practicality
and scalability, as the initial training effort is amortized over countless applications.

B.2 FUTURE WORKS

Looking ahead, we have identified several promising directions for future work. First, we plan to
extend our method to operate independently of 3D Gaussian Splatting compression, which would
broaden its applicability to a wider range of scenarios. Concurrently, we aim to develop a more
lightweight watermarking architecture. This initiative will focus on reducing the computational
overhead of both the embedding and decoding stages, making our solution even more suitable for
real-time or resource-constrained environments.

C MORE IMPLEMENTATION DETAILS

C.1 TARGET COMPRESSION SCHEMES FOR ROBUSTNESS EVALUATION

To test the robustness of our watermark, we use two prominent anchor-based 3DGS compression
methods HAC (Chen et al., 2024a) and ContextGS (Wang et al., 2024a). Both techniques follow a
similar pipeline, extracting features for each anchor, using MLPs to predict a context-based distribu-
tion, and then applying differentiable quantization and entropy coding. This approach significantly
compresses the model size while minimizing any loss in rendering quality.

However, the information loss that occurs during quantization can damage or destroy a watermark.
Therefore, our core objective is to achieve robustness specifically against this kind of quantization-
based compression.
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C.2 OVERVIEW OF THE COMPMARKGS PIPELINE

In this section, we detail the core components of the CompMarkGS pipeline, covering the overall
watermark training procedure.

Watermarking embedding stage. The watermarking process begins by combining the original
anchor features with a learnable watermark embedding feature to create watermarked anchor fea-
tures. These features are then passed through a quantization distortion layer (QDL), which simulates
distortions from quantization by injecting noise, resulting in the quantized watermarked anchor fea-
tures. These final features are fed into the MLPs to predict Gaussian parameters and render the
scene. To recover the watermark message from the rendered image, we apply a Discrete Wavelet
Transform (DWT) to extract the low-frequency band and input it into a pre-trained decoder. The
entire training process is optimized to minimize the message reconstruction loss Lmsg , with an
additional HSV-based perceptual loss Lhsv used to prevent visual quality degradation.

Frequency-aware anchor growing stage. To further enhance rendering quality, we introduce the
frequency-aware anchor growing (FAG) stage, which leverages frequency information to grow new
anchors. We apply a Discrete Fourier Transform (DFT) and a high-pass filter to both the rendered
and ground truth images to isolate their high-frequency components. A pixel-wise SSIM error map
is then calculated between these two high-frequency representations. Based on this error map, we
identify Gaussians in regions where high-frequency information is poorly reconstructed and use
backpropagation to selectively grow new anchors in those locations.

In summary, CompMarkGS learns watermark robustness against compression-induced information
loss via the QDL, while simultaneously preserving high-frequency details that could be degraded by
watermarking via FAG. As a result, our proposed method achieves high watermark recovery rates
and excellent visual fidelity in scenarios both with and without model compression.

C.3 DETAILS OF TRAINING

Our proposed CompMarkGS trains the anchor-based 3DGS from scratch with the watermark, in
contrast to existing methods Huang et al. (2025); Jang et al. (2024; 2025) that rely on fine-tuning pre-
trained 3DGS models. We train CompMarkGS for 30, 000 iterations. Anchor growing is performed
between 1, 600 and 15, 000 iterations, first using conventional anchor growing and then switching to
the proposed frequency-aware anchor growing strategy for fine-grained refinement. The loss func-
tion for watermark training consists of the original anchor-based 3DGS Lu et al. (2024) loss Lscaffold
and three additional components: HSV loss Lhsv, frequency loss Lfreq, and message loss Lmsg. Be-
fore watermark training begins, we pre-train a HiDDeN Zhu et al. (2018) message decoder on the
MS-COCO dataset Lin et al. (2014) for 32, 48, and 64-bit messages following the strategy from
3D-GSW Jang et al. (2025) and Stable Signature Fernandez et al. (2023). During the subsequent
watermark training, the pre-trained decoder is kept fixed. Additionally, the compression ratio of the
compression method used in all experiments is set to 0.004.

C.4 DETAILS OF HIGH-PASS FILTER

Early digital watermarking studies hide the watermark in the high-frequency bands of an image to
keep it imperceptible. However, the watermark embedded in high-frequency regions is vulnerable to
image distortions such as JPEG compression. More recent work, therefore, embeds the watermark in
the low-frequency bands, which are more robust to such attacks. The drawback is that low-frequency
components represent essential information, including the global structure and color distribution of
the image. Modifying these components can degrade visual coherence and affect the perception of
fine details such as edges and textures.

The conventional anchor growing strategy computes the mean gradient of the Gaussians within each
voxel and places a new anchor point only if no anchor already exists in voxels whose mean gradi-
ent exceeds a threshold. During anchor-based 3DGS training, voxels with high mean gradients are
primarily associated with regions that form the coarse structure of the scene. As a result, densifica-
tion rarely occurs in fine-detail areas, and when a watermark is embedded, those under-represented
regions are more susceptible to quality degradation.
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To address this limitation, we propose a frequency-aware anchor growing strategy that selectively
densifies Gaussians located in high-frequency regions. Specifically, we apply a Discrete Fourier
Transform (DFT) to convert the rendered image into the frequency domain. To isolate high-
frequency components, we use a high-pass filter mask Mh that emphasizes high-frequency regions
while suppressing low-frequency ones in the frequency domain:

Mh(p) = 1− exp

(
− (d(p)− τ)2

2β

)
, (10)

where d(p) denotes the Euclidean distance between a pixel p and the center of the image. τ de-
fines the cutoff threshold of the mask and β determines the degree of attenuation. The resulting
mask Mh is multiplied element-wise with the Fourier-transformed image to suppress low-frequency
components and preserve only the high-frequency details. Afterward, we apply the Inverse Discrete
Fourier Transform (IDFT) to reconstruct the filtered images in the spatial domain, resulting in the
high-frequency rendered images I ′hf and the high-frequency ground truth images Ihf . Further de-
tails of the frequency-aware anchor growing process can be found in the main paper (See main paper
Sec.4.3).

C.5 DETAILS OF FREQUENCY-AWARE ANCHOR GROWING

We propose a frequency-aware anchor growing strategy that efficiently identifies and densifies Gaus-
sians in high-frequency regions to mitigate visual quality degradation caused by watermark embed-
ding. Specifically, we first compute a pixel-wise SSIM-based error map Perror (See main paper
Sec.4.3) between the high-frequency rendered image I ′hf and the ground truth image Ihf , both
extracted in the frequency domain (See Sec.C.4). This error map Perror highlights pixel regions
where high-frequency information is not faithfully reconstructed. To identify pixel regions that
contain visually important fine details, we compute the median value P̃error of the SSIM-based
pixel-wise error map Perror. Using the median value P̃error ensures a more meaningful identifica-
tion of high-frequency regions by mitigating the influence of outlier pixels, which may otherwise
dominate when relying on the maximum value of the SSIM-based pixel-wise error map Perror. We
then generate a binary mask Imask by filtering pixels whose error values fall within the interval
[P̃error − ϵ, P̃error + ϵ]:

Imask(p) =

{
1, if |Perror(p)− P̃error| ≤ ϵ

0, otherwise
, (11)

where p denotes the pixel coordinates in the image. Subsequently, we construct a binary mask
Gmask to select the 3D Gaussian points that 2D projections fall within the boundaries of the image:

Gmask(k) =

{
1, if 0 ≤ x < W and 0 ≤ y < H

0, otherwise
, (12)

where k = (x, y) denotes the pixel coordinates of the 2D Gaussian, and W and H represent the
width and height of the image, respectively. Using the two binary masks Imask and Gmask, we
generate a boolean mask Fmask that identifies Gaussians located in specific high-frequency regions
by matching their 2D coordinates to the high-frequency pixel locations:

Fmask(k) = Imask(k) ·Gmask(k), (13)

where k denotes the pixel coordinates of the 2D Gaussian. During the anchor growing process,
we calculate the average of Gaussians within the voxel regions selected by the computed boolean
mask Fmask, based on the accumulated sum of their gradients. If the average gradient exceeds
the threshold τghigh = 0.00015 and no anchor exists in the corresponding voxel, a new anchor is
added. The threshold for the accumulated opacity used in the subsequent anchor pruning step is set
to τohigh = 0.15.

C.6 DETAILS OF HSV LOSS

In the field of digital watermarking, achieving imperceptible watermark embedding is a primary
research goal. However, there exists an inherent trade-off between invisibility and bit accuracy.
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When training a model to embed a watermark in 3D Gaussian Splatting (3DGS), color artifacts
emerge due to the tendency to embed the watermark into specific Gaussians to achieve high bit
accuracy. Additionally, these artifacts occur particularly in regions rendered by a small number of
Gaussians, where even slight modifications to the Gaussians can lead to noticeable distortions.

Although the RGB color space is widely used for image representation, prior work on image sharp-
ening Kau & Lee (2013) indicates that the RGB color space does not fully account for the perceptual
characteristics of the human visual system. In particular, the human visual system is more sensitive
to luminance variations than to chromatic changes Gonzalez (2009). Unlike the RGB color space,
the Hue, Saturation, and Value (HSV) space separates chromatic information (Hue and Saturation)
from luminance (Value), enabling more precise detection and suppression of color artifacts. Based
on this property, we introduce an HSV loss that enhances rendering quality while preserving high
bit accuracy.

To isolate specific regions in the HSV space, we construct binary masks (See main paper Eq.7) by
filtering pixels based on predefined hue ranges Hc, along with threshold conditions on saturation τsc
and value τvc , corresponding to color c ∈ C, where C = {R,G,B}. Each pixel p ∈ Ω, where Ω ⊂ R2

denotes the spatial domain of the image, is evaluated based on its HSV values. Let S(p) ∈ [0, 1] and
V (p) ∈ [0, 1] denote the saturation and value components at pixel p, respectively. We define the hue
range Hc for each color as follows:

HR ∈
[
0,

π

3

)
∪
[
5π

3
, 2π

)
, if S(p) ≥ τsR and V (p) ≥ τvR,

HG ∈
[π
3
, π

)
, if S(p) ≥ τsG and V (p) ≥ τvG,

HB ∈
[
π,

5π

3

)
, if S(p) ≥ τsB and V (p) ≥ τvB ,

(14)

where H(p) ∈ [0, 2π) denotes the hue value at pixel p. Pixels that do not satisfy the corresponding
saturation or value thresholds are excluded from the mask, even if their hue lies within the specified
range. We set thresholds for the red with τsR = 0.4 and τvR = 0, while using relaxed thresholds
τsc = 0.2, τvc = 0.2 for the green and blue.

D DISCUSSION

D.1 COMPARISON WITH RELATED WORK

Distinction from anchor-based approaches. Although both CompMarkGS and SecureGS use
an anchor-based structure, they are fundamentally different, starting from their problem definition.
SecureGS (Zhang et al., 2025b) is a steganography method aiming to hide large amounts of data,
with invisibility as its key metric. In contrast, CompMarkGS is a digital watermarking method for
proving ownership, which prioritizes robustness. Notably, the ”robustness” evaluation in SecureGS
focuses on preserving the rendering quality of the hidden scene, whereas CompMarkGS aims for the
recovery of the hidden message itself under attacks like model compression. To achieve these dif-
ferent goals, their information embedding mechanisms are also distinct. SecureGS predicts hidden
Gaussian offsets with a private MLP, while CompMarkGS directly injects a learnable watermark
embedding feature into the anchor feature and extracts the message from the rendered image via a
pre-trained decoder. Therefore, CompMarkGS is not an incremental improvement on SecureGS, but
a unique solution independently designed for the new objective of verifiable ownership after model
compression.

Comparison with 3DGS watermarking techniques. A key difference between our method and
existing watermarking methods, particularly frequency-based approaches such as 3D-GSW (Jang
et al., 2025), lies in our unique approach to utilizing frequency information. While both methods
leverage frequency data for Gaussian densification, their core strategies and objectives are funda-
mentally different. 3D-GSW measures the frequency intensity of patches, whereas CompMarkGS
precisely identifies high-frequency error regions between the rendered image and the ground truth,
selectively densifying anchors in those specific areas. However, the most significant distinction
is the role of compression in the watermarking pipeline. Unlike 3D-GSW, which incorporates
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model pruning as part of its watermarking process, CompMarkGS is the first to define and solve
the novel problem of watermark robustness against external quantization compression applied to a
fully trained model. To achieve this, we introduce a quantization distortion layer (QDL) that simu-
lates quantization noise during training, a core component absent in 3D-GSW. Our contribution is
proposing a unique method specifically optimized to address the previously unexplored challenge
of watermark loss during quantization compression. This focus on compression robustness also
sets CompMarkGS apart from GaussianMarker (Huang et al., 2025) and GuardSplat (Chen et al.,
2024b). These methods address traditional image distortions like Gaussian noise and JPEG com-
pression, or model distortions such as pruning. However, they lack a mechanism to mitigate the loss
of watermark information caused by quantization compression.

Furthermore, for a fair comparison, we adapt the existing vanilla 3DGS-based watermarking tech-
niques to the anchor-based 3DGS framework. However, during this process, GuardSplat requires
significant adaptation due to a core architectural incompatibility. This is because GuardSplat re-
lies on adding offsets to explicit Spherical Harmonics (SH) parameters, which do not exist in our
anchor-based model. Therefore, we modified its mechanism to apply offsets to the anchor features
instead for our experiments.

D.2 MOTIVATION FOR WATERMARKING ANCHOR-BASED 3D GAUSSIAN SPLATTING

As the demand for lightweight and efficiently rendered 3D Gaussian Splatting (3DGS) (Kerbl et al.,
2023) models grows, anchor-based architectures are emerging as a key solution. In particular, mod-
els like Scaffold-GS (Lu et al., 2024), which combine anchors with a MLP, achieve both high
memory efficiency and excellent rendering quality compared to vanilla 3DGS. This anchor-based
structure is highly practical, making it ideal for mobile and AR/VR environments where real-time
rendering is essential.

We identified these anchor-based 3DGS models as ideal targets for watermarking due to a signifi-
cant security advantage. Instead of directly storing and rendering Gaussian attributes, anchor-based
models generate them indirectly by feeding anchor features into an MLP. If we embed a watermark
into these anchor features, it undergoes a non-linear transformation by the MLP. This process ex-
presses the watermark within the Gaussian attributes in a complex and concealed manner, making it
extremely difficult for an external attacker to directly interpret or remove it.

Therefore, selecting an anchor-based 3DGS model for watermarking is a rational approach that
secures both practical benefits, such as a lightweight structure, and robust security through the MLP.

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 EFFECTIVENESS OF WATERMARKING EMBEDDING FEATURE

To verify the effectiveness of our proposed watermark embedding strategy, we compare the perfor-
mance of two approaches: using only the anchor feature and using a dedicated watermark embedding
feature. As described in Sec.4.1, our method introduces a dedicated watermark embedding feature
that shares the same dimension as the anchor feature, combining them via element-wise sum. This
design ensures that the total feature dimension remains constant, regardless of whether a watermark
is embedded. Therefore, any observed performance increase can be attributed to the effectiveness of
the embedding strategy itself, rather than an increase in model capacity.

Table 7: Ablation study on the dedicated watermark embedding feature. Results are reported for
48-bit messages and averaged over three datasets after ContextGS compression.

Embedding Method Bit Acc. (%) ↑ PSNR ↑ SSIM ↑ LPIPS ↓

Anchor Feature (Ours w/o f ′) 92.94 26.79 0.834 0.209
Anchor Feature (Ours w/ f ′) 94.03 27.55 0.844 0.173

As shown in Tab.7, using only the anchor feature creates a conflict between the two tasks of repre-
senting the scene and hiding information, which leads to degraded rendering quality. In contrast, our
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approach of introducing a dedicated watermark embedding feature preserves high rendering quality
while enabling a more robust watermark. We conclude that using an independent watermark em-
bedding feature is essential for effectively decoupling these two objectives, thereby achieving an
optimal balance between rendering quality and watermark robustness.

E.2 EFFECTIVENESS OF HSV LOSS

When only RGB-based loss functions are used for watermark embedding, the optimization of 3DGS
fails to consider the characteristics of the human visual system. As a result, 3DGS with a watermark
renders color artifacts in the rendered images, particularly in regions with strong chromatic and
luminance variations. These artifacts are observed in Fig.7 and Fig.8, despite achieving high bit
accuracy. To address this, we introduce an HSV loss that aligns more closely with the perceptual
characteristics of the human visual system. HSV color space separates chromatic components (Hue
and Saturation) from luminance (Value), making it more suitable for detecting and reducing color
artifacts. As shown in Fig. 7, binary masks of HSV loss successfully detect color artifacts in each
color channel. Moreover, Fig. 8 shows that HSV loss allows 3DGS to focus its optimization on min-
imizing color artifacts, maintaining high bit accuracy. These results show that HSV loss effectively
reduces color artifacts while preserving high bit accuracy and rendering quality.
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Figure 7: Visualization of the binary mask and masked image for each color channel (Red, Green,
and Blue). The left column shows the ground truth and the rendered image without HSV loss. The
right columns present the binary masks (top) and masked results (bottom) for each color channel.
This result is based on 48-bit messages.

Ground Truth Rendered Image
w/o HSV loss

Visualize
HSV loss

Rendered Image
w/ HSV loss

Bit Acc : 93.75
LPIPS : 0.059

Bit Acc : 89.53
LPIPS : 0.141

Figure 8: Visualization of HSV loss. The comparison is performed between images rendered with
and without the HSV loss. This result is based on 48-bit messages.
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E.3 ROBUSTNESS UNDER VARIOUS CONDITIONS

Robustness to pruning-based compression. To further validate our method’s robustness to model
compression, we conduct an experiment comparing its watermark performance against a represen-
tative pruning-based technique, LightGaussian (Fan et al., 2025). On the Mip-NeRF 360 (Barron
et al., 2022) dataset, we apply 66% pruning to the outputs of models that were already compressed
with HAC and ContextGS. Tab.8 compares the bit accuracy and model size before and after this
pruning. The results show that CompMarkGS experiences a significantly smaller drop in bit ac-
curacy after pruning compared to the baselines. This is because CompMarkGS directly integrates
both pruning and anchor growing into its training process, which builds resilience to the distortions
caused by parameter removal. These findings corroborate the results from Fig.9, where our method
maintained over 90% bit accuracy under 50% random pruning, and collectively demonstrate that our
technique is highly robust to pruning-induced distortions.

Table 8: Robustness comparison against pruning-based compression using LightGaussian. Results
are for the Mip-NeRF 360 dataset (48-bit messages), showing bit accuracy and model size before
and after 66% pruning.

Method Bit Acc. (%) ↑ Size (MB) ↓

WateRF 92.65 / 67.29 248.97 / 84.77
GaussianMarker 92.89 / 66.67 418.66 / 141.84
3D-GSW 91.93 / 67.06 228.62 / 77.46
CompMarkGS 96.09 / 83.50 186.71 / 61.61

Robustness to general quantization. To validate the robustness of our proposed quantization
distortion layer (QDL) beyond 3D Gaussian Splatting (3DGS) specific compression, we conduct
an additional experiment in a general quantization environment. We use the quantization API from
PyTorch (Paszke et al., 2019) to quantize model parameters from float32 to int8 and evaluate the
performance on the Mip-NeRF 360 (Barron et al., 2022) dataset with a 48-bit setting. As shown in
Tab.9, the results demonstrate that while existing methods suffer an average drop in bit accuracy of
about 27%, CompMarkGS with QDL applied shows only about a 5% decrease, proving its superior
robustness. These findings are consistent with the stable performance of CompMarkGS compared
to the 22% average performance drop of existing methods shown in the main paper’s Tab.1. They
also align with the results in Tab.5, where applying QDL improves bit accuracy by more than 5%
on average. Therefore, we have comprehensively confirmed that QDL is a key component that
effectively ensures watermark robustness, not only in 3DGS-specific compression but also across
diverse quantization scenarios.

Table 9: Robustness comparison against general quantization, showing the bit accuracy drop on the
Mip-NeRF 360 dataset (48-bit messages) after quantizing models from float32 to int8.

Method Bit Acc. (% )↑ PSNR ↑ SSIM ↑ LPIPS ↓

WateRF 93.20 / 69.20 26.09 / 12.17 0.788 / 0.135 0.260 / 0.610
GaussianMarker 92.49 / 66.02 26.33 / 15.83 0.775 / 0.407 0.282 / 0.588
3D-GSW 91.08 / 66.20 18.53 / 14.93 0.667 / 0.374 0.322 / 0.662
CompMarkGS 95.59 / 90.11 26.56 / 21.73 0.777 / 0.700 0.248 / 0.336

E.4 GENERALITY AND COMPATIBILITY

Robustness to adversarial attacks. In addition to the rendered image distortions and 3D Gaussian
Splatting (3DGS) model attacks discussed in this paper, we evaluate our method’s robustness against
a more sophisticated, gradient-based adversarial attack. We performed a projected gradient descent
(PGD) (Madry et al., 2017) attack specifically targeting the HiDDeN (Zhu et al., 2018) decoder.
As shown in Tab.10, the bit accuracy of existing methods drops to the 50% range after the PGD
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attack, whereas CompMarkGS maintains a high accuracy of 84.33%. This result demonstrates that
our method is highly robust not only to general distortions but also to sophisticated removal attacks,
such as a PGD attack that directly targets the decoder.

Table 10: Robustness comparison against PGD adversarial attacks. Results are for 48-bit messages,
showing bit accuracy before and after the attack targeting the HiDDeN decoder.

Method Bit Acc. (None)↑ Bit Acc. (PGD ϵ = 0.1) ↑

WateRF 92.01 56.06
GaussianMarker 87.95 57.53
3D-GSW 79.25 57.56
CompMarkGS 94.03 84.33

Decoder independence. To demonstrate that our method’s robustness is not dependent on a spe-
cific decoder architecture, we evaluate its performance by replacing the original HiDDeN (Zhu et al.,
2018) decoder with a DINO-based SSL (Fernandez et al., 2022) decoder. The experiment measures
the average performance across three datasets (Blender (Mildenhall et al., 2021), LLFF (Mildenhall
et al., 2019), and Mip-NeRF 360 (Barron et al., 2022)) using 48-bit messages, comparing the re-
sults before and after HAC (Chen et al., 2024a) and ContextGS (Wang et al., 2024a) compression.
As shown in Tab.11, despite using the SSL decoder, the drop in bit accuracy from compression is
negligible at just -0.04% for HAC and -0.09% for ContextGS, indicating highly stable performance.
Furthermore, our method outperforms all baselines both before and after compression. Specifically,
compared to the strongest baseline, GaussianMarker (Huang et al., 2025), our post-compression bit
accuracy is 35.16% higher under HAC and 5.05% higher under ContextGS. These results confirm
that CompMarkGS possesses truly decoder-agnostic characteristics.

Table 11: Performance comparison with an alternative decoder (DINO-based SSL). Results are
for 48-bit messages, averaged over three datasets, showing performance before and after HAC and
ContextGS compression.

Methods Bit Accuracy (%) ↑ PSNR ↑ SSIM ↑ LPIPS ↓

HAC + WateRF 91.02 / 54.40 27.36 / 13.63 0.850 / 0.457 0.174 / 0.574
HAC + GaussianMarker 92.00 / 58.34 27.05 / 13.54 0.840 / 0.460 0.193 / 0.571
HAC + 3D-GSW 90.96 / 53.48 19.57 / 13.13 0.628 / 0.439 0.295 / 0.572
HAC + GuardSplat 79.77 / 52.72 16.29 / 12.28 0.584 / 0.425 0.417 / 0.609
HAC + CompMarkGS (SSL) 93.54 / 93.50 27.21 / 27.16 0.847 / 0.842 0.190 / 0.192
HAC + CompMarkGS (HiDDeN) 95.95 / 95.92 27.68 / 27.65 0.856 / 0.852 0.171 / 0.177

ContextGS + WateRF 92.01 / 90.36 26.64 / 26.47 0.843 / 0.832 0.183 / 0.185
ContextGS + GaussianMarker 91.24 / 87.95 26.89 / 26.54 0.839 / 0.827 0.195 / 0.200
ContextGS + 3D-GSW 88.28 / 79.75 19.50 / 19.83 0.627 / 0.617 0.294 / 0.299
ContextGS + GuardSplat 73.20 / 67.16 16.90 / 16.86 0.653 / 0.628 0.353 / 0.360
ContextGS + CompMarkGS (SSL) 93.09 / 93.00 25.86 / 25.82 0.829 / 0.828 0.220 / 0.221
ContextGS + CompMarkGS (HiDDeN) 94.36 / 94.03 27.60 / 27.55 0.845 / 0.844 0.172 / 0.173

E.5 ROBUSTNESS TO IMAGE DISTORTION COMPARISON

This section provides the detailed quantitative results for the experiment on robustness to image dis-
tortion, which is visually summarized in Fig.4 of the main paper. We evaluate watermark resilience
by applying six post-processing distortions to the rendered images: Gaussian noise, rotation, scaling,
Gaussian blur, crop, and JPEG compression. Tab.12 details the bit accuracy for each distortion con-
dition, both before (left) and after (right) compression. As the results show, our proposed method,
CompMarkGS, consistently exhibits superior robustness to existing methods across most distortion
and compression scenarios.
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Table 12: Robustness to image distortion before (left) and after (right) compression. Evaluations
are performed using a 48-bit setting, averaged over the Blender, LLFF, and Mip-NeRF 360 datasets.
Baselines are tested within an anchor-based 3DGS framework with HAC and ContextGS compres-
sion. The best results are in bold.

Bit Accuracy(%) ↑

Methods No Distortion
Gaussian Noise

(σ = 0.1)

Rotation

(±π/6)

Scaling

(75%)

Gaussian Blur

(σ = 0.1)

Crop

(40%)

JPEG Compression

(50% quality)

HAC + WateRF 91.02 / 54.40 89.75 / 55.90 84.92 / 56.16 86.17 / 55.38 89.33 / 56.34 87.00 / 55.30 84.00 / 57.47

HAC + GaussianMarker 92.00 / 58.34 59.08 / 58.33 58.75 / 58.33 58.33 / 58.33 59.08 / 58.33 61.42 / 58.17 58.25 / 58.33

HAC + 3D-GSW 90.96 / 53.48 89.50 / 52.50 86.67 / 52.25 86.42 / 52.08 86.67 / 52.25 86.92 / 52.50 83.83 / 53.25

HAC + GuardSplat 79.77 / 52.72 80.67 / 50.17 74.42 / 53.33 81.33 / 50.75 81.50 / 50.33 65.08 / 50.00 74.83 / 52.67

HAC + CompMarkGS 95.95 / 95.92 96.00 / 95.50 92.25 / 92.08 91.83 / 91.67 95.83 / 95.58 90.67 / 90.83 87.75 / 88.83

ContextGS + WateRF 92.01 / 90.36 92.25 / 91.50 88.75 / 88.00 89.58 / 88.83 92.75 / 91.50 89.50 / 88.25 86.41 / 84.58

ContextGS + GaussianMarker 91.24 / 87.95 59.08 / 58.92 59.00 / 58.75 58.25 / 58.17 59.17 / 58.92 61.08 / 60.67 58.25 / 58.25

ContextGS + 3D-GSW 88.28 / 79.25 87.92 / 80.67 85.08 / 78.75 84.42 / 77.08 88.00 / 81.42 84.33 / 78.50 81.58 / 72.58

ContextGS + GuardSplat 73.20 / 67.16 73.92 / 65.83 67.00 / 61.83 74.25 / 66.67 74.33 / 67.08 62.33 / 54.75 63.75 / 61.67

ContextGS + CompMarkGS 94.36 / 94.03 93.04 / 92.98 90.17 / 90.33 90.46 / 90.06 92.96 / 92.81 89.63 / 89.29 85.21 / 85.31

E.6 ROBUSTNESS TO MODEL DISTORTION COMPARISON

Fig.9a and Fig.9b show the bit accuracy under different levels of model distortion. We conduct three
model distortions: 1) adding Gaussian noise to all model parameters, 2) randomly removing anchors,
and 3) randomly cloning anchors. Across different distortion strengths, our proposed method con-
sistently outperforms the baseline. Notably, under prune and clone distortion settings, our method
exhibits less performance degradation, owing to the incorporation of both pruning and anchor grow-
ing during training in CompMarkGS. These results demonstrate that our method achieves superior
performance over the baseline, even under severe model distortions.

(a) HAC compression.

(b) ContextGS compression.

Figure 9: Comparison of baselines and our method under Gaussian noise, cloning, and pruning.
Results are averaged over Blender, LLFF, and Mip-NeRF 360 with 48-bit messages.
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Table 13: Robustness to model distortion before (left) and after (right) compression.

Bit Accuracy(%) ↑

Methods No Distortion
Gaussian Noise

(σ = 0.005)

Clone

(50%)

Prune

(20%)

HAC + WateRF 91.02 / 54.40 81.03 / 53.38 89.78 / 54.04 87.33 / 53.70

HAC + GaussianMarker 92.00 / 58.34 73.18 / 58.35 90.23 / 58.29 87.90 / 87.89

HAC + 3D-GSW 90.96 / 53.48 80.17 / 53.11 89.62 / 53.17 86.80 / 53.18

HAC + GuardSplat 79.77 / 52.72 67.32 / 51.21 76.12 / 56.28 71.25 / 59.13

HAC + CompMarkGS 95.95 / 95.92 82.13 / 77.13 95.33 / 95.09 94.67 / 94.25

ContextGS + WateRF 92.01 / 90.36 82.36 / 79.91 90.70 / 88.95 88.29 / 86.20

ContextGS + GaussianMarker 91.24 / 87.95 72.84 / 71.78 89.43 / 86.05 86.97 / 83.56

ContextGS + 3D-GSW 88.28 / 79.75 76.94 / 68.55 86.89 / 77.99 82.87 / 72.70

ContextGS + GuardSplat 73.20 / 67.16 63.24 / 59.84 71.39 / 70.11 67.12 / 65.19

ContextGS + CompMarkGS 94.36 / 94.03 87.03 / 83.08 93.37 / 93.23 92.38 / 92.57

E.7 PERFORMANCE ACROSS COMPRESSION LEVELS

Compression plays a crucial role in determining the trade-off between model size and performance
in terms of bit accuracy and rendering quality. Fig.10 shows the relationship among model size,
bit accuracy, and rendering quality under two different compression schemes: HAC (Chen et al.,
2024a) and ContextGS (Wang et al., 2024a). Fig.10 indicates that a lower compression level leads
to better bit accuracy and rendering quality. Our method consistently outperforms other methods,
achieving the highest bit accuracy and rendering quality across varying model sizes. Notably, for
HAC compression, we achieve bit accuracy of 90% with model size less than 10 MB, while other
methods only reach 60% under the same model size. These results highlight the effectiveness and
robustness of CompMarkGS.

(a) HAC compression.

(b) ContextGS compression.

Figure 10: Performance of bit accuracy and rendering quality under different compression levels. A
larger model size corresponds to a lower compression level. The blue line represents the results of
our method. Results represent the average score across Blender, LLFF, and Mip-NeRF 360 datasets
using 48-bit messages.
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F COMPUTING RESOURCES

We evaluate the rendering performance of our method and baselines (Huang et al., 2025; Jang et al.,
2024; 2025) by measuring FPS. As shown in Tab.14, our method exceeds the real-time rendering
threshold of 30 FPS across the Blender (Mildenhall et al., 2021), LLFF (Mildenhall et al., 2019), and
Mip-NeRF 360 (Barron et al., 2022) datasets. These results demonstrate the practical applicability
and rendering efficiency of our proposed CompMarkGS.

Table 14: FPS results for each of the Blender, LLFF, and Mip-NeRF 360 datasets. Based on 48-bit
messages, results are averaged with both HAC and ContextGS after compression.

FPS ↑

Methods Blender LLFF Mip-NeRF 360

WateRF 199.30 19.31 41.98
GaussianMarker 166.45 16.24 28.54
3D-GSW 220.60 22.67 50.64
GuardSplat 207.56 21.93 41.28
CompMarkGS 230.39 35.30 67.58

G ADDITIONAL QUALITATIVE RESULTS

Fig.11 through Fig.19 visualize all results rendered after compression using our method with HAC
and ContextGS, along with the difference (×5) between the original images and the watermarked
images.
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Figure 11: Rendering quality of various rendering outputs generated by our method on the Mip-
NeRF 360 dataset. We show the differences (× 5). The closer it is to white, the greater the dis-
crepancy between the ground truth and the rendered image. The results were obtained using 32-bit
messages after compression.
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Figure 12: Rendering quality of various rendering outputs generated by our method on the LLFF
dataset. We show the differences (× 5). The closer it is to white, the greater the discrepancy between
the ground truth and the rendered image. The results were obtained using 32-bit messages after
compression.
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Figure 13: Rendering quality of various rendering outputs generated by our method on the Blender
dataset. We show the differences (× 5). The closer it is to white, the greater the discrepancy between
the ground truth and the rendered image. The results were obtained using 32-bit messages after
compression.
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Figure 14: Rendering quality of various rendering outputs generated by our method on the Mip-
NeRF 360 dataset. We show the differences (× 5). The closer it is to white, the greater the dis-
crepancy between the ground truth and the rendered image. The results were obtained using 48-bit
messages after compression.
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Figure 15: Rendering quality of various rendering outputs generated by our method on the LLFF
dataset. We show the differences (× 5). The closer it is to white, the greater the discrepancy between
the ground truth and the rendered image. The results were obtained using 48-bit messages after
compression.
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Figure 16: Rendering quality of various rendering outputs generated by our method on the Blender
dataset. We show the differences (× 5). The closer it is to white, the greater the discrepancy between
the ground truth and the rendered image. The results were obtained using 48-bit messages after
compression.
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Figure 17: Rendering quality of various rendering outputs generated by our method on the Mip-
NeRF 360 dataset. We show the differences (× 5). The closer it is to white, the greater the dis-
crepancy between the ground truth and the rendered image. The results were obtained using 64-bit
messages after compression.
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Figure 18: Rendering quality of various rendering outputs generated by our method on the LLFF
dataset. We show the differences (× 5). The closer it is to white, the greater the discrepancy between
the ground truth and the rendered image. The results were obtained using 64-bit messages after
compression.
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Figure 19: Rendering quality of various rendering outputs generated by our method on the Blender
dataset. We show the differences (× 5). The closer it is to white, the greater the discrepancy between
the ground truth and the rendered image. The results were obtained using 64-bit messages after
compression.
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