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Abstract—Data in large-scale genetic studies of complex human
diseases, such as substance use disorders, are often incomplete.
Despite great progress in genotype imputation, e.g., the IMPUTE2
method, considerably less progress has been made in inferring
phenotypes. We designed a novel approach to integrate individu-
als’ comorbid conditions with their genotype data to infer missing
(unreported) diagnostic criteria of a disorder. The premise of
our approach derives from correlations among symptoms and
the shared biological bases of concurrent disorders such as
co-dependence on cocaine and opioids. We describe a matrix
completion method to construct a bi-linear model based on
the interactions of genotypes and known symptoms of related
disorders to infer unknown values of another set of symptoms or
phenotypes. An efficient stochastic and parallel algorithm based
on the linearized alternating direction method of multipliers was
developed to solve the proposed optimization problem. Empirical
evaluation of the approach in comparison with other advanced
data matrix completion methods via a case study shows that
it both significantly improves imputation accuracy and provides
greater computational efficiency.

I. INTRODUCTION

Illicit drug use is very common in the United States and is

associated with serious health and social problems [1]. Studies

have shown that substance use disorders (SUDs) are heritable

[2], [3], [4]. However, association studies aiming at identifying

their genetic causes to date have been unsuccessful due to mul-

tiple factors, especially inadequate sample size [5]. In many

datasets aggregated for genetic studies of mixed substance de-

pendence, genetic data are often available for subjects exposed

to one substance but not another [6]. These subjects are often

excluded from the study because either they had no exposure to

the substance or provided no reports of related symptoms [7],

[6]. Dependence on different illicit drugs is correlated, both

phenomenologically and biologically. Recent advances in the

neurobiology of addiction have shown that many substances

affect the same biological process, including reward, stress

resiliency and executive cognitive control [8]. Many substance

users use multiple drugs, resulting in comorbid dependence

disorders [9], [10]. Sample size is essential to ensure adequate

statistical power in genome-wide association studies (GWAS).

The capability of expanding sample size by inferring missing

phenotypes using the comorbidity among SUDs and shared

genetic factors could be very helpful statistically. In this paper,

we designed and evaluated such a statistical approach.

The problem of inferring diagnostic criteria of comorbid

SUDs (CSUDs) can be considered to be analogous to a

recommender system that predicts the preference of a us-

er to a product with known preference for other products.

We similarly would like to predict if a patient endorse a

symptom based on the endorsement of other symptoms. By

organizing the ratings of different users (rows) for various

items (columns) into a matrix, a recommender system uses

matrix completion methods to infer missing ratings. Similarly,

by organizing symptoms of patients with a disorder into a

matrix (as shown in Figure 1), we can use a matrix completion

method to infer missing phenotypes. Classical matrix comple-

tion methods [11], [12] make use of the observation that the

matrices to be completed are low rank (because similar users

give similar ratings to similar products). Hence these methods

search for solutions that minimize the rank of the completed

matrix. Because similar patients may endorse similar symp-

toms, matrices that we seek to complete are expected to be

low rank as well, so classic matrix completion methods may

be applicable to our problem. However, these methods do not

utilize additional useful information, such as associated genetic

variants or known similarities between comorbid disorders,

which is often referred to as side or auxiliary information in

matrix completion. Therefore, classical methods may not be

effective in solving our problem.

Recently matrix completion methods were proposed to

make use of side information. Most of these methods are

either non-convex [13], [14], or restricted in their use of

side data to only in the minimization of matrix rank [15],

[16], [17], leading to ambiguous or suboptimal solutions.

A recent method completes a matrix F by considering the

features (X) describing row entities (e.g., users), side features

(Y) describing column entities (e.g., products), and their

interactions (XTGY) where G contains model parameters

used in the inference model [18]. The optimization problem of

this method is convex and the model parameter matrix G is not

limited to being low rank. By a sampling rate of O(logN), this

approach could achieve exact recovery when the side features

span the latent space of the matrix F, and an ε-recovery when

the side features are corrupted by perturbation. However, this

method has limited scalability, and thus is difficult to be used

in genetic studies with hundreds of symptoms or millions

of genotypes. In this paper, we propose a novel stochastic
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Fig. 1: Collaborative inference of CSUD diagnostic criteria using side information. Two sources including genotypes X and

criterion similarity or correlation Y are integrated in a bi-linear model that predicts unreported diagnostic criteria. The matrix

G captures the impact of the side features on the criteria to be inferred.

algorithm that is parallelized in a shared memory to solve the

same optimization problem proposed in [18]. This algorithm

can be proved to have global convergence and a sub-linear

learning rate.

Figure 1 illustrates how we use our matrix completion

method to infer missing phenotypes. Here, F is the phenotype

matrix to be completed with rows representing patients and

columns representing symptoms of a disorder, X contains

genetic variants from different patients, Y characterizes sim-

ilarities or correlations between each criterion of the disorder

and criteria of other disorders. The inference model is in the

form of XTGY+N = F where N captures any random effect

from environment on the phenotype. The genetic variants in

X are first identified through a GWAS. We use the proposed

algorithm to determine G which is then used to infer missing

phenotypes. We evaluated this approach in both simulations

and the analysis of real world CSUD datasets and compared

it with several state-of-the-art matrix completion methods.

The following notation is used throughout the paper. A

vector is denoted by a bold lower case letter as in v and ‖v‖p
represents its �p-norm that is defined by ‖v‖p = (|v(1)|p +
· · ·+ |v(d)|p)1/p, where v(i) is the i-th index entry within the

vector of v and d is the length of v, also written as length(v).
A matrix is denoted by a bold upper case letter, e.g., Mn×d

is a n-by-d matrix, and ‖M‖F is its Frobenius norm.

II. RELATED WORKS

A recommender system, such as the Netflix movie recom-

mendations, commonly uses collaborative filtering, or matrix

completion, where the goal is to ‘complete’ the user-item

rating matrix given a limited number of observed ratings. With

the low-rank assumption of true underlying matrix, matrix

completion methods require only the partially observed data

in the matrix F and solve the following problem [11], [12]
minE ‖E‖∗, subject to RΩ(E) = RΩ(F), (1)

where F ∈ R
m×n is the partially observed low-rank

matrix (with a rank of r) that needs to be recovered, Ω ⊆
{1, · · · ,m} × {1, · · · , n} be the set of indexes where the

corresponding components in F are observed, the mapping

RΩ(M): Rm×n → R
m×n gives another matrix whose (i, j)-

th entry is Mi,j if (i, j) ∈ Ω (or 0 otherwise), and ‖E‖∗
computes the nuclear norm of E.

Several works utilize side features in their methods [13],

[14] based on non-convex matrix factorization formulations

with no theoretical guarantees. Three most recent methods

have proposed convex formulations, which make it possible for

them to have theoretical guarantees on matrix recovery [16],

[17]. These methods all construct an inductive model XTGY

so that RΩ(X
TGY) = RΩ(F) where the side matrices X and

Y consist of side features, respectively, for the row entities

(e.g., users) and column entities (e.g., movies) of a (rating)

matrix F. This inductive model has a parameter matrix G

that is either required to be sufficiently low rank [15] or to

have a minimal nuclear norm ‖G‖∗ [16]. With a very strong

assumption that both X and Y are orthonormal matrices, and

respectively in the latent column and row space of the matrix

F, the method in [16] was proved to be likely to achieve an

exact recovery of F with low sampling rate.

Another recent work [17] improves [16] by introducing a

residual matrix N to handle the noisy side features. This

method constructs an inductive model in the form of XTGY+
N to approximate F and requires both G and N to be low

rank. An unnecessarily strong condition of the low-rank G

is assumed because although a low-rank G leads to a low-

rank F, a low-rank F does not require a low-rank G. Hence,

we propose another method in [18] that removes this strong

assumption. We will briefly revisit this approach in Section

IV-B.

III. DATA DESCRIPTION

A total of 7,189 subjects were aggregated from family

and case-control based genetic studies of cocaine use dis-

order (CUD) and opioid use disorder (OUD). Subjects were

recruited at five sites: Yale University School of Medicine,

the University of Connecticut Health Center, the University

of Pennsylvania Perelman School of Medicine, the Medical
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TABLE I: Sample size by study and race
African America European America

CUD association, microarray 2,718 2,037
CUD association, exome sequencing 940 1,395
OUD association, microarray 1,398 1,756
OUD association, exome sequencing 540 1,190
Phenome inference 1,149 2,292

University of South Carolina, and McLean Hospital. The

institutional review board at each site approved the study

protocol and informed consent forms. The National Institute on

Drug Abuse and the National Institute on Alcohol Abuse and

Alcoholism each provided a Certificate of Confidentiality to

protect participants. Subjects were paid for their participation.

Among the total 7,189 subjects, 7,008 had cocaine exposure

and were included in a GWAS of CUD and 4,843 had opioid

exposure and were used in a GWAS of OUD. In total, 4,662

subjects had both exposures. Of that number, 3,441 subjects

that had used an opioid more than 11 times were used in

the evaluation of our approach to infer opioid use behaviors.

Statistics for these datasets can be found in Table I.

Phenotypic information was obtained by face-to-face in-

terview using the Semi-Structured Assessment for Drug De-

pendence and Alcoholism (SSADDA), a computer-assisted

interview comprised of 26 sections (including sections for

both cocaine and opioids) that yields diagnoses of various

SUDs and Axis I psychiatric disorders, as well as antisocial

personality disorder [19] For the DSM-5 diagnosis of CUD,

OUD or SUD in general, 11 criteria, which can be clustered

into four groups: impaired control, social impairment, risky

use and pharmacological effects. The criteria for CUD and

OUD were evaluated using questions from the SSADDA

cocaine and opioid sections, respectively. In this study, we

aimed to impute data for the 11 criteria for the drug that

subjects had no prior exposure based on the criteria that they

met for the use of other drugs. For example, we imputed

cocaine use criteria from opioid use criteria, or vice-versa. In

order to have groundtruth to evaluate the proposed and other

compared methods, we include subjects for whom we have

both cocaine and opioid (i.e., 3,441) symptoms.

Most of the sample subjects were genotyped using one

of two different methods: Illumina HumanOmni1-Quad v1.0

microarray (MA) or exome sequencing (ES). There were

total of 4,821 subjects genotyped with MA and 2,450 with

ES. See [6] for details regarding the genotyping and variant

calling. Genotypes were imputed with IMPUTE2 [20] using

the genotyped variants and the 1000 Genomes reference panel

(http://www.1000genomes.org/; released June 2011). For both

the MA and ES sample, a total of 47,104,916 variants were

imputed. We considered the imputed variants with r2 > 0.8.

IV. METHOD

We describe the two steps in our proposed analysis where

we first identified genetic variants in a GWAS and then used

the identified genetic variants in a matrix completion method

to complete a phenotype data matrix.

A. Finding genetic variants associated with CUD and OUD

The genetic relationship (GR) between each pair of subjects

was evaluated with LDAK4 [21]. The evaluation was done

separately in the MA and ES samples, and included only com-

mon variants with minor allele frequency (MAF) ≥ 0.03 and

with a very high imputation quality (with r2 ≥ 0.99). There

were 3,140,006 single nucleotide polymorphisms (SNPs) for

MA and 604,884 for ES included in the GR estimation.

The estimated GR matrix was used in subsequent association

analyses to account for the population effect from genetic

correlation.

To verify and correct the misclassification of self-reported

race, we compared the MA (and ES) data from all subjects

with genotypes from the HapMap 3 reference populations:

CEU, YRI, and CHB. We conducted principal components

(PC) analysis in the sample using PLINK [22] with 489,697

(91,089) SNPs common to those included in the GR evaluation

in the MA (ES) dataset and HapMap panel [after pruning the

MA (ES) SNPs for linkage disequilibrium (LD), defined as

r2 > 80%] to characterize the underlying genetic architecture

of the sample. The first PC scores distinguished African

Americans (AAs) and European Americans (EAs), for which

association analysis was done separately. The first three PCs

were used in the analysis of each population to correct for

residual population stratification.

The CUD (or OUD) criterion count was derived by counting

the number of criteria endorsed out of the 11 DSM-5 criteria

and was used in the GWAS to identify genetic variants. We ran

the genomewide efficient mixed model association (GEMMA)

method [23] to conduct association tests with sex and age,

as well as the first three PCs being covariates. We combined

the results from all eight studies (with the two different traits

[CUD or OUD], datasets [MA or ES], or populations [AAs or

EAs]) via meta analysis using METAL [24]. Genetic variants

with meta P-value < 1 × 10−5 were used as side features in

the subsequent phenotype inference.

B. Matrix completion with side information

We briefly review the formulation of the matrix comple-

tion method in [18]. This method integrates the side in-

formation into the formulation by explicitly building a bi-

linear predictive model that predicts missing components in

the matrix (F) using side features. Mathematically, we have

f = xTHy + xTu + yTv + g, where x and y are the side

feature vectors of a patient and a symptom, respectively, and

u,v, g and H are model parameters. By defining x̄ = [xT 1]T ,

ȳ = [yT 1]T and G(a=d1+1)×(b=d2+1) =

(
H u

vT g

)
, the

above equation can be simplified to: f = x̄TGȳ. We solve

the following overall problem formulation for the best G:

min
G,E

1

2
‖XT

GY −E‖2F + λE‖E‖∗ + λGg(G),

subject to RΩ(E) = RΩ(F).
(2)

where E is a completed version of F. The X and Y here are

matrices that are created by stacking one row of all ones to the
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Fig. 2: Calculation of A k and b k
. s rows are randomly

sampled from A and b individually.
Here (4) is a lasso problem, which has to be solved itera­

tively in practice, making it problematic to compute or even
memorize when the size of matrix A becomes extremely large,
as occurs in many real cases. By utilizing the stochasticity
and linearization technique in ADMM, we approximate our
problem as

(3)

(4)

mJnAcllGlh + (M2, E k - XTGY - c k )

+ %IIEk- XTGY _ Ckll;",

after adding constant term to Eq. (3) we obtain

minAcllGlh + ~IIBk - XTGYII;"
G 2

where B~ = Ek + M~/fJ - Ck
. By converting the matrix

b into a vector g = vec(G), vec(XTGY) = (yT @ XT)g,
further we let b k = vec(Bk

) and @ computes the Kronecker
product of two matrices. Thus, if we denote A = (yT @XT ),

the above problem becomes:

IIAkg - b~ll~ ~ IIAkgk- b~ll~ + 2 (f~,g - gk) +TAllg _ gkll~

where A k and bk sample at random from the corresponding
s rows of A and b k in pairs, as shown in Figure 2. T A > a
is a proximal parameter and

f~ = AkT(Akgk - bb (5)

is the stochastic gradient of ~ II Ag-b~ II §at gk' The stochastic
approximation can tremendously reduce memory consumption
and save computational costs in each iteration. Then the above
equation can be re-written as:

minAcllglh + (3TA Ilg - [gk - f~/TA]II~
g 2

Obviously the closed-form solution is:

gk+1 = max(lgk- fUTAI - AC(3' 0) 0 sgn(gk - f~ ITA)
TA

In advance, our efficient procedure calculates each stochas­
tic gradient in parallel by using multiple computational nodes,
i.e., workers, then averaging those gradient values by a central
computational node, i.e., a master.

Updating E:

mJnAEIIEII. + (M~, Rn(E - F)) + %IIRn(E - F)II;"

+ (M~,E - XTGk+ly - c k ) + %IIE - XTGk+1y _ Ckll;"

original X and Y, respectively. To simplify the notation, we
still used X and Y to represent the two augmented matrices.
Because the phenotype data matrix is expected to be low
rank, we also require E to be low rank, which is commonly
translated into a minimization of the nuclear norm IIEII •.
Additionally, g(G) is a function of G that imposes certain
prior on G. Because side features can be noisy and not all
of them and their interactions are helpful in predicting F,
we expect G to be sparse and implement g(G) with IIGIil­
The hyperparameters AE and Aa help to balance the three
components in the objective function and can be determined
using cross validation.

Formulation (2) differs in several ways from existing meth­
ods that make use of side information for matrix completion.
Besides the flexibility to consider both linear and quadratically
interactive terms, this method allows the algorithm to deter­
mine the terms that should be used in the model by enforcing
the sparsity in G instead of a non-sufficient condition to ensure
low rank E. Moreover, our formulation is still applicable when
there is no access to useful side information by appropriately
configuration of Aa and AE. Related theoretical discussions
can be found in [18].

V. STOCHASTIC AND PARALLEL LADMM

In this section, we derive a stochastic version of the Lin­
earized Alternating Direction Method of Multipliers (StoLAD­
MM) from the classic LADMM algorithm [25] and further
parallelize it to solve Problem (2). Besides the major advantage
of computational efficiency, the algorithm gurantees the global
convergence and a sub-linear learning rate.

To meet the condition that blocks of variables are separable,
in order to use StoLADMM, we first defined C = E-XTGY
and plugged it into Eq.(2). Following the LADMM scheme,
the augmented Lagrangian function of (2) can be written as

L:(E, G, C, M I , M 2 , (3)
1 2 (3 2="2IIC11F + AEIIEII. + AcllGlh + "2IIRn(E - F)IIF

+ (MI,Rn(E - F)) + (M2,E - XTGY - c)
+ ~IIE - XTGY - CII;"

2

where M 1 , M 2 E jRmxn are called Lagrange multipliers and
fJ > a is the penalty parameter. As a iterative algorithm, given
C k

, G k, Ek, M~ and M~ at iteration k, we update each group
of the variables while fixing others. The four steps are noted
as Updating C, Updating E, Updating G and Updating M as
below.

Updating C:
k+1 . 11 12 ( k k T k )C = arg ngn "2 Iq F + M 2 , E - X G Y - C

+ ~IIEk - XTGky - CII;"
2

which has a closed form solution as:

Ck+ 1
= (3 ~ 1 (E k - XTGky + M~/(3)

Updating G:
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where we can re-organize this subproblem in a simpler form

as:

min
E

λE‖E‖∗ +
β

2
‖RΩ(E−B

k
2)‖

2
F +

β

2
‖E−B

k
3‖

2
F

where Bk
2 = RΩ(F−Mk

1/β) and Bk
3 = XTGk+1Y+Ck −

Mk
2/β. Via the same linearization technique, the problem can

be approximated by:

min
E

λE‖E‖∗ +
βτB
2
‖E− (Ek − fk

2 /τB)‖
2
F

+
βτB
2
‖E− (Ek − fk

3 /τB)‖
2
F

where fk
2 and fk

3 are the gradients of 1
2‖RΩ(E−Bk

2)‖2F and
1
2‖E−Bk

3‖2F at Ek, which are illustrated below:

fk
2 = RΩ(E

k −B
k
2) = RΩ(E

k − F+M
k
1/β),

fk
3 = E

k −B
k
3 = E

k −X
T
G

k+1
Y −C

k +M
k
2/β.

(6)

Therefore, the closed-form solution can be obtained as

E
k+1 = SV T (Ek − (fk

2 + fk
3 )/(2τB), λE/2(βτB))

Here the operator SV T (E, t) is defined in [11] for soft-

thresholding the singular values of an arbitrary matrix E by

t.
Updating M:

M
k+1
1 =M

k
1 + β(RΩ(E

k+1 − F)),

M
k+1
2 =M

k
2 + β(Ek+1 −X

T
G

k+1
Y −C

k+1).

Algorithm 1 summarizes the StoLADMM steps for the

variables of (C,E,G,M1,M2).

Algorithm 1 The StoLADMM algorithm to solve Ck, Gk,

Ek, k = 1, ...,K

Input: X, Y and RΩ(F) with parameters λG, λE , τA, τB ,

ρ and βmax.

Output: C,G,E;

1: Initialize E0,G0,M0
1,M

0
2. Compute A = YT ⊗XT . k =

0,

repeat;

2: Ck+1 = β

β+1
(Ek −XTGkY +Mk

2/β);

3: Gk+1 = reshape(max(|gk − fk
1 /τA| −

λG

τAβ
, 0) � sgn(gk −

fk
1 /τA)) where fk

1 can be computed by (5);

4: Ek+1 = SV T (Ek− (fk
2 +fk

3 )/(2τB), λE/2(βτB)) where fk
2

and fk
3 can be computed by (6);

5: Mk+1
1 = Mk

1 + β(RΩ(E
k+1 − F)).

6: Mk+1
2 = Mk

2 + β(Ek+1 −XTGk+1Y −Ck+1).

7: k = k + 1 until convergence;

Return C,G,E;

It is beneficial that our algorithm has an O(1/
√
t) conver-

gence rate, the same as the convergence rate as proved in [26],

which guarantees our algorithm’s performance while saving

considerable memory and computational costs. In Algorithm 1

we set the sampling block size s to max (1,
√

length(g)/100).
τA < ‖A‖, τB < ‖RΩ(F)‖ and β = 0.01 as the preferable

values [25] in practice. In the initialization step, M0
1 and M0

2

are randomly drawn from the standard Gaussian distribution;

we initialize E0 and G0 by the iterative soft-thresholding

algorithm [27] and SV T operator respectively.

q StoLADMM LADMM DirtyIMC IMC MAXIDE BM

20%
RMSE
time(s)

0.236
30.938

0.231
664.515

0.297
45.366

0.230

21.053

0.235
4732.718

0.567
NaN

40%
RMSE
time(s)

0.226

29.953
0.234

982.212
0.298

21.063
0.235

20.803

0.236
3772.202

0.582
NaN

60%
RMSE
time(s)

0.228

28.719
0.236

815.841
0.301

20.269

0.237
36.737

0.235
4718.916

0.581
NaN

80%
RMSE
time(s)

0.236

30.547
0.237

877.886
0.303

23.906

0.239
32.872

0.241
4011.692

0.585
NaN

100%
RMSE
time(s)

0.223

30.172
0.239

489.770
0.303

22.922

0.246
24.653

0.242
3695.292

0.574
NaN

TABLE II: The inference results on the Opioid-Cocaine data.

VI. EVALUATION

We compared the proposed method with other matrix com-

pletion approaches that also use side information, including:

MAXIDE [16], IMC [15] and DirtyIMC [17]. A benchmark

method (BM) was also compared, which simply used the

known values on the comparable phenotypes between co-

caine and opioid use disorders to impute missing entries.

We randomly removed the phenotypes of q% CSUD patients

associated with either opioid or cocaine use (not both). Then,

all compared methods were run to infer these missing values.

Their performance was measured by the relative mean squared

error (RMSE) calculated on missing entries: ‖R �Ω(X
TGY −

F)‖22/‖R �Ω(F)‖22. The hyperparameters λ’s and the rank of

G (required by IMC and DirtyIMC) were selected by cross-

validation: using 30% of the given entries randomly to form

a validation set. Models were obtained by applying each

method to the remaining entries with a specific choice of λ
from 10−3, 10−2, ..., 104. The average validation RMSE was

computed by repeating the above procedure three times. The

hyperparameter values were fixed to those that gave the best

average validation RMSEs for each individual method. For

each choice of q, we repeated the above entire procedure five

times and reported the average RMSE on the missing entries.

All tests were conducted using Matlab on an Intel Core i7

3.6GHz and 16GB RAM computer.

The 383 genetic variants identified in our GWAS were used

as side features X. The correlations between 22 CUD and 22

OUD symptoms formed a correlation matrix which was used

as side features Y. The accuracy and computational time for

all methods with five q values (ranging from 20% to 100%)

are presented in Table II. The results indicate that our method

improves computational efficiency without sacrificing recovery

accuracy. When the run time was significantly reduced by

nearly 95% of that used by the non-stochastic LADMM, our

RMSE still outperformed other methods, showing that our

method can readily handle big data.

Figure 3 depicts the recovered G matrix whose rows

(corresponding to genotypes) are sorted in ascending order

according to their association p-values, and columns corre-

spond to 22 phenotypes. Color of higher saturation reflects

the stronger interaction between a specific genotype and a

criterion. Red represents a positive interaction, while blue

represents a negative interaction. We observed that the top

20 rows had the most none zero values in the matrix because

these rows corresponded to the most significantly associated

genetic variants. For instance, the interactions between a

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on May 17,2023 at 17:37:49 UTC from IEEE Xplore.  Restrictions apply. 



397

Fig. 3: Recovered G by our method for the CSUD dataset.

marker at chrome 9 and position 136198589 and all the 22

phenotypes had the largest weights in the inference model for

the missing criteria. This shows that our phenotype inference

framework can not only use additive effects of genotypes but

also interactive effects between genotype and phenotype.

VII. CONCLUSION

We adapted a matrix completion approach to infer SUD

criteria using both correlation among criteria of different

conditions and genotypes as side information. By imposing

sparse prior on the model parameters, the method can find

a sparse interactive matrix that connects specific genotypes

to diagnostic criteria. We introduced an efficient stochastic

LADMM algorithm to solve the optimization problem in

this method. The empirical evaluation shows that our method

can significantly enhance the running efficiency with minimal

adverse effects on the imputation accuracy.
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