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ABSTRACT

Although recent studies on time-series anomaly detection have increasingly
adopted ever-larger neural network architectures such as Transformers and Foun-
dation models, they incur high computational costs and memory usage, making
them impractical for real-time and resource-constrained scenarios. Moreover,
they often fail to demonstrate significant performance gains over simpler meth-
ods under rigorous evaluation protocols. In this study, we propose Patch-based
representation learning for time-series Anomaly detection (PaAno), a lightweight
yet effective method for fast and efficient time-series anomaly detection. PaAno
extracts short temporal patches from time-series training data and uses a 1D con-
volutional neural network to embed each patch into a vector representation. The
model is trained using a combination of triplet loss and pretext loss to ensure the
embeddings capture informative temporal patterns from input patches. During
inference, the anomaly score at each time step is computed by comparing the em-
beddings of its surrounding patches to those of normal patches extracted from the
training time-series. Evaluated on the TSB-AD benchmark, PaAno achieved state-
of-the-art performance, significantly outperforming existing methods, including
those based on heavy architectures, on both univariate and multivariate time-series
anomaly detection across various range-wise and point-wise performance mea-
sures. The source code is available at https://Anonymized_URL.

1 INTRODUCTION

Time-series data, a collection of temporally ordered observations, are pervasive across a wide range
of domains, including industrial sensor measurements, financial market transactions, and healthcare
monitoring (Yue et al., 2022; Jia et al., 2024). A defining characteristic of time-series data is the pres-
ence of temporal dependencies among observations, shaped by the temporal context and underlying
system dynamics (Lai et al., 2018; Leung et al., 2023; Islam, 2024). However, these dependencies
can be disrupted by various factors such as system faults, external disturbances, or human errors.
Such anomalies may manifest as sudden spikes, abrupt drops, or sustained deviations in certain ob-
servations, as illustrated in Figure 1. Time-Series Anomaly Detection aims to identify time points
or segments within a sequence whose patterns deviate significantly from expected normal behav-
ior (Paparrizos et al., 2022; Zhou et al., 2023a; Sarfraz et al., 2024). Because these anomalies are
often indicative of underlying issues, accurate and timely detection is crucial for ensuring reliability
and safety in real-world applications.

Recent studies on time-series anomaly detection have introduced large-scale neural network archi-
tectures, such as Transformers (Xu et al., 2021; Tuli et al., 2022; Wu et al., 2022; Yue et al., 2024)
and Foundation models (Rasul et al., 2023; Zhou et al., 2023b; Goswami et al., 2024), aiming to
capture long-term temporal dependencies and cross-variable relationships effectively. Nevertheless,
Sarfraz et al. (2024) and Liu & Paparrizos (2024) have highlighted an illusion of progress in their
methods by revealing limitations in existing evaluation practices, including structural flaws in bench-
mark datasets and inadequate performance measures that rely on point adjustment or threshold tun-
ing. When evaluated under rigorous protocols designed to mitigate these issues, these sophisticated
large-scale neural network-based methods did not demonstrate significant advantages over simpler
methods (Sarfraz et al., 2024; Liu & Paparrizos, 2024). Moreover, the high computational cost and
memory usage further constrain their practicality in real-time or resource-constrained scenarios.

1

https://Anonymized_URL


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Global Point
074_WSD_id_46_WebService

→ Time

Context
074_WSD_id_46_WebService

Shapelet
074_WSD_id_46_WebService

Seasonal
074_WSD_id_46_WebService

Collective
074_WSD_id_46_WebService

→ Time

Trend

→ Time→ Time

→ Time → Time → Time

→ Time

074_WSD_id_46_WebService 326_UCR_id_24_Medical 405_UCR_id_103_Sensor

810_Exathlon_id_1_Facility 532_SMAP_id_2_Sensor396_UCR_id_94_Medical

Ti
m

e
-S

e
ri

es
 V

al
u

e
A

n
o

m
al

y 
Sc

o
re

Ti
m

e
-S

e
ri

es
 V

al
u

e
A

n
o

m
al

y 
Sc

o
re

2400    3200       4000          4800 3900  4050   4200      4350 5700  5850  6000  6150

5200 5400          5600          5800 10000    12000            14000           16000 4750          5000         5250         5500          5750

Figure 1: Illustrative results of PaAno, demonstrating strong
capability in detecting diverse types of time-series anomalies.
Datasets from TSB-AD-U (Liu & Paparrizos, 2024).
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Figure 2: Anomaly detection per-
formance of PaAno and recent
methods on TSB-AD-M.

In this work, we propose Patch-based representation learning for time-series Anomaly detection
(PaAno), a lightweight time-series anomaly detection method based on patch-based representation
learning. While recent studies on time-series anomaly detection have often relied on forecasting-
based or reconstruction-based methods, representation-based methods remain relatively underex-
plored and only a limited subset of recent time-series representation learning studies has explicitly
targeted anomaly detection (Zamanzadeh Darban et al., 2024). PaAno addresses this gap by in-
troducing a patch-level embedding space tailored to capturing subtle deviations in time-series data
while remaining invariant to small temporal shifts. Given a time-series training dataset consist-
ing only of normal patterns, PaAno extracts short temporal segments, called Patches, by shifting a
window one time step at a time. As the representation model, a compact 1D Convolutional Neu-
ral Network (1D-CNN) is used to embed these patches into vector representations. The model is
trained with a learning objective that integrates metric learning and a self-supervised pretext task,
encouraging the embedding vectors to be informative and discriminative with respect to temporal
patterns in the input patches. After training, it constructs a memory bank as a set of embedding
vectors representing core patches from the training dataset. During inference, the anomaly score
at each time step is computed based on the distances between the embeddings of the surrounding
patches and their closest embeddings in the memory bank. Since PaAno does not rely on large-scale
or heavily tuned architectures, it is fast and efficient, and well-suited for real-time anomaly detec-
tion in resource-constrained environments. We evaluated the effectiveness of PaAno on the TSB-AD
benchmark (Liu & Paparrizos, 2024) with performance measures that avoid point adjustment and
threshold tuning to ensure accurate evaluation. PaAno consistently outperformed existing methods
across all measures.

Our main contributions are summarized as follows:

• PaAno introduces a novel representation-based framework that constructs a discriminative
patch-level embedding space tailored for time-series anomaly detection.

• PaAno uses a lightweight 1D-CNN model, enabling fast and efficient time-series anomaly
detection compared to recent methods that rely on heavy neural network architectures.

• PaAno consistently achieves state-of-the-art results on both univariate and multivariate
time-series anomaly detection tasks across both range-wise and point-wise performance
measures.

• PaAno shows high robustness to hyperparameter configurations, indicating that it does not
require extensive hyperparameter tuning.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

2.1 TIME-SERIES ANOMALY DETECTION

Time-series anomaly detection is formulated as learning from a time-series training dataset X =
(x1, . . . ,xN ) consisting of N sequential observations, where xt ∈ Rd represents the observation at
time step t, to predict whether a query observation xt∗ is anomalous. If each observation contains
only a single variable (i.e., d = 1), the task is referred to as univariate time-series anomaly detection.
If there is more than one variable (i.e., d > 1), it is called multivariate time-series anomaly detection,
where detection relies on the dependencies among multiple variables across time steps. Time-series
anomaly detection is typically categorized into three paradigms based on the availability of labels
in the training dataset (Choi et al., 2021; Boniol et al., 2024; Zamanzadeh Darban et al., 2024):
unsupervised, semi-supervised, and supervised. In the unsupervised setting, the training dataset
is unlabeled, and there is no explicit distinction between normal and anomalous observations. In
the semi-supervised setting, only normal observations are present in the training dataset. In the
supervised setting, the training dataset contains both normal and anomalous observations.

In this study, we focus on semi-supervised time-series anomaly detection, which is widely regarded
as practical for real-world applications where labeled anomalies are extremely scarce and costly
to obtain. Time-series training dataset X = (x1, . . . ,xN ) is assumed to consist solely of normal
observations. The objective is to learn a model from the training dataset X to detect anomalies in
query observations xt∗ . At each time step t∗, the model produces an anomaly score st∗ ∈ R, with a
higher score indicating a greater likelihood that the corresponding observation xt∗ is anomalous.

2.2 TIME-SERIES ANOMALY DETECTION METHODS

A wide range of methods have been proposed for time-series anomaly detection, spanning from
classical statistical techniques to modern deep learning architectures (Liu & Paparrizos, 2024). We
categorize existing methods into three groups based on the model architecture used: statistical and
machine learning, neural network-based, and Transformer-based methods. Our proposed method
PaAno belongs to the category of neural network-based methods. PaAno enables fast and efficient
anomaly detection by utilizing a lightweight 1D-CNN.

Statistical and Machine Learning Methods Methods in this category use statistical assump-
tion or traditional machine learning algorithms to detect anomalies. Most of these methods were
originally designed for point-wise anomaly detection in non-time-series data. They can be further
categorized into four sub-groups. First, density-based methods detect points or segments that lie in
low-density regions or deviate from estimated underlying distributions, including COPOD (Li et al.,
2020), LOF (Breunig et al., 2000), KNN (Ramaswamy et al., 2000), and Matrix Profile (Yeh et al.,
2016). Second, boundary-based methods find decision boundaries that separate normal and anoma-
lous data, including OCSVM (Schölkopf et al., 1999), IForest (Liu et al., 2008), and EIF (Hariri
et al., 2019). Third, reconstruction-based methods reconstruct the expected normal data and de-
tect anomalies via residual errors. PCA (Aggarwal, 2017), RobustPCA (Paffenroth et al., 2018),
and SR (Ren et al., 2019) employ dimensionality reduction. DLinear and NLinear (Zeng et al.,
2023) use trend–remainder decomposition with a temporal linear layer for reconstruction. Fourth,
clustering-based methods detect anomalies as deviations from learned cluster structures, including
KMeansAD (Yairi et al., 2001), CBLOF (He et al., 2003), KShapeAD (Paparrizos & Gravano, 2015;
2017), Series2Graph (Boniol & Palpanas, 2020), and SAND (Boniol et al., 2021).

Additionally, some of these methods have extensions designed for fixed-length segments and we
denoted those with the prefix “(Sub)-” (e.g., (Sub)-PCA, (Sub)-KNN), following the practices in
TSB-AD (Liu & Paparrizos, 2024).

Neural Network-Based Methods This category comprises conventional, non-Transformer neu-
ral network architectures for time-series anomaly detection. Multi-Layer Perceptron (MLP)-based
methods detect anomalies through reconstruction errors, including AutoEncoder (Sakurada & Yairi,
2014), USAD (Audibert et al., 2020), and Donut (Xu et al., 2018). Recurrent neural network (RNN)-
based methods explicitly model sequences in time-series data to capture temporal dependencies,
including LSTMAD (Malhotra et al., 2015) and OmniAnomaly (Su et al., 2019). CNN-based meth-
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ods utilize convolutional architectures to extract temporal features from time series, including Deep-
AnT (Munir et al., 2018) and TimesNet (Wu et al., 2022). FITS (Xu et al., 2023) processes time
series by interpolation in the complex frequency domain. DADA (Shentu et al., 2025) learns robust
representations through adaptive information bottlenecks and dual adversarial decoders, enabling
zero-shot anomaly detection across multi-domain time-series. KAN-AD (Zhou et al., 2025) refor-
mulates time-series modeling via Fourier enhanced Kolmogorov–Arnold networks, achieving highly
smooth normal pattern approximation with minimal parameters for efficient anomaly detection.

Transformer-Based Methods Transformer architectures have been increasingly adopted to better
capture long-range dependencies in time-series data. AnomalyTransformer (Xu et al., 2021) and
TranAD (Tuli et al., 2022) compute anomaly scores based on attention discrepancies. DCdetec-
tor (Yang et al., 2023) employs dual attention with contrastive learning and CATCH (Wu et al.,
2025) applies frequency patching with a channel fusion module. PatchTST (Nie et al., 2023) to-
kenizes subseries-level patches with channel-independent weights. iTransformer (Liu et al., 2024)
adopts an inverted view that swaps time and variable dimensions.

Foundation models, pretrained on large-scale time-series data, are adopted in time-series anomaly
detection to enable zero-shot and few-shot detection capabilities. Chronos (Ansari et al., 2024)
and MOMENT (Goswami et al., 2024) based on T5-style encoder-decoder architectures. Lag-
Llama (Rasul et al., 2023), TimesFM (Das et al., 2024), and OFA (Zhou et al., 2023b) utilize
decoder-only Transformer architectures.

2.3 ISSUES IN EVALUATION PRACTICES

Recent studies on time-series anomaly detection have often adopted evaluation protocols that in-
troduce systematic biases, undermining the validity of reported results. First, several commonly
used benchmark datasets suffer from structural flaws (Liu & Paparrizos, 2024). These include label-
ing inconsistencies, where some anomaly-labeled observations are indistinguishable from normal
patterns, and unrealistic assumptions about anomaly distributions, such as restricting anomalies to
appear only once or at the end of a time series. Second, the conventional use of performance mea-
sures that rely on point adjustment and threshold tuning can misleadingly inflate scores and hinder
fair comparison across methods (Sarfraz et al., 2024; Bhattacharya et al., 2024; Paparrizos et al.,
2022; Liu & Paparrizos, 2024).

To address these issues, we adopt the TSB-AD benchmark (Liu & Paparrizos, 2024), which mit-
igates dataset-related flaws by correcting labeling inconsistencies and modeling anomalies under
more realistic assumptions. In addition, we completely remove point adjustment from the evalu-
ation protocol and include four threshold-independent measures, thereby eliminating biases from
miscellaneous convention. Further discussions of evaluation measures are provided in Appendix C.

3 PROPOSED METHOD

3.1 OVERVIEW

Local Temporal Dependencies Recent Transformer models have strengths in modeling long-term
temporal dependencies by processing long time-series jointly (Zamanzadeh Darban et al., 2024; Liu
et al., 2024; Wu et al., 2025). However, anomaly detection in time series often relies on localized
patterns within short intervals. Time-series are typically strongly correlated with their immedi-
ate neighbors but only weakly related to distant points, with this tendency particularly pronounced
around anomalies (Xu et al., 2021; Yue et al., 2024). Using Transformers with global self-attention
for modeling long sequences can dilute local temporal dependencies, as the mechanism is inherently
locality-agnostic, leading to insensitivity to local context (Li et al., 2019; 2023; Oliveira & Ramos,
2024). Consequently, these models often struggle to capture the fine-grained local dynamics in
shorter subsequences that are crucial for time-series anomaly detection, particularly for detecting
point or contextual anomalies.

Patch-Based Formulation To enable accurate and efficient anomaly detection, we introduce an
inductive bias toward locality in PaAno. Our method PaAno is motivated by recent advances in
visual anomaly detection that leverage patch-based representation learning (Defard et al., 2021; Yi &
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Figure 3: Training procedure of PaAno. The training dataset is split into patches. Using the patch
set, three model components—a patch encoder, a projection head, and a classification head—are
trained with the training objective that consists of two losses. Triplet loss encourages temporally
similar patches to have closer embeddings in the projected space, and pretext loss guides the patch
encoder to learn temporal relationships by predicting whether two patches are consecutive.

Yoon, 2020; Roth et al., 2022; Yoon et al., 2023). These methods have shown superior performance
on benchmark datasets such as MVTec-AD (Bergmann et al., 2019), where normal images within
the same class exhibit highly consistent and repetitive spatial patterns, while anomalies disrupt these
regularities.

We observe that time-series often exhibit analogous characteristics. Normal time-series display
repetitive temporal patterns and strong local dependencies, whereas anomalies typically break such
short-range regularities. PaAno aims to precisely capture these temporal dynamics through patch-
based representation learning. Given a training sequence X, we extract overlapping fixed-length
subsequences, referred to as patches, of window size w using a unit-stride sliding window, yield-
ing P = {pt}N−w+1

t=1 where pt = (xt, . . . ,xt+w−1). Patches serve as the fundamental units for
anomaly detection. For each patch, we apply instance normalization (Kim et al., 2022b; Yang et al.,
2023; Wu et al., 2025), which standardizes all channels within the patch to zero mean and unit vari-
ance. Reducing patch-level variability in mean and variance improves the stability of patch-level
representations and increases robustness to distributional shifts such as regime changes or drift. To
enrich patch embeddings, PaAno leverages the sequential continuity and temporal similarity across
patches, which enable effective learning of local temporal dependencies essential for anomaly de-
tection.

Figure 3 provides a schematic overview of PaAno, including its model architecture and training
objective. The pseudocode of the training procedure is presented in Appendix A.

3.2 MODEL ARCHITECTURE

The model architecture of PaAno comprises three main components: a patch encoder fθ, a projection
head gθ, and a classification head cθ. The patch encoder fθ is a 1D-CNN that embeds temporal
patterns from the input patch p ∈ Rw×d into a vector representation h ∈ Rl. This patch-level
embedding h serves as the input to both the projection head gθ and classification head cθ. The
projection head gθ is an MLP that transforms h into its projection z. This projected embedding is
used for metric learning, encouraging the encoder fθ to extract features that are discriminative with
respect to the temporal patterns in the input patch. The classification head cθ is another MLP that
takes the embeddings of two patches as inputs to predict whether they are temporally consecutive,
thereby encouraging the encoder fθ to capture sequential relationships among patches. Once the
model is trained, only the patch encoder fθ is retained for anomaly detection in future observations.
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3.3 TRAINING OBJECTIVE

Given a minibatch B = {pi}Mi=1 sampled from the patch set P at each training iteration, the training
objective for patch-based representation learning combines two loss functions: a triplet loss Ltriplet
and a pretext loss Lpretext. The overall training objective is given by:

L = Ltriplet + λ · Lpretext, (1)
where the weight λ controls the contribution of the pretext loss Lpretext. Details of each loss function
are described below.

Triplet Loss The triplet loss is a loss function introduced in deep metric learning to learn an
embedding space where an anchor example is closer to a positive example than to a negative one by
a specified margin (Schroff et al., 2015). To promote the patch encoder fθ to extract embeddings
that capture temporal patterns in the input patches, we adopt triplet loss so that patches with similar
temporal patterns are embedded close together, while those with dissimilar patterns are pushed apart.

For each patch pi ∈ B as the anchor, the positive patch p+
i is obtained by randomly shifting the

anchor pi within r time steps, excluding zero shift. This ensures that the anchor and positive patches
exhibit similar temporal patterns. We define the negative patch p−

i as the farthest negative, chosen
as the patch in the minibatch B that has the largest cosine distance to pi in the embedding space,
(i.e., pj ∈ B \ {pi} that maximizes dist(fθ(pi), fθ(pj)). After the patches pi, p+

i , and p−
i are

encoded and projected into zi, z+i , and z−i through the encoder fθ and projection head gθ, the loss
Ltriplet is computed as:

Ltriplet =
1

M

M∑
i=1

max
(
0, dist(zi, z+i )− dist(zi, z−i ) + δ

)
, (2)

where δ is the margin hyperparameter that denotes the minimum distance the anchor must be closer
to the positive than to the negative and M is size of minibatch. Minimizing Ltriplet encourages the
anchor to be closer to the positive patch than to the negative patch in the embedding space, thereby
making the embedding space robust to small temporal shifts while remaining sensitive to meaningful
differences. We expect this to produce well-organized clusters of normal patches, with unseen future
anomalous patches lying far from them and thus being effectively identified.

Pretext Loss The pretext loss is inspired by Yi & Yoon (2020)’s study on visual anomaly detection
based on patch-based representation learning, where the training objective includes a patch-level
classification task to predict the relative positions of image patches. This pretext task enhances patch
embeddings by promoting spatial awareness. We adapt this idea to time-series data by formulating a
patch-level classification task that predicts whether two patches are temporally consecutive, thereby
guiding the patch encoder fθ to better capture temporal relationships among patches.

For each anchor patch pi ∈ B, we select the preceding patch ppre
i that is exactly w time steps

ahead, such that it is temporally preceding to the anchor pi. We also draw U random patches,
prand
i,1 , . . . ,prand

i,U from B \ {pi}. The classification head cθ takes a pair of patch embeddings as input
and outputs the probability estimate indicating whether the two patches are temporally consecutive.
After obtaining the embeddings for pi, p

pre
i , and prand

i,j using the encoder fθ, the loss Lpretext is
computed as:

Lpretext =
1

M

M∑
i=1

[
− log cθ(hi,h

pre
i )− 1

U

U∑
j=1

log
(
1− cθ(hi,h

rand
i,j )

)]
. (3)

Minimizing Lpretext encourages the classification head cθ to assign a high probability to a pair con-
sisting of an anchor patch and its preceding patch, and a low probability to a pair consisting of an
anchor patch and a random patch. This loss is applied only during the early stage of training to
expedite the learning of temporal relationships among patches, thereby stabilizing representation
learning when the embedding space is not yet structured.

3.4 MEMORY BANK

After training, the patch encoder fθ forms a embedding space where similar normal patches are
tightly grouped, while distinct normal patterns occupy different regions of the space. A memory

6
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bank M is constructed as the set of embeddings of patches pt ∈ P obtained using fθ:

M = {fθ(pt) | pt ∈ P} . (4)

For anomaly detection, it serves as a collection of cohesive clusters of normal patches present in the
training dataset X, providing a clear reference for identifying anomalies in future observations.

A practical consideration is that the memory bank M grows with the size of the training dataset
X, leading to increased computational costs and storage requirements for anomaly detection (Yi &
Yoon, 2020; Roth et al., 2022). To address this, we apply coreset subsampling to reduce the size of
M. We perform K-means clustering on M to derive K clusters. For each i-th cluster, we select the
vector mi ∈ M that is closest to its centroid. The resulting K representative vectors, denoted by
m1, . . . ,mK , are used to construct a reduced memory bank M̂:

M̂ = {mi}Ki=1 . (5)

This reduction preserves representative coverage of the original memory bank while significantly
reducing its size, thereby enhancing the efficiency of anomaly detection.

3.5 ANOMALY DETECTION
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Figure 4: Anomaly detection procedure of PaAno.

During inference, the patch en-
coder fθ and reduced memory
bank M̂ are used to compute the
anomaly score st∗ for a query
time step t∗.

We first compute patch-level
anomaly scores for the patches
that include the query time step
t∗. Let Pt∗ = {pt}t∗t=t∗−w+1
denote the set of these
patches, where each patch
pt = (xt, . . . ,xt+w−1) is a
collection of the w most recent
observations starting at time
step t. Each patch pt ∈ Pt∗
is embedded using the encoder
fθ as fθ(pt). This embedding
is then compared to the vectors in the memory bank M̂ for anomaly scoring. Specifically, the k

nearest neighbors in terms of cosine distance are retrieved from M̂ , denoted by m
(1)
t , . . . ,m

(k)
t .

The patch-level anomaly score for pt, denoted S(pt), is computed as:

S(pt) =
1

k

k∑
i=1

dist(fθ(pt),m
(i)
t ). (6)

This score reflects how dissimilar the patch pt is from the normal patterns learned from the training
dataset X. For an anomalous patch, its embedding fails to align with any clusters of normal patches
in the memory bank, resulting in a high anomaly score.

The final anomaly score for the query time step t∗, denoted st∗ , is obtained by averaging the patch-
level scores of all patches in Pt∗ :

st∗ =
1

|Pt∗ |
∑

pt∈Pt∗

S(pt). (7)

The anomaly score st∗ reflects the temporal context across the surrounding patches. A higher value
of st∗ means that the behavior around the time step t∗ is substantially different from those observed
in the training dataset X, and is thus indicative of a potential anomaly. Figure 4 illustrates the
anomaly detection procedure of PaAno, and its pseudocode is fully provided in Appendix A.
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4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Table 1: Statistics of the TSB-AD benchmark.

Category Split # Time-Series Avg. Length Anomaly Ratio

TSB-AD-U Tuning 48 47143.3 3.5%
Eval 530 51866.7 4.5%

TSB-AD-M Tuning 20 98164.1 5.7%
Eval 180 108826.7 5.0%

TSB-AD Benchmark We used the
datasets provided by the TSB-AD
benchmark (Liu & Paparrizos, 2024),
which were specifically curated to ad-
dress critical limitations in existing
evaluation practices for time-series
anomaly detection. The summary
statistics are presented in Table 1.
Figure 1 shows examples of the time-series datasets. The datasets are categorized into two groups
based on the number of variables: TSB-AD-U for univariate and TSB-AD-M for multivariate time
series. Each group is further divided into a ”Tuning” set for hyperparameter optimization and an
”Eval” set for performance evaluation. Additionally, each time series has a predefined split point,
where the preceding segment is designated for the training dataset.

Implementation Details The patch encoder fθ was a 1D-CNN consisting of four 1D convolu-
tional layers followed by global average pooling layer with output size 64. The projection head gθ
was a two-layer MLP with dimensionality of 256 and the classification head cθ was a single-layer
MLP. The model was trained for 200 iterations using the AdamW optimizer with a minibatch size
M of 512 and a weight decay of 1e−4. The pretext loss weight λ was linear decayed from 1 to 0
during the first 20 iterations and fixed at 0 thereafter. The memory bank size was set to 10% of the
original patch set P . The number of nearest neighbors k in the anomaly scoring function was set to
3. Each experiment was repeated 10 times with different random seeds, and the average results are
reported. Further details of implementation are described in Appendix B.

Baseline Methods The TSB-AD benchmark provides a comprehensive comparison across a total
of 40 baseline methods, including 25 statistical and machine learning methods, 8 neural network-
based methods, and 7 Transformer-based methods. We additionally include 8 methods for further
comparison with recent advances: PatchTST (Nie et al., 2023), DLinear (Zeng et al., 2023), NLinear
(Zeng et al., 2023), DCdetector (Yang et al., 2023), iTransformer (Liu et al., 2024), CATCH (Wu
et al., 2025), KAN-AD (Zhou et al., 2025), and DADA (Shentu et al., 2025). Among a total of 48
baseline methods, 39 are applicable to univariate time-series anomaly detection and 31 to multivari-
ate time-series anomaly detection. The hyperparameters of all baseline methods were tuned in the
same way as for the proposed method. The search spaces used are provided in Appendix B.

Performance Measures For a reliable and comprehensive evaluation, we employed three range-
wise and three point-wise measures, respectively. The range-wise measures comprise the VUS-ROC
and VUS-PR (Paparrizos et al., 2022; Liu & Paparrizos, 2024; Boniol et al., 2025), together with
the Range-wise F1 score (Range-F1). As point-wise measures, we adopt AUC-PR, AUC-ROC, and
Point-F1. Following the TSB-AD (Liu & Paparrizos, 2024), VUS-PR was regarded as the primary
evaluation measure, while the others were used as complementary measures. Detailed definitions of
the measures are presented in Appendix C.

4.2 RESULTS AND DISCUSSION

Anomaly Detection Results Tables 2 and 3 summarize the performance of the proposed method
and competitive baselines on the univariate (TSB-AD-U) and multivariate (TSB-AD-M) datasets
from the TSB-AD benchmark. We report the top-2 performing methods based on VUS-PR, along
with those published within the past 4 years (since 2022) for category except for Transformers. The
full experimental results and statistical tests for all compared methods are provided in Appendix E.

In univariate time-series anomaly detection (Table 2), PaAno ranked first across all six performance
measures, outperforming all baseline methods. The qualitative results in Figure 1 show that PaAno
effectively captures diverse types of anomalies, ranging from abrupt point anomalies to contextual
anomaly segments. Among the baselines, KAN-AD, which belongs to the neural network–based
methods, achieved the second-best results across all six measures. Statistical and machine learning
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Table 2: Experimental results on univariate time-series anomaly detection in TSB-AD-U. For
each measure, the best and second-best values are indicated in bold and underlined. All scores are
reported with their rankings as “Score/Rank”.

Range-Wise Measure ↑ Point-Wise Measure ↑ Computational Cost ↓
Method VUS-PR VUS-ROC Range-F1 AUC-PR AUC-ROC Point-F1 # Params Run Time

St
at

&
M

L (Sub)-PCA (2017) 0.42/3 0.76/9 0.41/3 0.37/3 0.71/11 0.42/3 – 1.5s
KShapeAD (2017) 0.40/4 0.76/9 0.40/4 0.35/4 0.74/5 0.39/4 – 8.0s
DLinear (2023) 0.25/20+ 0.74/19 0.22/20+ 0.21/20+ 0.62/20+ 0.26/20+ < 0.1M 2.9s
NLinear (2023) 0.23/20+ 0.72/20+ 0.20/20+ 0.18/20+ 0.62/20+ 0.23/20+ < 0.1M 5.8s

N
N

DeepAnT (2018) 0.34/13 0.79/5 0.35/9 0.33/5 0.71/11 0.38/5 < 0.1M 2.0s
USAD (2020) 0.36/10 0.71/20+ 0.40/4 0.32/7 0.66/20+ 0.37/8 < 0.1M 1.7s
TimesNet (2022) 0.26/20+ 0.72/20+ 0.21/20+ 0.18/20+ 0.61/20+ 0.24/20+ < 0.1M 11.2s
FITS (2023) 0.26/20+ 0.73/20+ 0.20/20+ 0.17/20+ 0.61/20+ 0.23/20+ < 0.1M 3.1s
DADA (2025) 0.31/17 0.77/8 0.31/19 0.29/14 0.71/11 0.38/18 1.84M 0.8s
KAN-AD (2025) 0.43/2 0.82/2 0.43/2 0.41/2 0.80/2 0.44/2 < 0.1M 12.1s

Tr
an

sf
or

m
er

AnomalyTransformer (2021) 0.12/20+ 0.56/20+ 0.14/20+ 0.08/20+ 0.50/20+ 0.12/20+ 4.8M 48.9s
DCdetector (2023) 0.09/20+ 0.56/20+ 0.10/20+ 0.05/20+ 0.50/20+ 0.10/20+ 0.9M 5.8s
Lag-Llama (2023) 0.27/21 0.72/20+ 0.31/19 0.25/20+ 0.65/20+ 0.30/20+ 2.5M 1220.8s
OFA (2023b) 0.24/20+ 0.71/20+ 0.20/20+ 0.16/20+ 0.59/20+ 0.22/20+ 81.9M 171.1s
PatchTST (2023) 0.26/20+ 0.75/17 0.22/20+ 0.21/20+ 0.63/20+ 0.25/20+ 0.5M 26.3s
iTransformer (2024) 0.22/20+ 0.74/19 0.18/20+ 0.16/20+ 0.61/20+ 0.21/20+ 0.6M 9.8s
MOMENT (FT) (2024) 0.39/5 0.76/9 0.35/9 0.30/12 0.69/15 0.35/12 109.6M 43.6s
MOMENT (ZS) (2024) 0.38/8 0.75/17 0.36/7 0.30/12 0.68/16 0.35/12 109.6M 42.9s
TimesFM (2024) 0.30/18 0.74/19 0.34/14 0.28/17 0.67/19 0.34/16 203.5M 83.8s

PaAno (Ours) 0.52/1 0.89/1 0.48/1 0.46/1 0.86/1 0.51/1 0.3M 6.9s

Table 3: Experimental results on multivariate time-series anomaly detection in TSB-AD-M. For
each measure, the best and second-best values are indicated in bold and underlined. All scores are
reported with their rankings as “Score/Rank”.

Range-Wise Measure ↑ Point-Wise Measure ↑ Computational Cost ↓
Method VUS-PR VUS-ROC Range-F1 AUC-PR AUC-ROC Point-F1 # Params Run Time

St
at

&
M

L KMeansAD (2001) 0.29/11 0.73/6 0.33/7 0.25/14 0.69/6 0.31/13 – 62.0s
PCA (2017) 0.31/3 0.74/4 0.29/11 0.31/4 0.70/4 0.37/3 – 0.1s
DLinear (2023) 0.29/11 0.70/12 0.26/15 0.27/9 0.66/12 0.32/9 < 0.1M 14.8s
NLinear (2023) 0.29/11 0.70/12 0.28/12 0.24/15 0.65/14 0.31/13 < 0.1M 15.0s

N
N

DeepAnT (2018) 0.31/3 0.76/2 0.37/4 0.32/3 0.73/2 0.37/3 < 0.1M 9.5s
OmniAnomaly (2019) 0.31/3 0.69/16 0.37/4 0.27/9 0.65/14 0.32/9 < 0.1M 9.1s
TimesNet (2022) 0.19/20+ 0.64/20+ 0.17/20+ 0.13/20+ 0.56/20+ 0.20/20+ < 0.1M 52.1s
FITS (2023) 0.21/21 0.66/20+ 0.16/20+ 0.15/20+ 0.58/20+ 0.22/20+ < 0.1M 16.7s
DADA (2025) 0.31/3 0.73/6 0.25/18 0.31/4 0.69/6 0.35/6 1.84M 2.1s
KAN-AD (2025) 0.41/2 0.75/3 0.41/1 0.38/1 0.73/2 0.42/2 < 0.1M 31.9s

Tr
an

sf
or

m
er

AnomalyTransformer (2021) 0.12/20+ 0.57/20+ 0.14/20+ 0.07/20+ 0.52/20+ 0.12/20+ 4.8M 55.8s
PatchTST (2023) 0.28/15 0.71/9 0.26/15 0.26/12 0.65/14 0.32/9 0.5M 66.9s
OFA (2023b) 0.21/20+ 0.63/20+ 0.17/20+ 0.15/20+ 0.55/20+ 0.21/20+ 81.9M 532.9s
DCdetector (2023) 0.10/20+ 0.56/20+ 0.10/20+ 0.06/20+ 0.50/20+ 0.10/20+ 0.9M 15.0s
iTransformer (2024) 0.29/11 0.70/12 0.23/20+ 0.23/18 0.63/20+ 0.28/18 0.6M 24.4s
CATCH (2025) 0.30/8 0.73/6 0.27/14 0.24/15 0.67/8 0.30/16 210.8M 40.1s

PaAno (Ours) 0.43/1 0.79/1 0.41/1 0.38/1 0.76/1 0.43/1 0.3M 12.8s

methods overall achieved competitive performance relative to those in the other categories, despite
their simplicity. Particularly, (Sub)-PCA recorded modest scores for four measures including VUS-
PR. Transformer-based methods showed relatively low performance despite their heavier architec-
tures.

In multivariate time-series anomaly detection (Table 3), PaAno again ranked first across all six per-
formance measures. Among the baselines, several neural network-based methods showed superior
performance to other methods. KAN-AD achieved the second-best VUS-PR score, while DADA,
DeepAnT and OmniAnomaly ranked third. Among statistical and machine learning methods, PCA
also ranked third in VUS-PR. Transformer-based methods again showed relatively low performance.

Discussion The results show that introducing an inductive bias toward locality and explicitly mod-
eling short-range temporal dependencies was highly effective and efficient for time-series anomaly
detection. Rather than focusing on the processing time-series in a sequential manner, PaAno treats
them as collections of temporally structured patches, enabling it to capture even subtle deviations
from normal patterns and thereby achieve superior performance in anomaly detection.
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Figure 5: Sensitivity analysis on Top-k and memory bank size of PaAno across TSB-AD-U/M.

In practical deployments, the patterns of normal data may change over time. PaAno can address this
with a simple online update of the memory bank without requiring model retraining. By constructing
the memory bank as a queue that inserts recent normal patch embeddings and discards old ones, it
continually reflects up-to-date normal patterns and remains robust to non-stationary normal regimes.

Table 4: Ablation study on the core components of PaAno. The
best values for each measure are indicated in bold.

Ablation Variant VUS-PR VUS-ROC Range-F1 AUC-PR AUC-ROC Point-F1

T
SB

-A
D

-U

w/o InstanceNorm 46.3 85.0 46.3 42.6 82.5 47.3
w/o Ltriplet and Lpretext 45.1 86.9 42.5 38.6 83.9 45.0
w/o Negative Selection in Ltriplet 49.6 87.2 47.0 44.5 84.3 49.2
Replace Ltriplet with InfoNCE loss 48.4 86.7 45.3 42.6 83.6 47.8
w/o Lpretext 49.5 88.2 46.6 43.6 85.4 49.2
Continuous Use of Lpretext 46.8 87.1 45.3 40.4 84.0 45.8
w/o Linear Decay on Lpretext 50.7 88.4 48.2 45.6 85.4 50.7
PaAno (Ours) 51.9 88.6 48.2 45.6 85.7 50.7

T
SB

-A
D

-M

w/o InstanceNorm 32.5 74.5 39.9 28.5 72.9 36.6
w/o Ltriplet and Lpretext 35.5 76.2 34.8 30.5 72.9 36.5
w/o Negative Selection in Ltriplet 36.9 76.7 35.1 32.4 73.5 37.2
Replace Ltriplet with InfoNCE loss 37.0 76.2 35.4 32.8 72.8 37.2
w/o Lpretext 41.0 79.1 38.8 36.2 76.0 41.3
Continuous Use of Lpretext 40.2 76.6 39.6 35.4 73.1 40.0
w/o Linear Decay on Lpretext 43.0 79.1 40.6 38.1 76.0 42.9
PaAno (Ours) 43.1 79.3 41.4 38.3 76.1 43.0

Sensitivity Analysis We con-
ducted a comprehensive abla-
tion study to assess the con-
tribution of each component in
PaAno. Some important results
are summarized in Table 4. Re-
moving instance normalization
and excluding either the triplet
or pretext loss from the train-
ing objective lead to a substan-
tial drop in performance, indi-
cating that each component con-
tributes to the effectiveness of
PaAno. The triplet loss, with the
farthest patch in the embedding space used as the negative pair, consistently outperforms InfoNCE
and other variants. While the pretext loss in PaAno is applied only during the early stage of training,
altering its scheduling to use it in the later stage degrades performance and increases computational
cost. A detailed analysis of the ablation study is provided in Appendix D.

We also demonstrate that PaAno is robust to its hyperparameters, as it maintains stable performance
across different settings. Figure 5 shows the results obtained by varying the memory bank size and
the number of nearest neighbors used in anomaly scoring. PaAno further shows robustness to other
hyperparameters, including the patch encoder architecture, loss weight, patch size and minibatch
size. Full results are reported in Appendix D.

Run Time We measured the average run time of each method across the datasets within each
benchmark. As shown in Tables 2 and 3, PaAno showed highly competitive run time, highlighting its
practical efficiency for real-time applications. While majority of recent Transformer-based baselines
required significantly longer run times due to their heavy architectures and resource demands, PaAno
was substantially faster with superior performances. Detailed results are provided in Appendix E.

5 CONCLUSION

We proposed PaAno, a simple yet effective method for fast and efficient time-series anomaly de-
tection. Instead of relying on heavy model architectures, PaAno employs a lightweight 1D-CNN to
map time-series patches into vector embeddings and leverages patch-based representation learning
through metric learning and a pretext task. We evaluated PaAno on the TSB-AD benchmark, which
offers a rigorous evaluation protocol with performance measures that exclude point adjustment and
threshold tuning. PaAno consistently achieved state-of-the-art performance compared to existing
methods in both univariate and multivariate anomaly detection. Its architectural simplicity and com-
putational efficiency make it well-suited for actual deployment in real-world industrial applications.
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ETHICS STATEMENT

This work solely proposes a time-series anomaly detection method. It does not involve any human
subjects or personally identifiable information, and we consider the risk of misuse of this work to be
low.

REPRODUCIBILITY STATEMENT

Our code is fully included in the submitted source files. To aid reproducibility, all hyperparameters
and environmental details used in this paper are provided in Appendix B. All search space for other
compared methods are also fully provided in Appendix B. All datasets used in this study are publicly
accessible, and all information about them is contained in this paper.
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A PSEUDOCODE

Algorithm 1 presents the pseudocode of the training procedure. Algorithm 2 presents the pseu-
docode of the anomaly detection.

Algorithm 1 Training Procedure of PaAno
Input: Time-series training dataset X = (x1, . . . ,xN )
Output: Trained patch encoder fθ
1: P ← {pt = (xt, . . . ,xt+w−1)}N−w+1

t=1

2: fθ ← initialize patch encoder
3: gθ ← initialize projection head
4: cθ ← initialize classification head
5: for iteration = 1 to Titer do
6: Sample minibatch B = {pi}Mi=1 from P
7: for each anchor patch pi ∈ B do
8: hi ← fθ(pi)
9: zi ← gθ(hi)

10: p+
i ← positive patch of pi from P

11: p−
i ← farthest negative patch of pi from B \ {pi}

12: z+i ← gθ(fθ(p
+
i ))

13: z−i ← gθ(fθ(p
−
i ))

14: ppre
i ← preceding patch of pi from P

15:
{
prand
i,j

}U

j=1
← U random patches from B \ {pi}

16: hpre
i ← fθ(p

pre
i )

17: hrand
i,j ← fθ(p

rand
i,j ),∀j ∈ {1, . . . , U}

18: end for
19: Ltri ← 1

M

∑M
i=1 max

(
0, dist(zi, z+i )− dist(zi, z−i ) + δ

)
20: Lpre ← 1

M

∑M
i=1

[
− log cθ(hi,h

pre
i )− 1

U

∑U
j=1 log

(
1− cθ(hi,h

rand
i,j )

)]
21: Update fθ , gθ , and cθ to minimize L = Ltri + λ · Lpre

22: end for
23: return fθ

Algorithm 2 Anomaly Detection Procedure of PaAno

Input: Trained patch encoder fθ , Reduced memory bank M̂, Time-series dataset Xtest = (x1, . . . ,xN′)

Output: Anomaly scores {st∗}N
′

t∗=1

1: for t∗ = 1 to N ′ do
2: Pt∗ ← {pt = (xt, . . . ,xt+w−1) | t = t∗ − w + 1, . . . , t∗ }
3: St∗ ← ∅
4: for each pt ∈ Pt∗ do
5: ht ← fθ(pt)

6: {m(1)
t , . . . ,m

(k)
t } ← select the k nearest neighbors of ht in cosine distance from M̂

7: S(pt)← 1
k

∑k
i=1 dist(ht,m

(i)
t )

8: St∗ ← St∗ ∪ {S(pt)}
9: end for

10: st∗ ← 1
|Pt∗ |

∑
S(pt)∈St∗

S(pt)

11: end for
12: return {st∗}N

′
t∗=1

B IMPLEMENTATION DETAILS

B.1 IMPLEMENTATION DETAILS OF PAANO

The patch encoder fθ was a 1D-CNN consisting of four 1D convolutional layers with kernel sizes
[7, 5, 3, 3] and channel dimensions [128, 256, 128, 64], each followed by batch normalization and a
ReLU activation. A global average pooling layer was applied after the final convolutional layer to
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obtain a 64-dimensional patch embedding. The projection head gθ was a two-layer MLP with ReLU
activation in the first layer. Both layers had a dimensionality of 256. The classification head cθ was
a one-layer MLP with sigmoid activation.

We adopted instance normalization (Kim et al., 2022b) following a widely used convention in recent
time-series anomaly detection (Yang et al., 2023; Wu et al., 2025) and forecasting methods (Jin
et al., 2024; Wang et al., 2024). For the hyperparameters, the maximum offset r for defining positive
patches was set to 2, and the margin δ for the triplet loss was set to 0.5. The number of per-
anchor random patches U was set to 5. The model was trained for 200 iterations using the AdamW
optimizer with a minibatch size M of 512 and a weight decay of 1e−4. The learning rate was
decayed to one-tenth of its initial value using a cosine annealing scheduler. The pretext loss weight
λ was linear decayed from 1 to 0 during the first 20 iterations and fixed at 0 thereafter. The memory
bank size was set to 10% of the original patch set P . The number of nearest neighbors k in the
anomaly scoring function was set to 3. The patch size w and initial learning rate were explored from
{32, 64, 96} and {1e−3, 1e−4, 1e−5}, respectively, based on VUS-PR performance on the Tuning
split of the TSB-AD benchmark. A patch size of 64 and a learning rate of 1e−4 were selected for
TSB-AD-U, and 96 and 1e−4 for TSB-AD-M.

Experiments were conducted using an NVIDIA RTX 2080Ti GPU with 11GB of memory. Each
experiment was repeated 10 times with different random seeds, and the average results are reported.

B.2 HYPERPARAMETER TUNING FOR BASELINE METHODS

Among the 46 baseline methods, 37 are applicable to univariate time-series anomaly detection and
29 to multivariate detection. The hyperparameters of the baseline methods were tuned in the same
manner as PaAno, using VUS-PR performance on the Tuning split of the TSB-AD benchmark (Liu
& Paparrizos, 2024). For the baseline methods included in TSB-AD, we adopted the best hyper-
parameter settings reported for their search spaces in the benchmark. For the remaining baseline
methods, we conducted hyperparameter searches by defining comparable search spaces. The com-
plete search spaces for all baseline methods are summarized in Tables 5 and 6.

C EVALUATION OF TIME-SERIES ANOMALY DETECTION

C.1 CHALLENGES IN EVALUATION PRACTICES

The recent studies on time-series anomaly detection have often relied on evaluation protocols that in-
troduce several biases, undermining the validity of reported results (Liu & Paparrizos, 2024; Sarfraz
et al., 2024).

First, several commonly used benchmark datasets exhibit known structural flaws (Liu & Paparrizos,
2024). A primary issue is mislabeling, where inconsistencies in labeling lead to some anomaly-
labeled observations being indistinguishable from normal patterns. Another common issue is unre-
alistic assumptions about anomaly distributions, such as assuming that anomalies occur only once
or appear only at the end of a time series. These flaws compromise the reliability and validity of
evaluations.

Second, the reliance on performance measures that use point adjustment and threshold tuning has
created an illusion of effectiveness for sophisticated methods. Point adjustment (Kim et al., 2022a)
treats an entire anomaly segment as correctly detected if even a single point within the segment
is detected. While originally intended to address temporal misalignments and noisy labels, this
can misleadingly inflate performance measures (Sarfraz et al., 2024; Bhattacharya et al., 2024).
Threshold tuning is typically performed post-hoc and tailored to each method (Paparrizos et al.,
2022; Liu & Paparrizos, 2024; Sarfraz et al., 2024). Customizing the threshold selection strategy
for each method can probably lead to biased evaluations tailored to specific approaches. Also,
determining a universal threshold is challenging due to varying periodicities and variances in time-
series data.
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Table 5: Hyperparameter search spaces for 38 univariate time-series anomaly detection methods.

Category Method Hyperparameter 1 Hyperparameter 2

Statistical &
Machine Learning

DLinear win size: [60, 80, 100] None
IForest n estimators: [25, 50, 100, 150, 200] None
KMeansAD n clusters: [10, 20, 30, 40] win size: [10, 20, 30, 40]
KShapeAD periodicity: [1, 2, 3] None
LOF n neighbors: [10, 20, 30, 40, 50] metric: [minkowski, manhattan, euclidean]
MatrixProfile periodicity: [1, 2, 3] None
NLinear win size: [60, 80, 100] None
POLY periodicity: [1, 2, 3] power: [1, 2, 3, 4]
SAND periodicity: [1, 2, 3] None
Series2Graph periodicity: [1, 2, 3] None
SR periodicity: [1, 2, 3] None
(Sub)-HBOS periodicity: [1, 2, 3] n bins: [5, 10, 20, 30, 40]
(Sub)-IForest periodicity: [1, 2, 3] n estimators: [25, 50, 100, 150, 200]
(Sub)-KNN periodicity: [1, 2, 3] n neighbors: [10, 20, 30, 40, 50]
(Sub)-LOF periodicity: [1, 2, 3] n neighbors: [10, 20, 30, 40, 50]
(Sub)-MCD periodicity: [1, 2, 3] support fraction: [0.2, 0.4, 0.6, 0.8, None]
(Sub)-OCSVM periodicity: [1, 2, 3] kernel: [linear, poly, rbf, sigmoid]
(Sub)-PCA periodicity: [1, 2, 3] n components: [0.25, 0.5, 0.75, None]

Conventional
Neural Network

AutoEncoder win size: [50, 100, 150] hidden neurons: [[64, 32], [32, 16], [128, 64]]
DADA batch size: [32, 64, 96] None
DeepAnT win size: [50, 100, 150] num channel: [[32, 32, 40], [16, 32, 64]]
Donut win size: [60, 90, 120] lr: [0.001, 0.0001, 1e-05]
FITS win size: [100, 200] lr: [0.001, 0.0001, 1e-05]
KAN-AD win size: [32, 64, 96] lr: [0.01, 0.001, 0.0001]
LSTMAD win size: [50, 100, 150] lr: [0.0004, 0.0008]
OmniAnomaly win size: [5, 50, 100] lr: [0.002, 0.0002]
TimesNet win size: [32, 96, 192] lr: [0.001, 0.0001, 1e-05]
TranAD win size: [5, 10, 50] lr: [0.001, 0.0001]
USAD win size: [5, 50, 100] lr: [0.001, 0.0001, 1e-05]

Transformer

AnomalyTransformer win size: [50, 100, 150] lr: [0.001, 0.0001, 1e-05]
Chronos win size: [50, 100, 150] None
DCdetector win size: [80, 100] lr: [0.0001,1e-05]
iTransformer win size: [64, 96] lr: [0.0001,5e-05]
Lag-Llama win size: [32, 64, 96] None
MOMENT (FT) win size: [64, 128, 256] None
MOMENT (ZS) win size: [64, 128, 256] None
OFA win size: [50, 100, 150] None
PatchTST num epoch: [5, 10, 15] None
TimesFM win size: [32, 64, 96] None

Ours PaAno patch size: [32, 64, 96] lr: [0.001, 0.0001, 1e-05]

C.2 TOWARD MORE RELIABLE EVALUATION

We adopt the TSB-AD benchmark (Liu & Paparrizos, 2024), grounded in recent rigorous studies
on time-series anomaly detection. This benchmark mitigates dataset-related flaws by correcting la-
beling inconsistencies and reflecting realistic anomaly distributions. It also systematically addresses
issues such as point adjustment and threshold tuning, enabling fair and consistent evaluation.

Regarding performance measures for time-series anomaly detection, Paparrizos et al. (2022) pro-
posed the VUS of the Precision-Recall Curve (VUS-PR) and the Receiver Operating Characteristic
curve (VUS-ROC) as robust and lag-tolerant measures, with resilience to temporal misalignment
and noise. Building upon this, Liu & Paparrizos (2024) empirically validated VUS-PR as the most
fair and reliable measure, capable of jointly capturing detection accuracy and localization quality
at the segment level. Sarfraz et al. (2024) recommended the joint use of Point-F1 and Range-F1,
both of which are threshold-dependent measures, and suggested supplementing them with the Area
Under the PR Curve (AUC-PR) as a threshold-independent measure. Additionally, the Area Under
the ROC Curve (AUC-ROC) remains one of the most widely used measures for providing a global
view of ranking performance, despite being sensitive to random scores in highly imbalanced set-
tings (Paparrizos et al., 2022; Liu & Paparrizos, 2024). Overall, employing multiple complementary
measures is essential for a comprehensive and reliable evaluation.

Following this guidance, we adopted six performance measures in this study: VUS-PR, VUS-ROC,
and Range-F1 as range-wise measures; and AUC-PR, AUC-ROC, and Point-F1 as point-wise mea-
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Table 6: Hyperparameter search spaces for 30 multivariate time-series anomaly detection methods.

Category Method Hyperparameter 1 Hyperparameter 2

Statistical &
Machine Learning

CBLOF n clusters: [4, 8, 16, 32] alpha: [0.6, 0.7, 0.8, 0.9]
COPOD None None
DLinear win size: [60, 80, 100] None
EIF n trees: [25, 50, 100, 200] None
HBOS n bins: [5, 10, 20, 30, 40] tol: [0.1, 0.3, 0.5, 0.7]
IForest n estimators: [25, 50, 100, 150, 200] max features: [0.2, 0.4, 0.6, 0.8, 1.0]
KMeansAD n clusters: [10, 20, 30, 40] window size: [10, 20, 30, 40]
KNN n neighbors: [10, 20, 30, 40, 50] method: [largest, mean, median]
LOF n neighbors: [10, 20, 30, 40, 50] metric: [minkowski, manhattan, euclidean]
MCD support fraction: [0.2, 0.4, 0.6, 0.8, None] None
NLinear win size: [60, 80, 100] None
OCSVM kernel: [linear, poly, rbf, sigmoid] nu: [0.1, 0.3, 0.5, 0.7]
PCA n components: [0.25, 0.5, 0.75, None] None
RobustPCA max iter: [500, 1000, 1500] None

Conventional
Neural Network

AutoEncoder win size: [50, 100, 150] hidden neurons: [[64, 32], [32, 16], [128, 64]]
DADA batch size: [32, 64, 96] None
DeepAnT win size: [50, 100, 150] num channel: [[32, 32, 40], [16, 32, 64]]
Donut win size: [60, 90, 120] lr: [0.001, 0.0001, 1e-05]
FITS win size: [100, 200] lr: [0.001, 0.0001, 1e-05]
KAN-AD win size: [32, 64, 96] lr: [0.01, 0.001, 0.0001]
LSTMAD win size: [50, 100, 150] lr: [0.0004, 0.0008]
OmniAnomaly win size: [5, 50, 100] lr: [0.002, 0.0002]
TimesNet win size: [32, 96, 192] lr: [0.001, 0.0001, 1e-05]
TranAD win size: [5, 10, 50] lr: [0.001, 0.0001]
USAD win size: [5, 50, 100] lr: [0.001, 0.0001, 1e-05]

Transformer

AnomalyTransformer win size: [50, 100, 150] lr: [0.001, 0.0001, 1e-05]
CATCH patch size: [16, 32, 64] lr: [0.0001, 5e-05]
DCdetector win size: [80, 100] lr: [0.0001, 1e-05]
iTransformer win size: [64, 96] lr: [0.0001, 5e-05]
OFA win size: [50, 100, 150] None
PatchTST num epoch: [5, 10, 15] None

Ours PaAno patch size: [32, 64, 96] lr: [0.001, 0.0001, 1e-05]

sures. Four measures—excluding Range-F1 and Point-F1—serve as threshold-independent mea-
sures, and point adjustment was not applied to any of the measures.

C.3 DETAILS OF PERFORMANCE MEASURES

Notations Let X′ = (x1, . . . ,xN ′) denote the test dataset consisting of N ′ time steps, where each
xt ∈ Rd represents a d-dimensional observation at time t. Let yt ∈ {0, 1} denote the corresponding
ground-truth label, where yt = 1 indicates an anomaly and yt = 0 otherwise. Let st ∈ R denote
the predicted anomaly score at time t, and ŷt(τ) = 1(st ≥ τ) the binarized prediction obtained by
thresholding the score at threshold τ .

AUC-ROC The Receiver Operating Characteristic (ROC) curve plots the true positive rate (TPR)
against the false positive rate (FPR) as the threshold τ varies. The TPR and FPR at threshold τ are
defined as:

TPR(τ) =
∑N ′

t=1 ŷt(τ) · yt∑N ′

t=1 yt
; FPR(τ) =

∑N ′

t=1 ŷt(τ) · (1− yt)∑N ′

t=1(1− yt)
.

Given a finite set of thresholds {τ1, τ2, . . . , τK} sorted in descending order, the Area Under the ROC
Curve (AUC-ROC) is computed as:

AUC-ROC =

K−1∑
k=1

(FPR(τk)− FPR(τk+1)) ·
TPR(τk) + TPR(τk+1)

2

AUC-PR The Area Under the Precision-Recall Curve (AUC-PR) summarizes the trade-off be-
tween precision and recall across varying thresholds:

AUC-PR =

K−1∑
k=1

(R(τk)−R(τk+1)) ·
P (τk) + P (τk+1)

2
,
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where P (τ) and R(τ) denote the precision and recall at threshold τ , computed as:

P(τ) =
∑N ′

t=1 ŷt(τ) · yt∑N ′

t=1 1(st ≥ τ)
; R(τ) =

∑N ′

t=1 ŷt(τ) · yt∑N ′

t=1 yt
.

Point-F1 The standard point-wise F1 score (Point-F1) is defined as the maximum F1 score over
all possible thresholds τ :

Point-F1 = max
τ

2 · P(τ) · R(τ)
P(τ) + R(τ)

.

Range-F1 An anomaly segment is defined as a contiguous subsequence of time steps labeled as
anomaly. Let A = {A1, . . . , AM} denote the set of ground-truth segments, where Aj = {t | aj ≤
t ≤ bj , yt = 1}. For a given threshold τ , let Â(τ) = {Â1, . . . , ÂNτ

} denote the set of predicted
segments, where Âi = {t | âi ≤ t ≤ b̂i, ŷt(τ) = 1}.

Range-P(τ) =
|{Âi ∈ Â(τ) | ∃Aj ∈ A, Âi ∩Aj ̸= ∅}|

|Â(τ)|
;

Range-R(τ) =
|{Aj ∈ A | ∃Âi ∈ Â(τ), Aj ∩ Âi ̸= ∅}|

|A|
.

Then the range-based F1 score is:

Range-F1 = max
τ

2 · Range-P(τ) · Range-R(τ)
Range-P(τ) + Range-R(τ)

.

VUS-ROC The Volume Under the ROC Surface (VUS-ROC) extends the standard ROC-AUC to
a three-dimensional evaluation by jointly varying the threshold τ the lag tolerance ℓ around labeled
anomalies. ROC curves are computed for all possible pairs (τ, ℓ), where τ ∈ {τ1, . . . , τK} and
ℓ ∈ {0, . . . , L}, forming a surface. VUS-ROC is then defined as the volume under this ROC surface.

Following the TSB-AD benchmark (Liu & Paparrizos, 2024), we use the optimized implementation
of VUS proposed by Paparrizos et al. (2022). The maximum lag tolerance L is determined by
identifying the first prominent local maximum in the autocorrelation of the first channel of the time
series, which typically corresponds to the dominant repeating interval.

VUS-PR Analogous to VUS-ROC, the Volume Under the Precision–Recall Surface (VUS-PR)
constructs a surface by varying both the threshold τ and the lag tolerance ℓ over PR curves. The
VUS-PR is defined as the volume under this surface, providing a threshold-independent and lag-
tolerant generalization of the standard PR-AUC.

D SENSITIVITY ANALYSIS

We conducted a comprehensive sensitivity analysis to validate the effectiveness and robustness of
the core components of PaAno.

D.1 PATCH ENCODER ARCHITECTURE

The patch encoder fθ in PaAno primarily adopts a simple 1D-CNN as the default in this study, but
it can be flexibly extended to various other architectures. We conducted experiments comparing
it with more complex encoders, including 1D-ResNet (Wang et al., 2017), Temporal Convolutional
Network (TCN) (Bai et al., 2018), and OmniScaleCNN (OmniCNN) (Tang et al., 2022), which were
implemented using the tsai package (Oguiza, 2023). To analyze the architectural sensitivity of the
patch encoder, we also evaluated variants of the default 1D-CNN (4-layer, 1x width) by modifying
its width (0.5× and 2×) and depth (3-layer and 5-layer) while keeping the kernel configurations
unchanged.
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Table 7: Sensitivity analysis on the patch encoder architecture. The best and
second-best values for each measure are indicated in bold and underlined, re-
spectively. All values are reported in percentage (%).

Encoder #Params VUS-PR VUS-ROC Range-F1 AUC-PR AUC-ROC Point-F1

T
SB

-A
D

-U

1D-CNN (0.5× width) 147K 51.5 88.5 47.9 45.5 85.8 50.6
1D-CNN (3 layer) 297K 51.7 88.6 48.6 45.4 85.8 50.7
1D-CNN 371K 51.9 88.6 48.2 45.6 85.7 50.7
1D-CNN (5 layer) 1126K 50.8 88.4 47.9 44.4 85.6 49.8
1D-CNN (2× width) 1250K 51.5 88.5 47.8 45.4 85.6 50.5
OmniCNN 401K 52.2 88.2 49.0 46.1 85.7 51.1
TCN 655K 46.4 85.5 45.4 41.6 83.0 46.3
1D-ResNet 1456K 51.9 88.4 49.0 46.1 85.7 51.1

T
SB

-A
D

-M

1D-CNN (0.5× width) 162K 41.8 78.9 39.8 37.1 75.6 42.0
1D-CNN (3 layer) 318K 42.6 79.4 42.3 37.6 76.2 42.6
1D-CNN 386K 43.1 79.3 41.4 38.3 76.1 43.0
1D-CNN (5 layer) 1148K 43.2 78.8 41.5 38.1 75.6 42.9
1D-CNN (2× width) 1326K 43.5 79.0 41.9 38.5 75.8 43.2
OmniCNN 968K 40.9 79.0 38.2 35.5 75.8 40.2
TCN 664K 37.9 80.3 44.2 35.9 79.0 43.0
1D-ResNet 1485K 41.5 79.2 40.7 36.7 75.9 42.1

Table 7 summarizes the results and the number of parameters of each model, with the simple 1D-
CNN highlighted in bold as the default setting. In the TSB-AD-U, the lighter variants of the 1D-
CNN, those with reduced width (0.5x width) or depth (3-layer), achieved performance comparable
to or slightly exceeding that of the heavier variants, despite having fewer parameters. Consequently,
for univariate anomaly detection, a lighter 1D-CNN offers an efficient and effective choice with-
out compromising accuracy. In contrast, in the TSB-AD-M, heavier variants (2x width & 5 layer)
showed slightly stronger performance than the default model. However, lighter variants still retained
competitive performance, indicating that PaAno is robust to width and depth variations within the
1D-CNN architecture.

For other architectures, OmniCNN achieved higher performance than the 1D-CNN in TSB-AD-
U, whereas in TSB-AD-M its performance was lower despite having roughly two to three times
more parameters. TCN exhibited superior performance on ROC-based measures (VUS-ROC, AUC-
ROC), but showed relatively low performance on TSB-AD-U despite having nearly twice as many
parameters as the default 1D-CNN. 1D-ResNet yielded comparable performance in TSB-AD-U, but
comparatively lower performance in TSB-AD-M, while requiring nearly four times more parameters
than the 1D-CNN. These results show that the 1D-CNN, while having the smallest number of param-
eters among the different architecture, performs comparably across both univariate and multivariate
anomaly detection tasks.

D.2 LOSS FUNCTION

Table 8: Sensitivity analysis of the triplet loss compared with the InfoNCE loss
and different negative selection strategies. The best and second-best values for
each measure are shown in bold and underline, respectively. All values are
reported in percentage (%).

Loss function Negative Sampling VUS-PR VUS-ROC Range-F1 AUC-PR AUC-ROC Point-F1

T
SB

-A
D

-U

InfoNCE All Non-Self Patch 48.4 86.7 45.3 42.6 83.6 47.8
Triplet Random 49.6 87.2 47.0 44.5 84.3 49.2
Triplet Closest 50.9 88.2 47.7 45.0 85.4 50.0
Triplet Median 45.5 84.9 42.9 39.7 81.8 45.0
Triplet Farthest 51.9 88.6 48.2 45.6 85.7 50.7

T
SB

-A
D

-M

InfoNCE All Non-Self Patch 37.0 76.2 35.4 32.8 72.8 37.2
Triplet Random 36.9 76.7 35.1 32.4 73.5 37.2
Triplet Closest 41.0 78.6 39.2 36.7 75.4 41.3
Triplet Median 37.2 76.9 35.8 32.3 74.0 37.3
Triplet Farthest 43.1 79.3 41.4 38.3 76.1 43.0

Table 8 reports the sensitivity analysis of the triplet loss in PaAno compared to InfoNCE and other
negative sampling strategies. Since PaAno extracts patches through a sliding window, there is no
guarantee that other patches in the minibatch form semantically meaningful negatives for a given
anchor. This lack of semantic correspondence makes many InfoNCE negatives ambiguous, which
weakens the contrastive signal and destabilizes the embedding space (Wang & Dou, 2023).
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We demonstrated other ways to choose the negative patch to analyze how the negative selection and
the triplet loss in PaAno respond to different forms of contrast. Specifically, we compared the patch
farthest from the anchor in the embedding space (Farthest), the patch closest to the anchor (Closest),
a randomly chosen patch (Random), and the patch at the median of the similarity ranking (Median).

In the experiments, median negatives offered even weak contrast compared to random negatives
or InfoNCE in TSB-AD-U, and performed comparably to them in TSB-AD-M. Random negatives
showed highly similar behavior to InfoNCE, providing no consistent contrast. These results suggest
that random or percentile-based negatives fall short of providing the meaningful contrast required
for effective metric learning of time-series patches. In contrast, as the default strategy in PaAno, the
farthest negative consistently achieved the strongest performance. It is shown to offer a reliably dis-
tinct comparison that encourages the encoder to learn discriminative representations. Interestingly,
the closest negative also performed second best in both univariate and multivariate settings. These
results indicate that metric learning for time-series patches is most effective when the negative is
clearly dissimilar to the anchor, and still reasonably effective when it is clearly similar, whereas
intermediate or ambiguous negatives provide weaker contrast.

Table 9: Sensitivity analysis of the loss weight λ with respect to the applied ratio
and the scheduling strategy. Here, each ratio (e.g., 10%, 50%, 100%) denotes the
proportion of the initial part of training during which the pretext loss is applied.
For a specified initial ratio of the training iterations, Linear decays λ linearly to
zero, whereas Constant keeps it fixed. The best and second-best values for each
measure are shown in bold and underline, respectively. All values are reported
in percentage (%).

Ratio Schedule VUS-PR VUS-ROC Range-F1 AUC-PR AUC-ROC Point-F1

T
SB

-A
D

-U

10% Linear 51.9 88.6 48.2 45.6 85.7 50.7
10% Constant 50.7 88.4 47.0 44.7 85.6 49.7
50% Linear 48.6 87.5 46.6 42.2 84.5 47.0
50% Constant 48.1 87.3 45.5 41.7 84.3 46.7

100% Linear 46.8 87.1 45.3 40.4 84.0 45.8
100% Constant 46.6 86.7 45.7 40.6 83.6 45.6

T
SB

-A
D

-M

10% Linear 43.1 79.3 41.4 38.3 76.1 43.0
10% Constant 43.0 79.1 40.6 38.1 76.0 42.9
50% Linear 40.1 77.9 39.8 35.8 74.8 41.0
50% Constant 39.4 77.2 38.8 35.0 74.0 40.1

100% Linear 40.0 76.6 39.6 35.4 73.1 40.0
100% Constant 39.2 76.7 38.3 34.9 73.5 39.8

Table 10: Sensitivity analysis of the loss weight λ. The best and second-best
values for each measure are indicated in bold and underline, respectively. All
values are reported in percentage (%).

λ VUS-PR VUS-ROC Range-F1 AUC-PR AUC-ROC Point-F1

T
SB

-A
D

-U 0.1 51.5 88.7 48.1 45.1 85.9 50.4
0.5 50.9 88.4 47.0 44.9 85.6 50.0
1.0 51.9 88.6 48.2 45.6 85.7 50.7
2.0 51.0 88.5 47.2 45.1 85.6 50.1

T
SB

-A
D

-M 0.1 43.4 79.9 42.0 38.5 76.7 43.2
0.5 43.1 79.2 41.0 38.6 76.0 43.1
1.0 43.1 79.3 41.4 38.3 76.2 43.0
2.0 43.0 79.3 40.7 38.5 76.1 43.1

The pretext loss in PaAno is applied only during the early iterations to stabilize representation learn-
ing when the embedding space is still unstructured and triplet-based distance comparisons are un-
reliable. Using this auxiliary objective in the initial phase improves training stability and shows
consistent performance gains (Table 4). Additionally, to analyze how the pretext loss should be in-
tegrated with the triplet objective, we conducted sensitivity analyses on its application strategy and
loss weight.
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Table 9 reports the effect of the ratio of initial iteration the pretext loss applied with scheduling
methods. Applying the pretext loss only in the initial 10% portion of training yielded the best over-
all performance, while extending it beyond that ratio led to progressively worse results. The pretext
loss is shown to interfere with triplet-based discrimination once the embedding space becomes more
structured. Also, a linear-decay schedule, which gradually reduces the pretext loss instead of remov-
ing it abruptly, consistently outperformed a constant schedule across all ratios. These results shows
the effectiveness of the default application strategy for pretext loss in PaAno.

Table 10 further analyzes the loss weight. The performance remains stable across a range of weights,
indicating that PaAno is robust to the choice of the loss weight.

D.3 MEMORY BANK SIZE

Table 11: Sensitivity analysis on the size of the memory bank, expressed as
a percentage of the training dataset size. The best and second-best values for
each measure are indicated in bold and underlined, respectively. All values are
reported in percentage (%).

Size VUS-PR VUS-ROC Range-F1 AUC-PR AUC-ROC Point-F1

T
SB

-A
D

-U 1% 50.6 88.1 46.8 44.8 85.2 49.9
5% 52.0 88.4 48.0 45.8 85.5 50.8
10% 51.9 88.6 48.2 45.6 85.7 50.7
20% 51.0 88.5 47.3 45.0 85.6 50.1

T
SB

-A
D

-M 1% 42.9 78.6 40.6 38.4 75.4 43.0
5% 43.1 79.2 40.4 38.6 76.0 43.2
10% 43.1 79.3 41.4 38.3 76.1 43.0
20% 43.2 79.4 41.2 38.6 76.3 43.2

Table 11 presents the results of a sensitivity analysis on the size of the memory bank M, with the
10% highlighted in bold as the default setting. Varying the memory bank size had no significant
impact on performance. Since PaAno maintains its effectiveness even with a small memory bank
(e.g., 1%), the size can be reduced from the default setting when fast inference or memory efficiency
is required.

D.4 NUMBER OF NEAREST NEIGHBORS USED IN ANOMALY SCORING

Table 12: Sensitivity analysis on the number of nearest neighbors retrieved from
the memory bank for anomaly scoring. The best and second-best values for each
measure are indicated in bold and underlined, respectively.

k VUS-PR VUS-ROC Range-F1 AUC-PR AUC-ROC Point-F1

T
SB

-A
D

-U 1 51.1 88.5 47.2 45.1 85.7 50.0
3 51.9 88.6 48.2 45.6 85.7 50.7
5 50.9 88.3 47.1 45.0 85.5 50.0
10 50.6 88.1 46.9 44.9 85.2 49.8

T
SB

-A
D

-M 1 43.1 79.4 40.6 38.6 76.3 43.1
3 43.1 79.3 41.4 38.3 76.1 43.0
5 42.8 79.0 40.9 38.2 75.8 42.9
10 41.8 78.6 40.3 37.4 75.5 42.1

Table 12 presents the results of sensitivity analysis on the number of nearest neighbors k retrieved
from the memory bank M for anomaly scoring, with the 3 highlighted in bold as the default setting.
The results show that performance remained stable as k varied. This suggests that PaAno is robust
to the choice of k around the default setting. Although PaAno shows stable performance with k=1,
we adopt k=3 as the default to enhance stability against potential noise.
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Table 13: Sensitivity analysis on the size of patch length. The best and second-
best values for each measure are indicated in bold and underlined, respectively.
All values are reported in percentage (%).

Size VUS-PR VUS-ROC Range-F1 AUC-PR AUC-ROC Point-F1

T
SB

-A
D

-U 32 42.9 85.4 41.1 36.9 81.1 42.9
64 51.9 88.6 48.2 45.6 85.7 50.7
96 52.9 89.2 48.9 47.5 87.0 52.2
128 53.6 88.6 49.3 47.0 86.8 51.9

T
SB

-A
D

-M 32 35.3 75.8 32.9 30.8 70.8 35.8
64 41.0 78.6 38.9 36.1 74.7 40.7
96 43.1 79.3 41.4 38.3 76.1 43.0
128 40.7 78.0 40.3 36.7 75.6 41.8

D.5 PATCH SIZE

Table 13 presents the results of the sensitivity analysis on patch size. The results show that perfor-
mance remains stable as the patch size varies. In both TSB-AD-U and TSB-AD-M, PaAno achieves
strong performance at a patch size of 32 and shows slightly improved performance from 64 on-
ward. Patch sizes of 64 and 96 were selected for TSB-AD-U and TSB-AD-M, respectively, based
on results from the TSB-AD-Tuning set.

D.6 MINIBATCH SIZE

Table 14: Sensitivity analysis on the size of minibatch size. The best and second-
best values for each measure are indicated in bold and underlined, respectively.
All values are reported in percentage (%).

Size VUS-PR VUS-ROC Range-F1 AUC-PR AUC-ROC Point-F1

T
SB

-A
D

-U 128 50.8 88.0 46.5 44.8 84.9 50.0
256 51.1 88.4 47.1 45.2 85.5 50.2
512 51.9 88.6 48.2 45.6 85.7 50.7
1024 50.8 88.2 46.8 44.8 85.3 49.9

T
SB

-A
D

-M 128 42.3 79.0 39.9 37.8 75.9 42.3
256 42.7 79.3 40.5 38.1 76.1 42.8
512 43.1 79.3 41.4 38.3 76.1 43.0
1024 42.9 79.5 40.8 38.1 76.3 42.7

Table 14 presents the results of the sensitivity analysis on minibatch size. Unlike other contrastive
losses (e.g., InfoNCE), the loss function in PaAno does not heavily depend on the minibatch size,
because each anchor requires only a single farthest negative pair. Across both TSB-AD-U and TSB-
AD-M, PaAno remains consistently robust for all tested minibatch sizes.

E DETAILED EXPERIMENTAL RESULTS

E.1 SUBSET-WISE EXPERIMENTAL RESULTS OF PAANO

To ensure a thorough and transparent evaluation, we present the detailed subset-wise experimental
results of PaAno on TSB-AD-U and TSB-AD-M in Table 15.

E.2 ENTIRE EXPERIMENT RESULTS

We report the complete experimental results for 40 methods, including PaAno, on TSB-AD-U in
Table 16, and for 32 methods on TSB-AD-M in Table 17.
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Table 15: Experimental results of PaAno by subset from TSB-AD-U and TSB-AD-M benchmarks.

Name of Subset # Time-Series Avg. Dim VUS-PR VUS-ROC Range-F1 AUC-PR AUC-ROC Point-F1
T

SB
-A

D
-U

UCR 70 1 0.3842±0.0130 0.9174±0.0009 0.4715±0.0134 0.3886±0.0125 0.9007±0.0010 0.4408±0.0158
YAHOO 30 1 0.6521±0.0036 0.9537±0.0013 0.4413±0.0313 0.5566±0.0097 0.9515±0.0001 0.5991±0.0066

WSD 20 1 0.5912±0.0119 0.9453±0.0070 0.6153±0.0050 0.5122±0.0126 0.9290±0.0046 0.5214±0.0083
CATSv2 1 1 0.3019±0.0045 0.7465±0.0010 0.1531±0.0066 0.4680±0.0004 0.7389±0.0003 0.5234±0.0018
Daphnet 1 1 0.3763±0.1173 0.9171±0.0300 0.3192±0.0380 0.3737±0.1394 0.9234±0.0231 0.4399±0.0316
Exathlon 30 1 0.7770±0.0106 0.9476±0.0033 0.5267±0.0088 0.7690±0.0085 0.9448±0.0033 0.7902±0.0101

IOPS 15 1 0.3822±0.0029 0.9066±0.0065 0.4226±0.0091 0.2580±0.0104 0.8679±0.0058 0.3462±0.0056
LTDB 8 1 0.7263±0.0074 0.8357±0.0050 0.7185±0.0044 0.6532±0.0041 0.7964±0.0040 0.7034±0.0108
MGAB 8 1 0.1918±0.0010 0.9341±0.0014 0.4145±0.0039 0.2616±0.0037 0.9218±0.0025 0.3744±0.0036
MITDB 7 1 0.3218±0.0009 0.8461±0.0020 0.3136±0.0067 0.2798±0.0001 0.7892±0.0020 0.3438±0.0005

MSL 7 1 0.2766±0.0270 0.7638±0.0262 0.3215±0.0172 0.2295±0.0311 0.7046±0.0194 0.3031±0.0212
NAB 23 1 0.4735±0.0032 0.7768±0.0055 0.5383±0.0036 0.4574±0.0026 0.7512±0.0026 0.5044±0.0007
NEK 8 1 0.5913±0.0172 0.8381±0.0014 0.6408±0.0170 0.5467±0.0004 0.8651±0.0081 0.6904±0.0021

OPPORTUNITY 27 1 0.2477±0.0063 0.6790±0.0131 0.3198±0.0047 0.2526±0.0039 0.6713±0.0130 0.3233±0.0068
Power 1 1 0.1670±0.0062 0.6437±0.0017 0.2370±0.0162 0.1751±0.0082 0.6231±0.0009 0.2696±0.0032
SED 2 1 0.9624±0.0037 0.9987±0.0001 0.8118±0.0044 0.8329±0.0100 0.9938±0.0003 0.7953±0.0036

SMAP 17 1 0.7807±0.0011 0.9156±0.0002 0.7634±0.0028 0.7743±0.0038 0.9129±0.0006 0.7632±0.0043
SMD 33 1 0.5013±0.0161 0.9324±0.0028 0.5436±0.0160 0.4741±0.0246 0.9269±0.0019 0.5378±0.0172
Stock 8 1 0.7071±0.0030 0.8407±0.0003 0.1601±0.0367 0.0774±0.0001 0.4781±0.0003 0.1505±0.0001
SVDB 18 1 0.5696±0.0030 0.9333±0.0031 0.4985±0.0072 0.5172±0.0046 0.9032±0.0040 0.5466±0.0018
SWaT 1 1 0.0947±0.0002 0.1766±0.0006 0.1021±0.0037 0.0944±0.0005 0.1896±0.0003 0.2154±0.0002
TAO 2 1 0.8737±0.0094 0.9367±0.0015 0.2838±0.0711 0.1266±0.0033 0.5295±0.0063 0.2137±0.0021

TODS 13 1 0.7794±0.0002 0.9113±0.0003 0.3303±0.0150 0.3222±0.0046 0.7924±0.0003 0.3977±0.0009
TSB-AD-U Average 0.5188±0.0033 0.8863±0.0024 0.4819±0.0010 0.4559±0.0047 0.8573±0.0022 0.5068±0.0029

T
SB

-A
D

-M

CATSv2 5 17 0.0739±0.0070 0.6914±0.0080 0.1419±0.0191 0.0844±0.0133 0.6858±0.0113 0.1381±0.0145
CreditCard 1 29 0.0272±0.0102 0.5254±0.0980 0.0270±0.0134 0.0050±0.0027 0.5326±0.1177 0.0423±0.0200

Daphnet 1 9 0.2738±0.0539 0.8948±0.0187 0.3339±0.0149 0.2553±0.0609 0.9075±0.0246 0.4211±0.0246
Exathlon 25 20.16 0.8135±0.0354 0.9541±0.0078 0.6382±0.0473 0.7858±0.0384 0.9517±0.0085 0.8535±0.0296
GECCO 1 9 0.1866±0.0522 0.8898±0.0259 0.2600±0.0591 0.2319±0.0530 0.9191±0.0157 0.3144±0.0519
Genesis 1 18 0.3334±0.2089 0.9919±0.0044 0.3791±0.1356 0.2766±0.2681 0.9906±0.0038 0.3854±0.2020

GHL 23 19 0.0083±0.0002 0.3339±0.0111 0.0209±0.0024 0.0072±0.0002 0.3040±0.0111 0.0239±0.0005
LTDB 4 2.25 0.6221±0.0101 0.8663±0.0069 0.6193±0.0128 0.6141±0.0149 0.8367±0.0061 0.6002±0.0067

MITDB 11 2 0.3764±0.0074 0.8766±0.0035 0.4609±0.0058 0.4187±0.0107 0.8526±0.0036 0.4784±0.0060
MSL 14 55 0.2451±0.0376 0.7818±0.0147 0.3780±0.0238 0.2044±0.0374 0.7569±0.0148 0.2982±0.0293

OPPORTUNITY 7 248 0.1607±0.0323 0.6064±0.0395 0.3426±0.0300 0.1541±0.0383 0.5823±0.0372 0.2090±0.0283
PSM 1 25 0.2017±0.0162 0.6552±0.0196 0.2728±0.0076 0.1836±0.0200 0.6604±0.0234 0.2643±0.0063

SMAP 25 25 0.5219±0.0157 0.8970±0.0066 0.5720±0.0117 0.5055±0.0177 0.9011±0.0073 0.5260±0.0127
SMD 20 38 0.3578±0.0155 0.8494±0.0015 0.4099±0.0054 0.3941±0.0305 0.8738±0.0044 0.4490±0.0100

SVDB 28 2 0.5616±0.0103 0.9034±0.0037 0.5492±0.0068 0.5306±0.0106 0.8799±0.0038 0.5559±0.0061
SWaT 2 58.5 0.2461±0.0328 0.6831±0.0392 0.3421±0.0413 0.2198±0.0370 0.6662±0.0403 0.3143±0.0269
TAO 11 3 0.7267±0.0021 0.8525±0.0006 0.2110±0.0309 0.0842±0.0004 0.4950±0.0028 0.1593±0.0003

TSB-AD-M Average 0.4307±0.0025 0.7928±0.0028 0.4141±0.0081 0.3830±0.0028 0.7613±0.0027 0.4299±0.0029

E.3 RUN TIME

To evaluate the practical applicability of real-time anomaly detection, we measured the run time
of each method, including both training and inference, averaged across the datasets within each
benchmark. The results for the baseline methods are taken from the TSB-AD benchmark (Liu &
Paparrizos, 2024), where statistical and machine learning methods were executed on an AMD EPYC
7713 CPU, while neural network-based and Transformer-based methods were run on an NVIDIA
A100 GPU. For PaAno, we used an NVIDIA RTX 2080 Ti GPU to measure its average run time.

Figures 6 and 7 compare the average run times of the methods on TSB-AD-U and TSB-AD-M.
PaAno exhibited competitive run time, averaging 6.8508 seconds on TSB-AD-U and 12.8393 sec-
onds on TSB-AD-M. PaAno achieved faster run time than majority of Transformer-based methods,
demonstrating superior computational efficiency despite its competitive performance. Statistical
and machine learning methods and generally required less run time, demonstrating their utility for
scenarios demanding low-latency or contrained-resource usage.

Compared to baseline methods, PaAno’s advantage in run time becomes more pronounced on TSB-
AD-M. While the run time of baseline methods typically increases with the number of channels in
the time series, the run time of PaAno primarily depends on retrieving the nearest patch embeddings
from the memory bank and is thus highly robust to the number of channels.

E.4 SCORE DISTRIBUTION

Figure 8 presents the distribution of VUS-PR scores for each method across all time series in the
TSB-AD Eval set. The methods are ordered from left to right based on their average VUS-PR scores,
and both the median and mean values are visualized to reflect central tendency and consistency.
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Table 16: Performance comparison of 40 univariate time-series anomaly detection methods on TSB-
AD-U.

Category Method VUS-PR Rank VUS-ROC Rank Range-F1 Rank AUC-PR Rank AUC-ROC Rank Point-F1 Rank

Statistical &
Machine Learning

(Sub)-PCA 0.42 3 0.76 9 0.41 3 0.37 3 0.71 11 0.42 3
KShapeAD 0.40 4 0.76 9 0.40 4 0.35 4 0.74 5 0.39 4
POLY 0.39 5 0.76 9 0.35 9 0.31 10 0.73 8 0.37 8
Series2Graph 0.39 5 0.80 4 0.35 9 0.33 5 0.76 3 0.38 5
KMeansAD 0.37 9 0.76 9 0.38 6 0.32 7 0.74 5 0.37 8
MatrixProfile 0.35 11 0.76 9 0.32 17 0.26 20 0.73 8 0.33 18
(Sub)-KNN 0.35 11 0.79 5 0.32 17 0.27 18 0.76 3 0.34 16
SAND 0.34 13 0.76 9 0.36 7 0.29 14 0.73 8 0.35 12
SR 0.32 16 0.81 3 0.35 9 0.32 7 0.74 5 0.38 5
IForest 0.30 18 0.78 7 0.30 21 0.29 14 0.71 11 0.35 12
DLinear 0.25 28 0.74 19 0.22 30 0.21 23 0.62 29 0.26 23
(Sub)-LOF 0.25 28 0.73 22 0.25 25 0.16 31 0.68 16 0.24 27
(Sub)-MCD 0.24 30 0.72 26 0.24 27 0.15 36 0.67 19 0.23 29
NLinear 0.23 32 0.72 26 0.20 34 0.18 27 0.62 29 0.23 29
(Sub)-HBOS 0.23 32 0.67 38 0.27 24 0.18 27 0.61 31 0.23 29
(Sub)-OCSVM 0.23 32 0.73 22 0.23 28 0.16 31 0.65 23 0.22 33
(Sub)-IForest 0.22 35 0.72 26 0.23 28 0.16 31 0.63 26 0.22 33
LOF 0.17 38 0.68 35 0.22 30 0.14 37 0.58 36 0.21 36

Conventional
Neural Network

KAN-AD 0.43 2 0.82 2 0.43 2 0.41 2 0.80 2 0.44 2
USAD 0.36 10 0.71 32 0.40 4 0.32 7 0.66 21 0.37 8
DeepAnT 0.34 13 0.79 5 0.35 9 0.33 5 0.71 11 0.38 5
LSTMAD 0.33 15 0.76 9 0.34 14 0.31 10 0.68 16 0.37 8
DADA 0.31 17 0.77 8 0.31 19 0.29 14 0.71 11 0.33 18
OmniAnomaly 0.29 20 0.72 26 0.29 22 0.27 18 0.65 23 0.31 21
AutoEncoder 0.26 23 0.69 34 0.28 23 0.19 26 0.63 26 0.25 24
FITS 0.26 23 0.73 22 0.20 34 0.17 30 0.61 31 0.23 29
TimesNet 0.26 23 0.72 26 0.21 33 0.18 27 0.61 31 0.24 27
TranAD 0.26 23 0.68 35 0.25 25 0.20 25 0.57 37 0.25 24
Donut 0.20 37 0.68 35 0.20 34 0.14 37 0.56 38 0.20 38

Transformer

MOMENT (FT) 0.39 5 0.76 9 0.35 9 0.30 12 0.69 15 0.35 12
MOMENT (ZS) 0.38 8 0.75 17 0.36 7 0.30 12 0.68 16 0.35 12
TimesFM 0.30 18 0.74 19 0.34 14 0.28 17 0.67 19 0.34 16
Chronos 0.27 21 0.73 22 0.33 16 0.26 20 0.66 21 0.32 20
Lag-Llama 0.27 21 0.72 26 0.31 19 0.25 22 0.65 23 0.30 22
PatchTST 0.26 23 0.75 17 0.22 30 0.21 23 0.63 26 0.25 24
OFA 0.24 30 0.71 32 0.20 34 0.16 31 0.59 35 0.22 33
iTransformer 0.22 35 0.74 19 0.18 38 0.16 31 0.61 31 0.21 36
AnomalyTransformer 0.12 39 0.56 39 0.14 39 0.08 39 0.50 39 0.12 39
DCdetector 0.09 40 0.56 39 0.10 40 0.05 40 0.50 39 0.10 40

Ours PaAno 0.52 1 0.89 1 0.48 1 0.46 1 0.86 1 0.51 1
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Figure 6: Average run time on TSB-AD-U.

Among them, PaAno exhibited the highest median and mean VUS-PR scores in both univariate and
multivariate time-series anomaly detection. The gap between the median and mean was also the
smallest, indicating that PaAno achieved a stable performance distribution.
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Table 17: Performance comparison of 32 multivariate time-series anomaly detection methods on
TSB-AD-M.

Category Method VUS-PR Rank VUS-ROC Rank Range-F1 Rank AUC-PR Rank AUC-ROC Rank Point-F1 Rank

Statistical &
Machine Learning

PCA 0.31 3 0.74 4 0.29 11 0.31 4 0.70 4 0.37 3
DLinear 0.29 11 0.70 12 0.26 15 0.27 9 0.66 12 0.32 9
KMeansAD 0.29 11 0.73 6 0.33 7 0.25 14 0.69 6 0.31 13
NLinear 0.29 11 0.70 12 0.28 12 0.24 15 0.65 14 0.31 13
CBLOF 0.27 16 0.70 12 0.31 9 0.28 8 0.67 8 0.32 9
MCD 0.27 16 0.69 16 0.20 26 0.27 9 0.65 14 0.33 8
OCSVM 0.26 18 0.67 22 0.30 10 0.23 18 0.61 23 0.28 18
RobustPCA 0.24 20 0.61 28 0.33 7 0.24 15 0.58 25 0.29 17
EIF 0.21 21 0.71 9 0.26 15 0.19 22 0.67 8 0.26 22
COPOD 0.20 24 0.69 16 0.24 19 0.20 20 0.65 14 0.27 21
IForest 0.20 24 0.69 16 0.24 19 0.19 22 0.66 12 0.26 22
HBOS 0.19 26 0.67 22 0.24 19 0.16 24 0.63 21 0.24 24
KNN 0.18 28 0.59 30 0.21 23 0.14 27 0.51 31 0.19 29
LOF 0.14 30 0.60 29 0.14 30 0.10 30 0.53 29 0.15 30

Conventional
Neural Network

KAN-AD 0.41 2 0.75 3 0.41 1 0.38 1 0.73 2 0.42 2
DADA 0.31 3 0.73 6 0.25 18 0.31 4 0.69 6 0.35 6
DeepAnT 0.31 3 0.76 2 0.37 4 0.32 3 0.73 2 0.37 3
LSTMAD 0.31 3 0.74 4 0.38 3 0.31 4 0.70 4 0.36 5
OmniAnomaly 0.31 3 0.69 16 0.37 4 0.27 9 0.65 14 0.32 9
AutoEncoder 0.30 8 0.69 16 0.28 12 0.30 7 0.67 8 0.34 7
USAD 0.30 8 0.68 21 0.37 4 0.26 12 0.64 19 0.31 13
Donut 0.26 18 0.71 9 0.21 23 0.20 20 0.64 19 0.28 18
FITS 0.21 21 0.66 24 0.16 29 0.15 25 0.58 25 0.22 25
TimesNet 0.19 26 0.64 26 0.17 27 0.13 29 0.56 27 0.20 28
TranAD 0.18 28 0.65 25 0.21 23 0.14 27 0.59 24 0.21 26

Transformer

CATCH 0.30 8 0.73 6 0.27 14 0.24 15 0.67 8 0.30 16
iTransformer 0.29 11 0.70 12 0.23 22 0.23 18 0.63 21 0.28 18
PatchTST 0.28 15 0.71 9 0.26 15 0.26 12 0.65 14 0.32 9
OFA 0.21 21 0.63 27 0.17 27 0.15 25 0.55 28 0.21 26
AnomalyTransformer 0.12 31 0.57 31 0.14 30 0.07 31 0.52 30 0.12 31
DCdetector 0.10 32 0.56 32 0.10 32 0.06 32 0.50 32 0.10 32

Ours PaAno 0.43 1 0.79 1 0.41 1 0.38 1 0.76 1 0.43 1
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Figure 7: Average run time on TSB-AD-M.
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TSB-AD-U TSB-AD-M

Figure 8: Boxplot of VUS-PR distributions for the TSB-AD-U and TSB-AD-M. The dashed line
and solid line represent the mean and median values, respectively. Only the top-12 methods ranked
by average VUS-PR are presented, ordered from left to right accordingly.
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