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Abstract

Recent advances in LLMs have found use
in several tabular related tasks including
Text2SQL, data wrangling, imputation, Q&A,
and other table-related tasks. Crucially how-
ever, researchers have often overlooked the fact
that the downstream data consumers are often
decoupled from the data producers. Down-
stream data users therefore, neither precisely
know which tables to request access for and
make use of, nor can easily understand com-
plex cryptic terminology (in column names,
etc) employed by the data producers. Specifi-
cally, the lack of descriptive metadata for tables
has emerged as a significant obstacle to effec-
tive data governance and utilization. To tackle
this, our work introduces TABMETA, a new nat-
ural language task aimed at automatically gen-
erating comprehensive metadata for arbitrarily
complex tables, enabling non-expert users to
discover, understand and use relevant data more
effectively. First, we curate a unique bench-
mark dataset for the TABMETA task, consisting
of table descriptions and column descriptions
for 302 tables spanning 30 industry domains.
Second, we propose two novel tabular metadata
evaluation strategies (a) a robust and consis-
tent LLM-Judge based framework which aligns
with human judgement and employs confidence
scores suited for tabular metadata and (b) ML
based metrics to capture quality of the gener-
ated metadata such as conciseness, coherence
and information gain. Finally, we also show
that our metadata enhancement framework sub-
stantially improves the performance of tabular
data discovery and search by a factor of 3-4x.

1 Introduction

The last couple of years have seen a positively
disruptive influence of Large Language Models
(LLMs) (Zhao et al., 2023) and Foundational Mod-
els (FMs) (Bommasani et al., 2021) for enterprise
scale tabular data and databases (Orr et al., 2022;
Arora et al., 2023; Narayan et al., 2022). Primarily,
they have found utility in a variety of tasks such

as Text2SQL translation (Li et al., 2024a; Zhang
et al., 2024; Sun et al., 2023), Tabular Q&A and
reasoning, data wrangling, imputation and various
other tasks on tables (Kong et al., 2024; Sui et al.,
2024; Lei et al., 2023; Li et al., 2023b).

However, these use-cases assume that data con-
sumers can conveniently query, retrieve, and com-
prehend tables for appropriate use. In reality, this
assumption is often unsatisfied due to complex data
governance policies and access restrictions (Kha-
tri and Brown, 2010; Rosenbaum, 2010; Abraham
et al., 2019) within organizations. Data producers,
owners, and consumers belong to different verti-
cals, and users have to request access via search.
Unfortunately searching for tabular data, without
open access to confidential information is challeng-
ing due to inconsistent terminology used by pro-
ducers and consumers, such as cryptic column and
table names in the column, table names (Zhang
et al., 2023a), making tabular search and subse-
quent user understanding difficult (Figure 1).

Prior literature (Brickley et al., 2019; Li et al.,
2021; Christophides et al., 2019), recommends
meta data enrichment as a mechanism to allevi-
ate the above concerns — making data assets more
amenable to search and discovery. In similar vein,
we propose TABMETA, a natural language task,
where the goal is to enrich tabular metadata, mak-
ing it easier to search and more understandable for
downstream users, without exposing any confiden-
tial data present in the tables.

To enrich tabular metadata, we use LLMs to
add descriptive summaries (see Figure 1) for the
entire table (akin to tabular data summarization
(Zhang et al., 2020a)) as well as its constituent
columns which facilitates conversational search
(Zamani et al., 2023) in additional to traditional
keyword/semantic search. While we use LLMs to
enrich the metadata, the work is broadly applicable
to generative text models, such as diffusion models
for text (Austin et al., 2021; Gong et al., 2022).
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Figure 1: Schematic of the TABMETA benchmark creation pipeline.

However, the number of publicly available
LLMs have grown multi-fold and LLMs are known
to hallucinate (Azamfirei et al., 2023; Ye et al.,
2023), producing unreliable content, specifically
for cryptic/complex technical content not found
in the training data (Zhang et al., 2023a). Select-
ing the appropriate LLMs, generating high quality
metadata and evaluating the efficacy of TABMETA
is therefore of utmost importance. Specifically,
this requires a carefully curated benchmark which
spans multiple industrial domains to ensure wide
applicability — and to the best of our knowledge
no such benchmarks currently exist. To tackle this,
first, we present a benchmark of 302 tables which
span 30 different domains. To control the associ-
ated scale, time and costs of the evaluation process
without sacrificing on quality, we carefully down-
sample data from multiple tabular data-sources in-
cluding Kaggle, GitTables (Hulsebos et al., 2023),
and BIRD-SQL (Li et al., 2023a), ensuring the
selection of the most representative tables while
eliminating redundancy.

Second, we present two different but compli-
mentary evaluation mechanisms which together
can help select the appropriate LLM for the ta-
ble, detect hallucinations without sacrificing on
informativeness, conciseness, coherence, etc of
the content generated. The first of these, adapts
the LLM-Judges framework (Zheng et al., 2023),
where secondary LLMs act as judges that compare
and evaluate the generated metadata candidates
from multiple LLMs. This framework however
suffers from multiple biases such as lack of consis-
tency, self-enhancement biases and position biases.
To overcome this, we craft a mechanism which
leverages confidence scores specifically designed
for tabular data to significantly enhance consistency
and mitigate these biases. Secondly, we design and
adapt multiple ML metrics, gauging Q& A-based

and semantic-based precision & recall, as well as
capturing/approximating various other criteria such
as coherence, cohesion, information gain, concise-
ness. Third, we show that employing our tabular
metadata enrichment framework can aid BM25-
based retrieval by a factor of 3-4x for keyword
based search (Robertson et al., 2009)
Our key contributions can be summarized as:

* We introduced TABMETA, a task for table meta-
data generation, with a goal to aid table search,
data governance in general.

¢ We curated a benchmark dataset for the TAB-
META task, utilizing multiple LLMs in an itera-
tive feedback driven fashion.

* We developed an LLM-based judging method
leveraging confidence scores to enhance judge
consistency, ensuring a more reliable and robust
assessment.

* We established a set of machine learning-based
metrics for performance evaluation in TABMETA
task which captures diverse properties such as
informativeness, conciseness, etc.

2 Preliminaries

2.1 Notation

We consider a countable set of tables across differ-
ent domains (e.g. finance, automobile, pharmaceu-
ticals, etc) 7 = {t1,t2,...,t,} where each table
t; € T where t; = (n;, mj, ¢;) has n; a set of
columns in the table, m; sampled rows (which we
don’t have access to i.e. |m;| = 0) as well as op-
tional existing metadata ¢; (such as table names,
attribute/column names and data types, as well as
additional metadata).

Our goal here is to generate high quality human
understandable descriptions of the table, as a whole
as well as human understandable descriptions of
every constituent column, i.e. yield a function
f i ti = (d,,): table description of ¢; , d(, o):



column descriptions for ;) € D, where we use
D to denote the space of all possible generated
descriptions, and di, = (d(, 1), d,,)) € D for
description corresponding to table ¢;.

Our desiderata is an inductive function f which
works across different industrial domains — and
the generated text is accurate, informative, concise
and coherent. Towards this, we seek to employ
LLMs, in order to take advantage of the exogenous
information they can add to enrich the metadata.

2.2 LLM-Judges

LLM-as-a-judge (Zheng et al., 2023; Zhu et al.,
2023; Wang et al., 2023c) offers a proxy solu-
tion to human evaluations on judging generated
textual data from multiple sources (e.g. LLMs) —
specifically when it is hard to acquire human ex-
perts (a.k.a gold standard) across a wide spectrum
of domains. Our goal is to comparatively evalu-
ate text generations for a given table from multi-
ple LLMs i.e. for a table ¢;, and multiple LLMs
LLM!,...,LLM*  output an ordering amongst
{dtLZ_LMl,deMQ, e ,dtLiLMk}, therefore serving
as a proxy to identify the best LLM-generated can-
didate(s) for a given table ¢;.

3 Benchmark Creation

We employed a multi-step procedure to curate a
diverse dataset from GitTables (Hulsebos et al.,
2023), BIRD-SQL (Li et al., 2023a), and Kaggle.
As a part of our final dataset, we have included
all tables from BIRD-SQL (incl. training and dev
splits) and selected 500 tables manually from Kag-
gle. Since, the original GitTables dataset contained
around 1M tables, we first filtered out tables with
less than 10 columns to ensure a minimum level of
table complexity and also removed tables with li-
censing issues. However, with such a large number
of tables, costs associated with LLMs (e.g. GPT-4)
can be exceedingly high - even without including
evaluations based on LLM-as-a-judge.

To tackle this, we employ an aggressive but ro-
bust down-sampling procedure to ensure that our
dataset and evaluation framework forms a reliable
and cost-effective testbed for future works. Specifi-
cally, for a given schema, we independently obtain
BERT embeddings for the column names. Since
there is no explicit ordering of the columns in a
table, we aggregate the column name embedding
via mean-pooling to get embeddings for the entire
schema (a permutation invariant strategy). Alterna-
tively, more complex permutation invariant strate-
gies (Zaheer et al., 2017; Murphy et al., 2018), can

be employed if the underlying topic of the schema
can only be captured jointly across all column name
embeddings. Subsequently, we use k-means clus-
tering on the table schema embeddings to identify
those closest to the distinct cluster centroids as the
representative examples.

Finally, we ensure we have an broad distribution
of tables from different industrial domains, we use
an LLM to infer the domain of each table based
on its schema akin to topic modeling (Wang et al.,
2023b, 2024). Our overall down-sampling frame-
work yields a final dataset comprising 302 tables
with a comprehensive coverage of 30 distinct in-
dustry domains, each table averaging 14.5 columns.
Our down-sampling procedure is robust to say, that
uniformly duplicating tables or removing tables
from the original dataset, does not cause significant
alterations to the representative samples obtained.

3.1 Metadata Enrichment by LL.M Stewards
As a part of our framework, LLMs serve as data
annotators and stewards, enriching table metadata
utilizing only the schema details (table name and
column titles) and any available metadata, while
preserving security by operating without access
to the table’s content or any sampled data. This
methodology closely resembles how humans com-
prehend tabular data — i.e. initiating the process
by using LLMs to provide descriptive annotations
for individual columns. Subsequently, these col-
umn descriptions, in conjunction with the schema
and the metadata, are used towards constructing
a comprehensive table description. This enriched
metadata includes a high-level summary of the ta-
ble’s contents and identifies potential end-users and
use cases, see an example in Table 5 (Appendix).
Details about the prompts used are provided in Fig-
ure 8 and 9 (Appendix).

3.2 Metadata Quality Control by LLM Judges
Analogous to other human expert based evalua-
tion tasks (Ouyang et al., 2022; Bai et al., 2022;
Taori et al., 2023; Diao et al., 2023), the TABMETA
task is also labor-intensive and complex nature.
The complexity arises from the need to jointly
understand the underlying data structure and its
contextual relevance. Human evaluation of tabu-
lar metadata can be prone to inconsistency, sub-
jectivity, and a high time investment, particularly
for large and complex databases. Indeed, recent
studies (Hosking et al., 2023; Huang et al., 2023;
Gilardi et al., 2023) have shown that LLMs can
effectively replace human evaluators in many tasks.



These factors underscore the necessity for auto-
mated evaluation solution for the TABMETA task
using LLMs as judges. To ensure the quality of
the table metadata generated from LLM stewards,
we leverage five powerful LLM judges including
GPT-4-Turbo, GPT-3.5-Turbo, Claude-v2, Claude-
v1 and LLaMA-2-70B to conduct independent eval-
uations for the candidate annotations from LLM
stewards. Another notable challenge during the
evaluation is how to detect and penalize potential
hallucination and non-factual statements in the ta-
ble metadata generated by LLM stewards. This
could be a common issue due to ambiguous or
cryptic column names, or lack of informative table
context. Therefore, we introduce the sentence-level
confidence scores for each candidate response dur-
ing LLM judging. The confidence scores were
derived from: feonf(dy,) = 1 — Snui(dy,) =
1-— %ZnNzl P(contradict|zy,,df ); x4, € dy,,
where z;, denotes the sentence being assessed from
the description dy;, and Snri(7) is the sentence-
level hallucination probability estimated using
SelfCheck-NLI (Manakul et al., 2023). It is
computed as a contradiction probability averaged
over N stochastic responses from the same LLM
data steward against the main response, using a
DeBERTa-based textual entailment classifier (He
et al., 2023) fine-tuned on MNLI (Williams et al.,
2018) (we set N = 3). The confidence scores
served as a proxy for the likelihood that the gen-
erated content was free from hallucinations. It is
important to note that the stochastic responses were
not provided by the judge LLMs but were instead
generated concurrently with the candidates. We
demonstrate through experiments that they serve
as a powerful guardrail that significantly mitigates
commonly observed biases in LLM judge settings
(Section 3.2.1). The prompt template used for LLM
judging is shown in Figure 10 (Appendix).

3.2.1 Handling Limitations of LLM Judges

Self-Enhancement Bias. When serving as judges,
LLMs tend to favor candidates generated by them-
selves, known as self-enhancement bias (Zheng
et al., 2023). During the evaluation of TABMETA
task, this bias is present even we anonymize the
model ID of the LLM stewards as seen in left panel
of Figure 2, the corresponding judges including
Claude-v1, Claude-v2, and GPT-3.5-turbo consis-
tently exhibit a preference towards the table/col-
umn descriptions generated by themselves as data
stewards. In contrast, including the sentence-level
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Figure 2: Overall LLM judge ratings for table and col-
umn descriptions generated by LLM stewards. Scoring
scale is from O to 10.
confidence scores significantly alleviates this bias:
the judges reflect a consistent preference towards
annotations from GPT-3.5-turbo (right panel of Fig-
ure 2). This consistent preference is also corrobo-
rated in Section 5.1 from the overall enhancement
in search PQ@Qk and MRR by including enriched
metadata from different LLM stewards (Table 2).
Position Bias. Position bias refers to the preference
to the answers or candidate responses located in
a certain position of the task description / prompt,
when making the judgement. Top tier LLMs includ-
ing GPT-4 and Claude are not immune to position
bias potentially due to the architecture of autore-
gressive transformers and the pre-training data, and
this bias is also common in human decision-making
(Zheng et al., 2023; Li et al., 2024b; Wang et al.,
2023a; Zhang et al., 2023b; Zeng et al., 2023). To
mitigate this issue, we use all six permutations of
the annotations from three LLM stewards. For each
order, the average scores from all judges are used
to determine the rankings for each candidate re-
sponses, whereas the majority ranking results were
subsequently used to select the ground truth table/-
column descriptions. In addition to permuting the
order of candidate responses during evaluation, the
consistency among each judge can be important.
We posited that presenting the confidence scores as
additional information would enhance the reliabil-
ity and consistency of the evaluations from LLM
judges. To support this presumption, we tried LLM
evaluations under three more scenarios:
* No confidence scores used: Evaluations were
done without presenting any confidence scores.
* Perturbed confidence score: Each original con-

fidence score was modified by adding noise from
a uniform distribution ¢/ (—0.5, 0.5), with the fi-



Table 1: Intra-judge ranking consistency for different
LLM judges under different scenarios, defined by the
existence of a majority ranking (more than half) in each
judge’s rating across the six possible order permutations
of the candidate results.

Full Pert. No Rand

Cat.  Judge Conf. Conf. Conf. Conf.
dg,.+) gpt-4-turbo 14.3 7.6 10.3 7.1
gpt-3.5-turbo 24.5 8.9 2.0 24
claude-v2 20.9 10.1 8.9 9.4
claude-v1 15.3 2.1 8.3 5.9
Ilama2-70b 17.6 10.1 2.3 3.3
aggregated 69.5 494 44.5 40.0

d(s;,c) gpt-4-turbo 23.0 15.2 10.4 8.2
gpt-3.5-turbo 6.3 2.5 1.0 4.7
claude-v2 17.2 2.5 3.0 2.4
claude-v1 20.1 11.4 79 3.5
Ilama2-70b 7.2 2.1 0.9 3.3

aggregated 65.9 48.1 36.9 31.8

nal score capped between 0 and 1.

* Random confidence score: Each confidence
score was replaced with a random value gener-
ated from a uniform distribution 2/ (0, 1).

The results in Table 1 clearly demonstrate the
impact of the above scenarios on evaluation consis-
tency. Overall, the judge consistency rate, defined
as the percentage of table results with a majority
ranking from the judge among all order permuta-
tions, increases drastically by combining all the
LLM judges as opposed to using results from a sin-
gle judge. Specifically, using full confidence scores
resulted in the highest aggregated intra-judge con-
sistency, reaching 69.5% for table descriptions and
65.9% for column descriptions. When using per-
turbed confidence scores, the consistency levels
dropped below the full confidence but was still
above no confidence scenarios, indicating the ben-
efit of even partially accurate confidence scores.
The lowest consistency were observed when ran-
dom confidence scores were used. We also present
evidence of alignment between human evaluations
and LLM judges, showing consistent preferences
for GPT-3.5-Turbo generated metadata in Table 4
(Appendix). These findings underscore the impor-
tance of accurate confidence information in enhanc-
ing the reliability and consistency of evaluations by
LLM judges.

3.2.2 Selecting Ground Truth for Supervised
Evaluation

Although evaluating the metadata generation in

TABMETA task is highly subjective and open-

ended, for each table we still provide a sample

description for the entire table and each column

as the ground truth, which enables computing the

supervised ML metrics introduced in Section 4.
For each table, the ground truth was determined by
selecting the top result based on the majority rank-
ing derived from averaging across all LLM judge
scores. This approach was applied to tables with
consistent rankings in over half of the permutations.
For the small percentage of tables lacking a major-
ity ranking, the ground truth was chosen as the top
result averaged across all permutations.

4 Quantitative and Deterministic
Evaluation Methods

Evaluation of generative models for text is still an
ambiguous problem (Theis et al., 2015; Betzalel
et al., 2022). Our goal here is to measure the qual-
ity of tabular metadata generation with respect to
accuracy, coverage, conciseness, etc. To this end,
we introduce a set of deterministic supervised and
unsupervised metrics for TABMETA, to capture the
subtleties and complexities associated with such
evaluation. Subsequently, we also analyze the key
characteristics of the evaluation metrics that align
with LLM judges in TABMETA evaluation.

4.1 Conciseness

Approximation of Kolmogorov Complexity:
The Kolmogorov complexity (Li et al., 2008)
K(d;;) of a description dy, is the length of the
shortest possible representation of d;, in some fixed
universal description language, which is utilized as
a measure of the computational resources needed to
specify a string. As the true Kolmogorov complex-
ity is usually non-computable, it is approximated
via the use compression algorithms: the length of
the compressed version of a string is a proxy for its
Kolmogorov complexity. In our case, we leverage a
heuristic to approximate the Kolmogorov complex-
ity using BERT embeddings and gzip compression.
Given multiple options of generated text(with the
same semantic content), the size (in bytes) of the
compressed embeddings is used as the approxima-
tion, wherein lower values indicates more concise
generations.

Approximation of Minimum Description Length
via Embedding Variance: Minimum Description
Length (MDL) (Griinwald, 2007) is a principle that
relates to the best compression of a set of data. If
we regard a piece of text as “data”, MDL can be
interpreted as the smallest length (in terms of some
encoding) at which this data can be represented
without loss of information. Since, MDL on text is
hard to compute directly, we measure the variance
of the embeddings for words within the generated



descriptions. Intuitively, if a piece of generated
description is concise and information-dense, the
word embeddings of that would have higher vari-
ance (spreading across various topics or semantics).
In contrast, repetitive or verbose descriptions would
have embeddings that are clustered more closely
together, leading to lower variance.

4.2 Informativeness
Semantic Entropy: Here we focus on the di-

versity of information contained within text gen-
erated by a language model. Towards computing
the semantic entropy for a generated description D,
we first tokenize the text and obtain embeddings.
These embeddings are then clustered based on sim-
ilarity, with a defined threshold (we use 0.9) to
ensure meaningful grouping. Subsequently, we
calculate the entropy as — ) . p(dy,)logy p(dy;),
where p(dy, ) represents the probability of each clus-
ter. Intuitively, a higher semantic entropy suggests
more informative and diverse content, accounting
for synonymous terms and reducing the impact of
repetitive but differently phrased information.

KL Divergence. We use KL Divergence to com-
pute the difference of the information content be-
tween the original schema s;, € S and the gen-
erated metadata d;; € D, as a proxy for infor-
mation gain. For generated text (distribution P)
and the reference text (distribution (), the texts
are first tokenized to generate BERT embeddings.
K-means clustering is then applied to these em-
beddings to create a summarized representation of
the text in terms of key “semantic” clusters. A
probability distribution is then constructed based
on cluster frequencies, i.e. the probability of sen-
tences within each piece of text that fall within
the clusters and then the value is computed as :

KL = —%;p(dy,)logy f;gﬁi

4.3 Reliability and Coverage

Semantic Overlap F1. To estimate the semantic
overlaps between the reference and prediction, we
use instruct-x1 embedder (Su et al., 2023) to gen-
erate sentence-level embeddings. The generated
embeddings are used to compute pairwise similar-
ity scores between each sentence in the candidate
paragraph and each sentence in the reference para-
graph. Unlike existing sentence-level metrics for
evaluation like BertScore (Zhang et al., 2020b) and
BartScore (Yuan et al., 2021), which puts more
emphasis on token-wise embedding similarity, we
computed similarities on the sentence-level embed-
dings, therefore the semantic overlaps between the

long summary candidates can be better captured.
This is especially important for the table-level and
column-level descriptions in TABMETA, since these
summaries typically contain long and narrative sen-
tences. With the reference sentences x = x1, ..., Tk
(embeddings x = X7, ..., X;,) and the candidate sen-
tences & = 7y, ..., T (embeddings X = X1, ..., Xy),
We compute the F1 score of semantic overlap
by: Fsemoy = 2 X (PSemOv X RSemOv)/(PSemOv +
Rsemov ), Where the precision and recall are calcu-
lated by: Psemoy = ﬁ Zmz cx maX@jer?f{j, and
RSemOV = ﬁ Zijeﬁ maXxiExXZT}?:j.

QA Overlap F1. Intuitively, a high-quality sum-
mary should encompass key concepts accuractely,
mirroring the essential elements found in the
ground truth or reference. Inspired by FEQA (Dur-
mus et al., 2020), an automated faithfulness metric
based on question answering, we leverage a LLM
(specifically GPT-4-turbo) to execute the following
(see Figure 3): (i) QG-QA for reference: iden-
tify and extract k entities that could form answer
spans from the reference and formulate questions
pertaining to each of the answers. For our evalu-
ation, we set k = 5. (ii) QA for candidate: uti-
lizes candidate description as input for the LLM
to extract answers for those questions generated
in prior steps. (iii) Compute average BertScores
(precision, recall, F1) between the answers gen-
erated by the LLM for the same set of questions
but with the reference and candidate descriptions
as contextual inputs. As such, the QA Overlap F1
is aimed at effectively assessing the reliability of
table summaries by measuring their alignment with
established ground truths.

4.4 Coherence and Cohesion

Coherence via Embeddings. We compute the co-
sine similarity scores of embeddings from instruct-
x1 for each individual sentence in the generated
metadata. Then, the embedding coherence is com-
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puted by averaging cosine similarity between con-
secutive sentences throughout the paragraph, where
higher values imply more coherent description.
Note this metric only applies to table description.
Lexical Cohesion. This is a metric reliant on identi-
fying the recurrence of lexical items, such as using
pronouns to refer back to nouns, or the repetition
of certain words and phrases which helps in linking
different parts of a text. In this case, the lexical
cohesion score is simply computed by the ratio of
repeated words to the total number of words.
Perplexity. This metric is derived from the perplex-
ity scores of a pretrained autoregressive model. It
assesses the congruence between the model’s pre-
dicted word probabilities and the actual distribution
in the pre-training corpus. Lower perplexity often
correlates with more human-like text generation.

S Experiments

5.1 Enhancing Keyword Search by
LLM-Enriched Table Metadata
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Figure 4: Customized keyword search workflow.

In this experiment, we investigate whether ta-
ble metadata generated by LLM stewards can im-
prove keyword-based table search effectiveness.
The search queries for this study were generated by
sampling tokens from table schemas. The number
of tokens sampled per query ranged from 1 to 5, de-
termined by sampling from a Poisson distribution
(A=3). Without prior knowledge of the database
and its specific formatting, user query keywords
often do not exactly match the schema; they are
more likely to be in alternate forms, including syn-
onyms, abbreviations, or expansions. Therefore,
to simulate a more realistic search experience, we
enrich the sampled queries using an LLM (refer to
Figure 4). It is important to note that the assump-
tion is based on the search keywords originating
solely from raw data; no keywords or variants de-
rived from exogenous information were employed.
Using the enriched queries and metadata (column
descriptions and table descriptions) generated from
different LLM stewards, we conduct the retrieval

Table 2: Precision at k and mean reciprocal rank (MRR)
for enriched query search over BIRD-SQL dataset without
metadata enrichment (schema-only) and with table/column
descriptions.

Method P@1 P@5 P@10 MRR
s¢; Only 8.8 126 19.0 126
St;» d(ti,c) (claude-v1) 25.6 34.7 55.8 35.7
Sty» d(ti,c) (claude-v2) 26.6 37.7 56.1 36.8
St» d(ti,c) (gpt-3.5-turbo) 27.6 394 58.3 38.4
St;5 d(t;,c)> Aty ) (claudevi) 30.8 42.0 60.5 41.2
St;» d(ti,c), d(ti,t) (claude-v2) 322 434 623 426

Sty d(t;,0)> Aty t) (gpr35wbo)  33.5 451 62.8 43.7

using BM25 and measure the search performance
by precision at k retrieved results, as well as mean
reciprocal rank (MRR).

As shown in Table 2, including solely the col-
umn descriptions already significantly enhances
the search performance compared to using schema-
only information. The Precision at 1 (P@1) metric
notably improved from 8.8% with the schema-only
approach to 25.6%, 26.6%, and 27.6% when en-
riched with column descriptions from Claude-v1,
Claude-v2, and GPT-3.5-Turbo, respectively. This
pattern of improvement is consistent across other
precision metrics (P@5 and P@10), indicating that
LLM-enriched metadata provides more relevant
search results at various result depths. Furthermore,
the integration of both column and table descrip-
tions (d(, +) and dy, ) led to an even more pro-
nounced improvement. For example, the P@1 for
these combinations showed an increase to 33.5%
using GPT-3.5-Turbo, demonstrating that the addi-
tion of table descriptions further refines the retrieval
relevance. This trend is similarly observed in the
MRR, where the inclusion of both column and table
descriptions resulted in the highest scores across all
models. These results underscore the significance
of TABMETA in enhancing keyword-based table
retrieval, even in scenarios where the user’s query
does not directly align with the underlying schema.

5.2 Metric Analysis

In our evaluation, we assessed the table descrip-
tions generated by three LLM stewards using the
automatic metrics outlined in Section 4. The super-
vised metrics were computed against the ground
truth of TABMETA benchmark. The results, pre-
sented in Table 3, indicate that over half of these
metrics are consistent with the preferences of LLM
judges. This consistency is evident both in the rank-
ings derived from metric scores and the correlation
between these scores and the LLM judges’ evalu-
ations, with a notable preference for results gen-
erated from GPT-3.5-turbo, see also from scatter



Table 3: Average metric scores computed for table and column descriptions from different LLM stewards, and
the correlation coefficients between the metric scores and the average judge scores. Superscripts « and s denote
unsupervised and supervised metrics, respectively. Metrics with the highest scores are highlighted in blue bold for
comparisons across LLM stewards, and red bold signifies the strongest correlation with judges’ scores.

Average Metric Scores (LLM steward)

‘ ‘ Claude-v1 |

Correlation with LLM Judge Scores
GPT-3.5-turbo

Claude-v2 | Pearson | Spearman
Metric Name | dein  daio) | dein daio | dein dio |l dain die | den  die
Approx. Kolmogorov Complexity® | || 8.35E5  4.94E5 | 7.19E5  5.11E5 | 1.18E6  5.61E5 0.318  0.086 | 0.341 0.113
Embedding Variance “ 1 0.213 0.177 0.212 0.177 0.223 0.178 0.251 0.124 0.249 0.110
Semantic Entropy “ 1 6.638 3.186 6.343 3.289 6.592 3.392 0.165 0.092 0.169 0.087
KL Divergence “ 1 4.930 4.582 4.538 5.040 4.394 5.105 || -0.036 -0.030 | -0.009 -0.041
Semantic Overlap F1 ° 1 0.875 0.929 0.893 0.923 0.950 0.952 0.756 0.692 0.742 0.721
QA Overlap F1 ° 1 0.787 0.891 0.800 0.889 0.909 0.928 0.552  0.604 0.659 0.685
Coherence “ 1 0.687 - 0.681 - 0.729 - 0.310 - 0.362 -
Lexical Cohesion * 1 0.155 0.105 0.169 0.120 0.167 0.123 0.062 0.112 0.046 0.109
Perplexity “ | 29.933  178.693 | 30.382 172.477 | 13.665 141.298 -0.236  -0.117 | -0.347 -0.163

plots in Figure 5 and Figure 6 (Appendix). For in-
stance, F1 scores for semantic overlap (supervised),
exhibited the highest Pearson correlation scores,
reaching 0.756 and 0.692 for table and column de-
scriptions, respectively. However, certain metrics
including semantic entropy, KL divergence, and
lexical cohesion showed very low correlation, sug-
gesting these aspects were less valued by the LLM
judges. Interestingly, despite being a measure of
conciseness, the approximated Kolmogorov com-
plexity demonstrated a positive correlation with
LLM judge scores, indicating a preference for com-
pleteness over conciseness in their assessments.

6 Related Works

Prior works on meta data enrichment for tabular
data. have primarily taken three different directions
(i) Column Semantic Type Annotation (CSTA) (ii)
Table Summarization (iii) Semantic matching to
help with better search/ understanding of the under-
lying tabular data.

Column Semantic Type Annotation: CSTA as-
sociates every column name in the table to a pre-
defined glossary to enhance search and understand-
ing. Prior deep learning methods like Sherlock
(Hulsebos et al., 2019) and SATO(Zhang et al.,
2019), use column statistics and character distribu-
tions as features to their models. CSTA often is
limited to a pre-defined glossary and also requires
human-annotated training data, which can be dif-
ficult to obtain in real-life - and also do not add
a table-wide unique tag understandable by down-
stream users different from the data producers.

Table Summarization: Prior works on tabular
data summarization (Lo et al., 2000; Zhang et al.,
2020a; Kumar et al., 2022; Ienco et al., 2013) have
largely leveraged rules and constraints to summa-
rize the contents of a table or its schema — with out-
puts also limited to a certain pre-defined and small
vocabulary. In addition to making the implicit as-

sumption that the consumer is often familiar with
terminology used by the producer, these mecha-
nisms were not designed to work on arbitrarily
complex tables from different industrial domains.

Semantic Matching: Semantic matching meth-
ods (Li et al., 2021) broadly comprise of techniques
such as schema matching, entity matching and link-
ing. In the case of schema matching, it identifies
columns which are similar/ identical across tables
which can help with joins/ unions, etc. While these
methods can help search and discover related tables,
they still do not make discovery or understanding
of any given table easier for a data consumer with-
out knowledge of the data producer’s terminology.
Entity matching and linking methods on the other
hand are useful when rows in different tables are
different attributes of the same entity (orthogonal
to our work, as we don’t work with table content).

7 Conclusion

Our work introduced TABMETA, a natural language
task that generates comprehensive metadata for ar-
bitrarily complex tables, enabling non-expert users
to discover, understand and use relevant data more
effectively. As a part of our contributions, we cu-
rated a unique benchmark dataset for the TABMETA
task, comprising table descriptions and column de-
scriptions for 302 tables spanning 30 industry do-
mains. We also put forward two tabular metadata
evaluation strategies (a) a robust and consistent
LLM-Judge based framework which employed con-
fidence scores suited for tabular metadata and (b)
ML based metrics to capture quality of the gen-
erated metadata such as conciseness, coherence,
information gain, etc. Finally, we also showed that
our metadata enhancement framework substantially
improves the performance of tabular data discovery
and search by a factor of 3-4x.



8 Limitations

While our work introduces an innovative approach
to generating metadata for complex tables, several
areas for further enhancement exist. Although we
conducted a preliminary human evaluation showing
alignment with LLM judges, a more extensive hu-
man evaluation would further validate our findings.
Our dataset, with 302 tables across 30 domains,
provides a strong foundation but may not encom-
pass all real-world diversity, and scaling to larger
datasets involves higher costs. Despite using LLM
judges and confidence scores to reduce biases and
inaccuracies, the reliance on large language models
can still pose challenges. While we acknowledge
the potential of advanced prompt engineering strate-
gies to improve the quality of generated metadata,
it is not the primary focus of this work. Lastly,
our metrics are only proxies, as the true evaluation
is intractable to compute, suggesting that further
refinement of these metrics could enhance future
research.
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9.1 Analysis of Automated Evaluation Methods

We compare the overall LLM judge scores for each table’s metadata with each individual automated
evaluation metric proposed in Section 4 in Figure 5 (table description) and Figure 6. The different
generations from candidate LMs including GPT-3.5-Turbo, Claude-v1, and Claude-v2 were highlighted in
different colors. Note that the descriptions for each individual table column are non-consecutive, therefore

the Coherence metric were not computed for column descriptions.

Overall Judge Score Overall Judge Score

Overall Judge Score

Figure 5: Scatter plots for supervised and unsupervised evaluation metrics for table descriptions from LLM stewards
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versus the overall ratings (out of 10) from LLM judges.

Overall Judge Score

Overall Judge Score

Figure 6: Scatter plots for supervised and unsupervised evaluation metrics for column descriptions from LLM
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Figure 7: Distribution of domains for tables included in the benchmark.

9.2 Additional Details about Dataset Curation

We conducted a human evaluation study by randomly sampling the LLM-generated metadata for 20 tables,
and asked a group of three data scientists and analysts to assess the quality of the generated metadata
using the exact instruction/rubric for LLM judges. The scores from the three human evaluators were
averaged and compared with the LLM judge scores averaged from different order permutations (with
using confidence scores). As shown in Table 4, the averaged human scores reflect the same preference to
the metadata generated by GPT-3.5-Turbo model, consistent with the LLM-evaluation approach.

Table 4: Overall LLM judge scores and average human evaluation scores for the 20 sampled table metadata.

Judges
Steward claude-vl  claude-v2  gpt-3.5-turbo  gpt-4-turbo 1llama2-70b  human
Table Description
claude-v1 8.00 7.50 7.85 7.85 7.80 7.58
claude-v2 8.00 7.25 8.05 8.20 8.07 7.28
gpt-3.5-turbo 9.17 8.00 9.00 8.35 9.00 7.73
Column Description
claude-v1 7.89 7.70 7.35 7.60 7.20 6.50
claude-v2 7.58 7.20 6.90 7.60 6.87 6.62
gpt-3.5-turbo 8.68 7.85 8.40 7.85 8.33 7.33

9.3 Prompts Used for Metadata Generation and LLM Evaluation

For the table named {table_name}, with schema ’{schema_list}’ ({len(schema_list)} attributes), provide
detailed descriptions for each column. Use the following format for each column on separate lines:
’[Column Name] | [Description]’. Ensure that the descriptions are clear, informative, and precise. Do
not generate any additional text at the beginning or end of the response.

Figure 8: Prompt template for generating column-level descriptions.
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Given the table name {table_name}, schema ’{schema_list}’, along with the detailed column descriptions:
’{column_description_dict}’, generate a comprehensive and reliable global description for the table.
The description should provide a broad understanding of the data contained within the table, its
relevance, the relationships among different columns, and any potential implications or insights it
might offer. While crafting the description, seamlessly incorporate the column descriptions into the
narrative to provide a cohesive understanding of the table’s structure and content. Do not generate
any additional text at the beginning or end of the response.

Figure 9: Prompt template for generating table-level descriptions.

You are an expert database catalog creator who is evaluating metadata for a table drafted by different models, based only on the
table schema. For each sentence, there is a corresponding confidence score for your reference.
Candidate metadata for this table in JSON:
{
"table_name": "debit_card_specializing.transactions_1k"
"1lm_results”: {
"model1”: {
"table description”: {
"description”: [
"The debit_card_specializing.transactions_1k table contains records of transactions made using debit cards at gas
stations.”,
"Each record includes a unique TransactionID to identify the transaction.”,

1,

"confidence”: [
0.9908298118971288,
0.9989090043818578,

]
3
"attribute description”: {
"attribute name": [
"TransactionID"”
"Date",

1,

"description”: [
"Unique identifier for each transaction record”,
"Date the transaction occurred”,

"confidence”: [
0.9939870447851717,
0.9790911888703704,

]
3}
3
"model2”: {

i
"model3”: {

3
3

Please provide an overall score from 1 to 10 for each table description and each set of column descriptions, considering their
accuracy, clarity, consistency, completeness, context awareness, handling of ambiguity, and informativeness. A score of 1 represents
extremely poor performance across these aspects, while a score of 10 indicates exceptional performance in all areas. Avoid any
potential biases.

Before giving the score, provide a detailed reasoning of your evaluation, and the order of the candidate responses should not affect
your judgement. The response should follow the reasonings and contain the example JSON code snippet.

"column”: {
"model1”: # score between
"model2”: # score between
"model3”: score between

3,

"table": {
"model1”: # score between
"model2”: # score between
"model3”: score between

}

to 10, worst to best,
to 10, worst to best,
to 10, worst to best

=+

to 10, worst to best,
to 10, worst to best,
to 10, worst to best

+=+

}

Response:

Figure 10: Prompt template for LLM judge.

14




Table 5: Example from TABMETA Benchmark from affordable-housing-by-town-2011-2022 Table

Table Description

The ‘affordable-housing-by-town-2011-2022" table provides a comprehensive overview of affordable housing units in various
towns from 2011 to 2022. The table contains information on the number of affordable housing units, including government-
assisted units, tenant rental assistance, single-family CHFA/USDA mortgages, and deed-restricted units. The ‘Year’ column
indicates the specific year for which the data is recorded, allowing for temporal analysis of affordable housing trends over
time. The ‘Town Code’ and “Town’ columns provide the unique code and name of each town, enabling the identification
and comparison of affordable housing statistics across different locations. The ‘2010 Census Units’ column offers a baseline
for understanding the total housing units in each town, providing context for the proportion of affordable housing within the
overall housing stock. The ‘Total Assisted Units’ column aggregates the various types of assisted housing units, offering a
consolidated view of the overall impact of government assistance and rental programs on affordable housing availability. The
‘Percent Affordable’ column calculates the percentage of affordable housing units relative to the total housing units, providing a
key metric for assessing the level of affordability within each town.

Attribute Name Description

Year The year in which the data was recorded.

Town Code A unique code assigned to each town for identification purposes.

Town The name of the town for which the data is being reported.

2010 Census Units The number of housing units recorded in the 2010 census for the respective town.

Government Assisted
Tenant Rental Assistance
Single Family CHFA/ USDA Mortgages

Deed Restricted Units
Total Assisted Units
Percent Affordable

The number of housing units that received government assistance for affordability.

The number of housing units that received rental assistance for tenants.

The number of single-family housing units that received mortgages from the Connecticut
Housing Finance Authority (CHFA) or the United States Department of Agriculture
(USDA).

The number of housing units with deed restrictions to maintain affordability.

The total number of housing units that received any form of assistance for affordability.
The percentage of housing units in the town that are considered affordable based on the
provided assistance.
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