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Abstract
Recent advances in LLMs have found use001
in several tabular related tasks including002
Text2SQL, data wrangling, imputation, Q&A,003
and other table-related tasks. Crucially how-004
ever, researchers have often overlooked the fact005
that the downstream data consumers are often006
decoupled from the data producers. Down-007
stream data users therefore, neither precisely008
know which tables to request access for and009
make use of, nor can easily understand com-010
plex cryptic terminology (in column names,011
etc) employed by the data producers. Specifi-012
cally, the lack of descriptive metadata for tables013
has emerged as a significant obstacle to effec-014
tive data governance and utilization. To tackle015
this, our work introduces TABMETA, a new nat-016
ural language task aimed at automatically gen-017
erating comprehensive metadata for arbitrarily018
complex tables, enabling non-expert users to019
discover, understand and use relevant data more020
effectively. First, we curate a unique bench-021
mark dataset for the TABMETA task, consisting022
of table descriptions and column descriptions023
for 302 tables spanning 30 industry domains.024
Second, we propose two novel tabular metadata025
evaluation strategies (a) a robust and consis-026
tent LLM-Judge based framework which aligns027
with human judgement and employs confidence028
scores suited for tabular metadata and (b) ML029
based metrics to capture quality of the gener-030
ated metadata such as conciseness, coherence031
and information gain. Finally, we also show032
that our metadata enhancement framework sub-033
stantially improves the performance of tabular034
data discovery and search by a factor of 3-4x.035

1 Introduction036

The last couple of years have seen a positively037

disruptive influence of Large Language Models038

(LLMs) (Zhao et al., 2023) and Foundational Mod-039

els (FMs) (Bommasani et al., 2021) for enterprise040

scale tabular data and databases (Orr et al., 2022;041

Arora et al., 2023; Narayan et al., 2022). Primarily,042

they have found utility in a variety of tasks such043

as Text2SQL translation (Li et al., 2024a; Zhang 044

et al., 2024; Sun et al., 2023), Tabular Q&A and 045

reasoning, data wrangling, imputation and various 046

other tasks on tables (Kong et al., 2024; Sui et al., 047

2024; Lei et al., 2023; Li et al., 2023b). 048

However, these use-cases assume that data con- 049

sumers can conveniently query, retrieve, and com- 050

prehend tables for appropriate use. In reality, this 051

assumption is often unsatisfied due to complex data 052

governance policies and access restrictions (Kha- 053

tri and Brown, 2010; Rosenbaum, 2010; Abraham 054

et al., 2019) within organizations. Data producers, 055

owners, and consumers belong to different verti- 056

cals, and users have to request access via search. 057

Unfortunately searching for tabular data, without 058

open access to confidential information is challeng- 059

ing due to inconsistent terminology used by pro- 060

ducers and consumers, such as cryptic column and 061

table names in the column, table names (Zhang 062

et al., 2023a), making tabular search and subse- 063

quent user understanding difficult (Figure 1). 064

Prior literature (Brickley et al., 2019; Li et al., 065

2021; Christophides et al., 2019), recommends 066

meta data enrichment as a mechanism to allevi- 067

ate the above concerns – making data assets more 068

amenable to search and discovery. In similar vein, 069

we propose TABMETA, a natural language task, 070

where the goal is to enrich tabular metadata, mak- 071

ing it easier to search and more understandable for 072

downstream users, without exposing any confiden- 073

tial data present in the tables. 074

To enrich tabular metadata, we use LLMs to 075

add descriptive summaries (see Figure 1) for the 076

entire table (akin to tabular data summarization 077

(Zhang et al., 2020a)) as well as its constituent 078

columns which facilitates conversational search 079

(Zamani et al., 2023) in additional to traditional 080

keyword/semantic search. While we use LLMs to 081

enrich the metadata, the work is broadly applicable 082

to generative text models, such as diffusion models 083

for text (Austin et al., 2021; Gong et al., 2022). 084
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Figure 1: Schematic of the TABMETA benchmark creation pipeline.

However, the number of publicly available085

LLMs have grown multi-fold and LLMs are known086

to hallucinate (Azamfirei et al., 2023; Ye et al.,087

2023), producing unreliable content, specifically088

for cryptic/complex technical content not found089

in the training data (Zhang et al., 2023a). Select-090

ing the appropriate LLMs, generating high quality091

metadata and evaluating the efficacy of TABMETA092

is therefore of utmost importance. Specifically,093

this requires a carefully curated benchmark which094

spans multiple industrial domains to ensure wide095

applicability – and to the best of our knowledge096

no such benchmarks currently exist. To tackle this,097

first, we present a benchmark of 302 tables which098

span 30 different domains. To control the associ-099

ated scale, time and costs of the evaluation process100

without sacrificing on quality, we carefully down-101

sample data from multiple tabular data-sources in-102

cluding Kaggle, GitTables (Hulsebos et al., 2023),103

and BIRD-SQL (Li et al., 2023a), ensuring the104

selection of the most representative tables while105

eliminating redundancy.106

Second, we present two different but compli-107

mentary evaluation mechanisms which together108

can help select the appropriate LLM for the ta-109

ble, detect hallucinations without sacrificing on110

informativeness, conciseness, coherence, etc of111

the content generated. The first of these, adapts112

the LLM-Judges framework (Zheng et al., 2023),113

where secondary LLMs act as judges that compare114

and evaluate the generated metadata candidates115

from multiple LLMs. This framework however116

suffers from multiple biases such as lack of consis-117

tency, self-enhancement biases and position biases.118

To overcome this, we craft a mechanism which119

leverages confidence scores specifically designed120

for tabular data to significantly enhance consistency121

and mitigate these biases. Secondly, we design and122

adapt multiple ML metrics, gauging Q&A-based123

and semantic-based precision & recall, as well as 124

capturing/approximating various other criteria such 125

as coherence, cohesion, information gain, concise- 126

ness. Third, we show that employing our tabular 127

metadata enrichment framework can aid BM25- 128

based retrieval by a factor of 3-4x for keyword 129

based search (Robertson et al., 2009) 130

Our key contributions can be summarized as: 131

• We introduced TABMETA, a task for table meta- 132

data generation, with a goal to aid table search, 133

data governance in general. 134

• We curated a benchmark dataset for the TAB- 135

META task, utilizing multiple LLMs in an itera- 136

tive feedback driven fashion. 137

• We developed an LLM-based judging method 138

leveraging confidence scores to enhance judge 139

consistency, ensuring a more reliable and robust 140

assessment. 141

• We established a set of machine learning-based 142

metrics for performance evaluation in TABMETA 143

task which captures diverse properties such as 144

informativeness, conciseness, etc. 145

2 Preliminaries 146

2.1 Notation 147

We consider a countable set of tables across differ- 148

ent domains (e.g. finance, automobile, pharmaceu- 149

ticals, etc) T = {t1, t2, ..., tn} where each table 150

ti ∈ T where ti ≡ (ni,mi, ϕi) has ni a set of 151

columns in the table, mi sampled rows (which we 152

don’t have access to i.e. |mi| = 0) as well as op- 153

tional existing metadata ϕi (such as table names, 154

attribute/column names and data types, as well as 155

additional metadata). 156

Our goal here is to generate high quality human 157

understandable descriptions of the table, as a whole 158

as well as human understandable descriptions of 159

every constituent column, i.e. yield a function 160

f : ti 7→ (d(ti,t): table description of ti , d(ti,c): 161
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column descriptions for ti) ∈ D, where we use162

D to denote the space of all possible generated163

descriptions, and dti ≡ (d(ti,t), d(ti,c)) ∈ D for164

description corresponding to table ti.165

Our desiderata is an inductive function f which166

works across different industrial domains – and167

the generated text is accurate, informative, concise168

and coherent. Towards this, we seek to employ169

LLMs, in order to take advantage of the exogenous170

information they can add to enrich the metadata.171

2.2 LLM-Judges172

LLM-as-a-judge (Zheng et al., 2023; Zhu et al.,173

2023; Wang et al., 2023c) offers a proxy solu-174

tion to human evaluations on judging generated175

textual data from multiple sources (e.g. LLMs) –176

specifically when it is hard to acquire human ex-177

perts (a.k.a gold standard) across a wide spectrum178

of domains. Our goal is to comparatively evalu-179

ate text generations for a given table from multi-180

ple LLMs i.e. for a table ti, and multiple LLMs181

LLM1, . . . ,LLMk, output an ordering amongst182

{dLLM1

ti , dLLM
2

ti , . . . , dLLM
k

ti }, therefore serving183

as a proxy to identify the best LLM-generated can-184

didate(s) for a given table ti.185

3 Benchmark Creation186

We employed a multi-step procedure to curate a187

diverse dataset from GitTables (Hulsebos et al.,188

2023), BIRD-SQL (Li et al., 2023a), and Kaggle.189

As a part of our final dataset, we have included190

all tables from BIRD-SQL (incl. training and dev191

splits) and selected 500 tables manually from Kag-192

gle. Since, the original GitTables dataset contained193

around 1M tables, we first filtered out tables with194

less than 10 columns to ensure a minimum level of195

table complexity and also removed tables with li-196

censing issues. However, with such a large number197

of tables, costs associated with LLMs (e.g. GPT-4)198

can be exceedingly high - even without including199

evaluations based on LLM-as-a-judge.200

To tackle this, we employ an aggressive but ro-201

bust down-sampling procedure to ensure that our202

dataset and evaluation framework forms a reliable203

and cost-effective testbed for future works. Specifi-204

cally, for a given schema, we independently obtain205

BERT embeddings for the column names. Since206

there is no explicit ordering of the columns in a207

table, we aggregate the column name embedding208

via mean-pooling to get embeddings for the entire209

schema (a permutation invariant strategy). Alterna-210

tively, more complex permutation invariant strate-211

gies (Zaheer et al., 2017; Murphy et al., 2018), can212

be employed if the underlying topic of the schema 213

can only be captured jointly across all column name 214

embeddings. Subsequently, we use k-means clus- 215

tering on the table schema embeddings to identify 216

those closest to the distinct cluster centroids as the 217

representative examples. 218

Finally, we ensure we have an broad distribution 219

of tables from different industrial domains, we use 220

an LLM to infer the domain of each table based 221

on its schema akin to topic modeling (Wang et al., 222

2023b, 2024). Our overall down-sampling frame- 223

work yields a final dataset comprising 302 tables 224

with a comprehensive coverage of 30 distinct in- 225

dustry domains, each table averaging 14.5 columns. 226

Our down-sampling procedure is robust to say, that 227

uniformly duplicating tables or removing tables 228

from the original dataset, does not cause significant 229

alterations to the representative samples obtained. 230

3.1 Metadata Enrichment by LLM Stewards 231

As a part of our framework, LLMs serve as data 232

annotators and stewards, enriching table metadata 233

utilizing only the schema details (table name and 234

column titles) and any available metadata, while 235

preserving security by operating without access 236

to the table’s content or any sampled data. This 237

methodology closely resembles how humans com- 238

prehend tabular data – i.e. initiating the process 239

by using LLMs to provide descriptive annotations 240

for individual columns. Subsequently, these col- 241

umn descriptions, in conjunction with the schema 242

and the metadata, are used towards constructing 243

a comprehensive table description. This enriched 244

metadata includes a high-level summary of the ta- 245

ble’s contents and identifies potential end-users and 246

use cases, see an example in Table 5 (Appendix). 247

Details about the prompts used are provided in Fig- 248

ure 8 and 9 (Appendix). 249

3.2 Metadata Quality Control by LLM Judges 250

Analogous to other human expert based evalua- 251

tion tasks (Ouyang et al., 2022; Bai et al., 2022; 252

Taori et al., 2023; Diao et al., 2023), the TABMETA 253

task is also labor-intensive and complex nature. 254

The complexity arises from the need to jointly 255

understand the underlying data structure and its 256

contextual relevance. Human evaluation of tabu- 257

lar metadata can be prone to inconsistency, sub- 258

jectivity, and a high time investment, particularly 259

for large and complex databases. Indeed, recent 260

studies (Hosking et al., 2023; Huang et al., 2023; 261

Gilardi et al., 2023) have shown that LLMs can 262

effectively replace human evaluators in many tasks. 263
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These factors underscore the necessity for auto-264

mated evaluation solution for the TABMETA task265

using LLMs as judges. To ensure the quality of266

the table metadata generated from LLM stewards,267

we leverage five powerful LLM judges including268

GPT-4-Turbo, GPT-3.5-Turbo, Claude-v2, Claude-269

v1 and LLaMA-2-70B to conduct independent eval-270

uations for the candidate annotations from LLM271

stewards. Another notable challenge during the272

evaluation is how to detect and penalize potential273

hallucination and non-factual statements in the ta-274

ble metadata generated by LLM stewards. This275

could be a common issue due to ambiguous or276

cryptic column names, or lack of informative table277

context. Therefore, we introduce the sentence-level278

confidence scores for each candidate response dur-279

ing LLM judging. The confidence scores were280

derived from: fconf(dti) = 1 − SNLI(dti) =281

1 − 1
N

∑N
n=1 P (contradict|xti , dnti); xti ∈ dti ,282

where xti denotes the sentence being assessed from283

the description dti , and SNLI(i) is the sentence-284

level hallucination probability estimated using285

SelfCheck-NLI (Manakul et al., 2023). It is286

computed as a contradiction probability averaged287

over N stochastic responses from the same LLM288

data steward against the main response, using a289

DeBERTa-based textual entailment classifier (He290

et al., 2023) fine-tuned on MNLI (Williams et al.,291

2018) (we set N = 3). The confidence scores292

served as a proxy for the likelihood that the gen-293

erated content was free from hallucinations. It is294

important to note that the stochastic responses were295

not provided by the judge LLMs but were instead296

generated concurrently with the candidates. We297

demonstrate through experiments that they serve298

as a powerful guardrail that significantly mitigates299

commonly observed biases in LLM judge settings300

(Section 3.2.1). The prompt template used for LLM301

judging is shown in Figure 10 (Appendix).302

3.2.1 Handling Limitations of LLM Judges303

Self-Enhancement Bias. When serving as judges,304

LLMs tend to favor candidates generated by them-305

selves, known as self-enhancement bias (Zheng306

et al., 2023). During the evaluation of TABMETA307

task, this bias is present even we anonymize the308

model ID of the LLM stewards as seen in left panel309

of Figure 2, the corresponding judges including310

Claude-v1, Claude-v2, and GPT-3.5-turbo consis-311

tently exhibit a preference towards the table/col-312

umn descriptions generated by themselves as data313

stewards. In contrast, including the sentence-level314

Figure 2: Overall LLM judge ratings for table and col-
umn descriptions generated by LLM stewards. Scoring
scale is from 0 to 10.
confidence scores significantly alleviates this bias: 315

the judges reflect a consistent preference towards 316

annotations from GPT-3.5-turbo (right panel of Fig- 317

ure 2). This consistent preference is also corrobo- 318

rated in Section 5.1 from the overall enhancement 319

in search P@k and MRR by including enriched 320

metadata from different LLM stewards (Table 2). 321

Position Bias. Position bias refers to the preference 322

to the answers or candidate responses located in 323

a certain position of the task description / prompt, 324

when making the judgement. Top tier LLMs includ- 325

ing GPT-4 and Claude are not immune to position 326

bias potentially due to the architecture of autore- 327

gressive transformers and the pre-training data, and 328

this bias is also common in human decision-making 329

(Zheng et al., 2023; Li et al., 2024b; Wang et al., 330

2023a; Zhang et al., 2023b; Zeng et al., 2023). To 331

mitigate this issue, we use all six permutations of 332

the annotations from three LLM stewards. For each 333

order, the average scores from all judges are used 334

to determine the rankings for each candidate re- 335

sponses, whereas the majority ranking results were 336

subsequently used to select the ground truth table/- 337

column descriptions. In addition to permuting the 338

order of candidate responses during evaluation, the 339

consistency among each judge can be important. 340

We posited that presenting the confidence scores as 341

additional information would enhance the reliabil- 342

ity and consistency of the evaluations from LLM 343

judges. To support this presumption, we tried LLM 344

evaluations under three more scenarios: 345

• No confidence scores used: Evaluations were 346

done without presenting any confidence scores. 347

• Perturbed confidence score: Each original con- 348

fidence score was modified by adding noise from 349

a uniform distribution U(−0.5, 0.5), with the fi- 350
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Table 1: Intra-judge ranking consistency for different
LLM judges under different scenarios, defined by the
existence of a majority ranking (more than half) in each
judge’s rating across the six possible order permutations
of the candidate results.

Cat. Judge Full
Conf.

Pert.
Conf.

No
Conf.

Rand.
Conf.

d(ti,t) gpt-4-turbo 14.3 7.6 10.3 7.1
gpt-3.5-turbo 24.5 8.9 2.0 2.4
claude-v2 20.9 10.1 8.9 9.4
claude-v1 15.3 2.1 8.3 5.9
llama2-70b 17.6 10.1 2.3 3.3
aggregated 69.5 49.4 44.5 40.0

d(ti,c) gpt-4-turbo 23.0 15.2 10.4 8.2
gpt-3.5-turbo 6.3 2.5 1.0 4.7
claude-v2 17.2 2.5 3.0 2.4
claude-v1 20.1 11.4 7.9 3.5
llama2-70b 7.2 2.1 0.9 3.3
aggregated 65.9 48.1 36.9 31.8

nal score capped between 0 and 1.351

• Random confidence score: Each confidence352

score was replaced with a random value gener-353

ated from a uniform distribution U(0, 1).354

The results in Table 1 clearly demonstrate the355

impact of the above scenarios on evaluation consis-356

tency. Overall, the judge consistency rate, defined357

as the percentage of table results with a majority358

ranking from the judge among all order permuta-359

tions, increases drastically by combining all the360

LLM judges as opposed to using results from a sin-361

gle judge. Specifically, using full confidence scores362

resulted in the highest aggregated intra-judge con-363

sistency, reaching 69.5% for table descriptions and364

65.9% for column descriptions. When using per-365

turbed confidence scores, the consistency levels366

dropped below the full confidence but was still367

above no confidence scenarios, indicating the ben-368

efit of even partially accurate confidence scores.369

The lowest consistency were observed when ran-370

dom confidence scores were used. We also present371

evidence of alignment between human evaluations372

and LLM judges, showing consistent preferences373

for GPT-3.5-Turbo generated metadata in Table 4374

(Appendix). These findings underscore the impor-375

tance of accurate confidence information in enhanc-376

ing the reliability and consistency of evaluations by377

LLM judges.378

3.2.2 Selecting Ground Truth for Supervised379

Evaluation380

Although evaluating the metadata generation in381

TABMETA task is highly subjective and open-382

ended, for each table we still provide a sample383

description for the entire table and each column384

as the ground truth, which enables computing the385

supervised ML metrics introduced in Section 4. 386

For each table, the ground truth was determined by 387

selecting the top result based on the majority rank- 388

ing derived from averaging across all LLM judge 389

scores. This approach was applied to tables with 390

consistent rankings in over half of the permutations. 391

For the small percentage of tables lacking a major- 392

ity ranking, the ground truth was chosen as the top 393

result averaged across all permutations. 394

4 Quantitative and Deterministic 395

Evaluation Methods 396

Evaluation of generative models for text is still an 397

ambiguous problem (Theis et al., 2015; Betzalel 398

et al., 2022). Our goal here is to measure the qual- 399

ity of tabular metadata generation with respect to 400

accuracy, coverage, conciseness, etc. To this end, 401

we introduce a set of deterministic supervised and 402

unsupervised metrics for TABMETA, to capture the 403

subtleties and complexities associated with such 404

evaluation. Subsequently, we also analyze the key 405

characteristics of the evaluation metrics that align 406

with LLM judges in TABMETA evaluation. 407

4.1 Conciseness 408
Approximation of Kolmogorov Complexity: 409

The Kolmogorov complexity (Li et al., 2008) 410

K(dti) of a description dti is the length of the 411

shortest possible representation of dti in some fixed 412

universal description language, which is utilized as 413

a measure of the computational resources needed to 414

specify a string. As the true Kolmogorov complex- 415

ity is usually non-computable, it is approximated 416

via the use compression algorithms: the length of 417

the compressed version of a string is a proxy for its 418

Kolmogorov complexity. In our case, we leverage a 419

heuristic to approximate the Kolmogorov complex- 420

ity using BERT embeddings and gzip compression. 421

Given multiple options of generated text(with the 422

same semantic content), the size (in bytes) of the 423

compressed embeddings is used as the approxima- 424

tion, wherein lower values indicates more concise 425

generations. 426

Approximation of Minimum Description Length 427

via Embedding Variance: Minimum Description 428

Length (MDL) (Grünwald, 2007) is a principle that 429

relates to the best compression of a set of data. If 430

we regard a piece of text as “data”, MDL can be 431

interpreted as the smallest length (in terms of some 432

encoding) at which this data can be represented 433

without loss of information. Since, MDL on text is 434

hard to compute directly, we measure the variance 435

of the embeddings for words within the generated 436
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descriptions. Intuitively, if a piece of generated437

description is concise and information-dense, the438

word embeddings of that would have higher vari-439

ance (spreading across various topics or semantics).440

In contrast, repetitive or verbose descriptions would441

have embeddings that are clustered more closely442

together, leading to lower variance.443

4.2 Informativeness444
Semantic Entropy: Here we focus on the di-445

versity of information contained within text gen-446

erated by a language model. Towards computing447

the semantic entropy for a generated description D,448

we first tokenize the text and obtain embeddings.449

These embeddings are then clustered based on sim-450

ilarity, with a defined threshold (we use 0.9) to451

ensure meaningful grouping. Subsequently, we452

calculate the entropy as −
∑

i p(dti) log2 p(dti),453

where p(dti) represents the probability of each clus-454

ter. Intuitively, a higher semantic entropy suggests455

more informative and diverse content, accounting456

for synonymous terms and reducing the impact of457

repetitive but differently phrased information.458

KL Divergence. We use KL Divergence to com-459

pute the difference of the information content be-460

tween the original schema sti ∈ S and the gen-461

erated metadata dti ∈ D, as a proxy for infor-462

mation gain. For generated text (distribution P )463

and the reference text (distribution Q), the texts464

are first tokenized to generate BERT embeddings.465

K-means clustering is then applied to these em-466

beddings to create a summarized representation of467

the text in terms of key “semantic” clusters. A468

probability distribution is then constructed based469

on cluster frequencies, i.e. the probability of sen-470

tences within each piece of text that fall within471

the clusters and then the value is computed as :472

KL = −Σip(dti) log2
p(dti )

q(sti )
.473

4.3 Reliability and Coverage474

Semantic Overlap F1. To estimate the semantic475

overlaps between the reference and prediction, we476

use instruct-xl embedder (Su et al., 2023) to gen-477

erate sentence-level embeddings. The generated478

embeddings are used to compute pairwise similar-479

ity scores between each sentence in the candidate480

paragraph and each sentence in the reference para-481

graph. Unlike existing sentence-level metrics for482

evaluation like BertScore (Zhang et al., 2020b) and483

BartScore (Yuan et al., 2021), which puts more484

emphasis on token-wise embedding similarity, we485

computed similarities on the sentence-level embed-486

dings, therefore the semantic overlaps between the487

long summary candidates can be better captured. 488

This is especially important for the table-level and 489

column-level descriptions in TABMETA, since these 490

summaries typically contain long and narrative sen- 491

tences. With the reference sentences x = x1, ..., xk 492

(embeddings x = x1, ...,xk) and the candidate sen- 493

tences x̂ = x̂1, ..., x̂k (embeddings x̂ = x̂1, ..., x̂k), 494

We compute the F1 score of semantic overlap 495

by: FSemOv = 2× (PSemOv ×RSemOv)/(PSemOv + 496

RSemOv), where the precision and recall are calcu- 497

lated by: PSemOv = 1
|x|

∑
xi∈x maxx̂j∈x̂x

T
i x̂j , and 498

RSemOv = 1
|x̂|

∑
x̂j∈x̂ maxxi∈xx

T
i x̂j . 499

QA Overlap F1. Intuitively, a high-quality sum- 500

mary should encompass key concepts accuractely, 501

mirroring the essential elements found in the 502

ground truth or reference. Inspired by FEQA (Dur- 503

mus et al., 2020), an automated faithfulness metric 504

based on question answering, we leverage a LLM 505

(specifically GPT-4-turbo) to execute the following 506

(see Figure 3): (i) QG-QA for reference: iden- 507

tify and extract k entities that could form answer 508

spans from the reference and formulate questions 509

pertaining to each of the answers. For our evalu- 510

ation, we set k = 5. (ii) QA for candidate: uti- 511

lizes candidate description as input for the LLM 512

to extract answers for those questions generated 513

in prior steps. (iii) Compute average BertScores 514

(precision, recall, F1) between the answers gen- 515

erated by the LLM for the same set of questions 516

but with the reference and candidate descriptions 517

as contextual inputs. As such, the QA Overlap F1 518

is aimed at effectively assessing the reliability of 519

table summaries by measuring their alignment with 520

established ground truths. 521

4.4 Coherence and Cohesion 522

Coherence via Embeddings. We compute the co- 523

sine similarity scores of embeddings from instruct- 524

xl for each individual sentence in the generated 525

metadata. Then, the embedding coherence is com- 526

Figure 3: Illustration of computing QA overlap F1 given
a reference.
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puted by averaging cosine similarity between con-527

secutive sentences throughout the paragraph, where528

higher values imply more coherent description.529

Note this metric only applies to table description.530

Lexical Cohesion. This is a metric reliant on identi-531

fying the recurrence of lexical items, such as using532

pronouns to refer back to nouns, or the repetition533

of certain words and phrases which helps in linking534

different parts of a text. In this case, the lexical535

cohesion score is simply computed by the ratio of536

repeated words to the total number of words.537

Perplexity. This metric is derived from the perplex-538

ity scores of a pretrained autoregressive model. It539

assesses the congruence between the model’s pre-540

dicted word probabilities and the actual distribution541

in the pre-training corpus. Lower perplexity often542

correlates with more human-like text generation.543

5 Experiments544

5.1 Enhancing Keyword Search by545

LLM-Enriched Table Metadata546

Figure 4: Customized keyword search workflow.

In this experiment, we investigate whether ta-547

ble metadata generated by LLM stewards can im-548

prove keyword-based table search effectiveness.549

The search queries for this study were generated by550

sampling tokens from table schemas. The number551

of tokens sampled per query ranged from 1 to 5, de-552

termined by sampling from a Poisson distribution553

(λ=3). Without prior knowledge of the database554

and its specific formatting, user query keywords555

often do not exactly match the schema; they are556

more likely to be in alternate forms, including syn-557

onyms, abbreviations, or expansions. Therefore,558

to simulate a more realistic search experience, we559

enrich the sampled queries using an LLM (refer to560

Figure 4). It is important to note that the assump-561

tion is based on the search keywords originating562

solely from raw data; no keywords or variants de-563

rived from exogenous information were employed.564

Using the enriched queries and metadata (column565

descriptions and table descriptions) generated from566

different LLM stewards, we conduct the retrieval567

Table 2: Precision at k and mean reciprocal rank (MRR)
for enriched query search over BIRD-SQL dataset without
metadata enrichment (schema-only) and with table/column
descriptions.

Method P@1 P@5 P@10 MRR

sti Only 8.8 12.6 19.0 12.6
sti , d(ti,c) (claude-v1) 25.6 34.7 55.8 35.7
sti , d(ti,c) (claude-v2) 26.6 37.7 56.1 36.8
sti , d(ti,c) (gpt-3.5-turbo) 27.6 39.4 58.3 38.4
sti , d(ti,c), d(ti,t) (claude-v1) 30.8 42.0 60.5 41.2
sti , d(ti,c), d(ti,t) (claude-v2) 32.2 43.4 62.3 42.6
sti , d(ti,c), d(ti,t) (gpt-3.5-turbo) 33.5 45.1 62.8 43.7

using BM25 and measure the search performance 568

by precision at k retrieved results, as well as mean 569

reciprocal rank (MRR). 570

As shown in Table 2, including solely the col- 571

umn descriptions already significantly enhances 572

the search performance compared to using schema- 573

only information. The Precision at 1 (P@1) metric 574

notably improved from 8.8% with the schema-only 575

approach to 25.6%, 26.6%, and 27.6% when en- 576

riched with column descriptions from Claude-v1, 577

Claude-v2, and GPT-3.5-Turbo, respectively. This 578

pattern of improvement is consistent across other 579

precision metrics (P@5 and P@10), indicating that 580

LLM-enriched metadata provides more relevant 581

search results at various result depths. Furthermore, 582

the integration of both column and table descrip- 583

tions (d(ti,t) and d(ti,c)) led to an even more pro- 584

nounced improvement. For example, the P@1 for 585

these combinations showed an increase to 33.5% 586

using GPT-3.5-Turbo, demonstrating that the addi- 587

tion of table descriptions further refines the retrieval 588

relevance. This trend is similarly observed in the 589

MRR, where the inclusion of both column and table 590

descriptions resulted in the highest scores across all 591

models. These results underscore the significance 592

of TABMETA in enhancing keyword-based table 593

retrieval, even in scenarios where the user’s query 594

does not directly align with the underlying schema. 595

5.2 Metric Analysis 596

In our evaluation, we assessed the table descrip- 597

tions generated by three LLM stewards using the 598

automatic metrics outlined in Section 4. The super- 599

vised metrics were computed against the ground 600

truth of TABMETA benchmark. The results, pre- 601

sented in Table 3, indicate that over half of these 602

metrics are consistent with the preferences of LLM 603

judges. This consistency is evident both in the rank- 604

ings derived from metric scores and the correlation 605

between these scores and the LLM judges’ evalu- 606

ations, with a notable preference for results gen- 607

erated from GPT-3.5-turbo, see also from scatter 608

7



Table 3: Average metric scores computed for table and column descriptions from different LLM stewards, and
the correlation coefficients between the metric scores and the average judge scores. Superscripts u and s denote
unsupervised and supervised metrics, respectively. Metrics with the highest scores are highlighted in blue bold for
comparisons across LLM stewards, and red bold signifies the strongest correlation with judges’ scores.

Average Metric Scores (LLM steward) Correlation with LLM Judge Scores
Claude-v1 Claude-v2 GPT-3.5-turbo Pearson Spearman

Metric Name d(ti,t) d(ti,c) d(ti,t) d(ti,c) d(ti,t) d(ti,c) d(ti,t) d(ti,c) d(ti,t) d(ti,c)

Approx. Kolmogorov Complexityu ↓ 8.35E5 4.94E5 7.19E5 5.11E5 1.18E6 5.61E5 0.318 0.086 0.341 0.113
Embedding Variance u ↑ 0.213 0.177 0.212 0.177 0.223 0.178 0.251 0.124 0.249 0.110
Semantic Entropy u ↑ 6.638 3.186 6.343 3.289 6.592 3.392 0.165 0.092 0.169 0.087
KL Divergence u ↑ 4.930 4.582 4.538 5.040 4.394 5.105 -0.036 -0.030 -0.009 -0.041
Semantic Overlap F1 s ↑ 0.875 0.929 0.893 0.923 0.950 0.952 0.756 0.692 0.742 0.721
QA Overlap F1 s ↑ 0.787 0.891 0.800 0.889 0.909 0.928 0.552 0.604 0.659 0.685
Coherence u ↑ 0.687 - 0.681 - 0.729 - 0.310 - 0.362 -
Lexical Cohesion u ↑ 0.155 0.105 0.169 0.120 0.167 0.123 0.062 0.112 0.046 0.109
Perplexity u ↓ 29.933 178.693 30.382 172.477 13.665 141.298 -0.236 -0.117 -0.347 -0.163

plots in Figure 5 and Figure 6 (Appendix). For in-609

stance, F1 scores for semantic overlap (supervised),610

exhibited the highest Pearson correlation scores,611

reaching 0.756 and 0.692 for table and column de-612

scriptions, respectively. However, certain metrics613

including semantic entropy, KL divergence, and614

lexical cohesion showed very low correlation, sug-615

gesting these aspects were less valued by the LLM616

judges. Interestingly, despite being a measure of617

conciseness, the approximated Kolmogorov com-618

plexity demonstrated a positive correlation with619

LLM judge scores, indicating a preference for com-620

pleteness over conciseness in their assessments.621

6 Related Works622

Prior works on meta data enrichment for tabular623

data. have primarily taken three different directions624

(i) Column Semantic Type Annotation (CSTA) (ii)625

Table Summarization (iii) Semantic matching to626

help with better search/ understanding of the under-627

lying tabular data.628

Column Semantic Type Annotation: CSTA as-629

sociates every column name in the table to a pre-630

defined glossary to enhance search and understand-631

ing. Prior deep learning methods like Sherlock632

(Hulsebos et al., 2019) and SATO(Zhang et al.,633

2019), use column statistics and character distribu-634

tions as features to their models. CSTA often is635

limited to a pre-defined glossary and also requires636

human-annotated training data, which can be dif-637

ficult to obtain in real-life - and also do not add638

a table-wide unique tag understandable by down-639

stream users different from the data producers.640

Table Summarization: Prior works on tabular641

data summarization (Lo et al., 2000; Zhang et al.,642

2020a; Kumar et al., 2022; Ienco et al., 2013) have643

largely leveraged rules and constraints to summa-644

rize the contents of a table or its schema – with out-645

puts also limited to a certain pre-defined and small646

vocabulary. In addition to making the implicit as-647

sumption that the consumer is often familiar with 648

terminology used by the producer, these mecha- 649

nisms were not designed to work on arbitrarily 650

complex tables from different industrial domains. 651

Semantic Matching: Semantic matching meth- 652

ods (Li et al., 2021) broadly comprise of techniques 653

such as schema matching, entity matching and link- 654

ing. In the case of schema matching, it identifies 655

columns which are similar/ identical across tables 656

which can help with joins/ unions, etc. While these 657

methods can help search and discover related tables, 658

they still do not make discovery or understanding 659

of any given table easier for a data consumer with- 660

out knowledge of the data producer’s terminology. 661

Entity matching and linking methods on the other 662

hand are useful when rows in different tables are 663

different attributes of the same entity (orthogonal 664

to our work, as we don’t work with table content). 665

7 Conclusion 666

Our work introduced TABMETA, a natural language 667

task that generates comprehensive metadata for ar- 668

bitrarily complex tables, enabling non-expert users 669

to discover, understand and use relevant data more 670

effectively. As a part of our contributions, we cu- 671

rated a unique benchmark dataset for the TABMETA 672

task, comprising table descriptions and column de- 673

scriptions for 302 tables spanning 30 industry do- 674

mains. We also put forward two tabular metadata 675

evaluation strategies (a) a robust and consistent 676

LLM-Judge based framework which employed con- 677

fidence scores suited for tabular metadata and (b) 678

ML based metrics to capture quality of the gen- 679

erated metadata such as conciseness, coherence, 680

information gain, etc. Finally, we also showed that 681

our metadata enhancement framework substantially 682

improves the performance of tabular data discovery 683

and search by a factor of 3-4x. 684
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8 Limitations685

While our work introduces an innovative approach686

to generating metadata for complex tables, several687

areas for further enhancement exist. Although we688

conducted a preliminary human evaluation showing689

alignment with LLM judges, a more extensive hu-690

man evaluation would further validate our findings.691

Our dataset, with 302 tables across 30 domains,692

provides a strong foundation but may not encom-693

pass all real-world diversity, and scaling to larger694

datasets involves higher costs. Despite using LLM695

judges and confidence scores to reduce biases and696

inaccuracies, the reliance on large language models697

can still pose challenges. While we acknowledge698

the potential of advanced prompt engineering strate-699

gies to improve the quality of generated metadata,700

it is not the primary focus of this work. Lastly,701

our metrics are only proxies, as the true evaluation702

is intractable to compute, suggesting that further703

refinement of these metrics could enhance future704

research.705
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9.1 Analysis of Automated Evaluation Methods1004

We compare the overall LLM judge scores for each table’s metadata with each individual automated1005

evaluation metric proposed in Section 4 in Figure 5 (table description) and Figure 6. The different1006

generations from candidate LMs including GPT-3.5-Turbo, Claude-v1, and Claude-v2 were highlighted in1007

different colors. Note that the descriptions for each individual table column are non-consecutive, therefore1008

the Coherence metric were not computed for column descriptions.1009

Figure 5: Scatter plots for supervised and unsupervised evaluation metrics for table descriptions from LLM stewards
versus the overall ratings (out of 10) from LLM judges.

Figure 6: Scatter plots for supervised and unsupervised evaluation metrics for column descriptions from LLM
stewards versus the overall ratings (out of 10) from LLM judges.
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Figure 7: Distribution of domains for tables included in the benchmark.

9.2 Additional Details about Dataset Curation 1010

We conducted a human evaluation study by randomly sampling the LLM-generated metadata for 20 tables, 1011

and asked a group of three data scientists and analysts to assess the quality of the generated metadata 1012

using the exact instruction/rubric for LLM judges. The scores from the three human evaluators were 1013

averaged and compared with the LLM judge scores averaged from different order permutations (with 1014

using confidence scores). As shown in Table 4, the averaged human scores reflect the same preference to 1015

the metadata generated by GPT-3.5-Turbo model, consistent with the LLM-evaluation approach. 1016

Table 4: Overall LLM judge scores and average human evaluation scores for the 20 sampled table metadata.

Judges
Steward claude-v1 claude-v2 gpt-3.5-turbo gpt-4-turbo llama2-70b human

Table Description
claude-v1 8.00 7.50 7.85 7.85 7.80 7.58
claude-v2 8.00 7.25 8.05 8.20 8.07 7.28
gpt-3.5-turbo 9.17 8.00 9.00 8.35 9.00 7.73

Column Description
claude-v1 7.89 7.70 7.35 7.60 7.20 6.50
claude-v2 7.58 7.20 6.90 7.60 6.87 6.62
gpt-3.5-turbo 8.68 7.85 8.40 7.85 8.33 7.33

9.3 Prompts Used for Metadata Generation and LLM Evaluation 1017

For the table named {table_name}, with schema ’{schema_list}’ ({len(schema_list)} attributes), provide
detailed descriptions for each column. Use the following format for each column on separate lines:
’[Column Name] | [Description]’. Ensure that the descriptions are clear, informative, and precise. Do
not generate any additional text at the beginning or end of the response.

Figure 8: Prompt template for generating column-level descriptions.
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Given the table name {table_name}, schema ’{schema_list}’, along with the detailed column descriptions:
’{column_description_dict}’, generate a comprehensive and reliable global description for the table.
The description should provide a broad understanding of the data contained within the table, its
relevance, the relationships among different columns, and any potential implications or insights it
might offer. While crafting the description, seamlessly incorporate the column descriptions into the
narrative to provide a cohesive understanding of the table’s structure and content. Do not generate
any additional text at the beginning or end of the response.

Figure 9: Prompt template for generating table-level descriptions.

You are an expert database catalog creator who is evaluating metadata for a table drafted by different models, based only on the
table schema. For each sentence, there is a corresponding confidence score for your reference.
Candidate metadata for this table in JSON:

{
"table_name": "debit_card_specializing.transactions_1k",
"llm_results": {
"model1": {
"table description": {
"description": [
"The debit_card_specializing.transactions_1k table contains records of transactions made using debit cards at gas

stations.",
"Each record includes a unique TransactionID to identify the transaction.",
...

],
"confidence": [
0.9908298118971288,
0.9989090043818578,
...

]
},
"attribute description": {
"attribute name": [
"TransactionID",
"Date",
...

],
"description": [
"Unique identifier for each transaction record",
"Date the transaction occurred",
...

],
"confidence": [
0.9939870447851717,
0.9790911888703704,
...

]
}

},
"model2": {
...

},
"model3": {
...

}
}

Please provide an overall score from 1 to 10 for each table description and each set of column descriptions, considering their
accuracy, clarity, consistency, completeness, context awareness, handling of ambiguity, and informativeness. A score of 1 represents
extremely poor performance across these aspects, while a score of 10 indicates exceptional performance in all areas. Avoid any
potential biases.
Before giving the score, provide a detailed reasoning of your evaluation, and the order of the candidate responses should not affect
your judgement. The response should follow the reasonings and contain the example JSON code snippet.
{
"column": {
"model1": # score between 1 to 10, worst to best,
"model2": # score between 1 to 10, worst to best,
"model3": # score between 1 to 10, worst to best

},
"table": {
"model1": # score between 1 to 10, worst to best,
"model2": # score between 1 to 10, worst to best,
"model3": # score between 1 to 10, worst to best

}
}

Response:

Figure 10: Prompt template for LLM judge.
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Table 5: Example from TABMETA Benchmark from affordable-housing-by-town-2011-2022 Table

Table Description

The ‘affordable-housing-by-town-2011-2022’ table provides a comprehensive overview of affordable housing units in various
towns from 2011 to 2022. The table contains information on the number of affordable housing units, including government-
assisted units, tenant rental assistance, single-family CHFA/USDA mortgages, and deed-restricted units. The ‘Year’ column
indicates the specific year for which the data is recorded, allowing for temporal analysis of affordable housing trends over
time. The ‘Town Code’ and ‘Town’ columns provide the unique code and name of each town, enabling the identification
and comparison of affordable housing statistics across different locations. The ‘2010 Census Units’ column offers a baseline
for understanding the total housing units in each town, providing context for the proportion of affordable housing within the
overall housing stock. The ‘Total Assisted Units’ column aggregates the various types of assisted housing units, offering a
consolidated view of the overall impact of government assistance and rental programs on affordable housing availability. The
‘Percent Affordable’ column calculates the percentage of affordable housing units relative to the total housing units, providing a
key metric for assessing the level of affordability within each town.

Attribute Name Description

Year The year in which the data was recorded.
Town Code A unique code assigned to each town for identification purposes.
Town The name of the town for which the data is being reported.
2010 Census Units The number of housing units recorded in the 2010 census for the respective town.
Government Assisted The number of housing units that received government assistance for affordability.
Tenant Rental Assistance The number of housing units that received rental assistance for tenants.
Single Family CHFA/ USDA Mortgages The number of single-family housing units that received mortgages from the Connecticut

Housing Finance Authority (CHFA) or the United States Department of Agriculture
(USDA).

Deed Restricted Units The number of housing units with deed restrictions to maintain affordability.
Total Assisted Units The total number of housing units that received any form of assistance for affordability.
Percent Affordable The percentage of housing units in the town that are considered affordable based on the

provided assistance.
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