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ABSTRACT

Estimating category-level articulated object poses is crucial for robotics and vir-
tual reality. Prior works either rely on costly annotations, limiting scalability, or
depend on auxiliary signals such as dense RGB-D sensing and geometric con-
straints that are rarely available in practice. As a result, articulated pose estima-
tion from a single RGB image remains largely unsolved. We propose ReCAP, a
Recursive prompting for self-supervised Category-level Articulated object Pose
estimation from an image. ReCAP adapts a pre-trained foundation model using a
Recursive Prompt Generator with residual injection, introducing less than 1% ad-
ditional parameters. This mechanism enables parameter-efficient scaling through
recursive refinement, while residual injection preserves token alignment under dy-
namic reconfiguration, yielding robust articulated-object adaptation. To further
resolve structural ambiguities, we introduce X -SGP, a multi-scale fusion module
that adaptively integrates semantic and geometric cues, an aspect often overlooked
by geometry-centric approaches. Experiments on synthetic and real benchmarks
demonstrate state-of-the-art monocular articulated pose estimation without requir-
ing 3D supervision or auxiliary depth input. To the best of our knowledge, ReCAP
is the first self-supervised framework to accomplish this task from a single image.

1 INTRODUCTION

Accurate estimation of articulated objects from visual signals is crucial for both intelligent robots
and next-generation AR experiences (Chang et al., 2020). Due to geometric uncertainty arising from
depth ambiguity and occlusion, early works often rely on high-quality annotation (Li et al., 2020) or
incorporate expanded signals such as dense RGB-D sensing or multi-view 3D supervision (Li et al.,
2020; Yu et al., 2024a; Fu et al., 2024). While these methods have advanced the field, they remain
constrained by three major limitations (LI–LIII), which we elaborate on below.

Research on category-level articulated object pose estimation spans supervised, weakly supervised,
and self-supervised paradigms. Supervised (Li et al., 2020; Jiang et al., 2022; Yu et al., 2024b)
and weakly supervised (Zheng et al., 2023) methods suffer from (LI) prohibitive annotation costs
and poor scalability, as they require large-scale, high-quality joint-level labels that are difficult
to obtain given the complexity and diversity of articulated pose configurations. Self-supervised
methods (Liu et al., 2023b; Che et al., 2024) alleviate labeling demands but incur (LII) unrealistic
data assumptions, typically assume readily available depth point clouds as input (Xue et al., 2021;
Xiang et al., 2020), which are rarely accessible outside synthetic environments. Fundamentally, most
methods depend solely on geometric cues, leading to (LIII) limited semantic reasoning, resulting in
structural ambiguities and unreliable joint correspondences. As a result, models remain vulnerable to
occlusion and sensor noise, even when equipped with proxy losses (e.g., Chamfer Distance) within
SE(3)-equivariant frameworks (Li et al., 2021).

Given these limitations, inferring articulated object poses directly from a single in-the-wild RGB
image remains a fundamental yet unsolved challenge. Without depth, multi-view supervision, or
curated annotations, models face severe depth ambiguity, occlusion, and diverse visual appearances,
under which geometry-centric paradigms inevitably break down.
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In this paper, we present ReCAP, the first self-supervised framework for single-image category-
level articulated object pose estimation, designed to simultaneously address challenges (LI)–(LIII).
Although the recent geometry foundation model VGGT (Wang et al., 2025) offers strong monocular
3D priors, making it a promising starting point for articulated pose estimation, its rigid-object pre-
training (Reizenstein et al., 2021; Ling et al., 2024) limits part semantics and kinematic variability,
causing distribution shifts on articulated targets. Adapting the foundation model (12.6B parameters)
by naive finetuning is costly and risks harming generalization (Wortsman et al., 2022). We there-
fore adopt embedding-space adaptation via vision prompting (Raghu et al., 2021; Yang et al., 2022).
However, applying prepended-token prompting (Jia et al., 2022) to VGGT exposes two limitations
in stability and scalability. Token reconfiguration prevents prepended tokens from providing con-
sistent benefits, while shallow prompts lack expressiveness and deeper stacking inflates parameters,
worsening the capacity–efficiency trade-off. To overcome these issues, we propose the Recursive
Residual Prompting. Specifically, recursive refinement enables parameter-efficient scaling, while
residual injection stabilizes prompts under misalignment, ensuring robust adaptation.

After adapting to articulated objects with prompts, we further address occlusion and structural vari-
ation, factors often overlooked by geometry-centric approaches (Che et al., 2024; Li et al., 2021), by
developing the Cross Semantic–Geometry Pyramid (X -SGP), which hierarchically fuses semantic
and geometric cues via adaptive modulation. To additionally ensure robustness across viewpoints,
we enforce a geometry-invariant feature space through discrete alignment and normalization. Fi-
nally, we employ a unified PoseHead (Che et al., 2024) to jointly estimate object- and part-level
poses, transforming rigid-object priors into a semantics- and geometry-aware representation for ro-
bust self-supervised monocular articulated pose estimation.

Our contributions can be summarized as follows:

• We introduce the Recursive Residual Prompting that overcomes the limitations of standard
prompt tuning under dynamic token reconfiguration. It also achieves parameter-efficient,
depth-equivalent adaptation of VGGT to articulated objects.

• We introduce a hierarchical semantic–geometry fusion module that adaptively resolves oc-
clusion and symmetry ambiguities overlooked by geometry-centric methods.

• To the best of our knowledge, ReCAP is the first self-supervised framework for category-
level articulated object pose estimation from a single RGB image. It achieves state-of-the-
art results on both synthetic and real-world articulated object benchmarks, paving the way
for practical monocular articulated object pose estimation.

2 RELATED WORK

Category-level Articulated Object Pose Estimation. Articulated object pose estimation targets
part-level pose, segmentation, and joint recovery for movable category-level objects. Early super-
vised methods (Li et al., 2020; Jiang et al., 2022; Yu et al., 2024b) achieved impressive results
using large-scale datasets (Xiang et al., 2020; Liu et al., 2022) with dense part and joint anno-
tations, but such annotations are costly and hinder scalability. To alleviate annotation demands,
recent works explored self- and weakly supervised approaches. EAP (Liu et al., 2023b) enables
self-supervised part segmentation and pose estimation from single-frame point clouds, but struggles
with large geometric and pose variations, often leading to inconsistent segmentation. OP-Align (Che
et al., 2024) improves robustness to pose variance via part-level alignment, but relies on high-quality
point clouds and uniform object structures, limiting applicability in real-world scenarios. Other lines
exploit multi-view observations (Insafutdinov & Dosovitskiy, 2018; Li et al., 2018) or neural im-
plicit representations (Irshad et al., 2022; Zhang et al., 2024) to recover articulation without direct
pose supervision. Despite these advances, most methods still rely on depth sensors and emphasize
geometry while neglecting semantic cues. Although some works explore single-image articulated
object generation or reconstruction (Lu et al., 2025; Aygun & Mac Aodha, 2024), they do not tackle
category-level pose estimation from raw RGB. This gap motivates investigating articulated pose
estimation directly from a single RGB image by leveraging semantic and geometric cues.

Prompt Learning in Computer Vision. Prompt learning originated in NLP to adapt large language
models with most parameters frozen. As part of the broader family of parameter-efficient fine-
tuning (PEFT) methods (Liu et al., 2023a; 2021; 2024), it has been extended to vision-language
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Figure 1: Overview. (A) System Pipeline: Given a single image I, the network predicts articulated
poses (Tk, θk). It integrates a Visual Encoder (DINOv2) and a Geometric Encoder (VGGT), the lat-
ter guided by Recursive Prompt Generators (input- and output-side, Sec. 3.2). Features are fused by
the Cross Semantic–Geometry Pyramid Fusion module (Sec. 3.3), then passed through Canonical
Alignment and the final pose estimation head (Sec. 3.4). (B) Recursive Prompt Generator: Gen-
erates prompts through iterative refinement, starting from an initial latent prompt, the Refinement
Operator recursively updates the representation, and a Projection produces the final latent prompt.
(C) Cross Semantic–Geometry Pyramid Fusion: Combines semantic and geometric tokens via
cross-attention and FiLM modulation, applying scale and shift operations to produce fused tokens.

models such as CLIP (Radford et al., 2021) and further developed into continuous and conditional
prompts (Zhou et al., 2022b;a). In vision, prompt tuning has emerged as an efficient alternative to full
fine-tuning for transformers (Jia et al., 2022; Park & Byun, 2024), and has been explored for point
cloud understanding (Zhou et al., 2024) and multi-modal learning (Yang et al., 2022; Wang et al.,
2024a). Despite progress on prompt-based human pose (Li et al., 2025) and hand pose (Garg et al.,
2024), articulated object pose estimation from a single RGB image under self-supervision remains
largely unexplored, which demands structured 3D reasoning and articulation-aware adaptation.

3 METHOD

3.1 TASK FORMULATION

We tackle category-level articulated pose estimation from a single RGB image I in a self-supervised
setup without depth, multi-view, or 3D annotations. We assume the part count K and joint types
(revolute or prismatic) are known per category, but no instance-level labels (e.g., part masks, corre-
spondences, poses) are given. For each of the K parts, we predict its 6-DoF rigid transformation:

Tk = [Rk | tk] ∈ SE(3), Rk ∈ SO(3), tk ∈ R3.

together with its articulation parameter θk (e.g., revolute angle or prismatic displacement). Formally,
the task is to learn a mapping:

fϕ : I 7→ {(Tk, θk)}Kk=1,

where articulated pose is defined by the set of rigid part transformations and their articulation states.

3.2 RECURSIVE RESIDUAL PROMPTING

Observation and Motivation. We tackle category-level articulated pose estimation in the challeng-
ing self-supervised, single-RGB setting. To obtain geometric priors without depth supervision, we
build on the geometry foundation model VGGT (Wang et al., 2025), which predicts dense point
clouds from monocular RGB. However, since VGGT is mainly trained on rigid objects (Reizenstein

3
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et al., 2021; Ling et al., 2024), it fails to capture part semantics and kinematic variability, resulting in
a severe distribution shift on articulated targets (see Table 4). Direct fine-tuning of its 12.6B param-
eters is computationally prohibitive and risks catastrophic forgetting (Dong et al., 2024), motivating
a prompt-based adaptation strategy.

Basically, prompt tuning (Li & Liang, 2021; Yang et al., 2022; Jia et al., 2022) adapts pretrained
models by prepending learnable prompts to task tokens. However, two issues prevent its direct
application to VGGT in our task: 1) Limited expressivity of shallow prompts. Shallow prompts have
limited capacity to model complex representations. Increasing their number or stacking them across
layers can improve expressivity, but incurs significant fine-tuning cost, undermining the efficiency
advantage of prompt tuning. 2) Dynamic token misalignment. Prompt tuning assumes that tokens
remain statically aligned across layers, preserving a fixed correspondence as information propagates
through the network:

Ti = [Ei; Pi], Ti maintains index alignment with Ti−1, (1)
where Ei (task) and Pi (prompt) are aligned to preserve cross-layer correspondence. This assump-
tion is violated in architectures with dynamic token operations (Yang et al., 2023; Li et al., 2024),
including VGGT, where token sets are reconfigured during propagation. As a result, prompts lose
consistent correspondence with task tokens, limiting effectiveness, as also observed in (Jia et al.,
2022). We substantiate this theoretically in Appendix B.1 and empirically in Appendix B.2.

Proposed Recursive Residual Prompting. To address the above two challenges, we introduce
Recursive Residual Prompting, which tackles the limited capacity of shallow prompts through re-
cursive update and injects prompts to the backbone’s stable boundary layers via residual injection
to mitigate dynamic token misalignment. Finally, the prompts are injected at both the input and
output sides of the backbone with our complementary dual prompts design. We present the details
of the three key modules as follows.

(i) Recursive update. As shown in Fig. 1(B), the structure of the prompt generator is defined
via truncated fixed-point iteration, with ξ ∈ RN×d as anchor features, y(l) ∈ RN×d the refined
latent prompt, and shared parameters Θ across iterations:

y(0) = Adapter(ξ),

y(l) = F
(
y(l−1); Θ

)
+ y(0), l = 1, . . . , L,

P(ξ)︸ ︷︷ ︸
∈RN×d

= Projection
(
y(L)

)
.

(2)

The Adapter maps anchor features ξ to an initial prompt y(0), which is recursively updated by F
to y(l) and, after L steps, projected to the final prompt P(ξ). The operator F is anchor-specific: a
two-layer MLP with GELU for Pin and a lightweight Conv1d block (kernels 3 and 1) for Pout.

We adopt a tied-parameter recursion (Eq. (2)), a truncated fixed-point iteration inspired by Deep
Equilibrium Models (DEQ) (Bai et al., 2019), which approximates the equilibrium state by solving:

gΘ(y; ξ) = F(y; Θ) + y(0) − y = 0. (3)
If the refinement operator F(·; Θ) is a contraction, the recursion in Eq. (2) converges to a unique
fixed point y⋆ with error ∥y(l)−y⋆∥ = O(Ll) (Banach fixed-point theorem). In practice, we truncate
at L = 8 iterations for a stable approximation, as validated in Fig. 3.

This recursive design directly addresses the limited expressivity of shallow anchors while avoiding
the inefficiency of naive stacking. Concretely, each refinement step can be viewed as reproject-
ing anchors into the backbone’s residual space, forming depth-equivalent virtual layers under fixed
model size. Recursion further serves as a compute-only scaling knob: increasing rounds extends
inference depth without enlarging the model. Such behavior aligns with recent scaling-law find-
ings (Alabdulmohsin & Zhai, 2025; Wang et al., 2024b), providing a principled strategy for scaling
prompt adaptation within a single layer. It also retains the constant-memory benefit of implicit-
depth models, since no intermediate states need to be stored across rounds.

(ii) Residual injection. Once recursive prompts are generated, we integrate them into the back-
bone via residual blending. Direct replacement harms frozen features, whereas gated residual blend-
ing preserves stability. Given an input image I, the patch embedding produces tokens η ∈ RN×d.

4
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The input-side block modulates these tokens as:

η̃ = (1− β1) η + β1 Pin(η), β1 = σ
(
g1(η)

)
, (4)

where g1(η) is a scalar gating logit from global average pooling followed by a 2-layer MLP, and σ

is the sigmoid. The frozen backbone E then produces intermediate features z = E(η̃) ∈ RN ′×d′
.

Analogously, the output-side block is applied before the prediction head:

z̃ = (1− β2) z + β2 Pout(z), β2 = σ
(
g2(z)

)
. (5)

Here β1, β2 ∈ [0, 1] are dynamic gates that adaptively fuse original and prompt-modulated features,
enabling residual blending.

(iii) Complementary dual prompts. We use two endpoint prompts: an input-side prompt (Pin)
that captures fine-grained spatial patterns from early features but tends to decay with depth (Yoo
et al., 2023; Zhou et al., 2022a), and an output-side prompt (Pout) that accesses high-level semantics
from late features but is spatially coarse (Sun et al., 2024). This dual placement provides comple-
mentary adaptation that neither early nor late prompts alone can achieve.

Together with recursion and residual blending, it forms a lightweight, stable mechanism to mod-
ulate feature flow without disturbing the frozen backbone, thereby accommodating the structural
variability of articulated objects.

3.3 PYRAMID REPRESENTATION INTEGRATION OF SEMANTIC AND GEOMETRY

Although prompt tuning alleviates the distribution gap from rigid pre-training, most existing
category-level self-supervised methods (Liu et al., 2023b; Che et al., 2024) remain geometry-
centric, leaving complementary semantic information largely unexploited. To this end, we propose
the Cross Semantic–Geometry Pyramid (X -SGP), which fuses semantic and geometric tokens into
articulation-aware representations, resolving ambiguities under occlusion and symmetry.

Semantic and Geometric Feature Extraction. Given an input image I, a frozen visual encoder ΦV

extracts semantic context, while a prompt-tuned encoder ΦPT
G captures geometry-aware structure:

Himg = ΦV (I) ∈ RN×D, Υgeo = ΦPT
G (I) ∈ RM×D, (6)

where Himg denotes the semantic tokens and Υgeo denotes the geometric tokens.

Architecture of X -SGP. As shown in Fig. 1(C), the geometry queries attend to semantic tokens,
refining geometry features with semantic context to enhance the localization of articulated objects:

Υ̃geo = CrossAttn(Υgeo
query,H

img
key ,H

img
value). (7)

Then, the semantic context is used to generate FiLM (Perez et al., 2018) parameters γ,ρ, which
serve as scale and shift factors for feature-wise modulation:

[γ,ρ] = MLP
(
MeanPool(Himg)

)
,

κraw
fused = ReLU

(
Υ̃geo ⊙ (1 + γ) + ρ

)
,

(8)

where ⊙ denotes element-wise multiplication; γ,ρ modulate geometry features to stabilize align-
ment. The fused tokens are refined by a pyramid of DSConv (Howard et al., 2017). This refinement
captures local interactions and articulation-induced deformations:

κpyr
fused = GELU

(
κraw
fused +

( ◦∏
d∈{1,2,4}

DSConv3,d
)
(κraw

fused)
)
, (9)

where
◦∏

denotes sequential composition. This completes the X -SGP module, which dynamically
fuses semantic context and geometry features into articulation-aware representations (Implementa-
tion details are provided in Appendix C).

3.4 POSE REPRESENTATION AND ESTIMATION

Point Cloud Prediction and Canonical Alignment. Fused tokens κpyr
fused are adapted by a

lightweight MLP and passed through the frozen VGGT decoder to produce dense point clouds Qpred.

5
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These are then normalized to a canonical scale and translation, yielding Q̃norm, which reduces global
pose ambiguities (see Appendix D for details).

To ensure a consistent basis and remove global pose ambiguity, we normalize each point cloud and
align it to a canonical representation by discretizing SE(3) into anchors and selecting the transfor-
mation that minimizes the Chamfer distance (CD) to a learnable category-level template:

(R∗, t∗) = arg min
(Rj ,tj)∈A

CD(RjQ̃norm + tj ,Qref
norm). (10)

The aligned point cloud is then Q̂cano = R∗Q̃norm+t∗. This discrete alignment is applied only during
training as an auxiliary supervision (see Appx. D.1 for normalization and discretization details).

Physically-consistent Augmentation. To alleviate scale ambiguity in monocular 3D reconstruction,
we adopt a simple augmentation strategy that jointly perturbs the predicted canonicalized point cloud
Q̂aug

cano, which promotes scale-invariant learning (see Appendix D.2 for details).

Articulated Object Pose Estimation. We feed the fused tokens κpyr
fused into a unified PoseHead,

following OP-Align (Che et al., 2024), which simultaneously handles object-level and part-level
pose estimation. At the object level, PoseHead predicts O candidate global transformations
{(Ro, to)}Oo=1:

{(Ro, to)}Oo=1 = PoseHead(κpyr
fused), (11)

and selects the best candidate using nearest-neighbor distance (NND) scoring:

(Ro, to) = argmax
i

−NND(R[i]Q̂aug
cano + t[i],Qref

norm). (12)

At the part level, PoseHead regresses per-part rigid transformations together with articulation pa-
rameters {(Tk, θk)}Kk=1. The canonicalized global pose (Ro, to) reduces variance, while the artic-
ulation parameters θk capture kinematic states such as joint rotations or prismatic displacements.
Canonicalized supervision reduces pose variance. Meanwhile, semantic–geometric fusion ensures
consistent alignment and accurate articulation recovery across diverse objects.

3.5 LOSS FUNCTION

We follow OP-Align (Che et al., 2024) and adopt its object- and part-level reconstruction losses,
denoted as Lpose. On top of this baseline, we introduce a DEQ-style regularization term with weight
λ to stabilize recursive prompt updates by encouraging fixed-point consistency (details in Appx. E)

Ltotal = Lpose︸︷︷︸
Pose Estimation

+λ
∑

a∈{in, out}

∥∥∥Fa

(
y(L)
a ; Θ

)
+ y(0)

a − y(L)
a

∥∥∥2
F︸ ︷︷ ︸

Recursive Residual Prompting

. (13)

4 EXPERIMENTS

In this section, we evaluate ReCAP on three articulated object benchmarks: two real-world datasets
(OP-Align (Che et al., 2024), HOI4D (Liu et al., 2022)) and one synthetic dataset (PartNet-
Mobility (Xiang et al., 2020)). OP-Align and HOI4D cover scanned or human–object interaction
scenarios, while PartNet-Mobility provides CAD-based articulated objects for controlled evaluation.
(Additional dataset statistics and implementation details are provided in Appendix F.)

4.1 DATASETS AND EVALUATION METRIC

OP-Align (real-world). The OP-Align dataset (Che et al., 2024) is a scanned articulated-object
benchmark with part-level pose annotations. We follow the standard protocol and evaluate on
four categories: laptop, suitcase, drawer, and scissors. For part segmentation, we report mean
Intersection-over-Union (mIoU) across all object parts. For pose evaluation, we follow the category-
level 6D pose protocol (Che et al., 2024; Liu et al., 2023b), reporting average precision (AP) where
a prediction is correct if translation and rotation errors of all parts fall within 5/10/15 cm and
5◦/10◦/15◦, respectively. We further measure joint pivot and direction accuracy under the same
thresholds, and report part segmentation mIoU at 75% and 50% overlap.

HOI4D (real-world). The HOI4D dataset (Liu et al., 2022) is a large-scale 4D egocentric benchmark
for category-level human–object interaction. Following the preprocessing of (Liu et al., 2023b), we

6
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Table 1: Comparison with state-of-the-art methods on the real-world OP-Align dataset (Che
et al., 2024). Evaluated articulated object categories include laptop, suitcase, drawer, and scis-
sors. “Supervised” indicates that the method is trained with annotated RGB-D data, while “self-
supervised” indicates that it is trained without any manual annotations. Our method ReCAP relies
only on a single RGB image in a self-supervised manner. (↑: higher is better)

Category Type Method Modalities Segm. (IoU↑) Joint Precision (AP↑) Part Precision (AP↑)
75% 50% 5°5cm 10°10cm 15°15cm 5°5cm10°10cm15°15cm

Laptop

Supervised 3DGCN (Lin et al., 2020) RGB + Depth 93.20, 95.87 73.30 96.12 96.60 31.31 72.57 82.03

Self-supervised
EAP (Liu et al., 2023b) RGB + Depth 89.82, 91.47 1.24 88.60 90.89 26.54 70.65 81.49
OP-Align (Che et al., 2024) RGB + Depth 95.02, 96.89 2.63 95.44 96.07 31.57 76.22 89.87
ReCAP (Ours) RGB 96.39, 97.70 5.21 96.16 97.25 33.12 77.08 90.63

Suitcase

Supervised 3DGCN (Lin et al., 2020) RGB + Depth 97.36, 98.95 43.31 86.09 94.49 10.24 49.87 77.17

Self-supervised
EAP (Liu et al., 2023b) RGB + Depth 4.57, 48.74 2.32 66.65 86.76 0.54 14.23 48.14
OP-Align (Che et al., 2024) RGB + Depth 8.98, 55.23 4.01 71.42 93.02 1.01 17.19 53.67
ReCAP (Ours) RGB 11.70, 57.89 6.43 73.57 94.29 2.96 19.40 56.29

Drawer

Supervised 3DGCN (Lin et al., 2020) RGB + Depth 82.52, 96.90 38.27 76.32 91.15 20.80 68.36 88.50

Self-supervised
EAP (Liu et al., 2023b) RGB + Depth 1.24, 49.02 4.03 47.65 76.28 4.73 65.45 75.73
OP-Align (Che et al., 2024) RGB + Depth 3.11, 53.87 9.26 54.79 81.42 6.98 70.02 80.44
ReCAP (Ours) RGB 5.64, 57.05 11.15 56.53 83.12 7.56 72.17 82.13

Scissors

Supervised 3DGCN (Lin et al., 2020) RGB + Depth 76.01, 94.54 43.94 85.99 97.15 1.66 22.33 50.83

Self-supervised
EAP (Liu et al., 2023b) RGB + Depth 6.46, 39.64 41.02 90.24 92.81 28.46 60.57 65.54
OP-Align (Che et al., 2024) RGB + Depth 11.03, 44.98 46.27 95.68 98.92 33.77 65.26 71.62
ReCAP (Ours) RGB 13.17, 46.92 48.09 96.10 98.64 35.57 67.19 72.84

Avg.

Supervised 3DGCN (Lin et al., 2020) RGB + Depth 87.27, 96.56 49.70 86.13 94.84 16.00 53.28 74.63

Self-supervised
EAP (Liu et al., 2023b) RGB + Depth 25.52, 57.22 12.15 73.29 86.69 15.07 52.73 67.73
OP-Align (Che et al., 2024) RGB + Depth 29.54, 62.74 15.54 79.33 92.36 18.33 57.17 73.90
ReCAP (Ours) RGB 31.73, 64.89 17.72 80.59 93.33 19.81 58.96 75.47

evaluate on three categories: laptop, safe, and scissors. We report degree error (◦) for 3D rotation,
distance error (m) for 3D translation, angular error (◦) for joint direction, and Chamfer Distance
(CD-ℓ1) between predicted reconstruction and input partial point cloud for reconstruction quality.

PartNet-Mobility (synthetic). The PartNet-Mobility dataset (Xiang et al., 2020) is a CAD-based
synthetic benchmark of articulated objects. We follow the preprocessing of (Xue et al., 2021) and
evaluate on four categories: suitcase, drawer, scissors, and eyeglasses. We report results on both
clean and randomly occluded partial image inputs, measuring performance by mean Intersection-
over-Union (mIoU) across parts and inference speed in frames per second (FPS).

4.2 RESULTS ON BENCHMARK DATASETS

We compare with 3DGCN (Lin et al., 2020), EAP (Liu et al., 2023b), and OP-Align (Che et al.,
2024), which are evaluated under their original RGB-D input setting, while ReCAP uses only a
single RGB image, highlighting stronger generalization in the more challenging RGB-only regime.

Results on OP-Align dataset. As shown in Table 1, ReCAP in the self-supervised single-image
setting consistently outperforms all self-supervised baselines, and even surpasses the supervised
RGB-D method 3DGCN (Lin et al., 2020) on several categories. On average, it improves part
segmentation mIoU by +2.15 and joint/part AP by +1–2 points, achieving the best performance
on challenging objects such as Laptop and Scissors. These gains demonstrate the effectiveness of
Recursive Residual Prompting in transferring rigid-object priors to articulated settings, while X -
SGP resolves ambiguities from symmetry and occlusion.

For qualitative comparison, Fig. 2 visualizes input images, scanned point clouds, and reconstruc-
tions from EAP, OP-Align, and ReCAP. While the baselines rely on depth-scanned point clouds,
our method requires only a single RGB image. ReCAP produces reconstructions with clear part
segmentation and accurate articulation, faithfully reflecting the object’s observed pose. On suitcases
(third row), it preserves sharp hinge boundaries and distinctly separates the two flaps while capturing
their opening states, in contrast to prior methods that yield blurred or ambiguous boundaries. Even
without human labels, ReCAP surpasses prior self-supervised baselines and approaches supervised
performance, establishing a new SoTA in real-world articulated pose estimation, highlighting the
effectiveness of combining recursive prompting with foundation models and semantic cues.
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OP-Align OursImage EAPPoint Cloud

Laptop
Scissors

Suitcase

Figure 2: Qualitative comparison on object pose estimation from segmented reconstructions. Our
method takes a single RGB image as input, while EAP and OP-Align use depth-scanned point
clouds. Two views are shown for each method, with segmentation indicated by color to illustrate
part-segmented reconstruction quality and accurate articulation.

Results on HOI4D. To further validate our approach in a distinct real-world scenario, we evaluate
ReCAP on the HOI4D dataset (Liu et al., 2022), which provides richer annotations and allows
assessment of pose accuracy and reconstruction quality. As shown in Table 2, ReCAP consistently

outperforms both self-supervised
EAP and OP-Align baselines across
rotation error, translation error, joint
direction error, and reconstruction
quality (CD-ℓ1). On average, ReCAP
reduces rotation error by 0.33–5.61◦

and joint direction error by over
30◦, while maintaining translation
accuracy on par with OP-Align
and further lowering reconstruction
distance. These results demonstrate
that ReCAP achieves substantial im-
provements without sacrificing other
metrics, confirming its robustness and
generalization in egocentric settings.

Table 2: Results on the real-world HOI4D dataset (Liu et al.,
2022). We report rotation error, translation error, joint direc-
tion error, and reconstruction quality (CD-ℓ1). (↓ is better)

Method Laptop Safe Scissors Avg.

Rotation Error
(◦↓)

EAP (Liu et al., 2023b) 7.71 18.65 7.26 9.88
OP-Align (Che et al., 2024) 4.27 6.54 5.98 4.60
ReCAP (Ours) 3.98 5.81 5.02 4.27

Translation Error
(m↓)

EAP (Liu et al., 2023b) 0.079 0.065 0.102 0.082
OP-Align (Che et al., 2024) 0.090 0.064 0.084 0.079
ReCAP (Ours) 0.086 0.058 0.094 0.080

Joint Direction
(◦↓)

EAP (Liu et al., 2023b) 18.02 55.16 - 36.59
OP-Align (Che et al., 2024) 1.46 1.34 - 1.40
ReCAP (Ours) 1.39 1.30 - 1.35

Reconstruction
(CD-ℓ1 × 100↓)

EAP (Liu et al., 2023b) 3.28 3.62 3.15 3.35
OP-Align (Che et al., 2024) 2.92 3.27 2.83 3.01
ReCAP (Ours) 2.65 3.01 2.92 2.86

Table 3: Results on the PartNet-Mobility (Xiang et al., 2020), reporting part segmentation (Segm.
mIoU, %) over four articulated object categories. “Occ.” denotes occlusion; “w/o” is the average on
clean inputs, and “w/” on occluded ones (blue). “Speed” is inference throughput in FPS. (↑ is better)

Method Laptop Eyeglasses Drawer Scissors Avg. (w/o Occ.) / (w/ Occ.) Speed (FPS ↑)

Segm.
(IoU↑)

EAP (Liu et al., 2023b) 79.25 58.79 49.36 38.23 56.40 < 1
OP-Align (Che et al., 2024) 82.92 62.18 51.22 41.49 59.45 41
ReCAP (Ours) 80.64 / 72.36 64.41 / 52.71 53.08 / 45.57 44.15 / 31.94 60.57 / 50.65 13

Results on PartNet-Mobility. Since real-world datasets are limited in scale, we also evaluate on
the synthetic PartNet-Mobility dataset (Xiang et al., 2020) to assess generalization. As shown in
Table 3, we report results under two input conditions: clean inputs (w/o Occ.) compared with SoTA
baselines, and inputs with random occlusion masks (w/ Occ., blue) to simulate real-world scenarios.

ReCAP achieves the best overall performance (60.57% mIoU), showing strong results on thin or
occluded parts such as Eyeglasses, Drawer, and Scissors, with only a slight drop on Laptop, likely
due to the synthetic dataset’s geometric bias and limited semantic cues. Results under occlusion (w/
Occ., blue) serve as a simulation of real-world scenarios, further confirming the robustness of our
approach. Despite a lower FPS (13 vs. 41), ReCAP remains practically feasible, marking a key step
toward deployment without requiring multi-view or depth inputs.
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4.3 ABLATION STUDIES

Table 4: Ablation study on the complementary dual
prompts. Pin and Pout denote prompt blocks inserted
before patch embedding and after the prediction head,
respectively. Results for baseline, single-prompt, and
dual-prompt variants. Metrics are segmentation IoU,
joint precision, and part precision (↑ is better).

Method Segmentation Joint Precision Part Precision
Pin Pout (IoU↑) (mAP↑) (mAP↑)

(A) 30.52, 62.57 17.15, 78.49, 91.11 18.96, 57.32, 73.36
(B) ✓ 31.02, 63.58 17.36, 79.47, 92.53 19.19, 58.07, 74.30
(C) ✓ 31.09, 64.02 17.49, 79.96, 92.91 19.25, 58.16, 74.71
(D) ✓ ✓ 31.73, 64.89 17.72, 80.59, 93.33 19.81, 58.96, 75.47

Table 5: Ablation of stacking layers (1–
4) in the Recursive Residual Prompting on
real-world and synthetic datasets. Both Pin
(4.2M, black) and Pout (6.0M, blue) show
limited gains with deeper stacking at the
cost of more parameters.

Layers OP-Align HIO4D PartNet-Mobilty
(IoU↑) (CD-ℓ1↓) (IoU↑)

1 63.54, 63.89 2.93, 2.92 59.17, 59.61
2 63.60, 64.08 2.93, 2.91 59.24, 59.73
3 63.69, 64.14 2.92, 2.89 59.37, 59.82
4 63.72, 64.21 2.92, 2.89 59.28, 59.70

Impact of Complementary Dual Prompts. Table 4 shows that both input-side (Pin) and output-
side (Pout) prompts contribute complementary gains on the OP-Align dataset (Che et al., 2024). (A)
Removing all prompts reduces the model to a frozen backbone baseline. (B) Using only Pin gives
modest gains from low-level modulation, while (C) using only Pout yields larger gains by adapting
high-level semantics. (D) Combining both achieves the best results across all metrics, confirming
that complementary dual prompts are essential for robust articulated pose estimation.

Impact Compared to Layer Stacking. Table 5 shows that across all evaluated benchmarks, stack-
ing 1–4 layers yields only minor gains for Pin (4.2M) and Pout (6.0M), while parameters and com-
putation increase almost linearly. Since dual prompts already capture key semantic–geometric inter-
actions, further stacking is largely redundant. In contrast, our single-layer recursive update achieves
depth-equivalent adaptation with shared parameters, driving prompts toward a fixed-point equilib-
rium while updating only ∼10.2M parameters (∼0.8% of VGGT’s 12.6B), showing that lightweight
prompts alone are sufficient to unlock the representational capacity of the foundation model.

Impact of Recursion Rounds. As shown in Fig. 3, in-
creasing the number of recursive refinement rounds L im-
proves segmentation mIoU@50 up to L = 6, with only
marginal gains beyond L = 8 where the curve saturates.
We therefore adopt L = 8 as the default to balance accu-
racy and inference latency. This trend confirms that recur-
sion rounds yield DEQ-style depth-equivalent virtual layers
under fixed parameter cost, serving as a compute-efficient
knob for prompt refinement until performance saturates.

Number of Recursion Rounds
1 2

m
Io

U 
(%

)

62.5

63.5

64.5

4 6 8 10 12

Figure 3: Recursion ablation on OP-
Align dataset. (Segm. mIoU@50)

Impact of X -SGP. Table 6 shows that geometry alone
(A) performs worst, confirming the ambiguity of purely
geometric cues. (B) brings only limited gains since
it lacks adaptive multi-scale fusion, while removing
FiLM (C) or the pyramid (D) further degrades cross-
modal alignment and articulation modeling. These re-
sults highlight the necessity of all components, with the
full X -SGP (E) achieving the strongest performance
for articulation-aware representation learning.

Table 6: Ablation study on the Cross
Semantic-Geometry Pyramid (X -SGP).

Method Joint Precision Part Precision
(mAP↑) (mAP↑)

(A) Geom. Only 14.62, 77.17, 89.23 16.28, 55.46, 72.05
(B) w/ Concat 16.28, 78.74, 91.19 18.67, 57.09, 73.64
(C) w/o FiLM 18.15, 80.02, 92.81 19.04, 58.12, 74.76
(D) w/o Pyramid 16.83, 79.43, 92.72 18.58, 57.24, 74.45
(E) Full Model 17.72, 80.59, 93.33 19.81, 58.96, 75.47

5 CONCLUSION

We present ReCAP, the first self-supervised framework for category-level articulated pose estimation
from a single RGB image. It adapts the geometry foundation model to articulated targets through
parameter-efficient recursive prompting and enhances robustness via semantic–geometry fusion. By
bridging the gap between rigid-object priors and articulated variability, ReCAP overcomes the limi-
tations of prior paradigms and paves the way for practical monocular articulated pose estimation.

Limitation and Future Work. While single-image estimation inherently lacks multi-view cues,
our results demonstrate strong performance under this challenging setting. Future work will explore
incorporating multi-view and richer contextual signals, and extend ReCAP toward object-agnostic
articulated pose estimation in diverse real-world environments.
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APPENDIX

This supplementary document provides additional details to support the main paper.

• LLM Usage (Sec. A)

• Theoretical and Empirical Analysis (Sec. B)

– Analysis of the Static-Topology Violation (Sec. B.1)
– Supplementary Experiments (Sec. B.2)

• Implementation Details of X -SGP (Sec. C)

• Canonicalization and Augmentation (Sec. D)

– Point Cloud Prediction and Canonicalization (Sec. D.1)
– Physically-consistent Augmentation (Sec. D.2)

• Loss Function Details (Sec. E)

– Baseline pose loss from OP-Align (Sec. E.1)
– Total loss with DEQ-style fixed-point regularization (Sec. E.2)

• Dataset Details (Sec. F)

• Implementation Details (Sec. G)

A LLM USAGE

We disclose that ChatGPT (GPT-5) was used during manuscript preparation. Its role was limited to
assisting with grammar correction and improving readability. No technical contributions, research
ideas, experimental designs, or analyses were generated by an LLM. All scientific content and con-
clusions are solely the responsibility of the authors.

B THEORETICAL AND EMPIRICAL ANALYSIS

B.1 ANALYSIS OF THE STATIC-TOPOLOGY VIOLATION

Static Topology Assumption. Conventional prompt tuning implicitly assumes that the token topol-
ogy is static across layers, i.e., token indices remain fixed such that prompts can be consistently
aligned with their corresponding embeddings. Formally,

[Ei;Pi] = fi([Ei−1;Pi−1]), i = 1, . . . , N, (14)

where fi denotes the i-th encoder block and [·; ·] indicates token-wise concatenation.

VGGT Token Dynamics. Unlike static-token models, VGGT reconfigures its token composition at
each layer by assembling camera tokens Ci, register tokens Ri, and patch tokens Ei. Formally,

Ti = Arrangei(Ci,Ri,Ei), (15)

where Arrangei(·) alters both the cardinality and ordering of tokens at each layer, thereby disrupt-
ing the fixed positional correspondence assumed in Eq. (14).

Violation. Since the token arrangement varies across layers, no consistent mapping exists to pre-
serve the one-to-one alignment between prompts and embeddings. Formally,

̸ ∃ ϕ [Ti;Pi] = fi([ϕ(Ti−1);Pi−1]), (16)

i.e., no fixed positional mapping ϕ exists that preserves prompt alignment under dynamic token
rearrangement.

This incompatibility is not unique to VGGT, but a general limitation of applying conventional
prompt tuning to hierarchical or dynamic-token architectures (e.g., token pruning, multi-view back-
bones). This formally explains why conventional prompt tuning yields limited gains when applied
to VGGT (see Sec. 3.2).
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B.2 SUPPLEMENTARY EXPERIMENTS

Table 7: Supplementary comparison of VGGT with and without shallow prompt tuning on the OP-
Align dataset, evaluated by segmentation (IoU), joint precision (mAP), and part precision (mAP).

Method Segmentation Joint Precision Part Precision
(IoU↑) (mAP↑) (mAP↑)

w/o prompt 30.52, 62.57 17.15, 78.49, 91.11 18.96, 57.32, 73.36
w/ prompt 30.70, 63.07 17.17, 79.01, 91.82 19.21, 57.75, 73.62

As shown in Table 7, on the OP-Align dataset, directly prepending shallow prompts to VGGT yields
negligible gains across all metrics. The improvements are marginal (<0.7 mAP) and within typi-
cal run-to-run variation, suggesting that prompts fail to exert stable influence on VGGT. This phe-
nomenon substantiates our claim of dynamic token misalignment: in VGGT, token sets are reorga-
nized layer by layer, breaking the static index correspondence assumed in Eq. (1). Consequently,
prepended prompts lose consistent alignment with task tokens, which explains their ineffectiveness
despite adding extra parameters.

C IMPLEMENTATION DETAILS OF X -SGP

We provide additional details of the Cross Semantic–Geometry Pyramid (X -SGP) introduced in
Sec. 3.3, including examples of semantic and geometric tokens, parameterization of FiLM modula-
tion, and the design of the multi-scale refinement module.

Semantic and Geometric Examples. For semantics, we adopt a frozen DINOv2 ViT-B/16 encoder
to extract Himg ∈ RN×D, where D = 768 is the embedding dimension of the backbone and N is
the number of visual tokens produced by the encoder. We empirically observe that these tokens often
correspond to object parts such as laptop lids, scissor blades, suitcase flaps, and drawer panels. For
geometry, Υgeo ∈ RM×D is obtained from the prompt-tuned VGGT encoder. These two streams
are later fused in X -SGP (Sec. 3.3).

FiLM Parameters. For clarity, the modulation in Eq. (8) uses FiLM parameters (γ,ρ) ∈ RD de-
rived from semantic context. We obtain a global descriptor h̄ = MeanPool(Himg) ∈ RD, normalize
it with LayerNorm, and map it through a two-layer MLP:

[γ,ρ] = W2 ϕ(W1 LN(h̄)) ∈ R2D, (17)

where ϕ is GELU. These parameters are broadcast to geometry tokens Υ̃geo ∈ RM×D as

κraw
fused = σ

(
Υ̃geo ⊙ (1 + γ) + ρ

)
, (18)

with σ denoting ReLU. For stability, the last projection layer is zero-initialized so that the mod-
ulation starts from the identity mapping. (γ,ρ) act as feature-wise scaling and shifting factors
applied to the geometry stream. This semantic-driven modulation stabilizes cross-modal alignment
and highlights articulation-specific variations that are often ambiguous when relying on geometry
alone.

Multi-Scale Refinement. The refinement module in Eq. (19) is implemented as a pyramid of
depthwise separable 1D convolutions. Each DSConv layer consists of a depthwise convolution
(groups = C), a pointwise 1 × 1 convolution, BatchNorm, and a GELU activation. We use ker-
nel size 3 and dilation rates {1, 2, 4}, with padding chosen to preserve sequence length. The three
DSConv (Howard et al., 2017) layers are applied sequentially:

( ◦∏
d∈{1,2,4}

DSConv3,d
)
(x) = DSConv3,4(DSConv3,2(DSConv3,1(x))) . (19)

The output of this pyramid is added back to the input (residual connection) and passed through a
GELU, as shown in Eq. (9) of the main paper.
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X -SGP integrates semantic cues with geometric features through FiLM-based modulation and
multi-scale refinement. Semantic information provides high-level context that guides geometry to-
kens via feature-wise scaling and shifting, while the pyramid captures local deformation patterns
across different receptive fields. Together, these mechanisms mitigate ambiguities from symmetry
and occlusion and substantially improve part-level reasoning for articulated object pose estimation.

D CANONICALIZATION AND AUGMENTATION

D.1 POINT CLOUD PREDICTION AND CANONICALIZATION

Latent Prompt-based Point Cloud Prediction. With the fused features κpyr
fused from the prompt-

tuned VGGT, we add a lightweight MLP head Epred that projects them into the representation space
required by VGGT’s decoder ΦD

G, which then outputs the dense 3D point cloud Qpred:

Qpred = ΦD
G

(
Epred(κ

pyr
fused)

)
, Qpred ∈ RH×W×3. (20)

The predicted point clouds are then aligned to a canonical coordinate frame, removing pose ambi-
guities and providing a consistent geometric basis for downstream pose estimation.

Instance Normalization and Canonical Alignment. To provide consistent supervision and reduce
geometric variance, we normalize and canonicalize predicted point clouds Qpred. First, instance-
level normalization centers each point cloud at its centroid µ and rescales it by the mean distance d
to the centroid, with an additional fixed factor s0 to unify global scale:

Q̃norm =
Qpred − µ

d
· s0. (21)

where Q̃norm denotes the normalized point coordinates.

Next, to obtain a canonical representation, we follow (Che et al., 2024) by discretizing the SE(3)
group into a finite set of candidate transformations (anchors). For each anchor (Rj , tj) ∈ A,
we transform the normalized point cloud and compute the Chamfer distance (CD) to a learnable
category-level template Qref

norm:

(R∗, t∗) = arg min
(Rj ,tj)∈A

CD(RjQ̃norm + tj ,Qref
norm), (22)

where CD(·, ·) is the symmetric Chamfer Distance:

CD(P,Q) =
1

|P |
∑
p∈P

min
q∈Q

∥p− q∥22 +
1

|Q|
∑
q∈Q

min
p∈P

∥p− q∥22. (23)

The aligned point cloud is then given by Q̂cano = R∗Q̃norm + t∗. This discrete SE(3) alignment
is applied only during training, serving as auxiliary supervision to enforce canonical geometry and
category-level consistency across instances. This prevents the network from wasting capacity on
trivial global pose variations, allowing it to focus on articulated part structure.

D.2 PHYSICALLY-CONSISTENT AUGMENTATION

Monocular dense reconstruction suffers from inherent scale ambiguity—especially in large vision
models such as VGGT—which poses a fundamental obstacle to robust, category-level pose rea-
soning. Existing augmentations such as OP-Align (Che et al., 2024) alleviate rotation variance via
global rotations and local perturbations, but overlook systematic scale discrepancies between pre-
dicted and canonical geometries.

To close this gap, we extend OP-Align by retaining its global rotation R ∈ SO(3) and Gaussian
noise, and further introduce a uniform instance-level scaling applied consistently to both predicted
point clouds and all associated labels. This physically-consistent augmentation ensures supervision
remains aligned under arbitrary global scaling, mitigating scale-induced artifacts and improving
generalization to objects of varying sizes and out-of-distribution scales.
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Concretely, given the canonicalized object- and part-level point clouds Q̂cano and Q̂cano,k, the canon-
ical joint axis ak and part transform (Rk, tk) (w.r.t. the canonical/root frame, where k indexes the
k-th part), we sample saug∈ [0.9, 1.1] and apply

Q̂aug
cano = saug R Q̂cano, Q̂aug

cano,k = saug R Q̂cano,k,

aaug
k = Rak, Taug

k =

[
RRk saug Rtk
0⊤ 1

]
.

(24)

Here rotations act on points/axes by left-multiplication (consistent with RjQ̃norm + tj in Sec. D.1),
and the translation component scales with saug to preserve physical consistency under uniform scal-
ing. This regularizes scale inconsistencies in RGB-only pipelines and encourages the model to learn
scale-invariant features critical for category-level articulated pose reasoning.

E LOSS FUNCTION DETAILS

E.1 BASELINE POSE LOSS FROM OP-ALIGN

We adopt the object- and part-level reconstruction losses of OP-Align (Che et al., 2024), denoted as
Lpose. For completeness, we provide the original definitions here.

Object-level Loss. The object-level reconstruction is optimized via bi-directional Density-aware
Chamfer Distance (DCD):

Lo = DCD(RoX + to, Y, 1, αL) + DCD(Y,RoX + to, 1, αR), (25)
where αL = 30 and αR = 120 are temperature parameters.

Part-level Loss. The part-level reconstruction employs segmentation-weighted DCD:

Lp =

P−1∑
j=1

2∑
i=1

1

b[j, i]

(
DCD(Z[j, i], Y,Wx[σ(j, i)], αL) + DCD(Y,Z[j, i],Wy[σ(j, i)], αR)

)
.

(26)

Additional Regularization. Following OP-Align, the full pose loss is defined as
Lpose = Lo + Lp + LregS + LregD + LregW + LregP + LregA + LregJ , (27)

where the terms respectively enforce shape stability, density regularization, segmentation balance,
shared-part consistency, canonical joint state, and pivot regularization (see (Che et al., 2024) for
details).

E.2 TOTAL LOSS IN OUR METHOD

In the main paper, we build on Lpose and add a DEQ-style fixed-point regularization to stabilize
recursive prompt updates:

Ltotal = Lpose + λ
∑

a∈{in, out}

∥∥∥Fa

(
y(L)
a ; Θ

)
+ y(0)

a − y(L)
a

∥∥∥2
F
. (28)

F DATASET DETAILS

OP-Align Dataset. The official OP-Align release provides dense color images and auxiliary anno-
tations in flattened arrays of size 480× 640. We reconstruct the original image format by reshaping
these arrays, apply foreground cropping with the provided segmentation masks, and resize all im-
ages to 518×518 to match the input resolution of VGGT. This ensures consistent alignment between
appearance and geometry modalities throughout training and evaluation.

PartNet-Mobility Dataset. We follow OMAD (Xue et al., 2021) to process the PartNet-Mobility
dataset into synthetic RGB renderings with per-part segmentation for evaluation. The official train-
ing and testing splits are used without further modifications.
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G IMPLEMENTATION DETAILS

G.1 EVALUATION SETTINGS

Following the official EAP protocol (Liu et al., 2023b), we compose predicted part transformations
(relative to the canonical/root frame) with the benchmark reference pose to align coordinate systems
for evaluation. For symmetric objects, we use the OP-Align protocol, which exhaustively enumer-
ates valid part permutations and reports the best mIoU.

G.2 TRAINING AND IMPLEMENTATION

All input RGB images are resized to 518×518, following the official VGGT setting and pre-trained
weight release to ensure compatibility and reproduce the reported performance. This resolution is
critical for three reasons: (1) VGGT was pretrained on square inputs, and preserving this resolution
maximizes geometric fidelity in predicted point clouds Qpred ∈ RH×W×3; (2) center-padding retains
all original pixels, avoiding distortions that occur with cropping or aspect-ratio preserving padding;
(3) prompt tuning operates on frozen VGGT weights, so strict consistency with the pretraining input
resolution is required.

All predicted point clouds are uniformly downsampled to 2,048 points for efficient training and
evaluation. We train all models for 350 epochs on an NVIDIA H100 GPU with 80GB memory.
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