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Abstract

This paper reviews the em-projections in information geometry and the recent
understanding of variational auto-encoder, and explains that they share a common
formulation as joint minimization of the Kullback-Leibler divergence between
two manifolds of probability distributions, and the joint minimization can be
implemented by alternating projections or alternating gradient descent.

1 Introduction

Generative modeling is a principled framework for unsupervised learning from unlabeled data
as well as semi-supervised learning from both unlabeled and labeled data. Taking advantage of
the approximation capacity of deep networks [13, 18, 19], deep generative models have achieved
impressive successes in unsupervised and semi-supervised learning. A popular deep generative model
is the generator model [10, 17], which assumes that the observed example is generated by a latent
vector via a top-down network, and the latent vector follows a known prior distribution. The top-down
network can be interpreted as a decoder, and it is usually jointly trained with a bottom-up inference
network that can be interpreted as an encoder in the framework of variational auto-encoder (VAE)
[17].

Generative models can be understood within the framework of information geometry, where each
probability distribution is treated as a point, and different families of probability distributions form
different manifolds. Information geometry characterizes the geometric structures of manifolds of
probability distributions, and has been widely applied to statistics, information science, dynamic
systems, etc. [4, 1]. Projections from a probability distribution to a manifold can be formulated
as minimizing certain divergence between probability distributions, such as the commonly used
Kullback-Leibler (KL) divergence [7].

This paper reviews the information geometric em-algorithm which is realized by projections along
e-geodesic and m-geodesic alternatively [8, 2]. We shall also review the recent understanding of
variational auto-encoder (VAE) [12]. We explain that em-projections and VAE share a common
formulation as joint minimization of the Kullback-Leibler divergence between two manifolds of
probability distributions, and the joint minimization can be implemented by alternating projections or
alternating gradient descent.
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2 em-algorithm

Consider the probability model pθ(x, z) with trainable parameters θ, where x is the observed example,
and z is the latent vector. Let P = {pθ(x, z),∀θ} be the manifold formed by the model. We may call
P the model manifold.

The information geometric em-algorithm considers the class of exponential family model

p(x, z;λ) =
1

Z(λ)
exp(〈λ, s(x, z)〉), (1)

where s(x, z) denotes the sufficient statistics, λ denotes the natural parameters, and Z(λ) is the
normalizing constant.

It is assumed that pθ(x, z) = p(x, z;λ(θ)) for some parametrization of λ, where λ(θ) may not be
invertible, and the resulting model is a curved exponential family model.

The exponential family model (1) can also be parametrized by its mean parameters µ(λ) =
Epλ [s(x, z)], which is a function of λ. Assuming µ(λ) is invertible, we can write p(x, z | µ) =
p(x, z;λ) if µ = µ(λ). Note here we use the generic notation p, but we write pθ, p(·;λ) and p(· | µ)
in different styles to distinguish the three different parametrizations.

Define Q = {p(x, z|µ), µ = s(xobs, zim),∀zim} where xobs is fixed at the observed value of x, and
zim is the potential imputed value of z

The information geometric em-algorithm [2, 3] solves the following joint minimization problem:

minp∈P,q∈QDKL(q‖p), (2)

where DKL(q‖p) = Eq[log(q/p)]. The algorithm is formulated as follows: initialize at a p ∈ P , and
alternate the following two projections (see elementary exposition by [21]):

• e-projection: e-project the current p to Q by minimizing DKL(q‖p) over q ∈ Q.

• m-projection: m-project the current q to P by minimizing DKL(q‖p) over p ∈ P .

e- and m-projections derive their names from the manifold of exponential family distributions and the
manifold of mixture distributions respectively. The two manifolds have different notions of flatness.

The em-algorithm is closely related to the Expectation-Maximization (EM) algorithm [9, 23]. If
we define Q = {p(x, z|µ), µ = Eq(zim|xobs)[s(xobs, zim)],∀q(z|x)}, where q(z|x) is an arbitrary
imputation distribution, then the em-algorithm becomes the EM algorithm.

In the above, we gloss over the difference between a single observation and repeated observations.

See Appendix for an in-depth explanation of information geometry of e- and m-projections.

Moving beyond exponential family models. The original em and EM algorithms are formulated
within the framework of exponential family models (1). In discussing modern deep generative models
below, we shall not limit ourselves to exponential family models, and we shall re-define the Q
manifold. We shall focus on the key insight of joint minimization (2) and alternating projections. In
what follows, we shall connect this insight to the recent understanding of VAE [12].

3 VAE as alternating projections

3.1 Generator model

The generator model [10, 17] is a non-linear generalization of factor analysis:

z ∼ N(0, Id); x = gθ(z) + ε, (3)

where x is an image, or a sentence, or in general a high-dimensional example, z is a d-dimensional
latent vector. Id is the d-dimensional identity matrix. gθ(z) is a top-down deep network, where θ
consists of all the weight and bias terms. ε is usually assumed to be Gaussian white noise with mean 0
and variance σ2. Thus pθ(x|z) is N(gθ(z), σ

2ID), where D is the dimensionality of x. The generator
model defines the joint probability model or the complete-data model pθ(x, z) = p(z)pθ(x|z), where
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p(z) is the known prior model. We define P = {pθ(x, z),∀θ} to be the model distribution manifold.
The marginal density or the observed-data model is pθ(x) =

∫
pθ(x, z)dz, which is analytically

implicit due to the intractable integral.

Let pdata(x) be the data distribution that generates the observed x. The learning of pθ(x) can be
based on minθ DKL(pdata(x)‖pθ(x)). If we observe training examples {xi, i = 1, ..., n} ∼ pdata(x),
the above minimization can be approximated by maximizing the log-likelihood

L(θ) =
1

n

n∑
i=1

log pθ(xi)
.
= Epdata [log pθ(x)], (4)

which leads to maximum likelihood estimate (MLE). In this paper, we assume the sample size n is
large enough so that the sample average over {xi, i = 1, ..., n} is essentially the same as expectation
with respect to pdata.

3.2 EM

The EM algorithm can be understood by perturbing the KL-divergence for MLE. Define D(θ) =
DKL(pdata(x)‖pθ(x)). Then minθD(θ) is equivalent to maxθ L(θ). Let θt be the estimate at
iteration t of EM. Let us consider the following perturbation of D(θ),

S(θ) = D(θ) + DKL(pθt(z|x)‖pθ(z|x))

= DKL(pdata(x)‖pθ(x)) + DKL(pθt(z|x)‖pθ(z|x))

= DKL(pdata,θt(x, z)‖pθ(x, z)), (5)

where we define pdata,θt(x, z) = pdata(x)pθt(z|x) as the complete-data distribution at iteration t.
S(θ) is a surrogate for D(θ) at iteration t, and S(θ) is simpler than D(θ) because S(θ) is based on
the joint distributions of (x, z) instead of the implicit marginal distribution of x as in D(θ).

Figure 1: Illustration of EM. The surrogate S majorizes (upper bounds) D, and they touch each other
at θt with the same tangent.

The perturbation term DKL(pθt(z|x)‖pθ(z|x)), as a function of θ, achieves its minimum 0 at θ = θt.
Being a minimum, its derivative at θ = θt is zero. Thus S(θ) ≥ D(θ), i.e., S majorizes D, and
they touch each other at θt, where they share the same gradient at θt, i.e., D′(θt) = S′(θt). The
EM algorithm finds θt+1 = arg minθ S(θ). Since S(θt+1) ≤ S(θt), and S majorizes D, we have
D(θt+1) ≤ D(θt), which is the monotonicity of EM.

The above also underlies the gradient descent algorithm, in particular, the alternating back-propagation
algorithm of [11], where D′(θt) is computed by S′(θt).

3.3 EM as alternating projections

Define q(x, z) = pdata(x)q(z|x), and re-define Q = {q(x, z) = pdata(x)q(z|x).∀q(z|x)}, where
pdata(x) is fixed, and q(z|x) can be any conditional distribution of z given x. We may call q(z|x)
the inference distribution or imputation distribution that imputes the latent z based on x. q(x, z) is
the complete-data distribution. Q is the data distribution manifold.

The EM algorithm alternates the following projections:

• expectation-projection: Given the current p, minq DKL(q‖p) over q ∈ Q.

• m-projection: Given the current q, minpDKL(q‖p) over p ∈ P .
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The m-projection remains the same as in the em-projections. The expectation-projection underlies
the E-step. In the expectation-projection at iteration t with θt, we can write

DKL(q(x, z)‖pθt(x, z)) = DKL(pdata(x)‖pθt(x)) + DKL(q(z|x)‖pθt(z|x)), (6)
where the conditional KL divergence is defined as

DKL(q(z|x)‖p(z|x)) = Epdata(x)Eq(z|x)
[
log

q(z|x)

p(z|x)

]
,

with the outer expectation with respect to pdata. Clearly the minimization in expectation-projection
is achieved at q(z|x) = pθt(z|x). The minimization of the m-projection is to minimize S(θ) above.

3.4 VAE

The generator model is commonly trained by variational auto-encoder (VAE) [17]. VAE assumes
an inference model qφ(z|x) as an approximation to the true posterior distribution pθ(z|x). In
VAE, qφ(z|x) is N(µφ(x), Vφ(x)), where the mean vector µφ and the diagonal variance-covariance
matrix Vφ are parametrized by bottom-up inference networks with a new set of parameters φ. For
z ∼ qφ(z|x), we can write z = µφ(x) + Vφ(x)1/2w, where w ∼ N(0, Id) is Gaussian white noise.
Thus expectation with respect to z ∼ qφ(z|x) can be written as expectation with respect to w. This
reparameterization trick [17] helps reduce the variance in Monte Carlo integration. qφ(z|x) is the
learned inferential computation that approximately samples from pθ(z|x). Different from traditional
variational inference [16, 20, 6], the parameters φ in qφ(z|x) are shared by all the training examples
x. φ and θ can be trained together by jointly maximizing a lower bound of the log-likelihood.

3.5 VAE as alternating projections

Figure 2: Illustration of variational auto-encoder as alternating projections between model manifold
P of complete-data models and data manifold Q of complete-data distributions.

Now we re-define qdata,φ(x, z) = pdata(x)qφ(z|x), and re-define Q = {qdata,φ(x, z) =
pdata(x)qφ(z|x),∀φ}. We can formulate VAE as joint minimization minp∈P,q∈QDKL(q‖p), where

DKL(qdata,φ(x, z)‖pθ(x, z)) = DKL(pdata(x)‖pθ(x)) + DKL(qφ(z|x)‖pθ(z|x)), (7)
On the right hand side, D(θ) = DKL(pdata(x)‖pθ(x)) leads to the log-likelihood, and S(θ, φ) =
DKL(qdata,φ(x, z)‖pθ(x, z)) = D(θ) + DKL(qφ(z|x)‖pθ(z|x)) is a perturbation of D(θ). Minimiz-
ing S(θ, φ) is equivalent to maximizing the evidence lower bound of the log-likelihood.

The minimization can be accomplished by alternating projections:

• encoder-projection: Given the current p, minq DKL(q‖p) over q ∈ Q.
• m-projection: Given the current q, minpDKL(q‖p) over p ∈ P .

Again the m-projection remains the same as in the em-algorithm. The encoder-projection in VAE is
the same as the expectation-projection in EM, except that it is minimization over the inference model
or the encoder model qφ(z|x), instead of arbitrary q(z|x) as in EM. The optimization is variational
inference optimization [16, 20, 6], and the optimized qφ(z|x) may have a gap from the true posterior
pθ(z|x). Figure 2 illustrates the alternating projections. In practice, the alternating projections can be
implemented by alternating gradient descent.

The wake-sleep algorithm [15, 14] is similar to VAE, except that it updates φ by minq DKL(P‖Q)
based on sleep data generated from P . Compared to encoder-projection, the order in KL divergence
is reversed. As is well known, reversing the order of KL divergence in minimization leads to different
behaviors.
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3.6 Short-run inference

Between EM and VAE, we can strike a middle ground, where we use the short-run MCMC for
approximate inference [22]. Specifically, for the true posterior pθ(z|x), we can use Langevin
dynamics for short-run MCMC:

z0 ∼ p(z), zk+1 = zk + s
∂

∂z
log pθ(zk|x) +

√
2sek, k = 1, ...,K, (8)

where we initialize the dynamics from the fixed prior distribution of z, i.e., p(z) ∼ N(0, Id), and
ek ∼ N(0, Id) is the Gaussian white noise. The dynamics runs a fixed number of K steps with step
size s. We use qθ(z|x) to represent the distribution of zK . Then the learning with short-run inference
is based on

S(θ) = DKL(pdata(x)‖pθ(x)) + DKL(qθt(z|x)‖pθ(z|x))

= DKL(pdata(x)qθt(z|x)‖pθ(z, x)). (9)

With θt fixed at iteration t, θt+1 is obtained by gradient descent on S(θ). The learning al-
gorithm is a perturbation of maximum likelihood gradient ascent, where the perturbation is
DKL(qθt(z|x)‖pθ(z|x)). As K →∞, DKL(qθ(z|x)‖pθ(z|x))→ 0 monotonically [7].

Unlike VAE, qθ(z|x) does not involve a new set of variational parameters φ. It is still based on the
parameters θ of the generator model. However, we can optimize the small number of algorithmic
parameters such as step size by minimizing DKL(qθt(z|x)‖pθ(z|x)) [22].

4 Conclusion

This paper reviews the information geometric em-algorithm and the recent understanding of VAE.
While VAE does not share the framework of exponential family models with the em-algorithm, they
share the same theoretical framework of joint minimization of KL divergence between two manifolds
of distributions, as well as alternating projections (or alternating gradient descent) computation.

See [12] for an information geometric understanding of adversarial learning within the framework of
energy-based models, and its integration with variational learning explained in this paper.
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Appendix: information geometry of e- and m-projections

The notion of e- and m-projections is not restricted to the exponential family, and only relies on the
information-geometric notion of e- and m-flatness of submanifolds that these projections take place.
In fact, it is a manifestation of the so-called “generalized Pythagorean relation” [5] satisfied by the
Kullback-Leibler divergence DKL(q‖p). Let us elaborate below (see Figure 3).

The Kullback-Leibler divergence DKL(·‖·) can easily be shown to satisfy the following identity

DKL(p‖q) + DKL(q‖r)− DKL(p‖r) =

∫
(p− q) (log r − log q) (10)

for any three probability distributions p, q, r. Now suppose we construct a one-parameter family q(t),
t ∈ [0, 1], of probability functions connecting p = q(1) to q = q(0) by

q(t) = t p+ (1− t) q,

and another one-parameter famiy q(s), parameterized by s ∈ [0, 1], of probability functions connect-
ing r = q(1) to q = q(0) by

q(s) = C(s) rs q1−s.
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Figure 3: Illustration of m-projections from point p (the two red curves) to point q and r in an
e-flat submanifold Q, and e-projections from point r (the two blue lines) to point q and p in an
m-flat submanifold P . The curve segments p̃q and q̃r are orthogonal at point q, and hence represent
the m-projection of p to Q and e-projection of r to P , respectively. Note that the e-geodesic and
m-geodesic connecting any two points, say, p and r, are different.

Here C(s) =
(∫
rsq1−s

)−1
is the normalization factor, with C(0) = 1 and

dC

ds

∣∣∣∣
s=0

=

∫
q log

q

r
= DKL(q‖r).

Each of these families form a curve segment on the manifold of probability distributions: p̃q :=
{q(t)}t∈[0,1] and q̃r := {q(s)}s∈[0,1] are called m-geodesic and e-geodesic, respectively. They meet
at the point q where s = t = 0. The right-hand side of (10), denoted ∆, becomes

∆(t,s) =

∫
q(t)− q(0)

t

(
log q(s)− log q(0)

s
− logC(s)− logC(0)

s

)
.

Taking limt→0, lims→0 in the above yields

∆ =

∫
dq(t)

dt

(
d log q(s)

ds
− d logC(s)

ds

)
=

∫
dq

dt

d log q

ds
− d logC

ds

∫
dq

dt
=

∫
dq

dt

d log q

ds
,

because
∫
dq
dt = d

dt

∫
q = d

dt1 = 0. Now suppose we denote θ as the coordinate system for the
manifold of the parametric probability distributions, that is q = qθ. And the directional derivatives of
p̃q and q̃r (at the intersecting point q) are given by, respectively,

d

dt
=
∑
i

V i
∂

∂θi
,

d

ds
=
∑
j

U j
∂

∂θj
,

where V is the tangent vector for the m-geodesic curve p̃q at q and U the tangent vector for the
e-geodesic curve q̃r at q. Hence

∆ =
∑
i,j

V iU j
∫
∂qθ
∂θi

∂ log qθ
∂θj

=
∑
i,j

V iU j
∫
qθ
∂ log qθ
∂θi

∂ log qθ
∂θj

=
∑
i,j

V iU jgij(θ) ≡ 〈V,U〉

where
gij(θ) =

∫
qθ
∂ log qθ
∂θi

∂ log qθ
∂θj

is the Fisher information matrix, which is the Riemannian (Fisher-Rao) metric on the manifold of the
probability functions. If the vectors V and U are chosen in such a way that makes ∆ = 〈V,U〉 = 0,
that is, they are “orthogonal” with respect to the Fisher-Rao metric 〈·, ·〉, then (10) becomes the
generalized Pythagorean relation

DKL(p‖q) + DKL(q‖r) = DKL(p‖r). (11)
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As each term in (11) is non-negative, we can consider DKL(p‖q) as a m-projection from p to a
submanifold Q formed by the geodesic spray emanating from q ∈ Q, where q = argminrDKL(p‖r)
is the projection point of the fixed p onto Q:

DKL(p‖q) = min
r∈Q

DKL(p‖r) ≤ DKL(p‖r).

Likewise, we can consider DKL(q‖r) as an e-projection from r to a submanifold P formed by the
geodesic spray emanating from q ∈ P , where q = argminpDKL(p‖r) is the projection point of the
fixed r onto P :

DKL(q‖r) = min
p∈P

DKL(p‖r) ≤ DKL(p‖r).

The submanifold P is said to be m-flat and it is made up of a collection of m-geodesics of which
p̃q is an instance, while the submanifold Q is said to be e-flat and it is made up of a collection of
e-geodesics of which q̃r is an instance. e-projection of point r to P (or m-projection of point p to Q)
is unique when P is m-flat (or Q is e-flat, respectively). See Figure 4 for an illustration.

Figure 4: Left: a family of e-geodesic projections from a point r (blue filled curves) to an m-
flat submanifold P , along with the m-geodesic spray (red dotted lines) emanating from the point
q = argminpDKL(p‖r), which is the projection point of r onto the m-flat submanifold P . Right: a
family of m-geodesic projections from a point p (red filled curves) to an e-flat submanifold Q, along
with the e-geodesic spray (blue dotted lines) emanating from the point q = argminrDKL(p‖r), which
is the projection point of p onto the e-flat submanifold Q.
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