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Abstract

We introduce a transformer-based morpheme001
segmentation system that augments a low-002
resource training signal through multitask learn-003
ing and LLM-generated synthetic data. Our004
framework jointly predicts morphological seg-005
ments and glosses from orthographic input,006
leveraging shared linguistic representations ob-007
tained through a common documentary process008
to enhance model generalization. To further009
address data scarcity, we integrate synthetic010
training data generated by large language mod-011
els (LLMs) using in-context learning. Exper-012
imental results on the SIGMORPHON 2023013
dataset show that our approach significantly im-014
proves word-level segmentation accuracy and015
morpheme-level F1-score across multiple low-016
resource languages.017

1 Introduction018

Morphological segmentation—the process of019

breaking words into their smallest meaningful020

units—is a fundamental task in linguistic analysis.021

This process has two goals: first, to identify mor-022

pheme boundaries, and second, to restore phonolog-023

ical changes between canonical and surface forms.024

For example, the word happiness is composed of025

two surface morphemes: happi + -ness. Underly-026

ingly, the root happy undergoes an orthographic027

modification when it combines with -ness. Canoni-028

cal segmentation produces the normalized happy-029

ness.030

Canonical segmentation is particularly critical031

for analyzing low-resource and morphologically-032

complex languages. Linguistic documentation033

relies on language experts creating Interlinear034

Glossed Texts (IGT). An IGT entry consists of four035

tiers: 1. orthographic text, the original sentence; 2.036

morpheme segmentation, decomposing words into037

canonical morphemes; 3. glossing, assigning lin-038

guistic labels to each morpheme; and 4. translation,039

providing an equivalent sentence in a high-resource040

matrix language like English. An example from 041

Gitksan follows. 042

043
Orthography: Ii hahla’lsdi’y goohl IBM
Segmentation: ii hahla’lst-’y goo-hl IBM
Gloss: CCNJ work-1SG.II LOC-CN IBM
Translation: And I worked for IBM.

044

The construction of IGTs is a process that re- 045

quires significant linguistic expertise. For lan- 046

guages with few speakers, the segmentation step 047

alone can be a complex and time-consuming task. 048

Previous research has begun to automate this 049

process using neural models (Kann et al., 2016; 050

Ruzsics and Samardžić, 2017; Wang et al., 2019; 051

Rice et al., 2024), but performance remains limited 052

by scarce annotated training data. Most approaches 053

focus exclusively on segmenting the orthographic 054

tier (Kann et al., 2016; Ruzsics and Samardžić, 055

2017; Wang et al., 2019). Rice et al. (2024), how- 056

ever explore augmenting the segmentation signal 057

with an additional encoder tied to the translation 058

tier. This method depends on manual word align- 059

ment between source and translated text, and does 060

not ease the need for linguistic expertise. We in- 061

stead propose two methods for leveraging existing 062

signals to improve canonical segmentation in low- 063

resource language documentation: 064

Multitask learning Multitask learning encour- 065

ages generalization across complementary objec- 066

tives (Caruana, 1997), and can enhance robustness 067

in low-resource scenarios (Lin et al., 2018; John- 068

son et al., 2017). In our framework, the model 069

is trained to jointly predict the segmentation and 070

glossing tiers of an IGT, with only the orthographic 071

tier as input. Incorporating glossing as a parallel 072

objective in multitask learning can exploit benefi- 073

cial information without necessitating further data 074

curation, as glossing is already a component of IGT. 075

By learning these related tasks simultaneously, the 076

model gains access to rich linguistic information 077

—morpheme boundaries from the segmentation tier, 078
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and labels from the glossing tier.079

LLM synthetic data The scarcity of annotated080

datasets for low-resource languages often causes081

neural models to overfit frequent character se-082

quences rather than generalizing to true morpho-083

logical structures, a phenomenon known as label084

bias (Wiseman and Rush, 2016). To address this,085

we supplement the training data with synthetic ex-086

amples created by large language models (LLMs)087

with in-context learning. Since canonical segmen-088

tation involves resolving phonological alternations089

(e.g., mapping hahla’lsdi to -hahla’lst-), LLMs ex-090

cel at this task by learning and replicating these091

alternations directly from interlinear glossed text092

(IGT) examples—without requiring explicit rule093

encoding. By systematically varying the propor-094

tion of synthetic data, we assess its role in mitigat-095

ing data scarcity while maintaining segmentation096

consistency.097

Our contributions are as follows:098

• We introduce a multitask learning frame-099

work that jointly learns to segment and gloss,100

improving segmentation performance across101

multiple low-resource languages.102

• We synthesize data to augment sparse training103

data for segmentation and evaluate its effec-104

tiveness at different saturation levels.105

• We combine the two strategies, demonstrating106

that multitask learning and synthetic data com-107

plement each other to enhance segmentation108

quality.109

2 Experiment Setup and Methodology110

Following the work of (Rice et al., 2024), we111

conduct experiments in the languages of the SIG-112

MORPHON 2023 Shared Task dataset (Ginn et al.,113

2023)1. The TAMS system proposed by Rice et al.114

(2024) requires a manual alignment between source115

and matrix language, and therefore, linguistic ex-116

pertise, limiting their results to a subset of the117

dataset’s languages (Arapaho, Lezgi, and Tsez),118

for which we use the same data splits. We expand119

our experiments to the remaining languages in the120

data, including Gitksan, Natügu, Nyangbo, and Us-121

panteko. Data is split by identifying all unique122

words in each language dataset, and re-split using123

the same 6:2:2 split in the TAMS paper2. Specifics124

for each language are in Table 1.125

1The dataset is licensed under CC BY-NC 4.0.
2Our splits will be made available after publication.

Language Train Dev Test Matrix lang.

Arapaho (arp) 16666 10760 9849 (eng)
Gitksan (git) 323 107 109 (eng)
Lezgi (lez) 1236 412 412 (eng)
Natügu (ntu) 1953 651 652 (eng)
Tsez (ddo) 3,558 445 445 (eng)
Uspanteko (usp) 7033 2345 2344 (spa)
Nyangbo (nyb) 1499 499 501 -

Table 1: 2023 SIGMORPHON Shared Task Dataset
(Ginn et al., 2023)

2.1 Multitask Model for Canonical 126

Segmentation 127

We treat canonical segmentation as a sequence-to- 128

sequence task and conduct our experiments with 129

a modified version of Fairseq’s (Ott et al., 2019) 130

implementation of transformers (Vaswani et al., 131

2017). We modify the transformer architecture 132

with a multitask objective 3 . Our model consists 133

of a shared encoder that processes the input word 134

from the orthographic tier, generating a latent repre- 135

sentation. This representation then serves as input 136

to a pair of decoders: the first learns to produce 137

a canonical segmentation and the other generates 138

the corresponding gloss4. We define a joint loss 139

function as the weighted sum of segmentation loss 140

and glossing loss: 141

Ltotal = λLseg + (1− λ)Lgloss (1) 142

where the segmentation loss weight λ is tuned 143

within the range of 0.8 to 15, while the weight of the 144

glossing objective is complemetary, ensuring that 145

the model prioritizes segmentation accuracy while 146

still leveraging glossing information as auxiliary 147

supervision. Hyper-parameters and model details 148

are in the Appendix A.1. 149

2.2 Generating Synthetic Examples 150

To address data scarcity, we generate synthetic seg- 151

mentation data using GPT-4o with in-context learn- 152

ing to supplement the limited training data. 153

First, we extract all words from the training data 154

which have a disjunction between their underlying 155

3Our code is available: https://link/to/our/repo.
Our implementation is modified based on Zhou et al. (2019)’s
work: https://github.com/shuyanzhou/multi-task_
transformer.

4If the word gloss is "work-1SG.II", the gloss decoder will
generate it as "w-o-r-k-1SG.II"

5Appendix A.2 illustrates the impact of λ on Lezgi model
performance.
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and surface morphemes. These forms will serve as156

in-context examples for the LLM.157

Next, we construct a structured prompt that in-158

cludes: 1. A word stem and its meaning. 2. Ex-159

ample words from the training data that share this160

stem, along with their canonical segmentations and161

glosses. 3. A list of grammatical morphemes6 and162

their corresponding glosses, extracted directly from163

the training data.164

The LLM then generates new words by165

combining the stem with grammatical mor-166

phemes, applying morphophonological alterna-167

tions based on the examples provided.The result-168

ing triples—surface form, canonical segmentation,169

and gloss—approximate IGT text and expand the170

model’s morphological coverage. An example171

prompt for Natügu is in Appendix A.4.172

3 Results and Findings173

We now discuss the findings of our experiments.174

Following TAMS (Rice et al., 2024), we evaluate175

across 3 metrics: word-level accuracy, morpheme-176

level F1, and the sum of edit-distances across all177

test instances. We evaluate against reported results178

from the TAMS paper, as well as a Fairseq baseline179

with a single decoder devoted to segmentation.180

3.1 Multitask Learning Performance181

Model Metric lez ddo arp git ntu nyb usp ave

Baseline
ACC↑ 44.66 82.6 67.08 47.71 63.04 80.48 55.05 62.95
F1↑ 60.75 90.44 81.11 65.5 80.3 90.24 75.66 77.71
ED↓ 568 652 10495 117 458 154 1799 2034.71

TAMS
ACC↑ 46.84 80.78 67.72 – – – – –
F1↑ 62.48 89.52 81.62 – – – – –
ED↓ 532 701 9899 – – – – –

TAMS-CLS
ACC↑ 47.09 81.96 67.4 – – – – –
F1↑ 62.48 90.08 81.45 – – – – –
ED↓ 537 643 9970 – – – – –

Multitask
ACC↑ 48.54 82.51 78.01 52.29 68.87 79.84 56.12 66.59
F1↑ 68.84 92.12 84.14 71.64 84.09 91.43 77.18 81.35
ED↓ 519 698 6543 112 373 149 1623 1431

Table 2: Comparison of canonical segmentation models
across multiple languages. Each model includes three
sub-rows for ACC, F1, and ED, with the last column
showing average metrics. Bolded values indicate lan-
guage bests for each metric. ↓ indicates that lower is
better.

Table 2 demonstrates that the multitask model182

achieves superior overall performance. Most lan-183

guages see improvements over the best alternative.184

Furthermore, attaching a multitask objective im-185

6Grammatical morphemes are functional elements in lan-
guage that indicate grammatical relationships such as tense,
number, case, or person, rather than carrying lexical meaning,
as seen in markers like 1SG.II (first-person singular) and LOC
(locative) in the IGT example.

proves over the single-task objective for each met- 186

ric, on average. Languages which already have 187

higher performance, such as Nyangbo and Tsez, 188

still see improvements at the morpheme level, al- 189

though Nyangbo demonstrates that improvements 190

in F1 are not always accompanied by a similar im- 191

provement in accuracy. It is possible that the bene- 192

fits of multitask learning may be more significant 193

at the morpheme level than at the word level. 194

Training data size seems to have little impact on 195

the benefits of multitask learning. Languages such 196

as Arapaho, with significantly more data than the 197

sparsest languages, observes large improvements, 198

while Gitksan and Natügu, which have much less 199

training data, also improve when a multitask objec- 200

tive is introduced. 201

A qualitative analysis suggests that multitask 202

learning improves the overall accuracy of mor- 203

pheme segmentation by reducing unnecessary mod- 204

ifications. That is, the baseline model is too aggres- 205

sive in employing textual normalization, making 206

changes where they are not appropriate. In lan- 207

guages with numerous morphological alternations, 208

such as Arapaho and Lezgi, multitask learning sig- 209

nificantly reduces edit distances by removing alter- 210

nations that the baseline deems necessary. In con- 211

trast, in languages with already high segmentation 212

accuracy, such as Tsez, decreases in edit distance 213

are less pronounced - the glossing information may 214

not add much extra signal. 215

Overall, these findings indicate that integrating 216

glossing information as an extra predictive task im- 217

proves model quality, without the need for extra 218

annotation. The improvements are particularly no- 219

ticeable in languages with complex segmentation 220

patterns, demonstrating the effectiveness of this 221

approach in improving canonical segmentation in 222

low-resource settings. 223

3.2 Learning Curve of multitask Learning 224

After observing in our previous experiments that 225

data size had less of an impact than linguistic con- 226

straints, we conducted experiments aimed at fur- 227

ther investigating the role that data size plays on 228

multitask learning. For each language, we create 229

artificially small training sets by limiting the data 230

to 25, 50, 75, and 100% of the original training set. 231

The comparison of the average learning curves is 232

presented in Figure 1.7 233

We observe that in general, the improvements 234

7For individual language curves, please see Appendix A.3.
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Figure 1: The average learning curves for the F1 (top)
and Accuracy (bottom) metrics.

obtained from multitask learning increase as more235

training data is available, although there is still236

an observed benefit in extremely low-data settings.237

This is promising, as it suggests that improvements238

obtained in aiding the documentary process at the239

beginning will eventually feed a virtuous cycle,240

with increasing gains as further data is created.241

3.3 Addressing Data Scarcity with242

LLM-Generated Data243

After observing that the model benefits from extra244

training data, we seek to augment the training data245

with synthetic examples. In our final experiment,246

we supplement our multitask model with training247

examples generated by an LLM. We control the248

percentage of added synthetic examples - increas-249

ing in increments of 25% of the gold training data.250

We report the results in Table 5.251

We observe continued, if modest, improvements252

when supplementing multitask learning with syn-253

thetic data. Some languages, like Gitksan, only254

start to improve when the percentage of synthetic255

examples approaches the number of natural ones.256

Other languages, like Arapaho, which already con-257

tains much larger data stores, see regular improve-258

ments as more data is added. There do seem to259

be some limitations to the idea that more data is260

always better, however; Lezgi sees an improvement261

only with moderate levels of extra data, and high-262

performing languages like Tsez and Nyangbo are263

difficult to improveme any further. On average, we264

see similar trends to multitask learning on its own -265

with most of the benefit coming at the morpheme266

level.267

LLM-generated synthetic data can be highly ben-268

eficial in addressing the data scarcity problem for269

Model Metric lez ddo arp git ntu nyb usp ave

M
ACC↑ 48.54 82.51 78.01 52.29 68.87 79.84 56.12 66.59
F1↑ 68.84 92.12 84.14 71.64 84.09 91.43 77.18 81.35
ED↓ 519 698 6543 112 373 149 1623 1431

M+ LLM (0.25)
ACC↑ 49.27 80.41 78.14 52.29 69.02 80.21 57.10 66.63
F1↑ 69.6 91.03 84.49 72.78 84.47 91.30 77.86 81.65
ED↓ 500 779 6632 118 350 136 1538 1436.14

M + LLM (0.5)
ACC↑ 49.51 81.64 78.41 52.29 67.02 80.84 56.89 66.66
F1↑ 67.44 91.87 84.91 70.84 82.84 90.45 76.97 80.76
ED↓ 529 687 6483 117 367 164 1557 1414.86

M+ LLM (0.75)
ACC↑ 48.82 81.32 79.5 56.88 68.71 81.24 58.29 67.82
F1↑ 67.69 91.51 85.65 74.32 84.18 91.34 79.05 81.96
ED↓ 491 723 6502 96 333 127 1507 1397

Table 3: Comparison of segmentation models across
languages. Each model includes three sub-rows for
ACC, F1, and ED, with the last column showing average
metrics. M denotes multitask learning, with synthetic
data added at 25%, 50%, and 75% of training size.

canonical segmentation. By providing diverse and 270

linguistically plausible training examples, LLMs 271

help compensate for the lack of annotated data 272

while preserving the structural integrity of mor- 273

phological patterns. The improvements observed 274

in both accuracy and consistency demonstrate the 275

value of incorporating LLMs into segmentation 276

models, particularly for languages with limited an- 277

notated resources. We have constrained our pre- 278

sented experiments to the multitask setting, but 279

an ablation study on the single-task objective (Ap- 280

pendix A.5) demonstrates similar trends. 281

4 Conclusions 282

In this work, we have demonstrated that low- 283

resource canonical morpheme segmentation is im- 284

proved through the use of multitask learning and 285

synthetic data. Using glossing as an auxiliary task 286

and LLMs to strengthen the training signal, we 287

provide a new benchmark for canonical morpheme 288

segmentation in low-resource languages, aiding in 289

the development of effective computational tools 290

for linguistic documentation and preservation. Fu- 291

ture research should refine data augmentation tech- 292

niques, explore active learning strategies, and inves- 293

tigate multilingual training frameworks to improve 294

cross-linguistic generalization, while also working 295

with documentary linguists to evaluate the value of 296

automation in the field. 297

5 Limitations 298

Despite the improvements demonstrated in our ex- 299

periments, our approach has several limitations that 300

should be addressed in future research. One key 301

limitation is our reliance on synthetic data gener- 302

ated by large language models (LLMs). While we 303

observe performance gains when augmenting train- 304

ing with synthetic examples, the quality and lin- 305
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guistic validity of these examples remain uncertain.306

LLMs may introduce hallucinations, generating307

segmentation patterns that do not fully align with308

the true morphological structure of the target lan-309

guage. Since our study does not include a detailed310

qualitative error analysis, it is difficult to determine311

whether the improvements stem from genuinely312

better morphological generalization or simply from313

increased exposure to frequent patterns. A more314

thorough investigation of the impact of synthetic315

data on segmentation quality, particularly in low-316

resource settings, is necessary.317

One potential risk of LLM-generated synthetic318

data lies in the misuse of these data for deceptive or319

unethical purposes. Since we propose using LLMs320

to generate structured linguistic data, this technique321

could be exploited to fabricate linguistic evidence322

in historical or sociolinguistic studies. In partic-323

ular, if synthetic morphological data is presented324

as authentic, it could be used to falsely attribute325

linguistic features to certain languages or commu-326

nities, potentially leading to misrepresentation or327

erasure of genuine linguistic diversity.328

A second limitation is that because our synthetic329

data generation process relies on patterns observed330

in the training set, it is inherently limited to exist-331

ing vocabulary. The LLM-generated data cannot332

create new stems or morphological categories that333

have not appeared in the training data, restricting its334

ability to model truly novel linguistic forms. This335

limitation means that the model may still struggle336

with out-of-vocabulary (OOV) words or rare mor-337

phological constructions that were not adequately338

represented in the original dataset. Future research339

could explore alternative methods, such as lever-340

aging morphological rule induction or few-shot341

learning with human-in-the-loop guidance, to gen-342

erate more diverse and linguistically valid synthetic343

data that extends beyond what has been seen in the344

training set.345

6 Ethical Concerns346

As with any work involving language data, but347

particularly data from underserved and historically348

marginalized communities, steps should be taken349

that language corpora are collected and stewarded350

with respect and the support of the communities.351

These data represent the linguistic and cultural her-352

itage of communities of people, and we thank the353

people of these communities for allowing us to354

work with their languages.355
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A Appendix436

A.1 Model Hyperparameters437

We train our models with 4 layers in each encoder438

and 2 or 4 layers in each decoder, each containing 4439

attention heads. The embedding size is 256 and the440

hidden layer size is 1024. These hyper-parameter441

settings roughly correspond to the values used by442

(Wu et al., 2021) for character-level tasks. We use443

the Adam optimizer with an initial learning rate444

of 0.001,with both dropout and attention dropout445

set to 0.1, and batch size 400. We train the model446

for 150-300 epochs and the prediction is performed447

with the best checkpoint model, according to the448

development accuracy, using a beam of width 5.449

A.2 Effect of λ Weighting on Multitask450

Performance451

Table 4 illustrates the impact of adjusting the452

segmentation-glossing weight (λ) on Lezgi model453

performance. As λ increases, placing greater em-454

phasis on segmentation loss, both accuracy and455

morpheme-level F1-score improve consistently.456

These results suggest that balancing segmenta-457

tion and glossing loss is crucial for multitask learn-458

ing effectiveness. While high values of λ are gen-459

erally beneficial, completely discarding glossing460

supervision could lead to the loss of valuable lin-461

guistic information. Thus, fine-tuning λ is essential462

to achieve the best trade-off between segmentation 463

precision and linguistic generalization. 464

Model Accuracy (%) F1-score (%)
Single-task Baseline 44.66 60.75
Multitask (λ = 0.5) 40.78 62.12
Multitask (λ = 0.6) 42.20 63.31
Multitask (λ = 0.7) 43.23 65.59
Multitask (λ = 0.8) 46.23 66.59
Multitask (λ = 0.9) 48.54 68.84
Multitask (λ = 1) 48.04 68.12

Table 4: Impact of λ weighting on Lezgi model perfor-
mance.

A.3 Learning Curves among All Languages 465

Figure 2 presents learning curves across different 466

training dataset sizes (25%, 50%, 75%, and 100%). 467

Each subplot corresponds to a different language, 468

with the final panel showing the average trends 469

across all languages. 470

Across all languages, the multitask model (solid 471

lines) consistently outperforms the single-task 472

model (dashed lines), particularly at lower training 473

data sizes. This trend is most pronounced in Lezgi, 474

Gitksan, and Arapaho, where multitask learning 475

significantly boosts both word-level accuracy (red 476

squares vs. orange circles) and morpheme F1-score 477

(green diamonds vs. blue diamonds). 478

For languages like Nyangbo and Tsez, the dif- 479

ference between single-task and multitask learn- 480

ing diminishes as dataset size increases. Ad- 481

ditionally, while morpheme F1-score improves 482

steadily with more training data, word-level ac- 483

curacy plateaus earlier in some languages (e.g., 484

Uspanteko, Natügu), suggesting that segmentation 485

benefits more from additional data than word-level 486

reconstruction does. 487

A.4 LLM Prompt 488

You are a linguistics expert of Natügu. Your job is 489

to generate new words based on the examples you 490

learned. You are given this stem "pr", its meaning 491

is "go". Here are several word examples of this 492

stems: 493

Example 1: 494

surface form: prtrp, canonical segmentation: pr- 495

tr-mq, gloss: go-GDIR.IN-PDIR.HITHER 496

...... 497

You are also given a list of grammatical mor- 498

phemes and their corresponding gloss: 499

Grammatical gloss "3AUG", its morpheme is 500

"nz" 501
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Figure 2: The learning curves for the F1 (top) and Accuracy (bottom) metrics among all languages.

Grammatical gloss "COS", its morpheme is "pe".502

......503

Can you generate 3 new words using the stem504

and randomly use 2-5 grammatical morphemes.505

You need to return the result in the same format as506

the examples (word, canonical segmentation, and507

gloss). Please note that canonical segmentation508

will have character change.509

A.5 Single-Task Ablation Results510

Table 5 presents an ablation study evaluating the511

impact of LLM-generated synthetic data on both512

single-task and multitask models for canonical seg-513

mentation. Across all languages, adding synthetic514

data consistently improves segmentation perfor-515

mance, particularly at the morpheme level (F1-516

score). Notably, for single-task models, synthetic517

data provides incremental improvements, but these518

gains are more pronounced in the multitask set-519

ting, where segmentation and glossing are jointly520

learned.521

When comparing S+LLM (0.5) vs. M+LLM522

(0.5) we observe that multitask learning consis-523

tently outperforms single-task learning across all524

metrics. The average F1-score for the multitask525

model (80.76%) is higher than the single-task526

model (80.02%), and the edit distance (ED) is also527

reduced more effectively (1414.86 vs. 1480.57).528

This suggests that multitask learning better inte-529

grates synthetic data, leveraging glossing as an530

auxiliary task to reduce segmentation errors and531

improve consistency.532

Interestingly, in lower-resource languages like 533

Gitksan, LLM augmentation provides the largest 534

gains, particularly at higher proportions (75%), 535

reinforcing that synthetic data is most beneficial 536

in extreme data-scarce conditions. However, for 537

languages with richer training data like Tsez and 538

Nyangbo, improvements plateau. 539

Model Metric lez ddo arp git ntu nyb usp ave

Baseline (S)
ACC↑ 44.66 82.6 67.08 47.71 63.04 80.48 55.05 62.95
F1↑ 60.75 90.44 81.11 65.5 80.3 90.24 75.66 77.71
ED↓ 568 652 10495 117 458 154 1799 2034.71

M
ACC↑ 48.54 82.51 78.01 52.29 68.87 79.84 56.12 66.59
F1↑ 68.84 92.12 84.14 71.64 84.09 91.43 77.18 81.35
ED↓ 519 698 6543 112 373 149 1623 1431

S+ LLM (0.25)
ACC↑ 48.79 80.28 78.17 53.96 66.10 80.04 56.50 66.26
F1↑ 68.17 90.82 83.96 70.95 80.55 90.73 76.59 80.25
ED↓ 475 852 6534 92 357 137 1544 1427.29

M+ LLM (0.25)
ACC↑ 49.27 80.41 78.14 52.29 69.02 80.21 57.10 66.63
F1↑ 69.6 91.03 84.49 72.78 84.47 91.30 77.86 81.65
ED↓ 500 779 6632 118 350 136 1538 1436.14

S+ LLM (0.5)
ACC↑ 48.54 80.64 76.77 52.29 67.02 81.44 58.98 66.52
F1↑ 67.86 89.81 82.61 67.43 82.84 90.84 78.76 80.02
ED↓ 518 873 7037 101 367 127 1441 1480.57

M + LLM (0.5)
ACC↑ 49.51 81.64 78.41 52.29 67.02 80.84 56.89 66.66
F1↑ 67.44 91.87 84.91 70.84 82.84 90.45 76.97 80.76
ED↓ 529 687 6483 117 367 164 1557 1414.86

S + LLM (0.75)
ACC↑ 48.57 80.59 78.27 55.05 72.47 80.24 59.87 67.87
F1↑ 67.71 86.02 83.98 70.72 84.40 90.01 78.97 80.26
ED↓ 536 863 6635 99 287 147 1432 1428.43

M+ LLM (0.75)
ACC↑ 48.82 81.32 79.5 56.88 68.71 81.24 58.29 67.82
F1↑ 67.69 91.51 85.65 74.32 84.18 91.34 79.05 81.96
ED↓ 491 723 6502 96 333 127 1507 1397

Table 5: Comparison of segmentation models across
multiple languages. Each model has three sub-rows
representing Word-Level Accuracy (ACC), Morpheme
F1-Score (F1), and Edit Distance (ED). The last column
provides the average of each metric across languages.
M denotes multitask learning, and S denotes single-task
learning, with synthetic data added at 25%, 50%, and
75% of training size.
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