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ABSTRACT

Prompt-based continual learning has recently shown strong empirical progress,
yet its theoretical underpinnings remain incomplete. Prior work such as NSP2 pro-
vides sufficient conditions for performance preservation for visual prompt tuning
via null-space projection and achieves strong empirical results, but its reliance on
simplifying assumptions in MHSA and LayerNorm undermines robustness and
interpretability. In this paper, we revisit the problem from a matrix-level per-
spective and propose Consistent Null-Space Projection (CNSP). Our framework
introduces: (i) rigorous per-head derivations under MHSA; (ii) a matrix-form
characterization of LayerNorm; (iii) a relaxed prompt variance constraint that is
more stable in practice; and (iv) refined sufficient conditions enforced via null-
space projection that extend naturally to classification heads, ensuring end-to-end
task performance preservation. Extensive experiments on multiple benchmarks
demonstrate that CNSP consistently improves over NSP2. Our results highlight
the importance of principled matrix-level formulations for building robust and in-
terpretable prompt-based continual learning methods.

1 INTRODUCTION

Continual learning seeks to enable models to acquire new knowledge from sequential tasks without
forgetting previously learned knowledge. Despite significant progress, catastrophic forgetting (Mc-
Closkey & Cohen, 1989), where performance on old tasks deteriorates when learning new ones,
remains a major challenge (Wang et al., 2024).

Recently, prompt-tuning methods, particularly Visual Prompt Tuning (VPT) (Jia et al., 2022) with
Vision Transformers (ViTs) (Dosovitskiy et al., 2020), have emerged as a promising rehearsal-
free solution for continual learning (Wang et al., 2024). By updating only lightweight prompts
while freezing the backbone, these methods achieve both computational and storage efficiency.
While several prompt-based methods for continual learning (e.g., L2P (Wang et al., 2022b), Dual-
Prompt (Wang et al., 2022a), Coda-Prompt (Smith et al., 2023)) have demonstrated strong empirical
performance, a theoretical understanding of how prompts mitigate interference is still limited. In
classical continual learning, orthogonal projection methods have provided a principled framework
to prevent forgetting in linear and convolutional networks by deriving explicit linear consistency
conditions to ensure knowledge retention (Saha et al., 2021; Deng et al., 2021; Wang et al., 2021).
Yet, these guarantees do not transfer to ViTs: nonlinear LayerNorm, QKV projections, and softmax
attention fundamentally break the linear assumptions.

To bridge this gap, recent efforts have adapted projection ideas to ViTs/VPT (Qiao et al., 2024;
Lu et al., 2024). PGP (Qiao et al., 2024) approximates MHSA and LayerNorm as linear mappings
and constructs orthogonal subspaces in the sum space of inputs and prompts, but its strong simpli-
fication limits generality. NSP2 (Lu et al., 2024) provides a more systematic analysis of the ViT
layer in VPT, deriving sufficient conditions for task performance preservation and proposing a null-
space projection algorithm with strong empirical results. However, NSP2’s treatment of LayerNorm
and multi-head attention relies on simplifications, leaving its theoretical guarantees incomplete and
limiting both robustness and interpretability. In this work, we revisit the problem from a finer-
grained matrix-level perspective. Building on NSP2, we propose Consistent Null-Space Projection
(CNSP), which establishes stricter sufficient conditions under multi-head attention and matrix-form
LayerNorm, together with feasible optimization strategies. Specifically, through reproducing and
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analyzing NSP2, we identify four key limitations: (i) its extension from single-head to multi-head
attention relies on concatenation without rigorous justification; (ii) its derivation treats LayerNorm
broadcast operations as scalar quantities, which are then cancelled from both sides of the equations,
leading to an oversimplification; (iii) it enforces both mean and variance invariance of prompts, a
strong and unstable assumption in practice; and (iv) its derivation overlooks the classification head,
leaving analysis incomplete.

We address these issues and make the following contributions:

(i) Rigorous multi-head analysis. We derive explicit per-head sufficient conditions, establishing a
solid theoretical foundation for performance preservation in MHSA.
(ii) Matrix-form LayerNorm modeling. We reformulate LayerNorm’s broadcast operations in ma-
trix form, ensuring algebraic rigor.
(iii) Relaxed distributional constraint. We show that variance invariance of prompts alone suf-
fices, relaxing NSP2’s stronger mean–variance assumption.
(iv) Classification head preservation. We extend task performance preservation beyond attention
layers to classification heads, ensuring theoretical and practical end-to-end consistency from repre-
sentation to decision.
(v) Empirical gains. Across benchmarks including CIFAR-100, ImageNet-R, and DomainNet, our
method consistently outperforms NSP2 in both average accuracy and forgetting, and achieves per-
formance that is competitive with leading prompt-based continual learning approaches.

2 RELATED WORKS

2.1 PROMPT-BASED METHODS FOR CONTINUAL LEARNING

Prompt-based methods have emerged as a promising paradigm for continual learning, enabling
efficient task adaptation through lightweight modules while reducing task interference. Early
approaches include L2P (Wang et al., 2022b), which employs a learnable prompt pool with
dynamic prompt selection, and DualPrompt (Wang et al., 2022a), which further disentangles
prompts into general and expert subsets to balance knowledge sharing and task-specific adaptation.
CPrompt (Gao et al., 2024) addresses train–test inconsistency via classifier- and prompt-consistent
learning, while CODA-Prompt (Smith et al., 2023) decomposes prompts into fine-grained compo-
nents and dynamically recombining them through attention. EvoPrompt (Kurniawan et al., 2024)
formulates prompt learning as evolutionary search for long-term adaptability.

Beyond purely visual prompts, LGCL (Khan et al., 2023) incorporates semantic guidance by align-
ing visual representations with language embeddings at both task and class levels, improving in-
terpretability and transferability. ConvPrompt (Roy et al., 2024) leverages convolutional structures
to construct hierarchical prompts and employs large language models to estimate task similarity,
improving cross-task knowledge transfer and reducing redundancy.

More recent efforts emphasize principled formulations of prompt learning. PGP (Qiao et al., 2024)
enforces gradient orthogonality in the joint input–prompt space by linearizing the nonlinear effects
of MHSA and LayerNorm, while NSP2 (Lu et al., 2024) derives null-space projection conditions
for VPT by explicitly analyzing attention and LayerNorm. CPG (Lu et al., 2025) further introduces
a consistency-constrained Mixture-of-Experts framework to ensure stable and generalizable prompt
generation across tasks.

Overall, prompt-based methods have shown strong versatility in continual learning, but their theoret-
ical foundations remain underdeveloped. NSP2 makes an important step with null-space projection
for VPT, yet its simplified treatment of multi-head attention and LayerNorm reduces robustness
and interpretability. We address these limitations by re-deriving sufficient conditions for multi-
head attention and formalizing LayerNorm in matrix form, yielding a more principled and effective
framework.

2.2 ORTHOGONAL PROJECTION METHODS FOR CONTINUAL LEARNING

Orthogonal projection methods have been widely studied in CNNs and MLPs (e.g., OWM (Zeng
et al., 2019), GPM (Saha et al., 2021), Adam-NSCL (Wang et al., 2021)) as a principled way
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to reduce task interference. The core idea is to preserve past feature responses by constrain-
ing parameter updates within subspaces orthogonal to previous tasks’ features, formalized as
X⊤(Θ + ∆Θ) = X⊤Θ, where X denotes input features, Θ the convolutional or linear param-
eters, and ∆Θ the update. Enforcing X⊤∆Θ = 0 guarantees invariance of past intermediate
representations, thereby retaining knowledge. This principle, rooted in gradient limitation theory,
provides a mathematical explanation of the stability-plasticity trade-off. Representative methods
include GPM Saha et al. (2021), which projects gradients onto the null space of previously learned
inputs; TRGP (Lin et al., 2022b), which refines GPM by scaling task gradients with a trust region
matrix before projection; and Connector (Lin et al., 2022a) interpolates a normally updated model
with one constrained by projection.

These methods are effective in linear or convolutional architectures, where the orthogonality con-
dition holds exactly. In transformers, however, nonlinear interactions QKV interactions, softmax
normalization, and distributional shifts from LayerNorm collectively violate the linearity, making
directly applying classical methods to ViTs/VPT unreliable. To address this, recent works have re-
visited orthogonal projection in prompt tuning (Qiao et al., 2024; Lu et al., 2024). Notably, NSP2 (Lu
et al., 2024) unfolds the forward propagation of VPT in ViT layers and derives sufficient condi-
tions for performance preservation, enforced approximately through null-space projection. This
framework successfully adapts classical projection principles to transformer architectures, but still
relies on oversimplifying assumptions. Building on this foundation, we strengthen the theoretical
guarantees of projection-based continual learning in VPT by introducing stricter and more general
consistency conditions together with stable optimization strategies.

3 PRELIMINARIES

In this section, we introduce the notations and conventions, describe the forward propagation pro-
cess of transformer blocks under VPT-deep (Jia et al., 2022)—where learnable prompts are inserted
into the input token sequence at each block for efficient adaptation with a frozen backbone—and
formalize the continual learning problem in this setting.

3.1 NOTATIONS

We use the following notational conventions: (i) Non-bold letters denote positive integers, e.g.,
a,A ∈ N+. (ii) Bold lowercase denote vectors, a ∈ Rn; bold uppercase denote matrices, A ∈
Rn×m. (iii) Column concatenation: for A(i) ∈ Rn×d, [A(i)]Ni=1 =

[
A(1) . . . A(N)

]
∈ Rn×Nd.

(iv) Row concatenation: for A(i) ∈ Rn×d,
[
A(1); . . . ;A(N)

]
∈ RNn×d. (v) Slicing: if A =[

A(1);A(2)
]

with A(1) ∈ Rn×d, then A[: n] = A(1).

3.2 FORWARD PROPAGATION IN VPT-DEEP

Let X ∈ R(N+1)×D denote the patch embeddings of an input image, where N is the number of
patches, the first row is the pre-trained [CLS] token, and D the embedding dimension. A standard
ViT with depth L can be written as fViT (X | Θ; {W , b}), where Θ are frozen backbone param-
eters and {W , b} are learnable classification head parameters. Let X(l) ∈ R(N+1)×D denote the
input embeddings of the l-th block.

In VPT-deep, each block l introduces M learnable prompts P (l) ∈ RM×D, concatenated with image
embeddings to form the input sequences: Z(l) =

[
X(l);P (l)

]
∈ R(N+1+M)×D, X(1) = X. The

forward propagation in VPT-deep is illustrated in fig. 1. Each transformer block applies LayerNorm
(LN), Multi-Head Self-Attention (MHSA), and an MLP with residual connections:

O
(l)
Z = MHSA(LN(Z(l))), B

(l)
Z = Z(l) +O

(l)
Z , E

(l)
Z = B

(l)
Z +MLP(LN(B

(l)
Z )). (1)

Before the next block, the prompts are removed and replaced with a new set of learnable prompts:

X(l+1) = E
(l)
Z [: N + 1], Z(l+1) = [X(l+1);P (l+1)]. (2)

Thus, prompts modulate intermediate features at each block but do not persist across blocks. The
final [CLS] token is passed into the classification head:

fViT

(
X | Θ; {W , b}; {P (l)}Ll=1

)
= softmax

(
E

(L)
Z [: 1]W + b

)
, (3)
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Figure 1: Forward propagation in VPT. Image embeddings (X) and learnable prompt embeddings
(P ) are jointly processed by LayerNorm, MHSA, and MLP with residual connections in each trans-
former block. Modules marked with are frozen, those with are trainable, and those with
indicate information discarded before entering the next layer.

where W ∈ RD×C , b ∈ RC , and C is the number of classes.

3.3 PROBLEM FORMULATION: CONTINUAL LEARNING WITH VPT-DEEP

We consider a continual learning setting with a sequence of tasks T1, . . . , TT . Each task Tt is asso-
ciated with a dataset Dt = {(x(i)

t , y
(i)
t )}Nt

i=1, where x
(i)
t is an image and y

(i)
t its label. At block l,

let P (l)
t be the prompts after learning tasks up to Tt. For the next task Tt+1, updates are:

P
(l)
t+1 = P

(l)
t +∆P (l), Wt+1 = Wt +∆W , bt+1 = bt +∆b, (4)

The continual learning objective requires preserving performance on previous tasks after training on
a new one. We formalize the objective as:

fViT(Xt | Θ; {Wt+1, bt+1}; {P (l)
t+1}Ll=1) = fViT(Xt | Θ; {Wt, bt}; {P (l)

t }Ll=1), (5)

which enforces that model outputs on old inputs Xt from Tt must remain unchanged. Equivalently,
updates {∆P (l)}Ll=1 and {∆W ,∆b} must not affect the predictions for previously learned tasks.
To characterize this objective, we introduce two key propositions that decompose it into two com-
plementary requirements: feature preservation at intermediate blocks and head preservation at
the classification head.

Proposition 1. Consider two tasks Tt and Tt+1. If the image-token part of attention outputs remains
unchanged for all blocks in VPT, i.e.,

O
(l)
Zt,t+1

[: N + 1] = O
(l)
Zt,t

[: N + 1], l = 1, 2, . . . , L, (6)

then the image-token output of the final block is preserved:

E
(L)
Zt,t+1

[: N + 1] = E
(L)
Zt,t

[: N + 1], (7)

which we refer to as feature preservation. Here O
(l)
Zt,t+1

, O(l)
Zt,t

, E(L)
Zt,t+1

, and E
(L)
Zt,t

are computed
by eq. (1). In particular, the final [CLS] token is preserved:

E
(L)
Zt,t+1

[: 1] = E
(L)
Zt,t

[: 1]. (8)

Proof Sketch. By eq. (2), since prompts are replaced at each block, their effect propagates only
through the image-token outputs E(l)

Z [: N + 1]. Row-wise independence of post-MHSA operations
ensures invariance of O(l)

Z [: N + 1] carries forward. Full proof is provided in Appendix A.

Proposition 2. Consider tasks Tt and Tt+1. If the final [CLS] token remains unchanged (i.e., eq. (8)
holds) and the head updates satisfy:

E
(L)
Zt,t

[: 1]∆W +∆b = 0, (9)

which we refer to as head preservation, then the continual learning objective eq. (5) is satisfied.
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Proof. From eq. (8) and eq. (9), we have

E
(L)
Zt,t+1

[: 1]Wt+1 + bt+1 = E
(L)
Zt,t+1

[: 1] (Wt +∆W ) + (bt +∆b) = E
(L)
Zt,t

[: 1]Wt + bt, (10)

which, by eq. (3), implies eq. (5). □

Together, Propositions 1 and 2 reduce continual learning preservation to two conditions: feature
preservation, requiring prompt updates to leave image-token representations invariant for represen-
tational stability, and head preservation, requiring the classifier to maintain consistent mappings of
the preserved [CLS] token. This decomposition of objective eq. (5) forms the theoretical basis for
the sufficient conditions derived in the next section. Particularly, proposition 1 implies interme-
diate feature preservation reduces to ensuring invariance at the MHSA output. Therefore, in the
derivations presented in the next section, we focus on LayerNorm and MHSA, as they are the only
operations directly relevant to feature preservation.

4 METHOD

Our method builds on Propositions 1 and 2, enforcing both feature and head preservation. Feature
preservation is ensured through explicit constraints on prompt updates and head preservation guar-
anteed by design. According to proposition 1, the preservation objective can be analyzed blockwise
by focusing solely on the MHSA and its preceding LayerNorm operation. Other components (e.g.,
MLP) are row-wise and do not alter the preservation property. Since eq. (6) must be satisfied at
every layer, we omit the superscript (l)) when deriving algebraic sufficient conditions on prompt
updates.

4.1 UNFOLDING FORWARD PROPAGATION OF LAYERNORM AND MHSA IN A SINGLE
BLOCK

Let the input sequence be Zt,t+1 = [Xt;Pt+1] ∈ R(N+1+M)×D, where Pt+1 = Pt+∆P . Figure 2
illustrates the unrolled forward pass of LayerNorm (LN) and MHSA in a single transformer block.
In this setting, computations involving Q

(h)
Pt+1

can be safely omitted; justification is provided below.

First, Zt,t+1 is passed through LayerNorm, we introduce the following lemma:

Lemma 1. Consider the computation of LayerNorm LN(·). Let A = [A(1);A(2)] with A(1) ∈
Rn×d and A(1) ∈ Rm×d. Then LN (A) =

[
LN

(
A(1)

)
; LN

(
A(2)

)]
.

Proof of Lemma 1 is in Appendix A. According to lemma 1, we have LN (Zt,t+1) =
[LN (Xt) ; LN (Pt +∆P )] . Next, the normalized sequence undergoes QKV transformation, in-
cluding QKV projections and multi-head splitting. For head h ∈ {1, . . . , H}, we have:

Φ
(h)
Zt,t+1

= LN(Zt,t+1)W
(h)
ϕ + 1N+1+Mb

(h)
ϕ

⊤
=

 LN(Xt)W
(h)
ϕ + 1N+1b

(h)
ϕ

⊤

LN(Pt +∆P )W
(h)
ϕ + 1Mb

(h)
ϕ

⊤

 , (11)

where Φ ∈ {Q,K,V }, ϕ serves as the symbolic index for q, k, v, and W
(h)
ϕ ∈ RD×DH , b(h)ϕ ∈

RDH , and DH = D/H . Let

Q
(h)
Zt,t+1

=
[
Q

(h)
Xt

; Q
(h)
Pt+1

]
, K

(h)
Zt,t+1

=
[
K

(h)
Xt

; K
(h)
Pt+1

]
, V

(h)
Zt,t+1

=
[
V

(h)
Xt

; V
(h)
Pt+1

]
, (12)

where Q
(h)
Xt

, K(h)
Xt

, V (h)
Xt
∈ R(N+1)×DH and Q

(h)
Pt+1

, K(h)
Pt+1

, V (h)
Pt+1
∈ RM×DH .

For each head h, the attention weights and value aggregation are computed as

H
(h)
Zt,t+1

= softmax
(
Q

(h)
Zt,t+1

K
(h)
Zt,t+1

⊤
/
√
DH

)
V

(h)
Zt,t+1

, (13)

where the softmax function acts on the rows of matrix Q
(h)
Zt,t+1

K
(h)
Zt,t+1

⊤
. Finally, concatenating

across heads and applying the output projection gives

OZt,t+1 =
[
H

(h)
Zt,t+1

]H
h=1

Wo + 1N+1+Mb⊤o . (14)
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By proposition 1, feature preservation requires OZt,t+1
[: N + 1] = OZt,t

[: N + 1]. Note that[
H

(h)
Zt,t+1

]H
h=1

[: N + 1] =
[
softmax(Q

(h)
Xt

K
(h)
Zt,t+1

⊤
/
√

DH)V
(h)
Zt,t+1

]H
h=1

. (15)

Therefore, only Q
(h)
Xt

contributes to the image-token outputs, terms from Q
(h)
Pt+1

can be omitted in
the preservation analysis.

Figure 2: Detailed illustration of LayerNorm and the multi-head self-attention mechanism in a VPT
Transformer block, showing how image and prompt embeddings are jointly processed. Those with

indicate information discarded before entering the next layer.

4.2 SUFFICIENT CONDITIONS FOR FEATURE PRESERVATION IN VPT

Building on the above expansion, we restrict attention to the Q
(h)
Xt

-dependent pathways. Define

A
(h)
Zt,t+1

=
Q

(h)
Xt

K
(h)
Zt,t+1

⊤

√
DH

=
1√
DH

Q
(h)
Xt

[
K

(h)
Xt

⊤
K

(h)
Pt+1

⊤]
≜

[
A

(h)
XtXt

A
(h)
XtPt+1

]
, (16)

S
(h)
Zt,t+1

= softmax
([

A
(h)
XtXt

A
(h)
XtPt+1

])
≜

[
S

(h)
XtXt

S
(h)
XtPt+1

]
, (17)

where A
(h)
XtXt

, S(h)
XtXt

∈ R(N+1)×(N+1) and A
(h)
XtPt+1

, S(h)
XtPt+1

∈ R(N+1)×M . (Symbol–module
correspondence is depicted in 2.) By proposition 1, eq. (14) and eq. (15), feature preservation
requires [

S
(h)
XtXt

V
(h)
Xt

+ S
(h)
XtPt+1

V
(h)
Pt+1

]H
h=1

Wo =
[
S

(h)
XtXt

V
(h)
Xt

+ S
(h)
XtPt

V
(h)
Pt

]H
h=1

Wo (18)

In MHSA, Wo fuses per-head outputs into a unified representation (Vaswani et al., 2017; Horn &
Johnson, 2012). Since Wo may in principle be singular, we impose stronger sufficient conditions by
requiring per-head equality:

S
(h)
XtPt+1

V
(h)
Pt+1

− S
(h)
XtPt

V
(h)
Pt

= 0. (19)

Direct algebraic characterization is intractable due to the nonlinearity of softmax. Following
NSP2 (Lu et al., 2024), we instead require invariance of the attention scores:

A
(h)
Zt,t

= A
(h)
Zt,t+1

⇔ Q
(h)
Xt

(
K

(h)
Pt+1

⊤
−K

(h)
Pt

⊤
)

= 0. (20)

That is, the attention scores from image tokens to prompts remain unchanged before and after the
prompt update. Under eq. (20), condition eq. (19) reduces to

S
(h)
XtPt

(
V

(h)
Pt+1

− V
(h)
Pt

)
= 0. (21)

By substituting eq. (11), we obtain per-head sufficient conditions for feature preservation:
Q

(h)
Xt

(
K

(h)
Pt+1

⊤
−K

(h)
Pt

⊤
)

= Q
(h)
Xt

W
(h)
k

⊤
(LN (Pt +∆P )− LN (Pt))

⊤
= 0

S
(h)
XtPt

(
V

(h)
Pt+1

− V
(h)
Pt

)
= S

(h)
XtPt

(LN (Pt +∆P )− LN (Pt))W
(h)
v = 0

(22)

6
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To reduce the conditions to direct dependence on ∆P , we expand the LayerNorm:

LN (Pt +∆P ) =
Pt +∆P − µPt+∆P

σPt+∆P
· γ + β, (23)

where µPt+∆P , σPt+∆P∈ RM are row-wise statistics and γ, β∈ RD are shared affine parameters
(broadcast in implementation). To avoid broadcast ambiguity, we introduce LayerNorm in matrix
form: let C = ID − 1

D1D1⊤
D(∈ RD×D) be the centering matrix, DσPt+∆P

(∈ RM×M ) 1 the
diagonal scaling matrix from σPt+∆P , and Γ(∈ RD×D) the diagonal matrix from γ. Then

LN (Pt +∆P ) = D−1
σPt+∆P

(Pt +∆P )CΓ+ 1Mβ⊤. (24)

Note that β and γ are frozen. If we introduce a variance-invariance assumption
σPt

= σPt+∆P ≜ σ, (25)
then

LN (Pt +∆P )− LN (Pt) = D−1
σ ∆PCΓ. (26)

Substituting eq. (26) into eq. (22), the sufficient constraints reduce to the following linear form:Q
(h)
Xt

W
(h)
k

⊤
ΓC∆P⊤ = 0

S
(h)
XtPt

D−1
σ ∆PCΓW (h)

v = 0
h = 1, 2, . . . ,H. (27)

The first constraint ensures that, after centering and scaling, prompt updates do not perturb the
scoring pattern from image tokens to prompts. The second ensures that they do not perturb the value
aggregation pathway. Therefore, under the assumption eq. (25), eq. (27) provides a set of per-head
sufficient conditions for feature preservation eq. (7).

4.3 OPTIMIZATION UNDER FEATURE PRESERVATION CONSTRAINTS

To enforce the variance-invariance assumption eq. (25), we adopt a soft constraint by introducing a
standard deviation alignment loss:

L = Lce + λLstd, Lstd = ∥σPt+1 − σPt∥1, (28)
where L is the total loss, Lce is the cross-entropy loss, and λ balances the alignment term. Under
this assumption, we obtain the sufficient conditions in eq. (27), constraining ∆P . We adopt a right-
side nullification form on the second constraint S(h)

XtPt
D−1

σ ∆PCΓW
(h)
v = 0. The rationale is to

avoid circular dependence: if D−1
σ remains on the solving side, then ∆P becomes entangled with

the current statistic σ, complicating implementation and hurting numerical stability. In contrast,
the right-sided formulation ∆PCΓW

(h)
v = 0 removes explicit dependence on σ, yielding more

stable behavior. Moreover, it only involves frozen pretrained parameters, reducing the computational

overhead. Let R(h)
k = CΓW

(h)
k Q

(h)
Xt

⊤
, R(h)

v = CΓW
(h)
v , and define

R =
[
R

(1)
k · · · R

(H)
k R

(1)
v · · · R

(H)
v

]
∈ RD×2D. (29)

Our implementation enforces, at every optimization step, ∆PR = 0. Equivalently, each row of
∆P lies in the left null space of R. Since the effective constraint size grows with tasks, handling R
directly can be expensive. We thus use the following basic result:
Lemma 2. For A ∈ Rn×m with left null space NL (A) = {xA = 0 | x⊤ ∈ Rn}, it holds that
NL (A) = NL

(
AA⊤).

Proof of lemma 2 is in Appendix A. Lemma 2 implies that ∆PR = 0 is equivalent to requiring
each row of ∆P to lie in NL

(
RR⊤), where RR⊤ ∈ RD×D has fixed dimension during training.

In practice, we perform Singular Value Decomposition (SVD) on RR⊤, collect the left singular
vectors corresponding to zero singular values to form an orthogonal basis U0, so thatNL

(
RR⊤) =

span (U0) and its null-space projector is BR = U0U
⊤
0 . Let ∆Praw denote the raw update from

back-propagation. We apply the feature-preservation projection
∆P ← ∆PrawBR, (30)

which guarantees that the feature-preservation sufficient conditions (i.e., eq. (27)) are satisfied.
1In practice, a small constant ϵ > 0 is added to the variance when computing each row’s standard deviation,

ensuring positivity and numerical stability. Hence all standard deviations are strictly greater than zero, and the
corresponding diagonal matrix is invertible.
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4.4 CLASSIFICATION HEAD PRESERVATION BY DESIGN

Proposition 2 requires that the classification head preserve its mapping of the [CLS] token across
tasks. In our framework, this property is inherently guaranteed by design through task-specific
classification heads, a strategy commonly adopted in prompt-based continual learning (Wang et al.,
2022b; Lu et al., 2024; Wang et al., 2022a). During training, only the head for the current task is
updated, while all previously learned heads remain frozen. Consequently, their mappings from the
[CLS] token remain unchanged, directly satisfying the head preservation requirement. At inference,
the outputs of all heads are concatenated, and prediction is made by selecting the class with the
highest confidence, thereby eliminating the need for task identity. An illustration of this head design
(fig. 5), together with a more detailed discussion of head preservation, is provided in Appendix E.1.

Summary. Our method enforces feature preservation through null-space projected updates and
ensures head preservation by design, achieving end-to-end consistency across tasks. Detailed algo-
rithmic descriptions are provided in Appendix B, and a comprehensive comparison with NSP2 is
given in Appendix C.

5 EXPERIMENTS

Benchmarks and Evaluation Metrics. We evaluate CNSP on four benchmarks widely used
in prompt-based continual learning: 10/20-Split CIFAR-100 (Krizhevsky et al., 2009), 10-Split
ImageNet-R (Hendrycks et al., 2021), and 10-Split DomainNet (Peng et al., 2019). Performance
is measured by Last Average Accuracy (ACC, ↑) and Forgetting (↓). Details of benchmarks and
metric definitions are provided in Appendix D.1 and D.2

Implementation. We use the ImageNet-21K pretrained ViT-B/16 (Dosovitskiy et al., 2020) as the
backbone, inserting four prompt tokens into each layer. Experiments are conducted under the class-
incremental setting with disjoint classes and unknown task identity at inference. Models are trained
with Adam (Kingma & Ba, 2015) for 10 epochs per task, using a loss that combines cross-entropy
with prompt alignment regularizers (eq. (28)). Complete implementation details are provided in
Appendix D.3.

Competitors. We compare CNSP against the state-of-the-art prompt-based continual learning meth-
ods, including L2P (Wang et al., 2022b), Dual-Prompt (Wang et al., 2022a), CodaPrompt (Smith
et al., 2023), CPrompt (Gao et al., 2024), EvoPrompt (Kurniawan et al., 2024), PGP (Qiao et al.,
2024), LGCL (Khan et al., 2023), ConvPrompt (Roy et al., 2024), CPG (Lu et al., 2025), and our
direct predecessor, NSP2 (Lu et al., 2024). The results are shown in table 1.

Table 1: Comparison with existing prompt-based methods using ImageNet-21K pretrained back-
bones. Results (%) are reported as mean ± standard deviation over three runs. The highest accu-
racies are in bold, and the second highest accuracies are underlined. Results marked with †, ‡, and
§ are reproduced by Qiao et al. (2024), Gao et al. (2024), and Lu et al. (2025), respectively, due to
lack of official results.

Method 10-Split-CIFAR100 20-Split-CIFAR100 10-Split-ImageNet-R 10-Split-DomainNet

ACC(↑) Forgetting(↓) ACC(↑) Forgetting(↓) ACC(↑) Forgetting(↓) ACC(↑) Forgetting(↓)

L2P 83.83±0.04 7.63±0.30 81.29±0.43
† 8.96±0.38

† 61.57±0.66 9.73±0.47 81.17±0.83
‡ 8.98±1.25

‡

DualPrompt 86.51±0.33 5.16±0.09 82.98±0.47
† 8.20±0.08

† 68.13±0.49 4.68±0.20 81.70±0.78
‡ 8.04±0.31

‡

CodaPrompt 86.25±0.74 1.67±0.26 - - 75.45±0.56 1.64±0.10 80.04±0.79
‡ 10.16±0.35

‡

CPrompt 87.82±0.21 5.06±0.50 83.97±0.31
§ 6.85±0.43

§ 77.14±0.11 5.97±0.68 82.97±0.34 7.45±0.93

EvoPrompt 87.97±0.30 2.60±0.42 84.64±0.14 3.98±0.24 76.83±0.08 2.78±0.06 79.50±0.29
§ 3.81±0.36

§

PGP 86.92±0.05 5.35±0.19 83.74±0.01 7.91±0.15 69.34±0.05 4.53±0.04 80.41±0.25
§ 8.39±0.18

§

LGCL 87.23±0.21 5.10±0.15 - - 69.46±0.04 4.20±0.06 - -
ConvPrompt 88.87±0.33 4.75±0.15 87.22±0.42

§ 5.43±0.29
§ 77.86±0.25 4.33±0.24 79.47±0.35

§ 6.49±0.43
§

CPG 90.63±0.44 3.98±0.65 88.08±0.77 5.20±0.64 78.63±0.52 7.18±0.62 83.21±0.67 7.09±0.82

NSP2 90.70±0.17 4.20±0.35 88.59±0.46 4.45±0.60 79.17±0.63 5.06±1.07 84.17±0.54 7.33±0.94

CNSP (Ours) 91.01 ±0.10 3.91±0.47 89.42±0.58 4.23±0.51 79.69±0.32 4.62±0.66 84.51±0.41 6.62±0.26
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Main Results and Analysis. Table 1 shows that CNSP consistently achieves the highest ACC across
all benchmarks while maintaining competitive or lower forgetting, validating the effectiveness of
our matrix-form analysis and right-side null-space projection. Specifically, on 10-Split CIFAR100,
CNSP reaches 91.01±0.10, exceeding NSP2 (90.70±0.17) by +0.31% and reducing forgetting (3.91
vs. 4.20). On 20-Split CIFAR100, it improves ACC by +0.83% (89.42 vs. 88.59) with slightly
lower forgetting (4.23 vs. 4.45). On 10-Split ImageNet-R, it raises ACC to 79.69±0.32 (+0.52%)
and reduces forgetting (4.62 vs. 5.06). On 10-Split DomainNet, it achieves 84.51±0.41 (+0.34%)
and lowers forgetting (6.62 vs. 7.33). Task-wise curves in fig. 3 further reveal that CNSP maintains
higher or comparable ACC throughout training, with consistently lower forgetting, particularly on
cross-domain benchmark DomainNet where forgetting is more severe. For completeness, we also
report task-wise curves for 20-Split CIFAR100 (fig. 4), and additional comparisons with fine-tuning
(lower bound) and joint training (oracle upper bound) in Appendix D.5, which exhibit the same
consistent advantage of CNSP over NSP2.

Figure 3: Results on three continual learning benchmarks. The first row shows the last average
accuracy (ACC, %) on 10-Split-CIFAR100, 10-Split-ImageNet-R, and 10-Split-DomainNet, while
the second row reports the corresponding forgetting (%), where lower values indicate better retention
of prior knowledge. Compared methods are NSP2 and our proposed CNSP.

Ablation Study. We assess the contribution of each component in CNSP (Table 2, Appendix D.5).
Removing the variance-preservation loss (Lstd) yields moderate drops (e.g., CIFAR100 ACC
91.1→90.6; forgetting 4.43→5.17), showing its stabilizing effect. Eliminating the null-space pro-
jection (BR) causes severe degradation (ACC 85.0, forgetting 14.4), confirming its necessity for
feature preservation. Removing the entire module (“Backbone only”) further reduces ACC below
84% and raises forgetting above 16–25%. These results demonstrate that both Lstd and BR are
indispensable for robust knowledge retention.

6 CONCLUSION

In this paper, we introduced CNSP, a principled framework that strengthens the theoretical founda-
tion of prompt-based continual learning via refined null-space projection. Building on NSP2, our
approach addresses its key limitations with more rigorous treatments of LayerNorm and multi-head
attention. As a result, CNSP offers a more stable and optimization-friendly formulation with end-
to-end consistency guarantees. Empirically, CNSP consistently outperforms NSP2 and other strong
baselines across benchmarks, achieving higher accuracy with lower or comparable forgetting. Look-
ing ahead, CNSP opens promising directions such as extending to multi-modal continual learning,
adaptive prompt allocation, and tighter theoretical guarantees for nonlinear components (e.g., soft-
max). Further discussions and limitations are provided in Appendix E.
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REPRODUCIBILITY STATEMENT

Our experiments are conducted on publicly available datasets (e.g., CIFAR-100, ImageNet). We
report the details of our training setup, including hyperparameters (batch size, learning rate, opti-
mizer), number of epochs, and evaluation metrics, in Appendix D. To ensure reproducibility, we will
release the complete source code and training/evaluation scripts upon acceptance of the paper.
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APPENDIX

A PROOFS OF LEMMAS AND PROPOSITIONS

Lemma 1. Consider the computation of LayerNorm LN(·). Let A = [A(1);A(2)] with A(1) ∈
Rn×d and A(1) ∈ Rm×d. Then LN (A) =

[
LN

(
A(1)

)
; LN

(
A(2)

)]
.

Proof. Expanding the LayerNorm operations gives

LN (A) =
A− µA

σA
· γ + β, µA,σA ∈ Rn+m, γ,β ∈ Rd, (31)

where broadcasting is applied to match the dimensions (n+m)×d. By matrix reformulation of the
broadcast, let

C = Id −
1

d
1d1

⊤
d ∈ Rd×d, DσA

= diag (σA) ∈ R(n+m)×(n+m), Γ = diag (γ) ∈ Rd×d.

(32)
Then

LN (A) = D−1
σA

ACΓ+ 1n+mβ⊤. (33)
In practice, the standard deviation of the i-th row is computed as√

1

d
Var (A[i]) + ϵ, (34)

where Var(·) is the operation to compute variance, ϵ > 0 ensures non-degeneracy. Hence, DσA
is

invertible. Since σA corresponds row-wise to A, we may write

σA =

[
σA(1) 0
0 σA(2)

]
, DσA

=

[
Dσ

A(1)
0

0 Dσ
A(2)

]
. (35)

Therefore,

LN (A) =

[
Dσ

A(1)
A(1)CΓ+ 1nβ

⊤

Dσ
A(2)

A(2)CΓ+ 1mβ⊤

]
=

[
LN

(
A(1)

)
LN

(
A(2)

)] . (36)

Lemma 2. For A ∈ Rn×m with left null space NL (A) = {xA = 0 | x⊤ ∈ Rn}, it holds that
NL (A) = NL

(
AA⊤).

Proof. ∀x ∈ NL (A), we have xA = 0, which implies xAA⊤ = 0, i.e., x ∈ NL

(
AA⊤).

Conversely, ∀x ∈ NL

(
AA⊤), we have xAA⊤ = 0. Then, 0 = xAA⊤x⊤ = ∥A⊤x⊤∥2, which

implies xA = 0, i.e., x ∈ NL (A).

Lemma 3. Consider the operation MLP(·) in a standard ViT MLP (Dosovitskiy et al., 2020),
containing two layers with a GELU non-linearity, defined as a linear projection followed by a GELU
activation and another linear projection. For a block matrix A =

[
A(1);A(2)

]
, where A(1) ∈ Rn×d

and A(2) ∈ Rm×d, we have

MLP(A) =

[
MLP

(
A(1)

)
MLP

(
A(2)

)] (37)

Proof. By definition,

MLP(A) = ϕ
(
AW1 + 1n+mb⊤1

)
W2 + 1n+mb⊤2 , (38)

where W1 ∈ Rd×dh , W2 ∈ Rdh×d are weight matrices of two linear projections respectively,
b1 ∈ Rdh , b2 ∈ Rd are bias vectors, and ϕ denotes the element-wise GELU.

Since linear transformations, element-wise nonlinearities, and bias additions act independently on
each row, the block structure is preserved. Explicitly,

ϕ
(
AW1 + 1n+mb⊤1

)
= ϕ

([
A(1)

A(2)

]
W1 +

[
1n

1m

]
β⊤
1

)
=

[
ϕ
(
A(1)W1 + 1nb

⊤
1

)
ϕ
(
A(2)W1 + 1mb⊤1

)] . (39)
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Similarly, multiplying by W2 and adding bias yields

ϕ
(
AW1 + 1n+mb⊤1

)
W2 + 1n+mb⊤2 =

[
ϕ
(
A(1)W1 + 1nb

⊤
1

)
W2 + 1nb

⊤
2

ϕ
(
A(2)W1 + 1mb⊤1

)
W2 + 1mb⊤2

]
, (40)

which implies that

MLP(A) =

[
MLP

(
A(1)

)
MLP

(
A(2)

)] (41)

Proposition 1. Consider two tasks Tt and Tt+1. If the image-token part of attention outputs remains
unchanged for all blocks in VPT, i.e.,

O
(l)
Zt,t+1

[: N + 1] = O
(l)
Zt,t

[: N + 1], l = 1, 2, . . . , L, (6)

then the image-token output of the final block is preserved:

E
(L)
Zt,t+1

[: N + 1] = E
(L)
Zt,t

[: N + 1], (7)

which we refer to as feature preservation. Here O
(l)
Zt,t+1

, O(l)
Zt,t

, E(L)
Zt,t+1

, and E
(L)
Zt,t

are computed
by eq. (1). In particular, the final [CLS] token is preserved:

E
(L)
Zt,t+1

[: 1] = E
(L)
Zt,t

[: 1]. (8)

Proof. Without loss of generality, we first omit the task indices and focus on the l-th transformer
block. As shown in fig. 1, within a block, Z(l) is added to the output O(l)

Z via a residual connection,
followed by LayerNorm and an MLP with an additional residual connection:

B
(l)
Z = Z(l) +O

(l)
Z , E

(l)
Z = B

(l)
Z +MLP

(
LN

(
B

(l)
Z

))
. (42)

Since
E

(l)
Z [: N + 1] = B

(l)
Z [: N + 1] +MLP

(
LN

(
B

(l)
Z

))
[: N + 1], (43)

by lemmas 1 and 3, we obtain

MLP
(
LN

(
B

(l)
Z

))
[: N + 1] = MLP

(
LN

(
B

(l)
Z [: N + 1]

))
. (44)

Moreover,

B
(l)
Z [: N + 1] = Z(l)[: N + 1] +O

(l)
Z [: N + 1] = X(l) +O

(l)
Z [: N + 1], (45)

thus,

E
(l)
Z [: N + 1] = X(l) +O

(l)
Z [: N + 1] +MLP

(
LN

(
X(l) +O

(l)
Z [: N + 1]

))
. (46)

In VPT, before passing to the next block , the prompt embeddings are discarded and replaced by
new learnable prompts:

X(l+1) = E
(l)
Z [: N + 1], Z(l+1) = [X(l+1);P (l+1)]. (47)

Now consider two tasks Tt and Tt+1. We prove the statement by induction on l:

(i) When l = 1, by assumption and setting, we have

O
(1)
Zt,t+1

[: N + 1] = O
(1)
Zt,t

[: N + 1], X
(1)
t,t+1 = X

(1)
t,t = Xt, (48)

where Xt is the input image tokens of VPT from task Tt dataset. According to eq. (46), it follows
that

E
(1)
Zt,t+1

[: N + 1] = E
(l)
Zt,t

[: N + 1], X
(2)
t,t+1 = X

(2)
t,t . (49)

(ii) Suppose that for some l = k(< L),

E
(k)
Zt,t+1

[: N + 1] = E
(k)
Zt,t

[: N + 1], (50)
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which implies
X

(k+1)
t,t+1 = X

(k+1)
t,t . (51)

For l = k + 1, we know
O

(k+1)
Zt,t+1

[: N + 1] = O
(k+1)
Zt,t

[: N + 1]. (52)

By eqs. (46) and (51), it follows that

E
(k+1)
Zt,t+1

[: N + 1] = E
(k+1)
Zt,t

[: N + 1]. (53)

(iii) By induction, for all l = 1, 2, . . . , L, we have

E
(l)
Zt,t+1

[: N + 1] = E
(l)
Zt,t

[: N + 1]. (54)

Especially, the final [CLS] token fed into the classification head is unchanged, i.e.,

E
(L)
Zt,t+1

[: 1] = E
(L)
Zt,t

[: 1]. (55)

B CONSISTENT NULL-SPACE PROJECTION IN PRACTICE

In the main text (section 4.3), we derived sufficient conditions for feature preservation, requiring that
each prompt update ∆P lies in the left null space of the constraint matrix R. Theoretically, this is
enforced by projecting ∆P onto the null space of RR⊤ (see eq. (30)). However, in practice, due to
finite-precision arithmetic, exact zero singular values rarely occur, making it nontrivial to determine
the effective nullity. To address this issue, following Lu et al. (2024), we estimate the nullity of
RR⊤ using an adaptive thresholding criterion based on the inflection point of the singular value
spectrum. Specifically, we compute the discrete second derivative of sorted singular values and use
its maximizer to determine the cut-off between the null and non-null components. Formally, let λj

denote the j-th singular value of RR⊤ (sorted in descending order). The adaptive estimate of the
nullity is given by

Nullity
(
RR⊤) = D − argmax

j
{λj+1 − 2λj + λj−1}D−1

j=2 , (56)

where the criterion detects the point of maximum curvature change in the spectrum. Empirically,
this approach has proven more robust than fixed thresholds in VPT Lu et al. (2024), providing a
numerically stable approximation of the null space dimension.

With the estimated null space, we then construct an orthogonal basis U0 for NL(RR⊤) and form
the projection matrix BR = U0U

⊤
0 . During training, the raw prompt update ∆Praw from back-

propagation is consistently projected onto this null space, ensuring that the sufficient conditions for
feature preservation are satisfied at every optimization step. This procedure constitutes our Consis-
tent Null-Space Projection (CNSP) mechanism.

The detailed training algorithm is summarized in Algorithm 1, and the computation of the null-space
projection matrix is given in Algorithm 2.

C COMPARISON AND DISCUSSION WITH NSP2

Our method builds on the theoretical framework of NSP2, but introduces critical improvements in
terms of multi-head rigor, LayerNorm treatment, and practical feasibility.

Multi-head Derivation. In NSP2, the sufficient conditions were first established under the single-
head setting, and then directly extended to multi-head attention by concatenation. While this exten-
sion is formally valid, it does not come with a rigorous derivation and leaves open the possibility
of inter-head coupling. By contrast, our derivation explicitly unfolds the forward pass of multi-
head self-attention, proving that the feature-preservation sufficient conditions can be satisfied per
head. This provides a mathematically sound basis for the transition from single-head to multi-head
analysis.
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Algorithm 1 CNSP for Visual Prompt Tuning

Inputs: Datasets Dt = {(x(i)
t , y

(i)
t )}|Tt|

i=1 for task Tt ∈ {T1, T2, . . . }; ViT model fViT(· | Pt) with
the prompts Pt to be optimized (the updates of classification head is omitted for simplicity) ;
the gram matrix of constraints G; the projection matrix BR

Outputs: Optimized prompts Pt

1: Initialization: Randomly initialize Pt; set G = 0, BR = I
2: for task Tt ∈ {T1, T2, . . . } do
3: repeat
4: Sample a mini-batch xt, yt ∼ Dt

5: ŷt ← fViT(xt | Pt)
6: Ltotal ← CrossEntropy(ŷt, yt) ▷ the classification loss
7: if t > 1 then
8: Compute Lstd by eq. (28) ▷ loss of prompts standard deviation
9: Ltotal ← Ltotal + Lstd

10: end if
11: Get raw prompts update ∆Praw from optimizer using Ltotal
12: if t > 1 then
13: ∆P ← ∆PrawBR ▷ consistent null-space projection, eq. (30)
14: else
15: ∆P ← Praw
16: end if
17: Pt ← Pt − lr ×∆P
18: until convergence
19: if t = 1 then
20: Rv ← CΓWv ▷ cache the second constraint matrix
21: end if
22: for x

(i)
t ∈ Dt do

23: Rk ← CΓQ
X

(i)
t
W⊤

k ▷ by forward propagation fViT(x
(i)
t | Pt)

24: G← G+RkR
⊤
k +RvR

⊤
v

25: end for
26: BR ← ComputingNullSpaceProjection(G) ▷ using algorithm 2
27: end for

Algorithm 2 Computing Null-Space Projection Matrix

Inputs: Gram matrix G
Outputs: Null-space projection matrix BR

1: U ,Σ, ← SVD(G) ▷ sorted by the singular values in descending order
2: Computing the nullity NG of G by eq. (56)
3: U0 ← U [D −NG : D] ▷ get the left singular vectors of zero singular values

4: BR ← U0U
⊤
0

∥U0U⊤
0 ∥F

▷ improve numerical stability by its Frobenius norm

LayerNrom Treatment. NSP2 handled broadcast operations in LayerNorm by simply canceling
them as scalars in equations through derivation, ignoring the centering and scaling mechanism in-
herent in LayerNorm. This leads to deviations in its conclusions. By contrast, we fully matrixize all
broadcast operations in our derivation. Specifically, we explicitly represent the centering matrix C,
the row-wise scaling matrix Dσ (standard deviation normalization), and the affine scaling matrix Γ.
This guarantees rigor in the derivation and allows us to assume only variance invariance of prompt
embeddings across tasks (i.e., eq. (25)), rather than both variance and mean invariance as required
in NSP2, thereby relaxing the distributional restrictions.

Implementation of Sufficient Conditions. The difference in LayerNorm treatment directly afffects
the final form of the sufficient conditions. Under the single-head formulation, NSP2 gives rise to the
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following constraints: {
QXtWk

⊤∆P⊤ = 0

SPt
∆PWv = 0

, (57)

while our rigorous derivation leads to the per-head feature-preservation sufficent conditionsQ
(h)
Xt

W
(h)
k

⊤
ΓC∆P⊤ = 0

S
(h)
XtPt

D−1
σ ∆PCΓW (h)

v = 0
. (58)

The key difference arises from LayerNorm: by omitting broadcast operations, NSP2 makes its sec-
ond condition appear solvable via left-sided nullification. However, as discussed in section 4.3, left
nullification inevitably couples Dσ (which depends on current prompt statistics) with the solution
side. In contrast, our formulation adopts right-sided nullification, which decouples this dependency
and thereby ensures both feasibility and stability in practice.

Classification Head Preservation. NSP2 focuses solely on attention-layer preservation conditions
(corresponding to feature preservation in our work), without considering the classification head.
Consequently, the interpretability of its results remain limited to intermediate layers. By contrast,
our framework extends beyond feature preservation to also formalize head preservation, yielding
an end-to-end solution that maintains consistency from representation to decision. This extension
ensures both theoretical completeness and practical implementability.

Summary. In summary, our method not only address the theoretical gaps of NSP2, but also relaxes
distributional assumptions and provide a more stable, implementable form of the task-performance
preservation constraints.

D EXPERIMENTS

D.1 DATASETS AND BENCHMARKS

To thoroughly evaluate the proposed CNSP method in prompt-based continual learning scenarios,
we conduct experiments on four widely used benchmark datasets:

• 10/20-Split CIFAR-100 (Krizhevsky et al., 2009): CIFAR-100 consists of 60,000 32×32
color images across 100 classes, with 500 training images and 100 test images per class.
Following common practice, it is randomly partitioned into 10 or 20 tasks, where each task
contains 10 or 5 classes, respectively.

• 10-Split ImageNet-R (Hendrycks et al., 2021): ImageNet-R contains 30,000 images from
200 ImageNet classes, covering diverse styles such as art, cartoons, and sketches. It is
randomly divided into 10 tasks, each consisting of 20 classes.

• 10-Split DomainNet (Peng et al., 2019): DomainNet is a cross-domain dataset covering
345 everyday object classes across six domains (clipart, real, sketch, infograph, painting,
and quickdraw). Since the number of images per class varies significantly, we follow the
exsiting setting (Gao et al., 2024; Lu et al., 2024) by selecting the 200 largest classes and
randomly splitting them into 10 tasks, each containing 20 classes with samples drawn from
multiple domains.

D.2 METRICS

In continual learning, evaluation is typically based on the accuracy matrix A ∈ RT×T , where T is
the total number of tasks and the entry Ai,j denotes the accuracy on task j after training on task i.
We report two standard metrics: Last Average Accuracy and Last Average Forgetting.

• Last Average Accuracy (ACC) measures the overall performance on all tasks after com-
pleting the training sequence:

ACC =
1

T

T∑
j=1

AT,j ,
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• Last Average Forgetting (Forgetting) quantifies the average performance drop on past
tasks after learning subsequent ones:

Forgetting =
1

T − 1

T−1∑
j=1

max
i∈{1,...,T−1}

(Ai,j −AT,j).

D.3 IMPLEMENTATION DETAILS

We follow the class-incremental learning protocol, where task classes are disjoint and the task iden-
tity is unknown at inference. All experiments are conducted with ViT-B/16 (Dosovitskiy et al., 2020)
pretrained on ImageNet-21K as the backbone. Each Transformer layer is augmented with four learn-
able prompts,yielding 48 prompts across the 12 layers. The prompt embeddings are shared across
tasks and initialized from a uniform distribution in [−1, 1]. Input images are resized to 224×224,
and data augmentation is applied using AutoAugment (Cubuk et al., 2019).

Models are trained with Adam (Kingma & Ba, 2015) (learning rate of 0.01, a batch size of 256,
β1 = 0.9, β2 = 0.999, weight decay 5×10−5). Each task is trained for 10 epochs on all benchmarks,
which is sufficient for convergency (as shown in Appendi D.4). NSP2 is reproduced from its official
codebase and hyperparameters, with the sole modification of training for 10 epochs per task instead
of the originally reported 100. Empirical evidence in Appendix D.4 confirms fully convergence,
disentangling forgetting from underfitting. The training objective combines cross-entropy loss with
a feature standard-deviation alignment loss for prompt embeddings (see eq. (28)), using an alignment
weight λ = 1.0. The temperature parameter in cross-entropy is tuned via cross-validation and set to
28, 25, 30, and 30 for 10-Split CIFAR-100, 20-Split CIFAR-100, 10-Split ImageNet-R, and 10-Split
DomainNet, respectively.

Our method is implemented in Python 3.11.5 using PyTorch 2.1.0 (Paszke et al., 2019). Experiments
are performed on a server with 256 GB RAM and four NVIDIA GeForce RTX 4090 GPUs. To
ensure stability and reproducibility, each experiment is repeated three times with different random
seeds, and each run takes complete within three hours.

D.4 CONVERGENCE GUARANTEE

To justify the training protocol adopted in our experiments, we report the training accuracy and loss
curves of both NSP2 and CNSP across tasks on four benchmarks (10-Split-CIFAR100, 20-Split-
CIFAR100, 10-Split-DomainNet, and 10-Split-ImageNet-R). As shown in figs. 6 to 9, all curves
exhibit rapid convergence within the first 5 epochs: training accuracy quickly increases and sta-
bilizes, while training loss consistently decreases and plateaus. By epoch 10, both methods have
fully converged across tasks and datasets, as further confirmed by the shaded regions indicating the
last four epochs and the black curve representing the average accuracy/loss across all tasks at each
epoch. These results provide empirical evidence that training each task for 10 epochs is sufficient to
ensure convergence, without sacrificing performance or stability.

D.5 SUPPLEMENTARY RESULTS

Table 2 provides both overall comparison and ablation of CNSP. The Backbone only baseline (equiv-
alent to naı̈ve fine-tuning without any continual learning strategy) suffers from severe catastrophic
forgetting, representing the natural lower bound. At the opposite extreme, Joint training with access
to all task data simultaneously provides an oracle upper bound. Between these two, NSP2 deliv-
ers strong results, yet CNSP consistently improves upon it across all four benchmarks, achieving
higher accuracy and lower forgetting. This shows that CNSP substantially narrows the gap toward
the oracle performance while significantly surpassing naı̈ve fine-tuning.

The ablation results reveal the contribution of individual components. Removing the variance preser-
vation loss (Lstd) leads to only moderate drops compared to full CNSP, while already yielding per-
formance that clearly surpasses NSP2. This indicates that the core strength of CNSP comes from
the null-space formulation itself, and that Lstd mainly plays a stabilizing role. In contrast, removing
the right-side null-space projection (BR) causes severe degradation in both accuracy and forgetting
across all benchmarks, confirming it as an indispensable mechanism for effective feature preser-
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vation. Finally, the Backbone only baseline performs worst overall, underscoring the substantial
improvements CNSP provides beyond a frozen backbone.

Table 2: Overall comparison and ablation study of CNSP on four benchmarks by removing the
variance preservation loss (Lstd), the right-side null-space projection (BR), and the entire CNSP
module (”Backbone only”). Joint indicates training with access to all task data simultaneously
(oracle upper bound).

Method 10-Split-CIFAR100 20-Split-CIFAR100 10-Split-ImageNet-R 10-Split-DomainNet

ACC(↑) Forgetting(↓) ACC(↑) Forgetting(↓) ACC(↑) Forgetting(↓) ACC(↑) Forgetting(↓)

Joint (oracle) 93.59 0 93.59 0 84.62 0 89.52 0

NSP2 90.6 4.52 88.12 5.11 79.6 3.95 83.92 8.31

CNSP(Ours) 91.1 4.43 88.76 4.79 79.75 3.93 84.49 6.92
w/o Lstd 90.58 5.17 88.22 6.13 79.72 4.3 84.29 7.58
w/o BR 85.01 14.42 84.8 14.84 73.98 17.62 78.29 19.85
Backbone only 83.72 16.17 83.88 15.55 73.33 18.33 74.3 24.94

Figure 4: Results on 20-Split-CIFAR100. The first subplot shows the last average accuracy (ACC,
%) and the second reports the corresponding forgetting (%), where lower values indicate better
retention of prior knowledge. Compared methods are VPT-NSP2 and our proposed VPT-CNSP.

E DISCUSSION AND LIMITATIONS

E.1 DISCUSSION ON HEAD PRESERVATION

In our framework, head preservation (eq. (9)) is guaranteed by design through the use of task-specific
classification heads. Figure 5 illustrates the training and inference procedures of task-specific heads.
During training, only the head corresponding to the current task is updated, while all previously
learned heads remain frozen. As a result, their mappings from the preserved [CLS] token remain
unchanged across tasks, directly satisfying proposition 2. At inference, we concatenate the logits
of all task-specific heads and perform a global prediction by selecting the class with the highest
confidence.

Figure 5: Training and inference of task-specific heads. During training, only the current task head
is updated while others remain frozen. During inference, all heads run in parallel and their logits are
concatenated, with the final prediction given by the most confident class, eliminating the need for
task identity.
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This design is grounded in the fact that the softmax outputs of a neural classifier are commonly
interpreted as conditional probability estimates over class labels (Guo et al., 2017; Kull et al., 2019;
Wang, 2023). Concatenating logits across all heads is therefore approximately equivalent to forming
a unified probability distribution over the joint label space, upon which a single global decision
can be made by argmax (Guo et al., 2017; Kull et al., 2019; Wang, 2023). This provides a clear
probabilistic foundation for our approach.

Nevertheless, a potential limitation of this design is that logits from different heads may be poorly
calibrated, leading to unfair comparisons across tasks. To mitigate this, we adopt temperature scal-
ing (Guo et al., 2017) during training, which smooths the predicted distribution, prevents overconfi-
dent logits, stabilize cross-entropy optimization, and improves calibration. At inference, a properly
chosen temperature τ helps align the output scales of different heads, making the concatenated logits
more comparable across tasks. For future work, more advanced calibration or normalization tech-
niques (e.g., Dirichlet calibration (Kull et al., 2019) or other recent approaches (Wang, 2023)) could
be implemented in our setting to further enhance fairness and robustness.

Another limitation arises when tasks contain highly similar classes (e.g., visually similar categories).
In such cases, the corresponding heads may both assign high confidence to the same input and the
global argmax will attribute solely based on raw logit magnitudes. This can lead to inconsistent
decisions across tasks. Future extension could explore logit normalization or gating mechanisms
to explicitly handle such conflicts, building on the joint guarantees of our proposed propositions 1
and 2.

E.2 PROMPT POSITION

In practice, we adopt the strategy of appending prompts after the image patches, following NSP2 (Lu
et al., 2024), to ensure direct comparability. From lemmas 1 and 3, it follows that the preservation
conditions in propositions 1 and 2 are invariant to the relative position of prompt tokens within the
input sequence. In other words, whether prompts are prepended before the [CLS] token or appended
after the patch embeddings, the algebraic form of the preservation constraints remains unchanged.
This invariance arises from the row-wise independence of LayerNorm and MLP operations, which
treat each token identically regardless of ordering. While these properties hold in theory, a sys-
tematic empirical investigation into how different prompt insertion strategies influence performance
preservation is beyond the scope of this work. We consider this an interesting and important direc-
tion for future research.

E.3 FUTURE DIRECTIONS AND LIMITATIONS

Beyond the scope of this work, several limitations remain: (i) our theoretical guarantees cover Lay-
erNorm and MHSA but do not fully address nonlinearities from softmax attention; (ii) task-specific
heads may not scale well to highly heterogeneous tasks; and (iii) our experiments focus on single-
modality vision tasks.

Promising extensions include multi-modal continual learning with vision–language models, adap-
tive prompt allocation under task heterogeneity, and tighter theoretical analysis of softmax and other
nonlinear components.
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We acknowledge the use of Large Language Models (LLMs) as an assistive tool in the preparation
of this work. Their role was limited to grammar refinement, LaTeX formatting assistance, language
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Figure 6: Training accuracy and loss curves across 10 tasks on the 10-Split-CIFAR100 benchmark.
The top row reports results of NSP2, and the bottom row reports CNSP. Left: training accuracy
across tasks. Right: training loss across tasks. Each colored curve corresponds to one task, while
the black curve denotes the average across all tasks at each epoch.

Figure 7: Training accuracy and loss curves across 20 tasks on the 20-Split-CIFAR100 benchmark.
The top row reports results of NSP2, and the bottom row reports CNSP. Left: training accuracy
across tasks. Right: training loss across tasks. Each colored curve corresponds to one task, while
the black curve denotes the average across all tasks at each epoch.
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Figure 8: Training accuracy and loss curves across 10 tasks on the 10-Split-ImageNet-R benchmark.
The top row reports results of NSP2, and the bottom row reports CNSP. Left: training accuracy
across tasks. Right: training loss across tasks. Each colored curve corresponds to one task, while
the black curve denotes the average across all tasks at each epoch.

Figure 9: Training accuracy and loss curves across 10 tasks on the 10-Split-DomainNet benchmark.
The top row reports results of NSP2, and the bottom row reports CNSP. Left: training accuracy
across tasks. Right: training loss across tasks. Each colored curve corresponds to one task, while
the black curve denotes the average across all tasks at each epoch.
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