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Abstract

The exponentially increasing computational de-
mands of large language models (LLMs) fa-
cilitate the distillation to small models. Ex-
isting distillation attempts to transfer LLMs’
reasoning capabilities to compact models face
critical limitations: expensive training or an-
notation cost, suboptimal data selection, and
flawed synthetic data due to LLMs’ general
overthinking behaviors. This paper introduces
DynaGuide, a novel framework that optimizes
the distillation process in both efficiency and
performance. Our approach integrates (1) Dy-
namic Data Selection that adaptively performs
fine-grained valuable data selection during the
training process, and (2) Reasoning Pattern
Guidance that mitigates the overthinking prob-
lem in synthetic data by incorporating special-
ized guidance during fine-tuning. Extensive
experiments demonstrate that DynaGuide en-
ables a 7B parameter model to achieve superior
performance on knowledge reasoning question
answering benchmarks, even achieving or ex-
ceeding its 32B counterpart. Our systematic
ablation studies and analysis further reveal in-
sights into distillation and reasoning.

1 Introduction

The rapid evolution of artificial intelligence has
witnessed a dramatic surge in model complexity,
progressing from early small models to today’s
large language models (LLMs) that exhibit remark-
able generative and reasoning capabilities. How-
ever, this advancement comes at an exponential
increase in training costs, creating significant com-
putational and financial barriers (Cottier et al.,
2024). Although knowledge distillation is thought
as a promising solution to this challenge by trans-
ferring LLMs’ excellent reasoning capabilities to
more compact and efficient models using LLM-
generated synthetic data (Xu et al., 2024b), distilla-
tion based on large datasets (DeepSeek-Al, 2025;
Yu et al., 2025) remains computationally intensive

and time-consuming. Alternative approaches ex-
plore to use only a small amount of data for dis-
tillation, but introduce costly human experts anno-
tations (Ye et al., 2025), or adopt coarse-grained
data selection and ignore the adaptability to the
model (Team, 2025; Muennighoff et al., 2025).

Moreover, recent studies have found that rea-
soning LL.Ms generally suffer from overthink-
ing (Chen et al., 2024). Such models can get the
correct answer at early reasoning stages (Fu et al.,
2024), but continue the thinking process with much
verification of previous steps or exploration of other
unnecessary reasoning paths (Chen et al., 2025),
generating redundant thinking tokens and reducing
inference efficiency (Sui et al., 2025). Even worse,
frequent verification and transition can disrupt rea-
soning continuity, degrade contextual coherence,
reduce reasoning depth, and ultimately result in
lower performance (Wang et al., 2025). When such
flawed synthetic data is used for distillation, it can
be more difficult for small models to acquire robust
knowledge reasoning ability, thus more challenging
to maintain efficiency and accuracy.

To address these limitations, we propose Dy-
naGuide, a novel distillation framework that effi-
ciently transfers the knowledge reasoning capabil-
ity of LLMs to small models. DynaGuide includes
two key components: Dynamic Data Selection
(DDS) and Reasoning Pattern Guidance (RPG).
DDS performs adaptive data selection during the
training process, similar to the idea of active learn-
ing (Cohn et al., 1996), where a small number of
the most valuable samples are selected for training.
Differently, we have access to the metadata (such as
domains) of all data and the reasoning trace given
by LLM (specifically DeepSeek-R1 (Guo et al.,
2025) in our experiments), so we can leverage more
comprehensive information for fine-grained data
selection. RPG addresses the overthinking prob-
lem by incorporating additional guidance during
distillation, derived from our systematic analysis




of reasoning patterns in knowledge QA tasks. To-
gether, these two components enable more efficient
and adaptive distillation while improving the dis-
tilled model’s reasoning capability.

In summary, our work makes the following con-
tributions: (1) We propose Dynamic Data Selection
during fine-tuning to better and more efficiently
transfer the advanced reasoning ability of LLMs
to small models through distillation. (2) We ex-
plore the reasoning patterns in knowledge QA and
incorporate Reasoning Pattern Guidance into the
fine-tuning process to mitigate overthinking and en-
courage the distilled model to think efficiently and
correctly. (3) Comprehensive experiments demon-
strate the effectiveness of our framework. Notably,
our fine-tuned 7B model can achieve or even ex-
ceed the performance of its 32B counterpart. We
further provide a systematic analysis of its general-
ization capability and extensive ablation studies.

2 Related Works

2.1 Distillation of Large Language Models

Knowledge Distillation has emerged as a promis-
ing approach to transfer the advanced capabili-
ties of LLMs to compact open-source models (Xu
et al., 2024b). Early exploration focused on learn-
ing specific knowledge from LLMs (Ding et al.,
2023), while recent studies attempt to transfer
the advanced reasoning capability to small mod-
els (Hsieh et al., 2023; Sun et al., 2025), par-
ticularly in mathematical and programming do-
mains (Xu et al., 2025; Team, 2025; Labs, 2025).
However, the distillation of reasoning-based knowl-
edge QA tasks remains relatively underexplored.
Current approaches also exhibit limitations in
data curation, including dependence on large-scale
datasets (DeepSeek-Al, 2025), reliance on coarse-
grained data selection (Muennighoff et al., 2025),
and the necessity for costly human expert annota-
tions (Yu et al., 2025). Therefore, our work investi-
gates data-efficient distillation through fine-grained
data selection in knowledge QA tasks.

2.2 Knowledge QA

As LLM continues to evolve, performance on QA
tasks gradually improves, but problems such as
hallucinations still exist (Huang et al., 2023; Jiang
etal., 2024; Luo et al., 2024). Retrieval-augmented
generation (RAG) can be helpful by introducing
external knowledge into the context or training ob-
jectives (Gao et al., 2023; Asai et al., 2023; Tu

Algorithm 1: Dynamic Data Selection dur-
ing Fine-Tuning
Input :Training Data Pool D, Model 6,
Amount of training data n,
Amount of Warm-up Data n,,,
Batch Size ny
Output : Fine-Tuned model 6
1 Initialize Uniform distribution WV, across
all types of data
// Warm-up
Dirain < SAMPLE(D, Wy, 1)
D «+ D\Dtrain
01, losses <— TRAIN(0p, Diain)
W1 —
UPDATEWEIGHTS (W)p, Dirain, losses)
// Dynamic Data Selection
611
7 while |Dy,in| < n do
8 Dratch < SAMPLE(D, W;, np)
9 D «+ D\Dbatch
10 0i+1,losses <— TRAIN(6;, Dpaich)
11 Wi+1 —
UPDATEWEIGHTS (W;, Dpaich, losses)
12 11+ 1
13 Dirain <= Dirain U Dhatch

[7 I U 8

14 return 0;

et al., 2025). Knowledge-based QA is well suited
for testing the model’s reasoning ability, as it is a
challenging task to reconcile multiple knowledge
and reason between input texts (Yang et al., 2018;
Geva et al., 2021). Previous works have similarly
proposed training to improve reasoning ability on
knowledge QA tasks, but require large amounts of
labeled or generated data (Xu et al., 2024a; Lyu
et al., 2024). Our work focuses on data selection to
achieve optimal results with a small amount of data
and to maintain the model’s ability to generalize,
improving model’s reasoning ability in both in-
domain and out-of-domain knowledge QA tasks.

3 Dynamic Data Selection during
Fine-Tuning

In this section, we present our dynamic data selec-
tion framework for fine-tuning. Our fundamental
premise is that distinct data characteristics result in
divergent learning dynamics during the fine-tuning
process. Certain domains or complexity levels re-
quire much exposure for adaptation, while others
stimulate the model’s capabilities through few ap-



pearances. In this paper, we characterize the data
from two orthogonal dimensions: (i) domain speci-
ficity and (ii) task complexity.

Our dynamic data selection methodology, for-
malized in Algorithm 1, operates on the principle
of continuous weight adaptation during fine-tuning.
The framework starts with a warm-up phase and
maintains a dynamic weight distribution across
data feature classes, which it uses to probabilis-
tically sample each subsequent training batch. This
adaptive approach enables the model to automati-
cally prioritize data features that require more atten-
tion while maintaining exposure to all the classes.

3.1 Warm-Up

The cold start problem poses a significant chal-
lenge that purely dynamic data selection may lead
to insufficient model understanding of the over-
all data distribution. Without proper initializa-
tion, the weights assigned to initially selected data
types could progressively increase, creating a self-
reinforcing cycle where these data types continue to
be preferentially selected. This phenomenon may
result in the neglect of other data feature classes,
ultimately reducing training data diversity and com-
promising the model’s generalization capability.

To address this issue, we introduce a warm-up
phase prior to dynamic data selection. During this
phase, we construct a balanced warm-up dataset
by uniformly sampling equal amounts of data from
all the classes. This warm-up dataset constitutes
4% of the total selected data, serving to establish a
more representative initial data distribution before
transitioning to dynamic selection.

3.2 Dynamic Selection

Since performing inference on the entire train-
ing data pool to identify samples with the highest
model uncertainty is computationally prohibitive,
our approach dynamically adjusts the weights of
data feature classes that result in higher or lower
loss in the currently observed batch. This strategy
aims to prioritize the selection of such informative
samples in subsequent training iterations.
Specifically, our approach calculates the ratio
of each sample’s loss to the batch’s average loss
during training. Subsequently, conditioned on this
ratio, we implement weight adjustments: for sam-
ples with a ratio below a lower threshold ¢;, we
downweight the type to which the sample belongs;
conversely, for samples with a ratio above an upper
threshold ¢,,, we upweight the corresponding type.

These thresholds act as a margin to explicitly sepa-
rate samples the model finds easy (low loss) from
those it finds difficult (high loss), thereby stabiliz-
ing the weighting mechanism.

We compute a weight adjustment factor f based
on the loss ratio. The underlying principle is to as-
sign larger weight increments to types with higher
loss ratio values and larger reductions to those with
lower loss ratio values. To mitigate weight ex-
plosion or weight disappearance, we require the
weight growth rate to be sublinear with respect to
the loss ratio. Thus, we adopt a simple rational
function with a lower limit for smoother scaling:
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Here, ¢; denotes the per-sample loss and Coatch rep-
resents the batch-averaged loss. Such f ensures
monotonic yet controlled adjustments, approach-
ing 2 for large r and 0.5 for small r, reducing the
sensitivity to extreme values.

Upon selecting a predefined number of instances,
we terminate the dynamic data selection pro-
cess. To demonstrate the data efficiency of our
method and facilitate a fair comparison with prior
work (Muennighoff et al., 2025), we limit the total
selected data to 1,000 samples. The fine-tuning
procedure consists of 5 epochs, with the dynamic
data selection performed exclusively during the
first epoch. After that, we train the model on the
selected subset for another 4 epochs. Such a proce-
dure ensures consistent evaluation conditions and
maintains computational efficiency.

4 Incorporate Control of thinking

To systematically analyze the reasoning patterns
in knowledge-based question answering tasks, we
follow the definition of Chen et al. (2025) to seg-
ment reasoning traces into discrete steps using dou-
ble newline delimiters (‘\n\n’) and categorize these
steps into three distinct types: execution, reflection,
and transition. Execution steps perform factual
retrieval or concrete computation, reflection steps
verify the previous steps, and transition steps bridge
two different reasoning paths.

4.1 Reasoning Patterns Analysis

First, we explore the model’s reasoning patterns
in knowledge QA tasks, with particular attention
to the correlation between step-type frequencies
and task performance metrics. Table 1 presents



Answer Type

Metric Correct  Wrong
Average # Tokens 1804.54 1823.11
Execution Steps  73.10%  58.40%
Reflection Steps  17.13%  23.30%
Transition Steps ~ 9.77%  18.30%

Table 1: Analysis of DeepSeek-R1’s reasoning patterns
in knowledge question answering tasks.

an analysis of DeepSeek-R1’s chains of thought
on knowledge question answering tasks (on strate-
gyQA (Geva et al., 2021), hotpotQA (Yang et al.,
2018) and superGPQA (Du et al., 2025) datasets).
We systematically examined the model’s perfor-
mance by quantifying the average token length of
reasoning chains, and the relative frequency distri-
bution of different reasoning step types across both
correct and incorrect responses.

Different from the findings of previous
work (Chen et al., 2025) in the field of mathemati-
cal tasks, we find that in the field of knowledge QA
tasks, there is no significant difference in the num-
ber of model’s thinking tokens when answering
correctly and incorrectly. However, our analysis
reveals distinct patterns in reasoning step type dis-
tributions between correct and incorrect responses.
For erroneous answers, we observe a statistically
significant decrease in execution-type steps, accom-
panied by a marked increase in other step types,
particularly transition steps. This inverse relation-
ship suggests that excessive reflection and transi-
tion steps may disrupt the model’s reasoning pro-
cess, potentially leading to performance degrada-
tion. Specifically, the disproportionate growth in
meta-cognitive steps appears to compromise the
model’s ability to maintain focused reasoning.

4.2 Reasoning Pattern Guidance

We further perform encoding on the training set to
extract the hidden states of the tokens containing
“n\n’ as feature vectors representing subsequent
thinking steps. Our analysis reveals that vectors
from deeper model layers, especially the 20th layer,
exhibit weak separability when projected into 2D
space (detailed visualizations are provided in Ap-
pendix C). This observation suggests stronger sep-
arability in the original high-dimensional hidden
space. This discovery is consistent with the conclu-
sions of Chen et al. (2025) on mathematical tasks.

To guide the model’s reasoning process during
fine-tuning and encourage more execution steps,

we propose adjusting the hidden states of tokens
containing ‘\n\n’ toward the direction of the aver-
age execution-step feature vector, denoted as Hg.
However, since Hr may evolve during training, we
employ an iterative tuning approach to align the
representations with the target reasoning trajectory.

Spefically, after epochs 1-4, we perform encod-
ing on the selected training dataset and calculate the
average execution-step feature vector H%,, where i
denotes the epoch number. During epochs 2-5, we
introduce a projection loss for all tokens containing
“\n\n’. Let H! represent the hidden state of such
a token at epoch ¢, and let Sim represents cosine
similarity. The loss encourages alignment between
H and the average execution-step feature vector
H gl from the previous epoch.

If the subsequent step is a reflection step or a
transition step, we apply the projection loss:

(1 - Sim(H}, Hi )

> (@)

Loproj =

The loss ‘pushes’ H' toward H E_l, thereby encour-
aging the model to generate more execution steps.
If the subsequent step is already an execution step,
we still apply the same projection loss to minimize
semantic drift in the learned representations. This
ensures consistent optimization across all reason-
ing step types, resulting in a unified projection loss.

We jointly optimize both the causal language
modeling loss and the projection loss during train-
ing. The total loss function is defined as:

Liotal = Lom + - Eproja 3)

where Lcpm denotes the standard causal language
modeling loss, Ly; is our proposed projection loss
that enforces latent space alignment constraints,
and « serves as a balancing hyperparameter. This
configuration maintains equilibrium between the
two objectives and prevents significant deviation
from the original pre-trained model’s hidden space.

We apply the projection loss to the 20th layer of
the model, as this layer demonstrates the strongest
feature vector separability in our analysis. This
choice aligns with the experimental setup of Chen
et al. (2025). While our study employs Qwen?2.5-
7B-Instruct and theirs uses R1-Distill-Qwen-1.5B,
both models share a similar architecture of 28 lay-
ers, ensuring comparable layer-wise behavior.



Fine- In-domain Datasets Out-of-domain Datasets
Model Tuning | StrategyQA HotpotQA HotpotQA GPQA i ,
Data test set dev dev® FRAMES® extended SiMPIEQA SimpleQA*
R1-Distill-Qwen-7B 800K 70.16 19.27 54.80 22.33 46.34* 2.17 46.44
R1-Distill-LLaMA-8B 800K 71.03 20.20 55.24 23.18 50.73* 2.36 48.94
Qwen2.5-7B-Instruct - 68.41 15.87 46.91 20.63 31.87 2.47 47.55
s1-7B 1,000 74.09 20.77 57.92 23.54 39.74 3.05 46.51
s1-7B + BF 1,000 74.53 21.36 59.43 25.24 44.51* 3.33 49.40
DynaGuide-7B (ours) 1,000 77.73* 24.98 61.59 28.52* 47.07* 3.98 54.60"
Qwen2.5-32B-Instruct ‘ - ‘ 75.98 27.94 65.47 27.55 42.31 4.90 53.42

Table 2: Model accuracy on various benchmarks. €Question answering tasks with retrieved context (i.e., RAG
evaluation) requiring contextual reasoning. Bold formatting highlights the top-performing model within the 7B-8B
parameter cohort. *Asterisked results demonstrate performance surpasses that of Qwen2.5-32B-Instruct, while

utilizing approximately 75% fewer parameters.

5 Experiments

5.1 Setup

Datasets Our training dataset consists of the
training set of StrategyQA (Geva et al., 2021),
the training set of HotpotQA (Yang et al., 2018),
and SuperGPQA (Du et al., 2025), aggregating to
118,579 samples that span diverse domains and
complexity levels. Then, similar to s1 (Muen-
nighoff et al., 2025), we apply a quality filter re-
taining only questions that neither Qwen2.5-7B-
Instruct nor Qwen?2.5-32B-Instruct (Team, 2024)
can answer correctly. This filtering process results
in a refined training data pool of 71,662 examples.
Then we request the DeepSeek-R1°s inference API
to generate reasoning traces and answers, which
serve as pseudo-annotations for each question. This
dataset forms the training data pool for our dynamic
data selection framework.

Our methodology focuses specifically on trans-
ferring knowledge reasoning capabilities from Rea-
soning LLLMs to small models, rather than context
retrieval performance. To maintain this focus, we
omit external context in our training examples, re-
quiring the model to rely exclusively on its inter-
nal knowledge for reasoning. This design ensures
the fine-tuning process specifically enhances the
model’s inherent reasoning abilities without con-
founding factors from retrieval augmentation.

Implementation Details We conduct full-
parameter supervised fine-tuning (SFT) of the
Qwen2.5-7B-Instruct model (Team, 2024) using
a two-phase training approach: (i) During the
initial epoch, we perform dynamic data selection

described in Section 3 until accumulating a
curated set of 1,000 training examples; (ii) For the
subsequent four epochs, we train exclusively on the
selected subset while incorporating our proposed
reasoning pattern guidance (RPG) framework,
described in Section 4.2. In our experiment, we
set the thresholds ¢; = 0.9 and ¢, = 1.1, and the
loss weighting hyperparameter o« = 1.0. More
experimental details can be found in Appendix A.

Evaluation Our evaluation protocol includes
both in-domain and out-of-domain datasets. For in-
domain evaluation, we assess model performance
on the StrategyQA test set and the HotpotQA devel-
opment set (since the answers of the HotpotQA test
set are unavailable). For out-of-domain evaluation,
we test the model on some challenging benchmarks:
FRAMES (Krishna et al., 2024), GPQA extended
set (Rein et al., 2024), and SimpleQA (Wei et al.,
2024). All results report the accuracy rate.

Baselines We compare our framework with: (1)
Qwen2.5-7B-Instruct (Team, 2024), the founda-
tion model prior to our fine-tuning; (2) R1-Distill-
Qwen-7B and R1-Distill-LLaMA-8B (DeepSeek-
Al, 2025): models distilled on 800K data from
DeepSeek-R1 based on Qwen and Llama, re-
leased by DeepSeek-Al; (3) s1-7B and s1-7B +
BF: a model fine-tuned from Qwen2.5-7B-Instruct
following the framework of Muennighoff et al.
(2025) but on knowledge reasoning tasks, where
BF denotes their proposed test-time scaling tech-
nique Budget Forcing; and (4) Qwen2.5-32B-
Instruct (Team, 2024): a model with approxi-
mately 4x parameters for cross-scale comparison.



In-domain Datasets Out-of-domain Datasets
Data Selection Method | StrategyQA HotpotQA  HotpotQA GPQA . .

test set dev dev® FRAMES® extended ~ SIMPIEQA SimpleQA®

Random 73.95 21.07 60.03 21.84 37.73 2.80 48.20

Longest 69.29 18.16 56.88 24.52 46.15 2.89 48.66

sl 74.09 20.77 57.92 23.54 39.74 3.05 46.51

76.61 22.75 59.88 23.14 41.15 2.96 48.55

w/o Warm-up
+ 1.40 +1.45 +1.89 +2.08 +2.49 +0.14 +0.47
77.29 23.92 60.18 24.60 4328 3.28 49.47
DDS (ours)
+ 1.03 +0.70 +1.24 +0.97 +1.56 +0.17 +0.57

Table 3: Performance comparison of different data selection methods. €Question answering tasks with retrieved
context (i.e., RAG evaluation) requiring contextual reasoning. Bold formatting highlights the top-performing model.
All results report task accuracy. We also report the radius of the 95% confidence interval in the ablation study of the
warm-up phase. All models are trained without Reasoning Pattern Guidance.

5.2 Main Results

The main experimental results are shown in Ta-
ble 2, which demonstrates our framework’s supe-
rior performance across various benchmarks. Our
proposed distillation framework significantly en-
hances Qwen2.5-7B-Instruct model’s performance,
demonstrating notable gains across all benchmarks.
Our model also outperforms the R1-Distill models
of similar size on most of the benchmarks, which
are fine-tuned on 800K data. Our framework also
has advantages over the s1 framework with the
same data efficiency. Moreover, our fine-tuned
7B model can approach or even exceed the per-
formance of Qwen2.5-32B-Instruct, which has ap-
proximately 4 times the number of parameters.

6 Analysis
6.1 Generalization to RAG Tasks

Since our model is fine-tuned without external
context and the RAG task represents an impor-
tant knowledge-based question answering scenario,
we additionally evaluate our framework’s general-
ization capability to the RAG task on hotpotQA,
FRAMES, and SimpleQA datasets.

We organize the external context input to the
model as follows: (i) For HotpotQA dataset, the
context is contained in the dataset file, and we con-
catenate them into several pieces of text in their
original order; (ii) For the FRAMES and SimpleQA
datasets, the data files contain context URLs. We
crawl all Wikipedia URLs and delete irrelevant con-
tent such as navigation bars, sidebars, and hyper-
links, retaining the title and body, and then connect
the texts to form the context according to the or-
der of the URLSs in the data file. Since the context

Average Reasoning Chain Length
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Figure 1: Comparison of reasoning chain length (num-
ber of tokens) between s1-7B and Ours-7B model
under different input settings. “HotpotQA” and
“SimpleQA” denote inputs without external context,
while “HotpotQA_context” and “SimpleQA_context”
represent RAG tasks with context.

length of the model is limited and some context
windows need to be reserved for reasoning, we
truncate all contexts and only keep the first 8K
tokens as context input to the model.

The results in Table 2 shows that the model fine-
tuned by our framework not only has a good ability
to rely on internal knowledge for reasoning, but
also has strong contextual reasoning capabilities.

Furthermore, we evaluate the models’ reasoning
efficiency on RAG tasks. As illustrated in Figure 1,
the introduction of external contextual information
significantly reduces required reasoning steps by
providing supplementary evidence. Compared to
scenarios without external context, our 7B model
reduces the average number of reasoning tokens
by 50.25%, while while s1-7B achieves a reduc-
tion of only 43.32%, indicating that our model can
perform contextual reasoning more efficiently.



In-domain Datasets Out-of-domain Datasets
Method StrategyQA  HotpotQA HotpotQA ¢ GPQA . . ¢
test set dev dev® FRAMES extended SimpleQA  SimpleQA'
. 77.29 23.92 60.18 24.60 43.28 3.28 49.47
Vanilla SFT
(861.89) (2639.62) (1236.33) (2036.92) (23381.84) (1644.97) (1068.48)
Exe-only 75.25 22.32 60.04 24.03 43.22 2.96 50.18
(793.64) (2341.80) (1260.39) (1779.49) (20991.40) (1722.02) (763.99)
SEAL 76.86 24.51 60.28 26.82 45.79 3.65 51.69
(605.44) (1067.05) (730.00) (1581.05) (10652.20) (1033.96) (682.63)
71.73 24.98 61.59 28.52 47.07 3.98 54.60
RPG (ours)
(788.71) (1991.35) (990.71) (1511.84) (16723.81) (1421.03) (786.53)

Table 4: Performance and average thinking token number comparison of reasoning control methods on question-
answering tasks. The average number of thinking tokens is shown in parentheses. ¢Question answering tasks
with retrieved context (i.e., RAG evaluation) requiring contextual reasoning. Bold formatting highlights the top-
performing model. All results report task accuracy. All models are trained with Dynamic Data Selection.

Average Execution Step Ratio
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StrategyQA HotpotQA HotpotQA_context

99.92% 99.64% 99.23% 98.95%

FRAMES
Dataset

== Vanilla SFT

99.52% 99.83% 99.45%

GPQA extended
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Figure 2: Comparison of the proportion of execution steps of different methods on various datasets. “HotpotQA”
and “SimpleQA” denote inputs without external context, while “HotpotQA_context” and “SimpleQA_context”

represent RAG tasks with external context input.

6.2 Ablation Study of Dynamic Data Selection

To evaluate the performance improvement achieved
by our proposed dynamic data selection framework,
we compared it with several baseline data selection
methods: (1) Random: Uniform random sampling
of 1,000 instances; (2) Longest: Selecting sam-
ples with the longest pseudo-annotation reasoning
chains; (3) s1: the data selection method described
by Muennighoff et al. (2025), which comprise two
phases - initial uniform sampling of 300 instances,
followed by repeatedly difficulty-weighted data se-
lection in a randomly chosen domain, until reach-
ing 1,000 instances. We also conduct an ablation
study to show the necessity of the warm-up phase.

As shown in Table 3, our proposed data selec-
tion method achieves significant performance gains
across multiple tasks, while baseline methods suf-

fer from uneven data distribution, especially the
Longest baseline. Since most training data with
the longest reasoning chain originates from reason-
ing traces on the SuperGPQA dataset, the most
difficult training set, this baseline yields huge im-
provements on the similar GPQA Benchmark, but
shows minimal gains on other datasets. Further-
more, incorporating the warm-up phase not only
enhances overall performance, but also stabilizes
training dynamics, reducing the result variance.

6.3 Ablation Study of Reasoning Pattern
Guidance

We evaluate our proposed Reasoning Pattern
Guidance framework against several baseline ap-
proaches that may facilitate the model’s execution
step: (1) Vanilla SFT: The standard approach



In-domain Datasets Out-of-domain Datasets
Training Data Pool | Data Size | StrategyQA HotpotQA HotpotQA ¢ GPQA . i c
test set dev dev® FRAMES™ o tended SimpleQA  SimpleQA
R1-correct 25725 78.31 23.59 62.04 25.36 45.24 3.77 51.62
R1-wrong 45937 75.40 23.36 59.22 23.30 38.28 2.61 48.75
All 71662 77.29 23.92 60.18 24.60 43.28 3.28 49.47

Table 5: Performance comparison of models trained on different training data pools. “Question answering tasks
with retrieved context (i.e., RAG evaluation) requiring contextual reasoning. All models are trained with Dynamic

Data Selection and without Reasoning Pattern Guidance.

where only supervised fine-tuning (SFT) is per-
formed on the selected data, with no modifications
during training or inference; (2) Exe-only: A sim-
plified variant where we remove all reflection and
transition steps from the training data, retaining
only the execution steps; (3) SEAL (Chen et al.,
2025): An approach that performs targeted modifi-
cations to the model’s hidden states during decod-
ing to encourage more execution steps.

As demonstrated in Table 4, our method achieves
the most significant performance gains over Vanilla
SFT across all evaluated datasets. Notably, the Exe-
only variant exhibits degraded performance, which
we attribute to the removal of reflection and transi-
tion steps. This modification disrupts the coherence
of reasoning chains, compromising both semantic
integrity and contextual relevance.

We further analyzed the execution step ratios
across different methods (Figure 2), revealing two
key insights: (1) The Exe-only approach achieves
near-complete execution dominance. However, this
comes at the cost of semantic coherence, as the
removal of reflection and transition steps leads
to fragmented reasoning chains and compromised
contextual relevance, ultimately impairing task per-
formance. (2) While SEAL demonstrates higher ex-
ecution rates than our RPG framework, this comes
through forced conversion of reflection/transition
steps into execution during decoding. In contrast,
RPG maintains the model’s capacity for necessary
reflection and transition while promoting execution
during training, achieving superior overall perfor-
mance through more balanced reasoning processes.

6.4 Impact of the Correctness of
R1-Responses

Furthermore, we investigate a critical scientific
question: Does the small model primarily acquire
factual knowledge through distillation, or does it
mainly develop reasoning capabilities? To exam-

ine this distinction, we conduct experiments using
two distinct data pools respectively: (i) R1-correct:
Samples where DeepSeek-R1 provides correct an-
swers, containing accurate reasoning traces; (ii)
R1-wrong: Samples where DeepSeek-R1 provides
incorrect answers, representing cases where the rea-
soning traces contain erroneous knowledge. This
design enables us to distinguish the model’s abil-
ity to learn reasoning patterns from its capacity to
acquire factual knowledge through distillation.

As presented in Table 5, our experimental re-
sults reveal some key observations: First, mod-
els fine-tuned exclusively on incorrect reasoning
chains (R1-wrong) still achieve competitive per-
formance. Second, the performance gain from
using exclusively correct chains (R1-correct) is
marginal compared to training on the complete
dataset. These experimental results strongly sug-
gest that the model primarily acquires reasoning
capabilities rather than merely memorizing factual
knowledge during the distillation process.

7 Conclusion

In this work, we present DynaGuide, an innovative
framework for efficiently distilling the reasoning
capabilities of LLMs into more compact and de-
ployable models. First, our proposed Dynamic
Data Selection (DDS) provides better data cura-
tion than current distillation approaches. Second,
the Reasoning Pattern Guidance (RPG) resolves
the overthinking issue in LLM-generated synthetic
data by optimizing the reasoning process during
fine-tuning. Together, these components enable
more data-efficient distillation while maintaining
the reasoning quality of distilled models.

Furthermore, our extensive analysis of data se-
lection and the model’s reasoning pattern provides
valuable insights for future research, advancing the
field of knowledge distillation of LLMs.



Limitations

There are some potential limitations to our current
work, which we aim to overcome in our future
work: (1) Our current framework for reasoning pat-
tern analysis and guidance is developed based on
the reasoning traces generated by DeepSeek-R1.
Its generalizability to other teacher models remains
an open question that requires further investiga-
tion. (2) Due to computational constraints, we do
not evaluate our framework across different model
scales, nor analyze data scaling effects. These fur-
ther studies could yield valuable insights into the
scaling law of distillation.
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A Experimental Details

A.1 Datasets

We provide a brief description of the datasets used
in this work. All these datasets are in English.
Our training dataset consists of:

* The training set of StrategyQA (Geva et al.,
2021), a question answering (QA) benchmark
that requires multiple reasoning steps for each
question. The questions are short but span
diverse topics.

* The training set of HotpotQA (Yang et al.,
2018), a QA dataset that requires reasoning
over multiple supporting documents, which
include factual knowledge.

* The SuperGPQA dataset (Du et al., 2025),
a QA benchmark covering 285 subjects to
test the model’s graduate-level knowledge and
reasoning capabilities.

Our in-domain evaluation benchmark includes:
* The test set of StrategyQA (Geva et al., 2021).

* The development set of HotpotQA (Yang
et al., 2018), since the answers of its test set
are unavailable.

And our out-of-domain evaluation benchmark
includes:
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e The FRAMES dataset (Krishna et al., 2024),
a QA benchmark to test model performance
in RAG scenarios. It requires multi-step rea-
soning over factual information from multiple
sources.

¢ The GPQA extended set (Rein et al., 2024), a
challenging graduate-level QA benchmark in
biology, physics, and chemistry domains. We
use the extended set in our evaluation.

* The SimpleQA (Wei et al., 2024) dataset, a
QA benchmark including short questions that
require factual retrieval and reasoning ability,
covering a wide range of topics.

A.2 Training Details

We list the details of training hyperparameters here:
Batch size: 8,
Number of machines: 1,
Number of processes: 8.
Training epochs: 5,
Training steps: 625,
Learning rate: 5e-6,
Optimizer: AdamW (with ;
0.999, weight decay = 0.01),
Scheduler: cosine schedule (warmup steps: 62)
ZeRO optimization stage: 3,
Mixed precision: bf16,
t;: 0.9,
tu: 1.1,
a: 1.0.

0.9, B2

A.3 Prompts

We use the prompt shown in Table 6 to request
DeepSeek-R1 API for its reasoning trace, and use
the prompt shown in Table 7 to evaluate the models
across all the datasets.

You are a helpful assistant. You will be given a
question. You need to answer the question by
reasoning step by step. In the end, output the
final answer in a new line with the prefix "Final
answer:". The final answer should be yes or no,
a choice letter, or a short phrase, without further
explanations.

Question: {Question}

Options: {Options} (if there are choices for the
question)

Table 6: Prompt used to request DeepSeek-R1 API
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You are Qwen, created by Alibaba Cloud. You
are a helpful assistant. You will be given a ques-
tion. You need to answer the question by rea-
soning step by step. In the end, output the final
answer in a new line with the prefix "Final an-
swer:". The final answer should be yes or no, a
choice letter, or a short phrase, without further
explanations.

Context: {Context} (if there exist context for
the question)

Question: {Question}

Options: {Options} (if there are choices for the
question)

Table 7: Prompt used to evaluate the models

B Case Study

We show the output of original Qwen2.5-7B-
Instruct and that of our fine-tuned model on a ques-
tion from the GPQA dataset in Table 8. Qwen2.5-
7B-Instruct lists all the systems and claims all of
them can coexist in a multi-star system directly,
thus giving a wrong answer, which is not even in-
cluded in the choices. DynaGuide-7B gives its
reasoning step by step (we omit many reasoning
steps here) and finally outputs the correct answer.
Furthermore, it thinks the possible systems that can
coexist are the second, third, and fourth, which is
completely correct according to the ground truth
explanation in the dataset. This case study demon-
strates the effectiveness of our framework.

C t-SNE Visualization of Feature Vectors
of Different Thinking Step

The t-SNE visualization (Van der Maaten and Hin-
ton, 2008) of feature vectors of different thinking
step types are shown in Figure 3. We observe that
in deep layer of the model, especially the 20th layer,
the vectors show weak separability after projection
to 2D space, which implies they are more separable
in the original high-dimensional hidden space.



Question: The majority of stars in our Galaxy form and evolve in multi-stellar systems. Below are five
potential multi-star systems that are presented. How many of these systems can coexist?
W Virginis type star, G2V, M4V, RGB star(1.5Msun)

WD (B5 when in the MS) and A0V
G2V, K1V, M5V
DA4, L4

WD (MS mass of 0.85Msun), K3V, A star with a mass of 0.9Msun in the MS.

Options: A.3 B.4 C.1 D.2

Answer: A. 3

Qwen2.5-7B-Instruct

DynaGuide-7B

To determine how many of these systems can coex-
ist, we need to understand what a multi-star system
is and the characteristics of the stars listed.

1. **W Virginis type star, G2V, M4V, RGB
star(1.5Msun)**: This system includes a variable
star, a main-sequence star, and a red giant. These
can coexist in a multi-star system.

2. ¥**WD (B5 when in the MS) and AOV**: This
system includes a white dwarf and a main-sequence
star. These can coexist in a multi-star system.

3. ¥*QG2V, K1V, M5V**: This system includes
three main-sequence stars. These can coexist in a
multi-star system.

4. **DA4, L4**: This system includes a white
dwarf and a brown dwarf. These can coexist in a
multi-star system.

5. ¥*WD (MS mass of 0.85Msun), K3V, A star
with a mass of 0.9Msun in the MS**: This system
includes a white dwarf, a main-sequence star, and
another main-sequence star. These can coexist in a
multi-star system.

Each of the five systems listed can coexist in a
multi-star system. Therefore, the answer is:

Final answer: 5

think

Okay, let’s try to figure this out. The question is
about how many of the five multi-star systems can
coexist. The options are A, B, C, D, and the answer
choices are numbers. Wait, but the user didn’t
provide options in the original question. Hmm,
maybe the options are part of the question here.
Let me check again.

Wait, the user wrote: "The majority of stars in our
Galaxy form and evolve in multi-stellar systems.
Below are five potential multi-star systems that
are presented. How many of these systems can
coexist?"

Then the five systems are listed. And the options
are A.3 B.4 C.1 D.2. So the options are those four
letters. So the answer is one of those. Let me read
the systems again.

The first system is W Virginis type star, G2V, M4V,
RGB star(1.5Msun). I’'m not sure what a W Vir-
ginis star is. Maybe a variable star? But I don’t
recall them forming multi-star systems. G2V and
M4V are spectral types, which are single stars. So
maybe this system can’t coexist.

The second system is WD (B5 when in the MS)
and AOV. WD might be a white dwarf, but B5 and
AOQ are main sequence stars. Wait, white dwarfs
form when main sequence stars die. So maybe a
system where a white dwarf is part of a binary with
another main sequence star. That could happen. So
maybe this one can coexist.

The third system is G2V, K1V, M5V. All main
sequence stars. Maybe they form a triple system.

In summary, the possible systems that can coexist
are the second, third, and fourth. So three. There-
fore, the answer is A.3.

answer

Final answer: A

Table 8: Case Study
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