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Abstract001

The exponentially increasing computational de-002
mands of large language models (LLMs) fa-003
cilitate the distillation to small models. Ex-004
isting distillation attempts to transfer LLMs’005
reasoning capabilities to compact models face006
critical limitations: expensive training or an-007
notation cost, suboptimal data selection, and008
flawed synthetic data due to LLMs’ general009
overthinking behaviors. This paper introduces010
DynaGuide, a novel framework that optimizes011
the distillation process in both efficiency and012
performance. Our approach integrates (1) Dy-013
namic Data Selection that adaptively performs014
fine-grained valuable data selection during the015
training process, and (2) Reasoning Pattern016
Guidance that mitigates the overthinking prob-017
lem in synthetic data by incorporating special-018
ized guidance during fine-tuning. Extensive019
experiments demonstrate that DynaGuide en-020
ables a 7B parameter model to achieve superior021
performance on knowledge reasoning question022
answering benchmarks, even achieving or ex-023
ceeding its 32B counterpart. Our systematic024
ablation studies and analysis further reveal in-025
sights into distillation and reasoning.026

1 Introduction027

The rapid evolution of artificial intelligence has028

witnessed a dramatic surge in model complexity,029

progressing from early small models to today’s030

large language models (LLMs) that exhibit remark-031

able generative and reasoning capabilities. How-032

ever, this advancement comes at an exponential033

increase in training costs, creating significant com-034

putational and financial barriers (Cottier et al.,035

2024). Although knowledge distillation is thought036

as a promising solution to this challenge by trans-037

ferring LLMs’ excellent reasoning capabilities to038

more compact and efficient models using LLM-039

generated synthetic data (Xu et al., 2024b), distilla-040

tion based on large datasets (DeepSeek-AI, 2025;041

Yu et al., 2025) remains computationally intensive042

and time-consuming. Alternative approaches ex- 043

plore to use only a small amount of data for dis- 044

tillation, but introduce costly human experts anno- 045

tations (Ye et al., 2025), or adopt coarse-grained 046

data selection and ignore the adaptability to the 047

model (Team, 2025; Muennighoff et al., 2025). 048

Moreover, recent studies have found that rea- 049

soning LLMs generally suffer from overthink- 050

ing (Chen et al., 2024). Such models can get the 051

correct answer at early reasoning stages (Fu et al., 052

2024), but continue the thinking process with much 053

verification of previous steps or exploration of other 054

unnecessary reasoning paths (Chen et al., 2025), 055

generating redundant thinking tokens and reducing 056

inference efficiency (Sui et al., 2025). Even worse, 057

frequent verification and transition can disrupt rea- 058

soning continuity, degrade contextual coherence, 059

reduce reasoning depth, and ultimately result in 060

lower performance (Wang et al., 2025). When such 061

flawed synthetic data is used for distillation, it can 062

be more difficult for small models to acquire robust 063

knowledge reasoning ability, thus more challenging 064

to maintain efficiency and accuracy. 065

To address these limitations, we propose Dy- 066

naGuide, a novel distillation framework that effi- 067

ciently transfers the knowledge reasoning capabil- 068

ity of LLMs to small models. DynaGuide includes 069

two key components: Dynamic Data Selection 070

(DDS) and Reasoning Pattern Guidance (RPG). 071

DDS performs adaptive data selection during the 072

training process, similar to the idea of active learn- 073

ing (Cohn et al., 1996), where a small number of 074

the most valuable samples are selected for training. 075

Differently, we have access to the metadata (such as 076

domains) of all data and the reasoning trace given 077

by LLM (specifically DeepSeek-R1 (Guo et al., 078

2025) in our experiments), so we can leverage more 079

comprehensive information for fine-grained data 080

selection. RPG addresses the overthinking prob- 081

lem by incorporating additional guidance during 082

distillation, derived from our systematic analysis 083
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of reasoning patterns in knowledge QA tasks. To-084

gether, these two components enable more efficient085

and adaptive distillation while improving the dis-086

tilled model’s reasoning capability.087

In summary, our work makes the following con-088

tributions: (1) We propose Dynamic Data Selection089

during fine-tuning to better and more efficiently090

transfer the advanced reasoning ability of LLMs091

to small models through distillation. (2) We ex-092

plore the reasoning patterns in knowledge QA and093

incorporate Reasoning Pattern Guidance into the094

fine-tuning process to mitigate overthinking and en-095

courage the distilled model to think efficiently and096

correctly. (3) Comprehensive experiments demon-097

strate the effectiveness of our framework. Notably,098

our fine-tuned 7B model can achieve or even ex-099

ceed the performance of its 32B counterpart. We100

further provide a systematic analysis of its general-101

ization capability and extensive ablation studies.102

2 Related Works103

2.1 Distillation of Large Language Models104

Knowledge Distillation has emerged as a promis-105

ing approach to transfer the advanced capabili-106

ties of LLMs to compact open-source models (Xu107

et al., 2024b). Early exploration focused on learn-108

ing specific knowledge from LLMs (Ding et al.,109

2023), while recent studies attempt to transfer110

the advanced reasoning capability to small mod-111

els (Hsieh et al., 2023; Sun et al., 2025), par-112

ticularly in mathematical and programming do-113

mains (Xu et al., 2025; Team, 2025; Labs, 2025).114

However, the distillation of reasoning-based knowl-115

edge QA tasks remains relatively underexplored.116

Current approaches also exhibit limitations in117

data curation, including dependence on large-scale118

datasets (DeepSeek-AI, 2025), reliance on coarse-119

grained data selection (Muennighoff et al., 2025),120

and the necessity for costly human expert annota-121

tions (Yu et al., 2025). Therefore, our work investi-122

gates data-efficient distillation through fine-grained123

data selection in knowledge QA tasks.124

2.2 Knowledge QA125

As LLM continues to evolve, performance on QA126

tasks gradually improves, but problems such as127

hallucinations still exist (Huang et al., 2023; Jiang128

et al., 2024; Luo et al., 2024). Retrieval-augmented129

generation (RAG) can be helpful by introducing130

external knowledge into the context or training ob-131

jectives (Gao et al., 2023; Asai et al., 2023; Tu132

Algorithm 1: Dynamic Data Selection dur-
ing Fine-Tuning
Input :Training Data Pool D, Model θ0,

Amount of training data n,
Amount of Warm-up Data nw,
Batch Size nb

Output :Fine-Tuned model θ
1 Initialize Uniform distributionW0 across

all types of data
// Warm-up

2 Dtrain ← SAMPLE(D,W0, nw)
3 D ← D\Dtrain
4 θ1, losses← TRAIN(θ0,Dtrain)
5 W1 ←

UPDATEWEIGHTS(W0,Dtrain, losses)
// Dynamic Data Selection

6 i← 1
7 while |Dtrain| < n do
8 Dbatch ← SAMPLE(D,Wi, nb)
9 D ← D\Dbatch

10 θi+1, losses← TRAIN(θi,Dbatch)
11 Wi+1 ←

UPDATEWEIGHTS(Wi,Dbatch, losses)
12 i← i+ 1
13 Dtrain ← Dtrain ∪ Dbatch

14 return θi

et al., 2025). Knowledge-based QA is well suited 133

for testing the model’s reasoning ability, as it is a 134

challenging task to reconcile multiple knowledge 135

and reason between input texts (Yang et al., 2018; 136

Geva et al., 2021). Previous works have similarly 137

proposed training to improve reasoning ability on 138

knowledge QA tasks, but require large amounts of 139

labeled or generated data (Xu et al., 2024a; Lyu 140

et al., 2024). Our work focuses on data selection to 141

achieve optimal results with a small amount of data 142

and to maintain the model’s ability to generalize, 143

improving model’s reasoning ability in both in- 144

domain and out-of-domain knowledge QA tasks. 145

3 Dynamic Data Selection during 146

Fine-Tuning 147

In this section, we present our dynamic data selec- 148

tion framework for fine-tuning. Our fundamental 149

premise is that distinct data characteristics result in 150

divergent learning dynamics during the fine-tuning 151

process. Certain domains or complexity levels re- 152

quire much exposure for adaptation, while others 153

stimulate the model’s capabilities through few ap- 154
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pearances. In this paper, we characterize the data155

from two orthogonal dimensions: (i) domain speci-156

ficity and (ii) task complexity.157

Our dynamic data selection methodology, for-158

malized in Algorithm 1, operates on the principle159

of continuous weight adaptation during fine-tuning.160

The framework starts with a warm-up phase and161

maintains a dynamic weight distribution across162

data feature classes, which it uses to probabilis-163

tically sample each subsequent training batch. This164

adaptive approach enables the model to automati-165

cally prioritize data features that require more atten-166

tion while maintaining exposure to all the classes.167

3.1 Warm-Up168

The cold start problem poses a significant chal-169

lenge that purely dynamic data selection may lead170

to insufficient model understanding of the over-171

all data distribution. Without proper initializa-172

tion, the weights assigned to initially selected data173

types could progressively increase, creating a self-174

reinforcing cycle where these data types continue to175

be preferentially selected. This phenomenon may176

result in the neglect of other data feature classes,177

ultimately reducing training data diversity and com-178

promising the model’s generalization capability.179

To address this issue, we introduce a warm-up180

phase prior to dynamic data selection. During this181

phase, we construct a balanced warm-up dataset182

by uniformly sampling equal amounts of data from183

all the classes. This warm-up dataset constitutes184

4% of the total selected data, serving to establish a185

more representative initial data distribution before186

transitioning to dynamic selection.187

3.2 Dynamic Selection188

Since performing inference on the entire train-189

ing data pool to identify samples with the highest190

model uncertainty is computationally prohibitive,191

our approach dynamically adjusts the weights of192

data feature classes that result in higher or lower193

loss in the currently observed batch. This strategy194

aims to prioritize the selection of such informative195

samples in subsequent training iterations.196

Specifically, our approach calculates the ratio197

of each sample’s loss to the batch’s average loss198

during training. Subsequently, conditioned on this199

ratio, we implement weight adjustments: for sam-200

ples with a ratio below a lower threshold tl, we201

downweight the type to which the sample belongs;202

conversely, for samples with a ratio above an upper203

threshold tu, we upweight the corresponding type.204

These thresholds act as a margin to explicitly sepa- 205

rate samples the model finds easy (low loss) from 206

those it finds difficult (high loss), thereby stabiliz- 207

ing the weighting mechanism. 208

We compute a weight adjustment factor f based 209

on the loss ratio. The underlying principle is to as- 210

sign larger weight increments to types with higher 211

loss ratio values and larger reductions to those with 212

lower loss ratio values. To mitigate weight ex- 213

plosion or weight disappearance, we require the 214

weight growth rate to be sublinear with respect to 215

the loss ratio. Thus, we adopt a simple rational 216

function with a lower limit for smoother scaling: 217

f = max

(
1

2
,

2r

r + 1

)
,where r =

ℓi
ℓ̄batch

. (1) 218

Here, ℓi denotes the per-sample loss and ℓ̄batch rep- 219

resents the batch-averaged loss. Such f ensures 220

monotonic yet controlled adjustments, approach- 221

ing 2 for large r and 0.5 for small r, reducing the 222

sensitivity to extreme values. 223

Upon selecting a predefined number of instances, 224

we terminate the dynamic data selection pro- 225

cess. To demonstrate the data efficiency of our 226

method and facilitate a fair comparison with prior 227

work (Muennighoff et al., 2025), we limit the total 228

selected data to 1,000 samples. The fine-tuning 229

procedure consists of 5 epochs, with the dynamic 230

data selection performed exclusively during the 231

first epoch. After that, we train the model on the 232

selected subset for another 4 epochs. Such a proce- 233

dure ensures consistent evaluation conditions and 234

maintains computational efficiency. 235

4 Incorporate Control of thinking 236

To systematically analyze the reasoning patterns 237

in knowledge-based question answering tasks, we 238

follow the definition of Chen et al. (2025) to seg- 239

ment reasoning traces into discrete steps using dou- 240

ble newline delimiters (‘\n\n’) and categorize these 241

steps into three distinct types: execution, reflection, 242

and transition. Execution steps perform factual 243

retrieval or concrete computation, reflection steps 244

verify the previous steps, and transition steps bridge 245

two different reasoning paths. 246

4.1 Reasoning Patterns Analysis 247

First, we explore the model’s reasoning patterns 248

in knowledge QA tasks, with particular attention 249

to the correlation between step-type frequencies 250

and task performance metrics. Table 1 presents 251
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Metric
Answer Type

Correct Wrong
Average # Tokens 1804.54 1823.11
Execution Steps 73.10% 58.40%
Reflection Steps 17.13% 23.30%
Transition Steps 9.77% 18.30%

Table 1: Analysis of DeepSeek-R1’s reasoning patterns
in knowledge question answering tasks.

an analysis of DeepSeek-R1’s chains of thought252

on knowledge question answering tasks (on strate-253

gyQA (Geva et al., 2021), hotpotQA (Yang et al.,254

2018) and superGPQA (Du et al., 2025) datasets).255

We systematically examined the model’s perfor-256

mance by quantifying the average token length of257

reasoning chains, and the relative frequency distri-258

bution of different reasoning step types across both259

correct and incorrect responses.260

Different from the findings of previous261

work (Chen et al., 2025) in the field of mathemati-262

cal tasks, we find that in the field of knowledge QA263

tasks, there is no significant difference in the num-264

ber of model’s thinking tokens when answering265

correctly and incorrectly. However, our analysis266

reveals distinct patterns in reasoning step type dis-267

tributions between correct and incorrect responses.268

For erroneous answers, we observe a statistically269

significant decrease in execution-type steps, accom-270

panied by a marked increase in other step types,271

particularly transition steps. This inverse relation-272

ship suggests that excessive reflection and transi-273

tion steps may disrupt the model’s reasoning pro-274

cess, potentially leading to performance degrada-275

tion. Specifically, the disproportionate growth in276

meta-cognitive steps appears to compromise the277

model’s ability to maintain focused reasoning.278

4.2 Reasoning Pattern Guidance279

We further perform encoding on the training set to280

extract the hidden states of the tokens containing281

‘\n\n’ as feature vectors representing subsequent282

thinking steps. Our analysis reveals that vectors283

from deeper model layers, especially the 20th layer,284

exhibit weak separability when projected into 2D285

space (detailed visualizations are provided in Ap-286

pendix C). This observation suggests stronger sep-287

arability in the original high-dimensional hidden288

space. This discovery is consistent with the conclu-289

sions of Chen et al. (2025) on mathematical tasks.290

To guide the model’s reasoning process during291

fine-tuning and encourage more execution steps,292

we propose adjusting the hidden states of tokens 293

containing ‘\n\n’ toward the direction of the aver- 294

age execution-step feature vector, denoted as HE . 295

However, since HE may evolve during training, we 296

employ an iterative tuning approach to align the 297

representations with the target reasoning trajectory. 298

Spefically, after epochs 1-4, we perform encod- 299

ing on the selected training dataset and calculate the 300

average execution-step feature vector H i
E , where i 301

denotes the epoch number. During epochs 2-5, we 302

introduce a projection loss for all tokens containing 303

‘\n\n’. Let H i
c represent the hidden state of such 304

a token at epoch i, and let Sim represents cosine 305

similarity. The loss encourages alignment between 306

H i
c and the average execution-step feature vector 307

H i−1
E from the previous epoch. 308

If the subsequent step is a reflection step or a 309

transition step, we apply the projection loss: 310

Lproj =
(1− Sim(H i

c, H
i−1
E ))

2
. (2) 311

The loss ‘pushes’ H i
c toward H i−1

E , thereby encour- 312

aging the model to generate more execution steps. 313

If the subsequent step is already an execution step, 314

we still apply the same projection loss to minimize 315

semantic drift in the learned representations. This 316

ensures consistent optimization across all reason- 317

ing step types, resulting in a unified projection loss. 318

We jointly optimize both the causal language 319

modeling loss and the projection loss during train- 320

ing. The total loss function is defined as: 321

Ltotal = LCLM + α · Lproj, (3) 322

where LCLM denotes the standard causal language 323

modeling loss, Lproj is our proposed projection loss 324

that enforces latent space alignment constraints, 325

and α serves as a balancing hyperparameter. This 326

configuration maintains equilibrium between the 327

two objectives and prevents significant deviation 328

from the original pre-trained model’s hidden space. 329

We apply the projection loss to the 20th layer of 330

the model, as this layer demonstrates the strongest 331

feature vector separability in our analysis. This 332

choice aligns with the experimental setup of Chen 333

et al. (2025). While our study employs Qwen2.5- 334

7B-Instruct and theirs uses R1-Distill-Qwen-1.5B, 335

both models share a similar architecture of 28 lay- 336

ers, ensuring comparable layer-wise behavior. 337

4



Model
Fine-

Tuning
Data

In-domain Datasets Out-of-domain Datasets
StrategyQA

test set
HotpotQA

dev
HotpotQA

devc FRAMESc GPQA
extended SimpleQA SimpleQAc

R1-Distill-Qwen-7B 800K 70.16 19.27 54.80 22.33 46.34∗ 2.17 46.44

R1-Distill-LLaMA-8B 800K 71.03 20.20 55.24 23.18 50.73∗ 2.36 48.94

Qwen2.5-7B-Instruct - 68.41 15.87 46.91 20.63 31.87 2.47 47.55

s1-7B 1,000 74.09 20.77 57.92 23.54 39.74 3.05 46.51

s1-7B + BF 1,000 74.53 21.36 59.43 25.24 44.51∗ 3.33 49.40

DynaGuide-7B (ours) 1,000 77.73∗ 24.98 61.59 28.52∗ 47.07∗ 3.98 54.60∗

Qwen2.5-32B-Instruct - 75.98 27.94 65.47 27.55 42.31 4.90 53.42

Table 2: Model accuracy on various benchmarks. cQuestion answering tasks with retrieved context (i.e., RAG
evaluation) requiring contextual reasoning. Bold formatting highlights the top-performing model within the 7B-8B
parameter cohort. ∗Asterisked results demonstrate performance surpasses that of Qwen2.5-32B-Instruct, while
utilizing approximately 75% fewer parameters.

5 Experiments338

5.1 Setup339

Datasets Our training dataset consists of the340

training set of StrategyQA (Geva et al., 2021),341

the training set of HotpotQA (Yang et al., 2018),342

and SuperGPQA (Du et al., 2025), aggregating to343

118,579 samples that span diverse domains and344

complexity levels. Then, similar to s1 (Muen-345

nighoff et al., 2025), we apply a quality filter re-346

taining only questions that neither Qwen2.5-7B-347

Instruct nor Qwen2.5-32B-Instruct (Team, 2024)348

can answer correctly. This filtering process results349

in a refined training data pool of 71,662 examples.350

Then we request the DeepSeek-R1’s inference API351

to generate reasoning traces and answers, which352

serve as pseudo-annotations for each question. This353

dataset forms the training data pool for our dynamic354

data selection framework.355

Our methodology focuses specifically on trans-356

ferring knowledge reasoning capabilities from Rea-357

soning LLMs to small models, rather than context358

retrieval performance. To maintain this focus, we359

omit external context in our training examples, re-360

quiring the model to rely exclusively on its inter-361

nal knowledge for reasoning. This design ensures362

the fine-tuning process specifically enhances the363

model’s inherent reasoning abilities without con-364

founding factors from retrieval augmentation.365

Implementation Details We conduct full-366

parameter supervised fine-tuning (SFT) of the367

Qwen2.5-7B-Instruct model (Team, 2024) using368

a two-phase training approach: (i) During the369

initial epoch, we perform dynamic data selection370

described in Section 3 until accumulating a 371

curated set of 1,000 training examples; (ii) For the 372

subsequent four epochs, we train exclusively on the 373

selected subset while incorporating our proposed 374

reasoning pattern guidance (RPG) framework, 375

described in Section 4.2. In our experiment, we 376

set the thresholds tl = 0.9 and tu = 1.1, and the 377

loss weighting hyperparameter α = 1.0. More 378

experimental details can be found in Appendix A. 379

Evaluation Our evaluation protocol includes 380

both in-domain and out-of-domain datasets. For in- 381

domain evaluation, we assess model performance 382

on the StrategyQA test set and the HotpotQA devel- 383

opment set (since the answers of the HotpotQA test 384

set are unavailable). For out-of-domain evaluation, 385

we test the model on some challenging benchmarks: 386

FRAMES (Krishna et al., 2024), GPQA extended 387

set (Rein et al., 2024), and SimpleQA (Wei et al., 388

2024). All results report the accuracy rate. 389

Baselines We compare our framework with: (1) 390

Qwen2.5-7B-Instruct (Team, 2024), the founda- 391

tion model prior to our fine-tuning; (2) R1-Distill- 392

Qwen-7B and R1-Distill-LLaMA-8B (DeepSeek- 393

AI, 2025): models distilled on 800K data from 394

DeepSeek-R1 based on Qwen and Llama, re- 395

leased by DeepSeek-AI; (3) s1-7B and s1-7B + 396

BF: a model fine-tuned from Qwen2.5-7B-Instruct 397

following the framework of Muennighoff et al. 398

(2025) but on knowledge reasoning tasks, where 399

BF denotes their proposed test-time scaling tech- 400

nique Budget Forcing; and (4) Qwen2.5-32B- 401

Instruct (Team, 2024): a model with approxi- 402

mately 4x parameters for cross-scale comparison. 403
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Data Selection Method
In-domain Datasets Out-of-domain Datasets

StrategyQA
test set

HotpotQA
dev

HotpotQA
devc FRAMESc GPQA

extended SimpleQA SimpleQAc

Random 73.95 21.07 60.03 21.84 37.73 2.80 48.20

Longest 69.29 18.16 56.88 24.52 46.15 2.89 48.66

s1 74.09 20.77 57.92 23.54 39.74 3.05 46.51

w/o Warm-up 76.61 22.75 59.88 23.14 41.15 2.96 48.55
± 1.40 ± 1.45 ± 1.89 ± 2.08 ± 2.49 ± 0.14 ± 0.47

DDS (ours) 77.29 23.92 60.18 24.60 43.28 3.28 49.47
± 1.03 ± 0.70 ± 1.24 ± 0.97 ± 1.56 ± 0.17 ± 0.57

Table 3: Performance comparison of different data selection methods. cQuestion answering tasks with retrieved
context (i.e., RAG evaluation) requiring contextual reasoning. Bold formatting highlights the top-performing model.
All results report task accuracy. We also report the radius of the 95% confidence interval in the ablation study of the
warm-up phase. All models are trained without Reasoning Pattern Guidance.

5.2 Main Results404

The main experimental results are shown in Ta-405

ble 2, which demonstrates our framework’s supe-406

rior performance across various benchmarks. Our407

proposed distillation framework significantly en-408

hances Qwen2.5-7B-Instruct model’s performance,409

demonstrating notable gains across all benchmarks.410

Our model also outperforms the R1-Distill models411

of similar size on most of the benchmarks, which412

are fine-tuned on 800K data. Our framework also413

has advantages over the s1 framework with the414

same data efficiency. Moreover, our fine-tuned415

7B model can approach or even exceed the per-416

formance of Qwen2.5-32B-Instruct, which has ap-417

proximately 4 times the number of parameters.418

6 Analysis419

6.1 Generalization to RAG Tasks420

Since our model is fine-tuned without external421

context and the RAG task represents an impor-422

tant knowledge-based question answering scenario,423

we additionally evaluate our framework’s general-424

ization capability to the RAG task on hotpotQA,425

FRAMES, and SimpleQA datasets.426

We organize the external context input to the427

model as follows: (i) For HotpotQA dataset, the428

context is contained in the dataset file, and we con-429

catenate them into several pieces of text in their430

original order; (ii) For the FRAMES and SimpleQA431

datasets, the data files contain context URLs. We432

crawl all Wikipedia URLs and delete irrelevant con-433

tent such as navigation bars, sidebars, and hyper-434

links, retaining the title and body, and then connect435

the texts to form the context according to the or-436

der of the URLs in the data file. Since the context437

HotpotQA HotpotQA_context SimpleQA SimpleQA_context
Dataset

Ou
rs

-7
B

s1
-7

B
M

od
el

2844.78 1256.22 2030.04 1123.62

4051.83 2107.65 2874.94 1763.40

Average Reasoning Chain Length

1500

2000

2500
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3500
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Figure 1: Comparison of reasoning chain length (num-
ber of tokens) between s1-7B and Ours-7B model
under different input settings. “HotpotQA” and
“SimpleQA” denote inputs without external context,
while “HotpotQA_context” and “SimpleQA_context”
represent RAG tasks with context.

length of the model is limited and some context 438

windows need to be reserved for reasoning, we 439

truncate all contexts and only keep the first 8K 440

tokens as context input to the model. 441

The results in Table 2 shows that the model fine- 442

tuned by our framework not only has a good ability 443

to rely on internal knowledge for reasoning, but 444

also has strong contextual reasoning capabilities. 445

Furthermore, we evaluate the models’ reasoning 446

efficiency on RAG tasks. As illustrated in Figure 1, 447

the introduction of external contextual information 448

significantly reduces required reasoning steps by 449

providing supplementary evidence. Compared to 450

scenarios without external context, our 7B model 451

reduces the average number of reasoning tokens 452

by 50.25%, while while s1-7B achieves a reduc- 453

tion of only 43.32%, indicating that our model can 454

perform contextual reasoning more efficiently. 455
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Method
In-domain Datasets Out-of-domain Datasets

StrategyQA
test set

HotpotQA
dev

HotpotQA
devc FRAMESc GPQA

extended SimpleQA SimpleQAc

Vanilla SFT 77.29 23.92 60.18 24.60 43.28 3.28 49.47
(861.89) (2639.62) (1236.33) (2036.92) (23381.84) (1644.97) (1068.48)

Exe-only 75.25 22.32 60.04 24.03 43.22 2.96 50.18
(793.64) (2341.80) (1260.39) (1779.49) (20991.40) (1722.02) (763.99)

SEAL 76.86 24.51 60.28 26.82 45.79 3.65 51.69
(605.44) (1067.05) (730.00) (1581.05) (10652.20) (1033.96) (682.63)

RPG (ours) 77.73 24.98 61.59 28.52 47.07 3.98 54.60
(788.71) (1991.35) (990.71) (1511.84) (16723.81) (1421.03) (786.53)

Table 4: Performance and average thinking token number comparison of reasoning control methods on question-
answering tasks. The average number of thinking tokens is shown in parentheses. cQuestion answering tasks
with retrieved context (i.e., RAG evaluation) requiring contextual reasoning. Bold formatting highlights the top-
performing model. All results report task accuracy. All models are trained with Dynamic Data Selection.

StrategyQA HotpotQA HotpotQA_context FRAMES GPQA extended SimpleQA SimpleQA_context
Dataset
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88.53%

51.99%

72.58%
68.15%
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55.42%

64.84% 66.11%
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Exe-only
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Figure 2: Comparison of the proportion of execution steps of different methods on various datasets. “HotpotQA”
and “SimpleQA” denote inputs without external context, while “HotpotQA_context” and “SimpleQA_context”
represent RAG tasks with external context input.

6.2 Ablation Study of Dynamic Data Selection456

To evaluate the performance improvement achieved457

by our proposed dynamic data selection framework,458

we compared it with several baseline data selection459

methods: (1) Random: Uniform random sampling460

of 1,000 instances; (2) Longest: Selecting sam-461

ples with the longest pseudo-annotation reasoning462

chains; (3) s1: the data selection method described463

by Muennighoff et al. (2025), which comprise two464

phases - initial uniform sampling of 300 instances,465

followed by repeatedly difficulty-weighted data se-466

lection in a randomly chosen domain, until reach-467

ing 1,000 instances. We also conduct an ablation468

study to show the necessity of the warm-up phase.469

As shown in Table 3, our proposed data selec-470

tion method achieves significant performance gains471

across multiple tasks, while baseline methods suf-472

fer from uneven data distribution, especially the 473

Longest baseline. Since most training data with 474

the longest reasoning chain originates from reason- 475

ing traces on the SuperGPQA dataset, the most 476

difficult training set, this baseline yields huge im- 477

provements on the similar GPQA Benchmark, but 478

shows minimal gains on other datasets. Further- 479

more, incorporating the warm-up phase not only 480

enhances overall performance, but also stabilizes 481

training dynamics, reducing the result variance. 482

6.3 Ablation Study of Reasoning Pattern 483

Guidance 484

We evaluate our proposed Reasoning Pattern 485

Guidance framework against several baseline ap- 486

proaches that may facilitate the model’s execution 487

step: (1) Vanilla SFT: The standard approach 488
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Training Data Pool Data Size
In-domain Datasets Out-of-domain Datasets

StrategyQA
test set

HotpotQA
dev

HotpotQA
devc FRAMESc GPQA

extended SimpleQA SimpleQAc

R1-correct 25725 78.31 23.59 62.04 25.36 45.24 3.77 51.62

R1-wrong 45937 75.40 23.36 59.22 23.30 38.28 2.61 48.75

All 71662 77.29 23.92 60.18 24.60 43.28 3.28 49.47

Table 5: Performance comparison of models trained on different training data pools. cQuestion answering tasks
with retrieved context (i.e., RAG evaluation) requiring contextual reasoning. All models are trained with Dynamic
Data Selection and without Reasoning Pattern Guidance.

where only supervised fine-tuning (SFT) is per-489

formed on the selected data, with no modifications490

during training or inference; (2) Exe-only: A sim-491

plified variant where we remove all reflection and492

transition steps from the training data, retaining493

only the execution steps; (3) SEAL (Chen et al.,494

2025): An approach that performs targeted modifi-495

cations to the model’s hidden states during decod-496

ing to encourage more execution steps.497

As demonstrated in Table 4, our method achieves498

the most significant performance gains over Vanilla499

SFT across all evaluated datasets. Notably, the Exe-500

only variant exhibits degraded performance, which501

we attribute to the removal of reflection and transi-502

tion steps. This modification disrupts the coherence503

of reasoning chains, compromising both semantic504

integrity and contextual relevance.505

We further analyzed the execution step ratios506

across different methods (Figure 2), revealing two507

key insights: (1) The Exe-only approach achieves508

near-complete execution dominance. However, this509

comes at the cost of semantic coherence, as the510

removal of reflection and transition steps leads511

to fragmented reasoning chains and compromised512

contextual relevance, ultimately impairing task per-513

formance. (2) While SEAL demonstrates higher ex-514

ecution rates than our RPG framework, this comes515

through forced conversion of reflection/transition516

steps into execution during decoding. In contrast,517

RPG maintains the model’s capacity for necessary518

reflection and transition while promoting execution519

during training, achieving superior overall perfor-520

mance through more balanced reasoning processes.521

6.4 Impact of the Correctness of522

R1-Responses523

Furthermore, we investigate a critical scientific524

question: Does the small model primarily acquire525

factual knowledge through distillation, or does it526

mainly develop reasoning capabilities? To exam-527

ine this distinction, we conduct experiments using 528

two distinct data pools respectively: (i) R1-correct: 529

Samples where DeepSeek-R1 provides correct an- 530

swers, containing accurate reasoning traces; (ii) 531

R1-wrong: Samples where DeepSeek-R1 provides 532

incorrect answers, representing cases where the rea- 533

soning traces contain erroneous knowledge. This 534

design enables us to distinguish the model’s abil- 535

ity to learn reasoning patterns from its capacity to 536

acquire factual knowledge through distillation. 537

As presented in Table 5, our experimental re- 538

sults reveal some key observations: First, mod- 539

els fine-tuned exclusively on incorrect reasoning 540

chains (R1-wrong) still achieve competitive per- 541

formance. Second, the performance gain from 542

using exclusively correct chains (R1-correct) is 543

marginal compared to training on the complete 544

dataset. These experimental results strongly sug- 545

gest that the model primarily acquires reasoning 546

capabilities rather than merely memorizing factual 547

knowledge during the distillation process. 548

7 Conclusion 549

In this work, we present DynaGuide, an innovative 550

framework for efficiently distilling the reasoning 551

capabilities of LLMs into more compact and de- 552

ployable models. First, our proposed Dynamic 553

Data Selection (DDS) provides better data cura- 554

tion than current distillation approaches. Second, 555

the Reasoning Pattern Guidance (RPG) resolves 556

the overthinking issue in LLM-generated synthetic 557

data by optimizing the reasoning process during 558

fine-tuning. Together, these components enable 559

more data-efficient distillation while maintaining 560

the reasoning quality of distilled models. 561

Furthermore, our extensive analysis of data se- 562

lection and the model’s reasoning pattern provides 563

valuable insights for future research, advancing the 564

field of knowledge distillation of LLMs. 565
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Limitations566

There are some potential limitations to our current567

work, which we aim to overcome in our future568

work: (1) Our current framework for reasoning pat-569

tern analysis and guidance is developed based on570

the reasoning traces generated by DeepSeek-R1.571

Its generalizability to other teacher models remains572

an open question that requires further investiga-573

tion. (2) Due to computational constraints, we do574

not evaluate our framework across different model575

scales, nor analyze data scaling effects. These fur-576

ther studies could yield valuable insights into the577

scaling law of distillation.578
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A Experimental Details 747

A.1 Datasets 748

We provide a brief description of the datasets used 749

in this work. All these datasets are in English. 750

Our training dataset consists of: 751

• The training set of StrategyQA (Geva et al., 752

2021), a question answering (QA) benchmark 753

that requires multiple reasoning steps for each 754

question. The questions are short but span 755

diverse topics. 756

• The training set of HotpotQA (Yang et al., 757

2018), a QA dataset that requires reasoning 758

over multiple supporting documents, which 759

include factual knowledge. 760

• The SuperGPQA dataset (Du et al., 2025), 761

a QA benchmark covering 285 subjects to 762

test the model’s graduate-level knowledge and 763

reasoning capabilities. 764

Our in-domain evaluation benchmark includes: 765

• The test set of StrategyQA (Geva et al., 2021). 766

• The development set of HotpotQA (Yang 767

et al., 2018), since the answers of its test set 768

are unavailable. 769

And our out-of-domain evaluation benchmark 770

includes: 771
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• The FRAMES dataset (Krishna et al., 2024),772

a QA benchmark to test model performance773

in RAG scenarios. It requires multi-step rea-774

soning over factual information from multiple775

sources.776

• The GPQA extended set (Rein et al., 2024), a777

challenging graduate-level QA benchmark in778

biology, physics, and chemistry domains. We779

use the extended set in our evaluation.780

• The SimpleQA (Wei et al., 2024) dataset, a781

QA benchmark including short questions that782

require factual retrieval and reasoning ability,783

covering a wide range of topics.784

A.2 Training Details785

We list the details of training hyperparameters here:786

Batch size: 8,787

Number of machines: 1,788

Number of processes: 8.789

Training epochs: 5,790

Training steps: 625,791

Learning rate: 5e-6,792

Optimizer: AdamW (with β1 = 0.9, β2 =793

0.999, weight decay = 0.01),794

Scheduler: cosine schedule (warmup steps: 62)795

ZeRO optimization stage: 3,796

Mixed precision: bf16,797

tl: 0.9,798

tu: 1.1,799

α: 1.0.800

A.3 Prompts801

We use the prompt shown in Table 6 to request802

DeepSeek-R1 API for its reasoning trace, and use803

the prompt shown in Table 7 to evaluate the models804

across all the datasets.805

You are a helpful assistant. You will be given a
question. You need to answer the question by
reasoning step by step. In the end, output the
final answer in a new line with the prefix "Final
answer:". The final answer should be yes or no,
a choice letter, or a short phrase, without further
explanations.

Question: {Question}

Options: {Options} (if there are choices for the
question)

Table 6: Prompt used to request DeepSeek-R1 API

You are Qwen, created by Alibaba Cloud. You
are a helpful assistant. You will be given a ques-
tion. You need to answer the question by rea-
soning step by step. In the end, output the final
answer in a new line with the prefix "Final an-
swer:". The final answer should be yes or no, a
choice letter, or a short phrase, without further
explanations.

Context: {Context} (if there exist context for
the question)

Question: {Question}

Options: {Options} (if there are choices for the
question)

Table 7: Prompt used to evaluate the models

B Case Study 806

We show the output of original Qwen2.5-7B- 807

Instruct and that of our fine-tuned model on a ques- 808

tion from the GPQA dataset in Table 8. Qwen2.5- 809

7B-Instruct lists all the systems and claims all of 810

them can coexist in a multi-star system directly, 811

thus giving a wrong answer, which is not even in- 812

cluded in the choices. DynaGuide-7B gives its 813

reasoning step by step (we omit many reasoning 814

steps here) and finally outputs the correct answer. 815

Furthermore, it thinks the possible systems that can 816

coexist are the second, third, and fourth, which is 817

completely correct according to the ground truth 818

explanation in the dataset. This case study demon- 819

strates the effectiveness of our framework. 820

C t-SNE Visualization of Feature Vectors 821

of Different Thinking Step 822

The t-SNE visualization (Van der Maaten and Hin- 823

ton, 2008) of feature vectors of different thinking 824

step types are shown in Figure 3. We observe that 825

in deep layer of the model, especially the 20th layer, 826

the vectors show weak separability after projection 827

to 2D space, which implies they are more separable 828

in the original high-dimensional hidden space. 829
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Question: The majority of stars in our Galaxy form and evolve in multi-stellar systems. Below are five
potential multi-star systems that are presented. How many of these systems can coexist?
W Virginis type star, G2V, M4V, RGB star(1.5Msun)
WD (B5 when in the MS) and A0V
G2V, K1V, M5V
DA4, L4
WD (MS mass of 0.85Msun), K3V, A star with a mass of 0.9Msun in the MS.
Options: A. 3 B. 4 C. 1 D. 2
Answer: A. 3

Qwen2.5-7B-Instruct DynaGuide-7B
To determine how many of these systems can coex-
ist, we need to understand what a multi-star system
is and the characteristics of the stars listed.
1. **W Virginis type star, G2V, M4V, RGB
star(1.5Msun)**: This system includes a variable
star, a main-sequence star, and a red giant. These
can coexist in a multi-star system.
2. **WD (B5 when in the MS) and A0V**: This
system includes a white dwarf and a main-sequence
star. These can coexist in a multi-star system.
3. **G2V, K1V, M5V**: This system includes
three main-sequence stars. These can coexist in a
multi-star system.
4. **DA4, L4**: This system includes a white
dwarf and a brown dwarf. These can coexist in a
multi-star system.
5. **WD (MS mass of 0.85Msun), K3V, A star
with a mass of 0.9Msun in the MS**: This system
includes a white dwarf, a main-sequence star, and
another main-sequence star. These can coexist in a
multi-star system.
Each of the five systems listed can coexist in a
multi-star system. Therefore, the answer is:
Final answer: 5

think
Okay, let’s try to figure this out. The question is
about how many of the five multi-star systems can
coexist. The options are A, B, C, D, and the answer
choices are numbers. Wait, but the user didn’t
provide options in the original question. Hmm,
maybe the options are part of the question here.
Let me check again.
Wait, the user wrote: "The majority of stars in our
Galaxy form and evolve in multi-stellar systems.
Below are five potential multi-star systems that
are presented. How many of these systems can
coexist?"
Then the five systems are listed. And the options
are A.3 B.4 C.1 D.2. So the options are those four
letters. So the answer is one of those. Let me read
the systems again.
The first system is W Virginis type star, G2V, M4V,
RGB star(1.5Msun). I’m not sure what a W Vir-
ginis star is. Maybe a variable star? But I don’t
recall them forming multi-star systems. G2V and
M4V are spectral types, which are single stars. So
maybe this system can’t coexist.
The second system is WD (B5 when in the MS)
and A0V. WD might be a white dwarf, but B5 and
A0 are main sequence stars. Wait, white dwarfs
form when main sequence stars die. So maybe a
system where a white dwarf is part of a binary with
another main sequence star. That could happen. So
maybe this one can coexist.
The third system is G2V, K1V, M5V. All main
sequence stars. Maybe they form a triple system.
...
In summary, the possible systems that can coexist
are the second, third, and fourth. So three. There-
fore, the answer is A.3.
answer
Final answer: A

Table 8: Case Study
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(a) Layer 1
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(b) Layer 4
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(c) Layer 8
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(d) Layer 12
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(e) Layer 16
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(f) Layer 20
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(g) Layer 24
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(h) Layer 28

Figure 3: t-SNE Visualization of Feature Vectors of Different Thinking Step across Different Layers
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