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Abstract

We study the fundamental question of how informative a dataset is for solving
a given decision-making task. In our setting, the dataset provides partial infor-
mation about unknown parameters that influence task outcomes. Focusing on
linear programs, we characterize when a dataset is sufficient to recover an optimal
decision, given an uncertainty set on the cost vector. Our main contribution is a
sharp geometric characterization that identifies the directions of the cost vector
that matter for optimality, relative to the task constraints and uncertainty set. We
further develop a practical algorithm that, for a given task, constructs a minimal or
least-costly sufficient dataset. Our results reveal that small, well-chosen datasets
can often fully determine optimal decisions—offering a principled foundation for
task-aware data selection.

1 Introduction

Decision-making problems are often performed under incomplete knowledge of the state of nature—
that is, they rely on parameters that must be learned or estimated. In practice, experts draw on a
combination of domain knowledge and experience from previously solved tasks. With the recent
surge in data availability, data-driven decision-making has become a dominant paradigm: data now
plays a central role in complementing contextual knowledge to guide decisions. This paper seeks to
understand the informational value of a given dataset with respect to a specific decision-making task.
More precisely, we ask: to what extent does a dataset enable recovery of the optimal decision, given
task structure and prior knowledge?

The fundamental question of data informativeness—or its value—has several important implications.
One key implication is data collection: when faced with a new decision-making task, which data
should be collected to effectively generalize prior knowledge to the new setting? Ideally, one seeks
the smallest—or least costly—yet most informative dataset. A second major implication lies in
computing. Recent successes of large-scale models (e.g., LLMs) have been driven by large-scale data
and advances in computing. However, computing cost remains a significant bottleneck. Identifying
the most informative subset of data for a specific task can significantly reduce dataset size and,
consequently, training costs. Quantifying data value also impacts mechanism design in data markets
and considerations around privacy.

A general setting for studying this question is as follows. Suppose the decision-maker’s goal is to
select a decision z € X minimizing a loss L(z, §) which depends on an unknown parameter—state
of nature—6 € O. A dataset D = {q1, ..., gy} consists of points at which the loss is evaluated: it
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provides observations {L(q1,6) + €(q1,6), ..., L(qn,0) + €(qn, )} partially informing on the true
state of nature 6, where the random variable ¢(+, -) models noisy observations. The decision-maker
can then use the observations along with their prior knowledge (set restriction # € ©) to select a
decision x € X minimizing L(x, #). The central question is: which datasets D allow to recover the
task-optimal decision, given the prior knowledge encoded in the uncertainty set ©. In the rest of the
paper, we study this question in the setting of linear programming—with linear loss L and polyhedral
decision set Y—where the task structure enables a sharp analysis.

To illustrate this formalism with an example, consider a hiring problem in which a decision-maker is
given a list of candidates and their resumes and decides which subset of candidates to interview in
order to reveal their value, and ultimately make a hiring decision. This problem has been studied in
various settings (Purohit et al.|2019, [Epstein and Ma|2024), including within the popular Secretary
Problem (Kleinberg|2005} |Arlotto and Gurvich|2019| |Bray|2019). Prior work typically assumes
a sequential, adaptive model, where interviews and hiring decisions occur in an online fashion.
However, in many real-world scenarios—such as hiring PhD students or faculty—the set of candidates
to interview must be chosen in advance, with hiring decisions made afterward based on all interview
outcomes. This latter offline setting is a natural instance of the data informativeness problem.

Formally, hiring from d candidates is a decision-making problem where a decision consists of a
binary vector x € X C {0,1}% indicating which candidates to hire. The feasible set X encodes

organizational constraints, such as a maximum number of hires i—1 Ti < k, or maximum expertise-
based quotas ) ., x; < kj for subsets [; C [d], to name a few. Each candidate has an unknown
J

value 6;, with & € © C R? modeling prior information on these values. It consists here in (i)
candidates’ resumes, which can be seen as features ¢ = (¢, ..., ¢4) € R4, and (ii) historical

hiring data, which is pairs of resumes and observed value (ngbl, él), ceey (QASZ, én) Specifically, © =
{0 € Ri cdaeRL 3, el & sth=a"¢g+e 0=a'¢p+ e} withE Cc R E C R! noise
sets. The loss incurred by a decision x under values 6 is L(z, §) = —0 T z—the negative total value

of selected candidates. A dataset D C {q € {0,1}% : Z?:l q; = 1} is a subset of candidates to
interview, and each interview g € D, g; = 1, reveals a, possibly noisy, evaluation of a given candidate
j’s value L(q, §) = 6; which complements the prior information embedded in ©. The goal in this
application is to select the smallest subset of candidates to interview (dataset) to recover the optimal
hiring decision: that is, the smallest, informative dataset for the given task.

The question of data informativeness is related to several extensively studied topics in economics,
statistics, computer science, and operations research literature. Below, we highlight a few of these
areas and the angle with which they approached this question.

Active Learning, Bandits and Adaptive Experimental Design. In many data-driven settings,
informativeness is approached via adaptive, sequential data collection. Active learning (Settles|2009}
Zheng et al.|2017) seeks to sequentially select data points that improve a classifier by minimizing
predictive loss, while bandit algorithms (Lattimore and Szepesvari| 2020 |Carlsson et al.[[2024)
aim to optimize decisions through sequential exploration. Adaptive experimental design (Zhao
2024) similarly selects experiments to maximize information gain about unknown parameters, often
guided by Bayesian criteria such as posterior variance reduction. These approaches rely on real-time
feedback to guide data acquisition and typically analyze asymptotic behavior. However, in practical
applications—such as surveys or field trials—queries must often be selected in advance, and outcomes
are revealed only afterward. In such settings, adaptivity is infeasible.

In contrast to these paradigms, we study fixed datasets in a non-adaptive, finite-sample regime,
focusing on geometric conditions for optimal decision recovery rather than statistical estimation error.
We show that, even without adaptivity, one can precisely characterize which datasets are sufficient to
recover task-optimal decisions—offering an offline analogue to adaptive data selection.

Blackwell’s Informativeness Theory. One of the earliest and most celebrated frameworks for
comparing datasets is Blackwell’s theory of informativeness (Blackwell|1953). In this framework,
a dataset is abstracted as an experiment, which generates a signal s € .S drawn from a distribution
P(s|6), informing on § € O, the unknown state of nature. This is equivalent to our framing
above, with the signal being s = (L(q1,6) + €(q1,0), ..., L(gn,0) + €(gn, 0)) and the noise terms
specifying the conditional distribution. Two datasets (experiments) are compared by whether one
enables better decision-making across all loss functions and priors. Formally, an experiment P is



more informative than experiment () if

inf Egor sop10)[L(0(5),0)] < inf Egor smor19[L(d(s),0)], forallloss L and pri
inf Egor aep([L(3(),0)] < i Egr oo [L(3(s).0)),  forallloss L and prior =
Blackwell’s seminal result shows that this criterion is equivalent to several elegant characterizations,
notably through the notion of garbling (de Oliveira2018)).

Blackwell’s informativeness criterion imposes a strict requirement: it compares datasets by whether
they enable better decisions across all possible tasks. In contrast, our work fixes the decision task
(loss function L and structure X’) and asks which datasets suffice to recover the task-optimal decision.
This restriction aligns better with practical applications but also makes the informativeness question
more delicate: as|Le Cam|(1996)) observed, such questions may become “complex or impossible
depending on the statistician’s goal”. Whereas Blackwell compares datasets by their universal utility,
our work develops a tractable, task-specific notion of informativeness grounded in the structure of the
decision task itself.

Influence Functions and Robust Statistics. Influence functions, originating in robust statistics
(Huber||1992] Hampel et al.|[1986), quantify the local impact of individual data points on estimators
and have recently received renewed interest (Broderick et al.|[2023). Similar approaches include
DataShapely (Ghorbani and Zou/2019, [Kwon and Zou|2022} Jiang et al.[2023| Jia et al.|2023)), and
Datamodels (Ilyas et al.2022| |Dass et al.[2025| [lyas and Engstrom|2025). These methods typically
analyze how small perturbations to a dataset affect the output of a fixed estimator. However, a key
limitation of this approach is that data value is generally “non-additive”: the informativeness of an
individual data point is not intrinsic, but rather related to the data set as a whole. Our focus is on
the joint informativeness of the full dataset—characterizing when a collection of observations, as a
whole, suffices to recover the task-optimal decision. Joint informativeness, combinatorial in nature, is
a more challenging problem (Rubinstein and Hopkins|2024, Freund and Hopkins|2023). Furthermore,
while influence functions assess sensitivity in estimation problems under fixed inference procedures,
our framework evaluates data informativeness with respect to a decision task, at a dataset-level
independently of any specific inference or optimization procedure.

Data informativeness is a fundamental problem that relates to multiple literature streams—such as
Stochastic Probing (Weitzman|[1979, [Singla|2018] |Gallego and Segev|2022)), Optimal Experimental
Design (Chaloner and Verdinelli| [1995] |Singh and Xie|2020) and Algorithms with Predictions
(Mitzenmacher and Vassilvitskii|[2020)—but a detailed comparison is beyond the scope of this paper.

Contributions. This paper addresses the problem of evaluating the informativeness of datasets
relative to a specific decision-making task. We study informativeness in the sense of being able
to recover the task’s optimal solution. This problem is challenging: it is combinatorial in nature,
requiring assessment of the value of different combinations of data points. Moreover, informativeness
in decision-making is difficult to quantify. One must identify how information in a dataset is relevant
to decisions in the feasible set X, relative to prior information encoded in the uncertainty set ©.

To be able to derive precise insights, we focus on tasks that can be formulated as linear programs—a
broad and expressive class of decision-making problems whose geometric structure enables precise
theoretical analysis. Our main contributions are as follows:

* Geometric Characterization of Dataset Sufficiency: We prove a necessary and sufficient
condition (Theorem[I)) under which a dataset is sufficient to recover the optimal decision for
a linear program under cost uncertainty. This condition is framed geometrically: a dataset is
sufficient if it spans the task-relevant directions that govern what can change the optimal
solution, given the structure of the feasible set X and the uncertainty set ©.

* Constructive Characterization via Reachable Optimal Solutions: We show that the span
of relevant directions for dataset sufficiency can equivalently be expressed as the span of
differences between optimal solutions under different cost vectors in the uncertainty set.
This characterization (Theorem 2)) provides an algorithmically accessible formulation for
evaluating and constructing sufficient datasets.

* Efficient Data Collection Algorithm: Building on these characterizations, we develop an
iterative algorithm that constructs a minimal sufficient dataset. When the uncertainty set is
polyhedral, the algorithm terminates in a number of steps equal to the size of the minimal
sufficient dataset, and each step involves solving a tractable mixed-integer program.



2 Further literature review

Parametric Programming and Sensitivity Analysis. This stream of work aims to understand
how the optimal decision and value change when the underlying problem parameters are perturbed.
Sensitivity analysis typically focuses on small, local perturbations, asking how far one can move
in a given direction while preserving optimality (Ward and Wendell| (1990), Xu and Burer| (2017)).
Multiparametric programming, by contrast, considers larger, structured changes in the parameters
and aims to characterize the full mapping from parameters to optimal solutions, often by partitioning
the parameter space into regions where the set of minimizers remains constant (Gal and Nedoma
(1972)),|Saaty and Gass|(1954))). The connection to our work lies in the shared goal of studying the
interplay between problem parameters and optimal solutions. However, while sensitivity analysis and
parametric programming aim to describe how solutions evolve as parameters vary, our focus is on
identifying which datasets—i.e., which function parameters—are sufficient to recover the optimal
solution.

Contextual Optimization. In contextual optimization, as in our setting, a decision-maker aims
to choose a decision x € X minimizing the loss L(z, §), where 6 is unknown (Sadana et al.|[2023,
Hu et al.|2022] Bertsimas and Kallus|2020). The decision maker also has access to side information
¢ € RP that is correlated with 6. Given empirical samples from the joint distribution of ¢ and 6,
the decision-maker needs to learn a policy 7 that maps side information ¢ to an optimal decision
x € X. Within this literature, much of the work—particularly in linear optimization—focuses on
constructing data-driven surrogates of the unknown loss function, with the goal of improving decision
quality rather than merely predicting losses. A prominent line of research in this direction is the
predict-and-optimize framework (Elmachtoub and Grigas|[2022)). This paradigm is similar to ours in
the sense that the aim is to directly focus on optimal decisions rather than predictions. However, the
fundamental difference between contextual optimization and our setting is that our main concern is to
understand how to select the most informative dataset, whereas in contextual optimization, the data
is already given and one must determine how to use it to produce an optimal decision policy. More
recent work in contextual optimization has also considered adaptive data-selection strategies (Liu
et al.|2023).

Set-based vs. Distribution-based Modeling of Uncertainty. In our problem, we chose to model
uncertainty through a set (¢ € ©) similar to the robust optimization literature. This is in contrast
to modeling uncertainty as 6 following some known distribution, as in Bayesian optimization, for
example. This modeling choice of uncertainty has been widely discussed in the robust optimization
literature (Ben-Tal et al.[2009, Bertsimas et al.[2011} [Delage and Ye[2010).

Set-based uncertainty has several practical advantages in our context compared to distribution-based
uncertainty. For instance, set-based approaches typically rely on milder and often more realistic
assumptions, as they do not require a fully specified probabilistic model of uncertainty. Instead,
uncertainty is captured through bounds or confidence sets that are valid for a general class of
distributions (such as with a given finite moments, or a given support). This is particularly appealing
in settings where the true distribution is unknown, partially observed, or difficult to estimate reliably.
Moreover, set-based formulations often lead to more tractable optimization problems and are less
sensitive to model misspecification (see Bertsimas et al.|(2018)), Ben-Tal and Nemirovski| (2002)).
For instance, in Bayesian Experimental Design, standard approaches require expensive computations
to evaluate expected information gains in high-dimensional spaces and are highly sensitive to model
misspecification, which can lead to suboptimal results (Rainforth et al.[2024)).

3 Problem Formulation

We study decision-making tasks modeled as linear programs (LPs). That is where the loss L(z, ) =
" x is linear, and the decision set X = {z € R% Az = b, > 0} is a polyhedron, for A €
R™*d b c R™. The decision-maker’s task is then to solve the LP

T
minc' 1
minc’ z, (D



where X is assumed to be bounded. The unknown parameter—or state of nature—here is the cost
vector ¢. The decision-maker only knows it to be in some given uncertainty set C C R?, which
captures prior information on ¢ (these are 6 and ©).

To solve the linear program, the decision-maker can complement their knowledge ¢ € C by data on
the task. A dataset D C R? consists of a set of queries to evaluate the objective function. That is a
dataset gives access to the observations ¢ ' ¢ for ¢ € D. We focus on the noiseless setting, where each
observation ¢ ¢ is exact. This simplification enables a sharp characterization of informativeness. We
then show how the core insights naturally extend to noisy observations in Proposition 3]

The fundamental question we seek to address is which datasets are sufficient to solve the linear
program. We formalize such a property next. Here P(X') denotes subsets of X'

Definition 1 (Sufficient Decision Dataset). A set D := {q1,...,qn} is a sufficient decision dataset
for uncertainty set C and decision set X’ if there exists a mapping X : RV — P(X) such that

VeeC, X (chl, cee chN) = argminec' z.
reX

When there is no ambiguity on C and X, we simply say that D is a sufficient decision dataset.

Definition [T] states that a dataset is sufficient if there exists a mapping that can recover the optimal
solution of the decision-making task using only the dataset’s observations and prior information
(ce ).

Naturally, D = {ei,...,eq}, where (e;);c[q) are canonical basis vectors is a sufficient decision
dataset. In fact, observing c'e; = ¢; for all i € [d] amounts to fully observing c, and solving the
linear program with complete information with X ((cT¢),ep) = X (c) := argmin, .y ¢’ 2. The
question is then whether there exist other, potentially smaller sufficient datasets. That is, what is
the least amount of information required to solve the task? As we will show, whether a dataset is
sufficient depends critically on the uncertainty set C and the feasible region X', since these jointly
determine which directions of ¢ affect the optimal decision.

If the goal is to solve the linear program (TJ), a natural relaxation of Definition[T]is to require only that
a dataset permits recovery of some optimal solution, rather than the entire set of optimal solutions.
We show in the next proposition that, under mild structural assumptions, this property is equivalent
to the property of Definition[I} This means that any dataset that recovers one solution also recovers
all solutions. The proof of this equivalence is nontrivial and relies on several structural results we
develop later in the paper.

Proposition 1 (One vs All Optimal Solutions). Lez C be an open convex set and D := {q1,...,qn}
a dataset. The following are equivalent:

1. There exists a mapping X : RN — P(X) such that Ve € C, X (chl, .. .,chN) =
arg mingcx ¢! .

2. There exists a mapping & : RN — X such that Ve € C, & (chl,...,chN) €
arg mingcy ¢! z.

Notice that observing ¢ ' ¢ for all ¢ € D is equivalent to observing the projection of ¢ onto the span
of D. This implies that Definition [I]is equivalent to the following characterization, which gives a
valuable perspective. For any subspace F' C R? and u € R?, we denote u the projection of u in F.

Proposition 2. D := {q1,...,qn} is a sufficient decision dataset for uncertainty set C and decision
set X if and only if

Ve,d €C, cspan D = c;pan p = argminc'z = argminc ' z.
zeX reX

In words, Proposition [2| formulates that a dataset D is sufficient if any two cost vectors that are
equivalent from the perspective of the information provided by D (and C) lead to the same optimal
solutions in the decision-making problem.

This characterization suggests a natural algorithm for solving the LP (I)) when given a sufficient
dataset D = {q1,...,qn}. Suppose we observe values o; = c¢' ¢;,i € [N] for an unknown cost



vector ¢ € C. We then compute ¢ € arg min{Zfil(C’Tqi —0;)? : ¢ € C} and use ¢ to solve

the decision problem min,¢y ¢ ' 2. This procedure recovers the projection of ¢ onto span D while
respecting the prior of C. This ensures span D = Cspan D as ¢ € C, and since the dataset is sufficient,
guarantees that the resulting decision is task-optimal (Proposition [2).

When the observations are noisy, a sufficient dataset can still yield a correct decision. In particular,
estimating an approximate cost vector ¢ via least-squares from noisy observations still leads to an
optimal decision, as long as the noise is sufficiently small.

Proposition 3 (Noisy Observations). Let C C R? be an open set, and D := {q, . . ., q,} a sufficient
decision dataset for C. Let c € C. Letey,...,e, € R, and foralli € [r], 0; = ¢'q; + ;. Let
T

¢ € argmin{>.;_,(c'Tq; — 0;)> : ¢ € C}. There exists k > 0 such that if ||| < k, then
argmingex ¢'  C argmingexy ¢! .

4 Characterizing Sufficient Datasets

Given an uncertainty set C and a decision set X', we would like to characterize sufficient decision
datasets and eventually construct such datasets. As in Blackwell’s theory, the difficulty of such
characterizations depends on the richness of the uncertainty set C. In fact, the first results by
Blackwelll (1949, [1951)) and [Sherman| (1951)) were for a set C with only two elements. That is, the
data needs to distinguish only two alternative states of nature. The result was later extended to the
finite sets by Blackwell| (1953)) and then to infinite sets with regularity conditions by Boll| (1955).

4.1 Characterization Under No Prior Knowledge

We begin with the case of no prior knowledge, i.e., C = R?, which isolates how the structure of the
decision set X" alone determines what information is necessary to recover the optimal solution. We
will then study the case of convex sets. To formulate our result, define Fy = span {e;, @ € [d], Jz €
X, x; # 0} where e; is the i—th element of the canonical basis. F} captures the coordinates that can
take non-zero values in feasible solutions of X. That is Fz- captures coordinates that are identically
zero in all feasible solutions: e; € F(f- = Ve e X, z;, =0.

Proposition 4. Suppose C = R%. D is a sufficient decision dataset if and only if FonKer A C spanD.
Furthermore, when the condition Fy N Ker A C span D is not satisfied, for any mapping & : RY —
X, and any K > 0, there exists ¢ € R? such that ¢" & (Cqu, ceey chN) > K 4+ mingex ¢’ .

Proposition 4] indicates that, already with no prior knowledge, not all the information on c is required
to solve the optimization problem. In fact, the dataset needs only to capture “relevant” information
for the decision-making task, defined by X'. The proposition shows that these are the directions in the
null space of A (Ker A), that act on active variables (Fp).

Let us provide an intuitive explanation for this result. Since every x € & satisfies x; = 0 for all
e; € Fy-, the components of ¢ along Fj- do not influence the objective and the dataset D need not
capture these directions. Hence, we can, without loss of generality, restrict attention to the subspace
Fy and replace the variable = with its projection . The objective function can be decomposed as
T o, AT + CErKcr )+ T Because &' lies in an affine space parallel to Ker A, any change from

a feasible decision x to another feasible decision x + § necessarily verifies § € Ker A. Therefore,
CE'—Kcr AL is constant across all feasible solutions. This means that only the projection of ¢ in Ker A

matters when comparing costs of feasible decisions.
The second part of Proposition 4] formalizes a dichotomy: either the dataset is sufficient and enables
optimal decision recovery, or any algorithm may incur arbitrarily large suboptimality in the worst

case. This sharp divide, however, is specific to the unstructured case C = R?. As we will see next,
imposing structure on C significantly enriches the notion of sufficiency.

4.2 Characterization under Convex Uncertainty Sets

The goal now is to characterize sufficient datasets for any convex uncertainty set C. We start by
introducing some geometric notions that are useful to understand the sufficiency of a dataset.



Definition 2 (Extreme Points). An element z € X is an extreme point if and only if there are no
A€ (0,1)and y, z € X such that z = Ay + (1 — \)z. The set of extreme points of X is denoted X',

From every extreme point, there is a set of feasible directions that allow changing the solution
while remaining in the polyhedron X'—the feasible region. Out of these feasible directions, extreme
directions allow moving to “neighboring” extreme points.

Proposition 5 (Feasible and Extreme Directions). For every x* € X, we denote
FD(z*) = {§ € R, Je > 0, * + ¢ € X}

the set of feasible directions from x* in X. FD(z*) is a polyhedral cone and FD(z*) C Fy NKer A.
We denote D(x*) the set of extreme directions of FD(x*): non-zero vectors in FD(x*) that cannot
be written as a convex combination of two non-proportional elements of FD(x*).

In linear programs, optimal solutions are attained in extreme points X'<. Every extreme point is
associated with a set of cost vectors c for which it is optimal. This set forms a cone, as illustrated in
Fig. [I] (middle).

Proposition 6 (Optimality Cones). For every z* € X*, we denote A(z*) = {c € R? : a* €
argmingey ¢! x}. We have A(z*) = {c € RY, ¥§ € D(z*), ¢ > 0}. For every § € D(z*), we
denote F(x*,68) := A(z*)N {8} the face of the cone A(z*) that is perpendicular to 6. Furthermore,
A(x*) is the dual cone of FD(x*).

Notice that since X" is bounded, for any ¢ € R4, there exists z* € X< such that ¢ € A(z*), and
consequently R? = J,.. . A(z*) as illustrated in Fig. [I| (middle). Neighboring cones share
boundaries corresponding to their faces (Fig. [I] right), where multiple solutions can be optimal.

Flzs,8")

Flay,5)

Figure 1: Optimality cones relative to X" (left), relative to the origin (middle) and examples of the
uncertainty sets (C and C’) relative to the optimality cones (right).

With the notion of optimality cones, solving a linear program for a given cost vector ¢ amounts to
finding to which optimality cone it belongs. A dataset is therefore sufficient if it enables to determine
the optimality cone of each possible ¢ € C. As C already restricts the location of its cost vectors, our
data only needs to discriminate between cones overlapping with C as illustrated in Fig. [I| (right).

To provide further intuition, consider the example shown in Fig. [T](right). The set C intersects only
the cones A(x2) (blue) and A(x3) (green), hence, the cost vectors can only be in these two cones.
Clearly, observing their projection on the span of § is sufficient to determine which of the two cones
they belong to. The set C’, however, intersecting A(z4), A(x5) and A(z1), requires projections on
the span of both &’ and 6”. These vectors are not arbitrary; these are extreme directions that move
from one cone to its adjacent cone, inducing a face where both cones intersect. The illustration
highlights that such vectors are necessary to capture by our data when the face they induce intersects
the uncertainty set C. Hence, it is natural to introduce the following set of relevant extreme directions.

Definition 3 (Relevant Extreme Directions). Given C C R%, we define
A(X,C)={0 R : Jz* € X4, § € D(z*) and F(z*,0) NC # @}.

In the illustration of Fig. we have span A(X,C) = span {0} and span A(X,C’) = span {d',0"},
and it is necessary to observe the projections on A(X,C) and A(X,C’) to recover optimal solutions
for uncertainty sets C and C’ respectively. This leads to our first main theorem.



Theorem 1. Let C be an open convex set. D is a sufficient decision dataset for uncertainty set C and
decision set X if and only if A(X,C) C span D.

Theorem[I]is a fundamental characterization of sufficiency, by what information the dataset needs
to capture relative to the prior knowledge C and the problem structure X. The result also indicates
that such a minimal dataset is, in general, not unique. A careful reader might remark that Theorem E]
should imply Propositionwhen C = R%. In fact, A(X, R?) is the set of all extreme directions of the
polyhedron, which indeed precisely spans Ker A N Fj. Finally, we remark that in the proof of the
result, only convexity is required for sufficiency, while only openness is required for necessity.

4.3 An Algorithmically Tractable Characterization

We now develop a second characterization of dataset sufficiency that is particularly well-suited to
algorithmic construction.

The set A(X,C) of relevant extreme directions of Theorem can be seen intuitively as the set of
differences x1 — x5 of neighboring extreme points x1, s € X<, that are optimal for some ¢ € C.
By relaxing the “neighboring” condition and optimality for a common ¢ € C, we arrive at a broader
set of directions induced by all pairs of optimal extreme points—which we call reachable solutions.

Definition 4 (Reachable Solutions). Given C C R?, we define

X*(C):={a*c X4 JeceC, z* cargminc z; = Uargminch.
reX cc reX
(&

and its set of directions as dir (X* (C)) :=span {1 — 2 : 1,22 € X*(C)}.

The set dir (X™* (C)) is equal to the span of the set of differences between any two elements 1, x5 €
X such that there exists c1,co € C such that ¥ € argmingex ¢] ¥ and 3 € argmingey cq .
By construction, we have span A(X,C) C dir (A* (C)) since each relevant extreme direction
corresponds to a direction between optimal solutions. The following theorem shows that these
quantities are indeed equal.

Theorem 2. For any convex set C C R%, we have span A(X,C) = dir (X* (C)).

The converse inclusion proven in this theorem is not immediate. In fact, for a general polyhedron X’
and C (see Fig.[I|with C’ for eg.), A(X,C) is much smaller than the set of differences of elements in
X* (C) but their spans are equal. To prove the equality, we prove that for any x, 2’ € X* (C) N X4,
there exists a sequence of extreme points x1, ..., 2, € X* (C) such that 21 = x and 2, = 2’ and for
any i € [h — 1], ;41 — x; € A(X,C). In other words, x;41, z; are neighbors and are both optimal
for some ¢; € C. This implies that every element in dir (X* (C)) can be written as a finite linear
combination of elements in A(X, C), completing the equality. Relating again to Proposition E] of the
case C = R, careful linear algebra shows that indeed dir (X*(R?)) = dir (X) = Ker AN Fy.

Theorem [I] implies that to construct a sufficient decision dataset it suffices to find a basis of
dir (X* (C)) rather than span A(X,C), which is a much simpler task. The following corollary
will indeed be the basis of our algorithm in the next section.

Corollary 1. Let C be an open convex set. D is a sufficient decision dataset for C if and only if
dir (X* (C)) C span D.

5 A Data Collection Algorithm: Finding Minimal Sufficient Datasets

We now turn to the practical problem of selecting a minimal—i.e., smallest or least costly—dataset
D that enables generalization from prior contextual knowledge (captured by ¢ € C) to a specific
decision-making task (defined by &X).

In many practical settings, data collection is subject to constraints on what can be queried. We model
this by restricting the dataset to lie in a predefined query set Q C R, so that D C Q. For example,
in the hiring problem discussed in Section|[I] Q is the set of canonical basis vectors—a data point
is interviewing one candidate. Corollary [T]implies then that the data collection problem becomes:
finding the smallest D C Q verifying dir (X™* (C)) C span D.



We will focus in what follows on the important case of Q being the set of canonical basis vectors.
That is, each query in the data consists in evaluating one coordinate of unknown cost vector c,
which represents the score of some candidate. In this case, given dir (X™* (C)), represented by a
basis vy, ..., vg, it is clear that the smallest sufficient data set, verifying the spanning condition of
Corollarym isD={e; : ield],3je[k], vje; #0}. This is all the non-zero coordinates of
basis vectors of dir (X™* (C)), which are required to span dir (X* (C)). This case can be generalized
in a straightforward manner to the case where Q is any basis of R?; see Appendix

The central step in this approach is therefore to compute dir (X™* (C)) and construct a basis for it,
which is the focus of the remainder of this section. We can write dir (X™* (C)) = span {xo — x, = €
X*(C)} for some xg € X* (C). Hence, to compute dir (X™* (C)), we can iteratively add elements of
it while ensuring we increase the dimension at every step. This is formalized in Algorithm [I]

Algorithm 1 Meta-Algorithm Computing dir (X™* (C))

Input: Decision set X, Uncertainty set C.

Output: A basis D C R? of dir (X* (C)).

Initialize D to @.

Set zg € arg mingecx cOTx for some ¢ € C.

while there exists ¢ € C, z* € argmin, ¢y ¢z such that z* — zq ¢ span D.
D« DU{z* — x0}.

return D

The main step in Algorithm [T| (condition of the while loop) can be seen as verifying whether the
optimization problem
. T
sup{ [|proj(span py+ (* —@0) || : ¢ €C, 2" € argmine z}, 2)
reEX

where proj(,an py+ (+) is the projection map onto (span D), has a solution with a non-zero
objective. This optimization problem has two main challenges: first, it entails the inherently difficult
task of maximizing a convex objective, and second, it has a bilinear, bi-level constraint z* €
argmin, ., ¢' x as both ¢ and z* are variables and 2* must be an optimal solution to a linear
program parameterized by c.

Linearizing the objective. Remark that if « is a randomly generated Gaussian vector, then any
vector v, with |[v|| > 0, satisfies Prob(a"v = 0) = 0. Hence, if Problem (2) admits a solution
Z verifying [|projgpan oy~ (Z — 20) | > 0, then &' projgyan py+ (Z — o) # 0 with probability 1,
and therefore either maximizing or minimizing o " proj (span D)+ (z* — xp) must lead to a non-zero
objective with probability 1. This is a linear objective as the projection onto a subspace is linear.

Linearizing the bilinear, bilevel constraint. To address the second challenge, we use complementary
slackness conditions, which characterize the optimal solutions of linear programs. We replace
r* € argmingcyc'x, ¢ € Cby

2¥>0,8>0, A\eR™ ce(,

Az* =b, AT +s=c, a}s; =0, Vi € [d]
The bilinear constraint }s; = 0 can be linearized by introducing a binary variable 7; € {0, 1} and

adding the constraint 1 — es; > 7; > ez} with € > 0 a small constant. When C is a polyhedron, the
resulting formulation is a mixed-integer linear program (MILP) with linear constraints and objectives.

Putting everything together gives Algorithm 2] for linear programs, which is detailed in Appendix [B]
The algorithm will terminate in exactly dim dir (X* (C)) iterations. When C is a polyhedron, each
iteration involves solving a mixed integer program with O(d-+m) variables and O(d+m+constr(C))
constraints where constr(C) is the number of constraints defining C.

Theorem 3 (Correctness). Algorithm [2|terminates with probability 1 after dim dir (X* (C)) < d
steps and outputs a basis of dir (X* (C)).

6 Application: Hiring Interviews

To illustrate our insights, we apply our theoretical framework to the hiring problem detailed in
Section The smallest sufficient dataset here is the smallest subset of candidates to interview
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Figure 2: Candidates to be interviewed (in red) to make an optimal hiring decision. Number of
candidates to interview from left to right for top and bottom row respectively: 8,24, 31,52 and
8, 28,43, 70.

to recover the optimal hiring decision. The application illustrates how the task constraints and
uncertainty set shape data needs. The goal is to hire 20 candidates from a pool of d = 100 candidates.
Each candidate is associated with two features: GPA and years of experience. We study two
settings: vanilla hiring, with only a total hire cap, and experience-constrained hiring, which also
limits hires per seniority group. The decision sets are Xy := {2 € {0,1}% : Z;izl x; < 20}
and Xexperience = {= € Xyanitla = VJ € [4],>;¢ ;T < 8}, where I; is the set of candidates with j

years of experience. These constraints are totally unimodular, so relaxing = € {0,1}¢ to z € [0, 1]¢
still yields optimal solutions via LP (Wolsey|2020, Chapter 3). We assume a noisy linear model, i.e.
candidate scores belong to

C:={ceR¥:3acR? Fec|[-nn, {<a<u c=a'¢p+c},

where 7 > 0 controls the noise level, and ¢ = (4,4),u = (5,5). ¢ is a feature matrix whose
rows are GPAs and years of experience of candidates. Fig.[2]indicates candidates to interview to
enable an optimal hiring decision. Impact of C: As noise increases (C grows larger), so does the
number of required interviews: more uncertainty requires more data points. Impact of X: In the
first row of Fig. [2] candidates fall into three groups: low scorers (never hired), high scorers (always
hired), and mid scorers (interviewed)—an intuitive pattern given the task, automatically recovered
by our algorithm. When adding group hiring constraints—second row of Fig.[2}— a similar pattern
arises, but now across experience groups rather than the entire population: low noise yields separate
treatment between experience groups, as scores don’t overlap across experience levels; high noise
leads to cross-experience group comparisons and mixing—again, an intuitive pattern given the new
constraints. Further discussion about the experiments is available in Appendix

7 Conclusion and Limitations

This paper introduces a framework for quantifying the informativeness of datasets in decision-making
tasks. While our analysis yields sharp results, several natural extensions remain. First, we restrict
attention to linear optimization; extending the framework to other problem classes, such as mixed-
integer or convex programs, is an important direction even at the cost of approximate characterizations.
Second, we assume query sets are basis vectors; accounting for general queries is a hard problem,
but opens rich avenues for exploration. Third, our focus on convex, open uncertainty sets excludes
important structured cases such as low-dimensional or discrete sets encoding symmetry or logical
constraints. Finally, alternative notions of informativeness, such as approximate rather than exact
optimality, or noisy observations rather than clean, merit further study.
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A  Proofs

A.1 Proof of Proposition 2]
Proof.

* (=) Assume that D is a sufficient decision dataset. Let ¢,¢’ € C such that Cspan D =
/

Clpan p- We have for any ¢ € D, ¢'q = ¢'Tq. Let X given by Definition Il We have
T

X (c"qr,...,cTqn) = X (Tqr,...,d Tqn) ie. argmingey ¢’z = argmingex ¢’ T .
* (<) Assume that D satisfies the property of the proposition. Since for any ¢,/ € C
we have Cspan D = Cpon p <= (¢ @)gep = (¢ ¢)q4ep, then for any ¢ € C, we define

X (chl, e gTqN) to be equal to arg minge v c./Tx for any ¢’ such that Cépan p = Cspan D-
This mapping is well-defined and verifies the desired property.

O
A.2  Proof of Proposition 3]
Proof. Let Q be a matrix whose rows are the elements of D and é(o01,...,0.) €
argmin{>;_,(c'Tq; — 0;)? : ¢ € C}. Letn := Q¢(o1,...,0;) — Qcyue. Since é(o1,...,0,) =
arg mingcc ||Qc — o||, then we have ||Qé(o1,...,0;) — Qce — €]] < |le]]. Hence, we have
|Qé(01, - .., 0r) — Qemell < 2|e|| and consequently ||n]] < 2 ||¢||. We would like to show that the
distance between the projections of ¢yye and ¢(o1, .. ., 0,) in the span of D is upper bounded by
O(J|e||). Consider cupe, & € R” such that é(01, ..., 0. )span D = Q' & and Ciye,span D = Q' Vtrye-

Without loss of generality, we can assume that D is linearly independent. Indeed, if D was linearly
dependent, it would provide exactly the same information as any smallest cardinality subset of D that
spans all elements of D. In this case @ is full rank and QQ " is invertible. We have

Qc(o1,...,0r) — Qewe =1 = Q(&(01, ... ,0r)span D — Cirue,span D) =1
= QQT(& - atrue) =n
= & — Oyye = (QQT)_ln
= ¢(01,...,0r)span D — Ctrue,span D = QT(QQT>7177-
Let U € R™*", V € R¥4 and ¥ € R"*? such that U,V are orthogonal matrices and for all
(i,7) € [r] x [d]
s {O’i the i—th singular value of Q ifi = j
* 0 else,
and Q = UXV 7. We have
QTQQ) T =UusvTUsVTVETUT) !
=uxvi(uzx'un)!
=vx'vTuEshH U’
=veT(EH) Ut =veuU’,

where ¥/ € RY%" gatisfies

- C% the i—th singular value of Q ifi =j
Yoo else.

Let Apin (D) the smallest singular value of Q. The calculations above gives, when ||.|| is the L? norm,
. _ _ 2
Hctrue,spanD_C(Ola-“yor)span D” = HQT(QQT) 177“ < HQT(QQT) 1“ : ||77|| < WHEH

We now provide an essential lemma.
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Lemma 1. Assume that C is open. Let D a sufficient decision dataset for C C R%. Let ¢ €
C. There exists i > 0 such that for any ¢ € C such that ||cspan D — Clpan ol < w we have

argmingey ¢z C argmingey ¢’ 2.

Proof. We assume without loss of generality that C is compact (it suffices to replace C by some closed
ball of small radius centered around c that is a subset of C). Assume that the result does not hold,
i.e. there exists a sequence ¢, € C such that ¢], (.., ;, converges to cspan p, and for all n € N, there
exists ' € X4 such that 2’ € argmingex ¢, x \ argmin,cy ¢’ z. Since the number of extreme
points in X are finite, there exists ' € X'“ and a strictly increasing map ¢ : N — N such that for
all n € N, we have 2/ € arg min, ¢y cg(n)a: \ arg min ey ¢’ 2. Since C is compact, we can assume
without loss of generality that the sequence C/w (n) is convergent to some ¢’ € C (it suffices to extract
another time a converging sequence from cia (n))- Consequently, since for all n € N, c;(n) e A(x")
(see Proposition [6| for definition of A(z’)), and A(z') is closed, then ¢ € A(z’). Furthermore, we

have ¢ ¢ A(z), and cspan p = c’span 1> which means that arg min,cy ¢' * = argmingey ¢’ z.

This implies that 2’ € arg mingecx ¢’ , i.e. ¢ € A(z) which is impossible. O
When ||e]| < M, we have

Hctrue,span D — 6(01, sy Or)span D” < M,

i.e. from the lemma above, arg mingcx é(01,...,0,) " C argmingex ¢,

A.3  Proof of Proposition 4|

Proof. We denote F' := span D. The condition FyNKer A C span D is equivalent to FyNKer A |
F, so in order to prove the equivalence with the 3rd proposition, we will prove the equivalence with
FonKer A L F+.

o Assume that F+ | Fy N Ker A. Let ¢, ¢’ € R? such that cg = .. We will show that they
have the same arg min, which proves sufficient as a result of Proposition 2] We show that
the mapping € X — (c — ¢’) Tz is constant. In fact, for z, 2’ € X, we have

Viz—(c—d)'a' =(c-c)" (x—2") =0,

——
eF+ €FpnKer A

(c—(

by the assumption F+ 1 F, N Ker A. Hence, the mappings © +— c¢'x and ©

¢’ Tz are identical in X, within a constant. Consequently, we have arg mingcy c'a =

arg mingex ¢’ ' .

 Assume that F+ f Fy N Ker A. Let ¢ € RY. We would like to show that there
exists ¢ € C such that cp = ¢} and argmingeyc'® # argmingey ¢ x. Let
2*(c) € argmingexc'z. There exists a set of feasible directions for 2*(c), V =
{61,...,6,} C FD(z*(c)), that spans Fy N Ker A (see Lemma [7). Since V spans
FynKer A, and F1 J Fy N Ker A, then there exists § € V such that projp. (J) # 0.
Let M be a positive constant and define ¢ = ¢ — Mprojp. (). We have ¢ = cp. For all
a > 0 such that *(¢) + ad € X, we have

dT(z*(c) + ad) = ¢ 2*(c) + acT§ — aMprojp. (6)" 6
= Ta*(c) + ac' 6 — aM ||proj . (6)|%.

When M is set to be large enough, we can see that we have ¢/ (z*(c) + ad) < ¢/T2*(c),
which means that 2*(c) € arg mingey ¢’ z.

Let us now prove the final part of the proposition. Let K > 0 and & : RN — X’. We first prove that
the set of feasible directions from Z (¢ q1,...,c"qx) spans Fy N Ker A. We know from Lemma

that the set of feasible directions from any extreme point spans Fy N Ker A. Letz',..., 2% ¢ € N
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and A1,...,\ € (0,1] such that & (¢"qy,...,c qn) = Zle \iz;. For any feasible direction &
from x!, for o > 0, we have

¢
z (CT(]1, .. ,chN) +ad =M (zh + )\iad) + Z izt
! i=2
For o small enough, we can see that 2 —1—%1046 € & and consequently & (chl, RPN chN) +ad € X.
Hence, any feasible direction from z! is feasible from & (c'q1,...,c' qy). This means that the
feasible directions from & (¢ " g1, ...,c" qn) span Fy N Ker A. Hence, there exist § # 0 a feasible
direction from & (¢"q1,...,c"qn) such that §p1 # 0. cp. can take any value in F* without

changing the values of ¢'qy,...,c"qy. Consequently, we set cp. = —M&pL where M is a
nonnegative number that we will set later. Hence, letting « > 0 such that & (CT qi,...,¢c'q N) +ad €
X, we have

el (& (chl, ce chN) +ad)=c'i (chl, ce chN) + ackd + ac;ﬂs

=c'2(c"qr,....clan) +acpd — Ma||dpe I§

This implies ¢ 2 (¢"q1,...,¢Tqn) + acpd — Ma ||6p. I > mingex ¢z, ie.
c'i (chl, e ,chN) > —acpd+ Ma||0p.|* + mi;(l el
S

K+ac;6

Taking M > 7, we indeed get

al|gp. |
c'i (chl, ceey chN) > K+ g(él}(l ¢l

A4  Proof of Proposition 5]

Proof. Letz* € X“. We denote J = {i € [d], 2} =0} and Iy = {i € [d], Ix € X, x; # 0}. For
every § € R?, we have

0 €FD(z*) <=3 >0, 2" +ed >0and A =0 <= Ad =0and J§; > O forevery j € J.

This means that FD(z*) is a polyhedral cone, and FD(z*) C Ker A. Furthermore, since [d]\ I C J,
we also have FD(z*) C Fj which yields FD(z*) C Fy N Ker A. O

A.5 Proof of Proposition 6]

Proof. Let x* € X4. For every c € R%, we have

x* € arg mi}rflc—r:t = V6 € FD(z*), ¢'§ >0 <= Vs € D(z*), ¢'§ > 0.
e

A.6  Proof of Theorem [l

Proof. We denote F' = span D. Notice that we have A(X,C) C F <= A(X,C) L F+. We will
now prove that D is a sufficient decision dataset for C if and only if A(X,C) L F+.

* (<) Suppose A(X,C) £ NF~. There exists § € A(X,C) such that § J F-*. By definition,
there exists * € X'“ such that § € D(z) and F(z,5) NC # @. Letv € F(x,6) NC. Let
8o € F* such that §] § < 0 (& exists because § J F1). As C is open, we can assume
without loss of generality that v+Jy € C by rescaling §p. We know thatv € F'(x,0) C A(x),
and (v + dg) T8 = J; § < 0 which implies that v + 6y & A(z). Finally, since we have
S0 € F+, we have (v + 8)r = vr + 0o = vp. However, v € A(z) and v + & € A(z)
which implies # € argmingcxv'2’ and 2 ¢ argming ex (v + &) " 2’, meaning that
argming ¢y (v+dp) "2’ # argming ey v’ 2’. This implies that D is not a sufficient from
Proposition 2}
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* (=) Suppose D is not sufficient. From Proposition [2} there exists ¢,¢’ € C such that
cr = cjp and argmingey ¢' @ # argmingex ¢’ T2, It follows from the definition of
the optimality cones A (Proposition@) that there exists z € X'“ such that ¢ € A(x) and
¢ ¢ A(z) (see also Lemmal6). For any o € [0, 1], we denote ¢, := (1 — a)c + ac

o i =sup{a €[0,1] : ¢ € Alx)}
=sup{a€0,1] : ;6 >0,V5¢€ D(z)}.

Since C is convex, we have c,« € C. Since A(z) is a closed set, we have ¢,» € A(x) and

hence we have ¢+ # ¢’ i.e. a* < 1. Lete € (0,1 — o*) small enough such that for any

§ € D(x) such that co» "6 > 0, we have ¢, .6 > 0. As corye & A(), there exists § €

D(x) for which c,+ 1 ' 6 < 0. Such § must verify c,+ | § = 0 given the condition defining

e. Hence, co € A(z)N {0} = F(z,9), and ¢4+ € C, which implies F(z,5)NC # @ and

therefore § € A(X,C). Moreover, we have (Co«tc — Co+)' 8 =l 6 #0,ie. 6 L FL,
—_——

=e(c/—c)eF+
and consequently we have A(X,C) [ F*.

A.7 Proof of Theorem

Before proving the theorem, we will have to introduce a few lemmas and definition.

Lemma 2. For any ¢ € RY, there exists ¢ > 0 such that for any ¢ satisfying ||c — || < e,
arg mingcx ¢  Nargmingcy ¢’ 'z # @.

Proof. Assume that there exists ¢ € R? such that for all € > 0, there exists ¢’ satisfying ||c — ¢/|| < &
and arg mingecy ¢' x Nargmingex ¢’ ' © = @. There exists a sequence (c),),en that converges to
c such that for all n € N, there exists ¥ € X4 \ arg min,ey ¢'  such that z € arg ming¢c y ¢, z.
Since there is a finite number of extreme points, there exists a subsequence (c;(n))neN and z €

X4\ argmingex ¢ 'y such that for all n € N, we have = € arg minye x cg(n)y, ie. ¢, € Az).
Hence, since A(z) is closed, we have ¢ € A(z) and = &€ arg minye x ¢y which is not possible. [

Definition 5 (Extreme Point Neighbors). Let C C R?. For any two extreme points z1,xs € X £
we say that z1 and x5 are neighbors in X if there exists an extreme direction 6 € D(x1) such that
To = x1 + 0. We say that they are C—strong neighbors in X if furthermore there exists ¢ € C such
that z, 2’ € argmingex ¢’ y.

Definition 6 (Connected and C—strongly Connected Points). For any subset ) C X“ and C C R?,
for any pair of elements x, 2’ € ), we say that x, 2’ are connected by neighboring extreme points
in Y if there exist & € N and a sequence x4, ..., 2, € ) such that for all i € [h — 1], x; and @41
are neighbors in X’ and x1 = z and x;, = x’. We say that they are C—strongly connected, when x;
and x; 1 are C—strong neighbors. When there is no ambiguity, we say that 2 and ' are (strongly)
connected.

We say that the set ) is (C—strongly) connected by neighboring extreme points if this property holds
for any pair of extreme points in ). When there is no ambiguity, we say that ) is (strongly) connected.
For any element = of ), we call the (C—strong) connection class of = the set of points in ) that are
(C—strongly) connected by neighboring extreme points to .

Lemma 3. Forany c € C, X4 Nargmingcx c' x is C—strongly connected by neighboring extreme
points in X.

Proof. Let ¢ € C. Every extreme point in arg min,cy ¢' « is also an extreme point in X' (see
Lemma @), and every extreme direction in arg minge y ¢ "z is also an extreme direction in X. Hence,
since arg mingc x ¢' « is a bounded polyhedron, X' Narg min,cx ¢' x is connected by neighboring
extreme points in X'. Furthermore, by definition, since X< N arg mingcy ¢’ C argmingex ¢ ',
then X4 N arg mingcy ¢'  is C—strongly connected.
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Lemma 4. When C is convex, X* (C) N X is C—strongly connected by neighboring extreme points.

Proof. Assume that there exist z, 2’ € X'* (C)NX'“ that are not strongly connected. Let ¢, ¢’ € C such
thatz € argmingex ¢’ y, 2’ € argmingey /T y. Forany a € [0, 1], we denote ¢, := (1—a)c+ac’.
Let

U:={z* € x4 Jaclol], z* € argnéi)r(lcly} C X*(C)N X~
y

Let K be the intersection of U and the connection class of x. We have 2’ ¢ K. Let

ot = maX{Oz € [0,1], Kﬁargmincly #+ @}.
yeXx

If a* = 1, then there exists v € argmingey ¢/ "y such that v € K. From Lemma [3| X4 N
arg minge v ¢ Ty is C—strongly connected and v € K N X4 N arg mingex ¢ Ty and consequently
2’ € K, and therefore is connected to x which contradicts our assumption. Hence, we necessarily
have o < 1. Furthermore, from Lemmal2] there exists £ € (0,1 — o*) such that

T . T
arg min c, . Nargminc,,. . 3
81NN Covy ey N ATG N Covy 7 ©)
As K Nargmingex cl.y # @ and arg minge y cl.y is C—strongly connected from Lemma we
have arg min, ¢ x c).y C K. Combined with (3), it implies that K Narg minge x Cle 1.y # 2. This
contradicts the supremum definition of a*.

We have now enough tools to prove the theorem.

Proof of Theorem[2] We have
span A(X,C) 5 span {z, — 2o, x1,T3 € X NX*(C), x; and x are C—strong neighbors}
1

“
g)span {z1 — 22, 1,2 EX‘NX* €)} 5)
= dir (X“nax*(C)) (6)
= dir (X* (C)). @

(4)
Let’s justify each of the equalities above.

* (1) Let § € A(X,C). There exists ¢ € C and € X' such that ¢ € F(z,d). This means
that x € argmin,ecx ¢y, 0 is an extreme direction for = in X, and ¢ 6 = 0. Consequently,
there exists > 0 such that 2’ := x 4 74 is an extreme point, that is a neighbor of x by
definition. Also, we have 2’ € argminyex ' y. Hence, § = (2’ — ), which proves

A(X,C) C span {z; — xa, x1,22 € X* NX*(C), =1 and x5 are C—strong neighbors}.

Conversely, if z1, 2o € X4 N X* (C) are C—strong neighbors, then there exists an extreme
direction ¢ for z; such that zo = ;1 + ¢ and ¢ € C such that x1,z2 € arg miny,cx cly.
Hence, we have ¢ 6 = 0, and consequently ¢ € F(z1, ), which means that § € A(X,C),
ie. 1 — xo € A(X,C). This proves the desired equality.

* (2) SetEq. (4) is clearly a subset of set Eq. . Let’s prove the converse inclusion. Let z, 2’ €
X4 N AX*(C). According to Lemma (4] there exists h € N and a sequence 1, ...,T) €
X4NX*(C)such that 71 = z and xj, = 2’ and for all i € [h — 1], x;, 2,41 are C—strongly
connected. Hence, we have

h—1
x—x = E Tiy1 — Tj.
i=1
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All of the terms in the sum above are in set (@) and therefore their sum as well, by linearity.
Hence, we indeed have the inclusion.

* (3) This equality is immediate since for any z1, 2o € X N X* (C), 21 — 22 = T1 — T —
(z2 — x) for any 29 € X4 N X* (C) and consequently 1 — 2 € dir (X< N X*(C)).

* (4) In order to prove this equality, we prove that X* (C) C conv(X4 N X*(C)). Let

z € X*(C) and ¢ € C such that z € argmingey c'y. There exists aq, ..., a; € (0,1]
suchthat oy +---4+ap = land zq, ..., 7, € X< such that z = Ele o Tr. We have
k k

mine'y > E age! Ty ie. E ak(chk — min cTy) <0.
yeX — — yeX
= i=

All of the terms in the sum are positive, and are consequently equal to 0. Hence we have
T1,...,7) € argmingex ¢y C X* (C). Consequently, we have x € conv(X“Nx™* (C)).
Hence, we have

dir (X* (€)) C dir (conv(X“ N X*(C)))
=dir (X“ N x*(C))
C dir (X* (C)) .
This proves the desired equality.

A.8 Proof of Proposition 1]

Before proving the proposition, we need to introduce the following lemma.

Lemma 5. For any x* € X4, there exists ¢ € R? such that argmingcx c'x = {x*}, i.e. for all
§ € D(x*),c'§ > 0.

Proof. Let z* € X“. Assume that such a ¢ € R? does not exists. We first show that there exists
d* € D(x*) such that A(z*) L §*. Suppose no such §* exists, then for any § € D(z*), there would

exist v(8) € A(x*) such that v(5) "6 > 0. Consequently, we have for any § € D(z*),
T

> ow@) | §>o,
8’eD(x*)
which contradicts our initial assumption.
Let N € Nand dy,...,dy such that D(z*) = {d1,...,dn}. Assume without loss of generality that
A(x*) L §y. Consequently, we have for all ¢ € R?
(Vie[N—1],c¢'6>0) = c'oy <0.

We show that this implies that —§ belongs to the cone spanned by 61, ...,d5_1, i.e. there exists
[1,...,uN—1 € RT such that ZZI\SI 1;0; = —dn. Assume that this is not true. Let K be the cone

spanned by &1, ...,6x_1. Since —6x ¢ K, then (by the separation lemma), there exists v € R? such
that forall h € K, wehave u"h > 0and —u 'y < 0. In particular, we have for all i € [N — 1],
u'd; > 0andu'dx > 0, a contradiction. Hence, there exists a1, ..., an—_1 € RT such that

N-1
—5N = Z Ofidzﬂ
=1

Consequently, both § ;v and —d are feasible directions from 2* in X', which contradicts the fact that
x* is an extreme point. O

We now prove Proposition I}
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Proof. It is easy to see that[I]implies 2] We now prove that[2]implies[I] Assume that[2]is verified
but not that is D is not a sufficient decision dataset. From Theorem |1} there exists § € A(X,C)
such that § / (span D)+. By definition, there exists z* € X and ¢ € C such that ¢ € F(x*, ).
From Lemma |5} there exists v € R? such that for all § € D(2*), v'd > 0. Let ¢ > 0 such that
B(c,e) C C. Let p > 0 small enough such that ¢ + nv € B(c, ¢), and ' small enough such that
Coy 7= €+ N0 =1 0(span D)= € B(c,€). Forany §' € D(x*), we have
Tsr _ T/ T
(c+nu)'d'=¢c 0 +nv ¢ >0.
20 >0
)T

This means that arg min,cx (¢ + nv) ' « = {«*}. Furthermore, we have

C;m'a - &Tﬁ +iu o= H‘S(span D)+ ||2 :
—_———

=0, as c€ F(z*,6) £0, as 5 £ (span D)

Consequently, when 7 is small enough compared to 7', we have c;)n,é < 0,ie. ¢y & Alx).
This means that z* ¢ arg ming ¢y c; ,&- Assume that a mapping & satisfying condition {2 of the
proposition. We have ¢ + 1nv — ¢, = 1/ 0(span (p))+ € (Span (D))*. This means that for all
i € [N], we have (c+nv)T¢q; = c;)n,qi, and hence

E(lc+m) g, (c+nv)Tqy) = a“c(c;’n,ql, ey c;]rm,qN),
which implies that

AT T T : T
2(cy . qrs- s Chpan) € (arg ;rg;(lcnm,x) N (arg m}gn(cqL n) x) =,

which is impossible.

B Detailed Algorithm and Correction Proof

B.1 Algorithm to find a basis of dir (X* (C))

Algorithm 2 Computing dir (X* (C))

Input: Polyhedron X = {z > 0 : Az = b}, Uncertainty set C.
Output: A basis of dir (X (C)).

Initialize D to &.

Set g € arg mingex ¢y x for some ¢ € C.

Sample a ~ N(0, Id).

while either of the problems

min / max oz—'—proj(sp,om pyr (To — )
st.z >0, Ae R™, seRd+7 celC
Az =b, AT +s=c,
1—es; >1 > ex;, 1, €{0,1}, Vi
has a solution z* with non-zero optimal value,
D+ DU {z* — x0}.

resample o ~ N(0, Id).
return D

B.2 Full algorithm: Data Selection and Induced Decision

Here, e, .. ., eq is the canonical basis of R%.

20



Algorithm 3 Data Selection Under Query Constraints

Input: Polyhedron X', Uncertainty Set C, Query Set Q = {qi, ..., qq} (basis of R%)
Output: A minimal sufficient dataset under constraint D C Q.

Find {vy,..., v} a basis of dir (X* (C)) using Algorithm 2]

C?F [Q1>---an]

return D := {g; : i € [d] s.t. 3j € [k], (Q " v;)Te; # 0}

Algorithm 4 Decision-making with a Sufficient Decision Dataset

Input: Decision set X, Uncertainty Set C, Sufficient Decision Dataset D = {qy, ..., qn }, Oracle
such that for any ¢ € Q, m(q) = ¢ ¢ where c is the ground truth.

Output: A decision # € arg mingcy c¢' z.

01,...,0n < m(q1),...,7(qn)

Compute ¢ € arg min{Zf\;l(c’Tqi —0;))% :  eC}.

return & € argmin, ¢ ' .

B.3 Proof of Theorem 3} Correctness

Proof.

* We first show that when the algorithm terminates, i.e., the condition of the while loop is no
longer satisfied, then with probability 1, dir (X™* (C)) C span D. Notice that the constraints
in the minimization and maximization problems in Algorithm [2] encode complimentary
slackness and, therefore are equivalent to

min/nnax{of'—proj(spam pyr (¥ —x0) : c€C, z* € argmin c'x}.
reX

By definition of X* (C), this equivalent to

min/max{anroj(span pyr (¥ —x0) 1 ¥ € X (C)}.

If the two problems have an optimal value equal to 0, then proj 4, o, py+ (dir (X (C))) L «
i.e. & € Proj(apan - (dir (X* (C)))™. Unless projapan - (dir (X* (C)))" = R, this
set is of empty interior and its Lebesgue measure is equal to 0, and consequently the
probability of having proj(spa, py- (dir (X* (C))) L « is zero since a has a continuous
distribution. Hence, with probability 1, we have proj(spa, py- (dir (X* (C))) = {0} i.e.
dir (X* (C)) C span D.

* We now show that at every step of the algorithm, the dimension of the span of D in-
creases by 1, and that it remains a linearly independent set, as well as satisfies span D C
dir (X* (C)). Indeed, initially, D is empty and is hence a linearly independent set and
satisfies span D C dir (A™* (C)). Assuming that D is a linearly independent set and that
span D C dir (X* (C)), if there exists z € X* (C) such that anroj(Span pyt (w0 — ) #
0, then pProjgpan py (To — ) # 0 with probability 1 and consequently o — = €
dir (X* (C))\span D. Hence, we have dim (span (DU{zg—=z})) = dim (span D)+1 and
DU{xo—x} is alinearly independent set and satisfies span (DU{zo—x}) C dir (X™* (C)),
which proves the desired result.

* Finally, combining the two results above, when the algorithm terminates, D is a linearly
independent set, and span D = dir (X* (C)) i.e. D is a basis of dir (X* (C)) with proba-
bility 1. Furthermore, the analysis above show that the algorithm indeed terminates after
dim dir (X* (C)) iterations of the while loop.
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C Useful Lemmas

Lemma 6. Assume that X is bounded. For every ¢ € R?%, argmingcx ¢ x is a polyhedron, and all
of its extreme points are extreme points in X. Recall the optimality cones A(x*) of all x* € X4
defined in Proposition@ For every c,c € RY, the following equivalence holds.

T

arggéi}(lc T = arg géi)r(lc’Tx = Vre X4, (ceAx) < €A)).

Proof. We first show that for any ¢ € R?, any extreme point in arg mingecx ¢’z is in X4, Let
xr € X be an extreme point of arg mingex ¢' 2. Assume that x is not an extreme point in X
Hence, there exists u € R? such that z = u € X. Ifc'u # 0 we have ¢' (v —u) < ¢'z or
c' (x4 u) < c¢"z. This means that 2 ¢ arg min,ecy ¢’ which is impossible. If ¢« = 0, then
ctu € argmingey ¢ x, which is also impossible since x is an extreme point in arg min;ec x cla.
Hence, since arg min ey ¢ x is convex, it’s the convex hull of its extreme points.

Consequently, for any ¢, ¢’ € R?, argmingcy ¢’ = argmingey ¢’ « if and only if these two sets
have the same set of extreme points. Furthermore, for any = € X4, we have ¢ € A(x) if on and only
if v € argmingcy ¢ z. Hence, the desired result immediately follows:

arg min o= arg minc z < (Vo e X4, z € argmincTﬂc < x € arg minc¢' "z
reX TEX reEX TEX

= (Vo € X%, c€ A(z) &= ¢ € A(2))

O

Lemma 7. Let r = dim Fy NKer A. Forany x € X, there exists a set V = {d1,...,6,} C FD(z),
such that V' is a basis of Foy N Ker A. In particular, the set of extreme directions of FD(x) spans
FO N Ker A.

Proof. Letx € X. Let X“ be the set of extreme points of X', and D“ be the set of extreme rays of
X. For every 24 € X and 6 € D, we have z“ > 0 and 6 > 0. Let {2 },2c v« C RY and
{as<}s2eps C RY be aset of strictly positive numbers such that 3 ., a2 = 1. We define

T = Z am4$é+ Z a(;z(;éEX.

zfeXx < §4€eD4

We have for any i € Iy, Z; > 0. Indeed, for any i € I, if Z; = 0, then for every 2 € X“ and
§4 € D4,z = §¢ = 0 and hence for any 2’ € X, 2}, = 0i.e. i ¢ I, which is impossible. Let

€:= —minT; > 0,
i€l

for any 6 € Fy N Ker A such that ||§|| < e, we have A(Z + 0) = AT = b, and for every i € [d], if
i € Iy, thenT; + §; > 0and if i & Iy, T; = §; = 0 and consequently x + & > 0, i.e. J is a feasible
direction for . Hence, every element of B(0,¢) N Fy N Ker A is a feasible direction for 7, and
consequently any element of Fy N Ker A. Letx € X, and vy, ..., v, abasis of Fy N Ker A such
that for every i € [r], ||v;]| = 1. Letn € R% small enough such that Vi € [r], T + nd; € X. We
would like to show that for a well-chosen value of 7, the following set of feasible directions for x,
{ZT+nv—=x,...,T+nv, —x,}is abasis of Fy NKer A. Since T — x € Fy NKer A, we consider
B1,...,Br € Rsuch that

T
T —T= Zﬂlvl
1=1
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Let aq,...,a, € R. We have

iai(f—i—nvi —2)=0= (i%) (T —x) —i—niaivi =0
i=1 i=1 i=1

A

— > (AB; +na)v; = 0

i=1

= Vielr], ABi +na; =0

= Vie[rl,a; =0o0r <A7é0andwe [r], % :_%‘>.

()

By summing over ¢ in the last equality above, we get

(¥) = Vi € [r],a; = 0or (A #Oand 1= 71725)
i=1

~——
B

The equality above is equivalent to = — B. Hence, it suffices to take 7 # — B and 7 small enough
to ensure that {T + nv; — x,...,T + nu,. — z, } is linearly independent and is a set of feasible
directions for x, and consequently since all of these vectors are elements of Fy N Ker A, and there are
r = dim Fy NKer A of them, {ZT +nv; — z, ..., T+ nv, — x, } is indeed a set of feasible directions
for x that is a basis of F N Ker A. O

D Further Notes on Experiments of Section [6]

Data Generation. The GPAs of candidates are generated using a uniform distribution in the interval
[2, 4], and the level of experience is also uniform in {1,2,3,4,5}. The results of Fig. 2| are from
applying Algorithm 3] directly with the different sets C and X'. The MIP of Algorithm [2]is solved
using Gurobi.

Counter-Intuitive of Additional Constraints in X'. One would naively expect that since Xexperience
is smaller than X1, more data would be needed to make optimal decision in the vanilla setting,
but that is not necessarily true. In Fig.[2] we see that in the high noise regime, more data is needed for
the experience-constrained setting than the vanilla setting. In reality, the data needed depends on the
geometry of the decision set X’ relative to the uncertainty set C, as can be seen from Theorem|I]and
Corollary [T]

Note. The hiring scenarios considered in this paper are stylized decision models intended to illustrate
how data informativeness depends on task structure and prior uncertainty. While some formulations
include group-based constraints (e.g., per-category quotas), these are not meant to prescribe or
endorse any specific hiring policy.

23



NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The introduction makes 3 claims each corresponding to precise results: Theo-
rem |I] (and corresponding section), then Corollary [T] (and corresponding section), and then
the algorithm of Section 5

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: These are discussed in the Conclusion and Limitations Section.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Justification: All theoretical results have a complete proof in the appendix, and are correctly
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» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

¢ Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The experiment is a straightforward application of our algorithm (Algorithm 3).
All parameters of the LP are provided in the main text, Section [6] and the data generation is
described in Appendix
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* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: There is no data used in the experiments. Experiments are a basic application
of the algorithm for illustration purposes.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: There is not much relevant hyperparameters to the paper. Whatever is used is
clearly stated.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: There is no meaningful randomness in the experiments. Once the data is fixed,
the output is deterministic. The generated data is for illustration only, and its randomness is
irrelevant to the paper’s claims.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:
Justification: It is irrelevant to the paper’s results.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: There is no harmful or societal impact to the paper.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

* The answer NA means that no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: There is no such risk.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: The paper does not use such assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: This research does not involve LLMs as any important, original, or non-
standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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