
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

GELORA: GEOMETRIC ADAPTIVE RANKS FOR EFFI-
CIENT LORA FINE-TUNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Fine-tuning large language models (LLMs) is computationally intensive because
it requires updating all parameters. Low-Rank Adaptation (LoRA) improves effi-
ciency by modifying only a subset of weights but introduces a trade-off between
expressivity and computational cost: lower ranks reduce resources but limit ex-
pressiveness, while higher ranks enhance expressivity at increased cost. Despite
recent advances in adaptive LoRA techniques, existing methods fail to provide a
theoretical basis for optimizing the trade-off between model performance and effi-
ciency. We propose Geometric Low-Rank Adaptation (GeLoRA), a novel frame-
work that computes the intrinsic dimensionality of hidden state representations
to adaptively select LoRA ranks. We demonstrate that the intrinsic dimension
provides a lower bound for the optimal rank of LoRA matrices, allowing for a
principled selection that balances efficiency and expressivity. GeLoRA dynami-
cally adjusts the rank for each layer based on the intrinsic dimensionality of its in-
put and output representations, recognizing that not all model parameters equally
impact fine-tuning. Empirical validation on multiple tasks shows that GeLoRA
consistently outperforms recent baselines within the same parameter budget.

1 INTRODUCTION

LLMs are currently at the forefront of natural language processing tasks, yet achieving effective
personalization requires additional fine-tuning. Pretraining an LLM on a diverse corpus enables it to
learn general linguistic patterns and representations, which can be further refined through fine-tuning
on task-specific datasets. However, fine-tuning the entire model is computationally expensive, both
in terms of time and memory. To address this, a more efficient approach involves adjusting only
a subset of the model’s parameters, known as Parameter-Efficient Fine-Tuning (PEFT) (Han et al.,
2024). PEFT methods include techniques such as adapter layers (Houlsby et al., 2019), which in-
troduce new trainable layers into the model’s backbone, and approaches like BitFit (Zaken et al.,
2022), which modify a subset of the model’s original weights (e.g. bias weights). Low-rank adapta-
tion methods, such as LoRA (Hu et al., 2021), decompose update matrices into low-rank components
and are particularly prominent in reducing computational costs, while maintaining comparable per-
formance to full fine-tuning.

LoRA and its variants operate under the assumption that pre-trained language models possess a
low “intrinsic dimension” (Aghajanyan et al., 2020; Li et al., 2018), suggesting that weight updates
should similarly exhibit low rank. However, a key challenge with these techniques lies in determin-
ing the optimal rank values, which involves balancing expressivity and computational efficiency.
Expressivity refers to the model’s ability to capture complex patterns in the data, while computa-
tional efficiency pertains to the speed and resource requirements for fine-tuning. The trade-off is
evident: lower ranks reduce expressivity but enhance memory efficiency and computational speed,
whereas higher ranks increase expressivity at the cost of greater memory usage, longer computation
times, and most likely more data to learn weights reliably. Typically, ranks are set uniformly across
all layers, with practitioners relying on trial-and-error to achieve a balance between expressivity and
efficiency. This process is time-consuming and may not always yield optimal results.

On the other hand, using random projection to reduce the dimensionality of the parameter space
until achieving 90% of the full fine-tuning performance may not be ideal, as it inherently limits
the model’s potential to achieve higher performance. Recent studies on the geometry of hidden

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

representations (Valeriani et al., 2023) reveal that these representations also exhibit low intrinsic
dimensionality, reflecting the compression occurring at each layer of the model. This raises a natural
question:

Is there a connection between the manifold of data representations and the
manifold of model parameters?

We theoretically investigate the relationship between the intrinsic dimensionality of data represen-
tations and the ranks of weight updates in language models, deriving a lower bound for the optimal
rank based on the intrinsic dimensionalities of the input and output of each transformer block. Build-
ing on this foundation, we propose a novel approach, Geometric Low-Rank Adaptation (GeLoRA),
to address the trade-off between expressivity and computational efficiency by exploiting the geomet-
ric properties of the model’s hidden representations. GeLoRA leverages intrinsic dimensionalities to
provide a more principled mechanism for adjusting ranks, thereby achieving an optimal balance be-
tween model expressivity and computational constraints. Our method dynamically adjusts the ranks
for low-rank adaptation by considering both the compression occurring at each transformer block
and the specific characteristics of the model and dataset, offering a more precise and theoretically
motivated balance between performance and resource efficiency.

Determining the ground truth intrinsic dimension of each hidden state is impractical; however, vari-
ous techniques can provide reliable estimates. Among these, we will adopt the Two Nearest Neigh-
bors (TwoNN) method (Facco et al., 2017), which has proven to be an effective estimator. It is robust
to variations in curvature and density within the data and has been widely used to analyze representa-
tions in deep neural networks in previous studies (Ansuini et al., 2019; Doimo et al., 2020; Valeriani
et al., 2023; Cheng et al., 2023; Kvinge et al., 2023; Basile et al., 2024).

Contributions. The contributions of our work are as follows:

• Theoretical Framework for LoRA Effectiveness: We establish a theoretical framework
that explains the effectiveness of LoRA. Specifically, we derive a theoretical lower bound
that connects the intrinsic dimensionalities of the data representation manifolds at the inputs
and outputs of transformer blocks with the ranks of their constituent layers.

• Introduction of the GeLoRA Approach: Building upon the derived lower bound, we
introduce the GeLoRA approach, which dynamically adjusts the LoRA ranks across model
weights to better align with the intrinsic dimensionalities of data representations.

• Empirical Validation of GeLoRA: Through extensive experiments and analyses, we val-
idate the practical performance and efficiency of the GeLoRA framework. Our results
demonstrate that GeLoRA outperforms existing baselines while maintaining the same pa-
rameter budget.

2 RELATED WORK

LLMs have achieved state-of-the-art performance in a wide range of natural language processing
(NLP) tasks across diverse domains. Models such as GPT (Brown et al., 2020) and BERT (Devlin
et al., 2019) have demonstrated exceptional proficiency in tasks including language modeling, sen-
timent analysis, machine translation, and question answering, which showcases their versatility in
natural language understanding and generation.

However, developing a more personalized model requires additional fine-tuning, which must be
handled efficiently due to the substantial computational costs involved. This is where PEFT (Han
et al., 2024) comes into play. It aims to balance the fine-tuning performance with the need to reduce
computational overhead by selectively adjusting a small subset of the model’s parameters, thereby
minimizing resource consumption, as compared to the more resource-intensive process of full fine-
tuning.

Within this framework, different lines of research in model fine-tuning explore various approaches
to optimizing efficiency. One such approach focuses on parameter tuning techniques, where only a
subset of model parameters is trained while others remain fixed. An example is BitFit (Zaken et al.,
2022), which exclusively adjusts the bias terms and the task-specific head within the model, leaving
the remaining parameters unchanged. Another research direction involves the use of adapter layers

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

by introducing small trainable layers, known as “adapters” (Houlsby et al., 2019), into the model,
which enable adaptation to new tasks without altering the model’s original weights. Moreover,
context-based fine-tuning methods (Petrov et al., 2024) are used to influence model outputs through
input representation modification. Prefix tuning (Li & Liang, 2021), for instance, appends task-
specific parameters to the input’s embedding, guiding the model’s responses without altering its core
parameters. Finally, LoRA (Hu et al., 2021; Dettmers et al., 2023; Hayou et al., 2024) represents
a significant line of research that involves decomposing update matrices into the product of two
low-rank matrices to reduce the number of trainable parameters, while maintaining comparable
performance to full fine-tuning. Despite its advantages, LoRA faces challenges in determining the
appropriate rank for the low-rank matrices. Typically, the rank is set uniformly across layers through
a trial-and-error process, which is often suboptimal.

More recently, several LoRA variants have been developed to address the issue of setting uniform
rank values by dynamically adjusting the rank for each layer. These variants compute importance
scores or prune unnecessary ranks based on budget constraints, thereby optimizing rank alloca-
tion. Notable examples include AdaLoRA (Zhang et al., 2023), SaLoRA (Hu et al., 2023), SoRA
(Ding et al., 2023), and ALoRA (Liu et al., 2024), each offering strategies to improve fine-tuning
efficiency. AdaLoRA dynamically allocates the parameter budget across weight matrices during
fine-tuning using singular value decomposition (SVD). It adjusts the rank of matrices by assign-
ing higher ranks to critical singular values and pruning less important ones, resulting in a sparse
selection of ranks. However, its heuristic criterion for sparsity selection lacks strong theoretical jus-
tification. Additionally, the computational complexity is increased due to operations like computing
moving averages for importance scores and handling gradients from orthogonality regularization
during training. On the other hand, SaLoRA dynamically learns the intrinsic rank of each incremen-
tal matrix using a binary gating mechanism and a differentiable relaxation method, which selectively
removes non-critical components. While this improves efficiency, removing these components may
introduce instability during training. To mitigate this, orthogonality regularization is applied to the
factor matrices, improving training stability and generalization. However, the optimization process,
which involves Lagrangian relaxation and orthogonal regularization, increases the computational
overhead. SoRA also adjusts the intrinsic rank dynamically during training by employing a sparse
gating unit, which is learned through the minimization of the l0 norm via the proximal gradient
method. Despite its promise, the sparsifying process lacks a strong theoretical foundation and may
struggle to generalize to new domains effectively. Lastly, ALoRA enables dynamic rank adjustment
during the adaptation process through two key steps: first, estimating the importance scores of each
LoRA rank, and then pruning less important or negatively impactful ranks while reallocating re-
sources to critical transformer modules that require higher ranks. However, the computational cost
of performing adaptive budget LoRA (AB-LoRA) can be high, which may hinder its practicality in
certain settings.

3 GELORA: GEOMETRIC LOW RANK ADAPTATION

3.1 INTUITION

Consider a linear map f : x 7→ Wx, where the matrix W has low rank r. The low rank of W
implies that f compresses the semantic information of x into a lower-dimensional space, such that
dimℑmf = r. While the functions approximated by transformer blocks are far more complex than
a linear map, we will later show that intrinsic dimension profiles can provide valuable insight for
selecting appropriate ranks for each layer of a language model. Specifically, they offer a lower bound
on the number of parameters required to effectively encode information. To rigorously examine how
the rank of hidden states correlates with the number of parameters needed for effective fine-tuning
in a transformer block, we present a formal theoretical framework in the next section.

3.2 THEORETICAL FORMULATION

For clarity and consistency, we maintain the notation used in the original low-rank adaptation paper
(Hu et al., 2021). Without loss of generality, we will focus on the language modeling problem, where
the goal is to maximize conditional probabilities given a task-specific prompt. Each downstream task
can be represented by a dataset comprising context-target pairs Z = {(xi, yi)}, where both xi and
yi are sequences of tokens. The primary objective is to accurately predict yi given xi. For example,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

in a summarization task, xi represents the original content and yi its summary. Mathematically, this
can be modeled as follows:

max
ϕ∈Φ

∑
(x,y)∈Z

|y|∑
t=1

log(Pϕ(yt | x, y<t))

Here, Φ denotes the parameter set of the model, and PΦ(· | ·) represents the conditional probability
describing the relationship between context and target pairs. This probability distribution can be
understood as a point on a neuromanifoldM = {NNϕ | ϕ ∈ Φ}.
The geometry of this manifold is characterized by the Fisher Information Matrix (FIM) (Fisher,
1922) with respect to ϕ, which is given by:

I(ϕ) = Ex∼Pdata,y∼P(·|x;ϕ)

[(
∂

∂ϕ
logP(y | x;ϕ)

)(
∂

∂ϕ
logP(y | x;ϕ)

)T]

The FIM defines a Riemannian metric on the learning parameter space (Amari, 2021), characteriz-
ing its curvature (Čencov, 1982). However, learning models often exhibit singularities (Watanabe,
2009), meaning that the rank of the matrix is less than its full dimension.

Transformer models typically have an extremely large number of parameters, often ranging in the
millions or even billions, due to their deep and wide architectures. This high-dimensional parameter
space can lead to parameter redundancy and strong correlations between parameters, as noted by
Dalvi et al. (2020). Such redundancy, or multicollinearity, can result in linear dependencies among
the gradients of the log-likelihood with respect to different parameters. Another motivation stems
from the behavior of optimizers such as Stochastic Gradient Descent (SGD) (Ruder, 2017). These
optimizers tend to prefer flatter minima during gradient descent (Jastrzębski et al., 2018), often
resulting in plateaus in the gradient learning process. As a result, the FIM may exhibit eigenvalues
close to zero, indicating singular or near-singular behavior.

In this context, the rank of I(ϕ), defined by the number of non-zero eigenvalues of the FIM, reflects
the number of degrees of freedom (directions) at a point ϕ that can modify the probabilistic model
PΦ(· | ·). This is often referred to as the local dimensionality (Sun & Nielsen, 2024). Figure 1
illustrates this concept, where the local dimensionality is 1, while the dimension of the space is 2.

Eigenvalue Spectrum

i

λi

λ
1
≫

ϵ

λ
2
≈

ϵ

θ1

θ2

L(θ)

Θ(0)ˆidim(θ) = 1

Quadratic Loss

θ1

L(θ)

Informative Direction

Constant Loss

θ2

L(θ)

Uninformative Direction

Figure 1: Assume that locally around Θ(0), the loss function can be approximated by L(θ1, θ2) =
1
2θ

2
1 . In this scenario, the loss landscape exhibits a single free direction. The loss depends exclusively

on θ1, while θ2 has no influence on it. As a result, changing θ2 alone does not affect the loss, making
θ2 a free direction in the landscape. In contrast, variations in θ1 lead to changes in the loss, meaning
that the zero-loss set forms a line along the θ2-axis. Therefore, the local dimensionality of the low-
loss region is 1.

Definition 3.1 (Local Dimensionality). The local dimensionality, denoted as d(ϕ), is defined as
the rank of the information matrix I(ϕ). It represents the number of parameters that need to be
optimized in the model, indicating the effective dimensionality of the parameter space around the
point ϕ.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Ideally, we aim to compute the local dimensionality of the parameter space at each gradient step.
However, two primary challenges hinder this approach. Firstly, the information matrix behaves as a
random matrix, typically maintaining full rank with probability 1 (Feng & Zhang, 2007). Secondly,
the computational feasibility poses a significant obstacle, as computing the FIM at each step requires
extensive computational resources.

While the FIM is almost surely of full rank, it often has very small eigenvalues, on the order of
ϵ ∈ R+. According to the Cramér-Rao bound, the variance of the parameter estimates is greater
than or equal to 1/ϵ. Therefore, parameters associated with such small eigenvalues provide negli-
gible information about the model and can be considered effectively uninformative. Disregarding
parameters with very small eigenvalues leads us to the concept of intrinsic dimension. The intrinsic
dimension is defined as the minimum number of parameters required to capture the local variance
of the data points effectively. Consequently, the intrinsic dimension represents a lower bound on the
local dimensionality.

Theorem 3.1 (Intrinsic Dimension as a Lower Bound). The intrinsic dimension ˆidim(ϕ) is a lower
bound to the local dimensionality d(ϕ).

d(ϕ) ≥ ˆidim(ϕ).

Several significant challenges persist. First, the computation of the FIM and the determination of
its rank are prohibitively expensive in terms of computational resources. Second, estimating the
intrinsic dimension of the neuromanifold is also infeasible. Furthermore, the required number of
parameters to optimize (i.e. the rank of the FIM) pertains to the entire model rather than to each
independent matrix, resulting in a high lack of granularity.

However, we have access to the input data and its representations across different transformer blocks
within the large language model. Consequently, we can shift our focus to the data manifold, which
is subjected to a series of transformations that map it to new representations, resulting in manifolds
with differing geometries. To analyze the changes in geometry, particularly the alterations in dimen-
sionality, we will begin by defining the components of the transformer blocks. Each transformer
block comprises two primary components: a multi-head attention mechanism and a feed-forward
network. Additionally, it incorporates skip connections, which are essential for mitigating the rank
collapse problem, and a normalization layer.
Theorem 3.2 (Rank Bound of Transformer Blocks). LetM denote a language model consisting
of N transformer blocks. For each i ∈ {1, 2, . . . , N}, the i-th transformer block is represented
by Ti : Rni−1 × Rpi−1 → Rni , which maps the hidden state Hi−1 ⊂ Rni−1 and parameters
θi−1 ∈ Rpi−1 to the next hidden stateHi ⊂ Rni . Assume that the hidden stateHi lies on a manifold
Ni with intrinsic dimension di embedded in Rni , whileHi−1 lies on a manifoldNi−1 with intrinsic
dimension di−1 embedded in Rni−1 . The rank of the transformer block Ti is constrained by the
inequality

di ≤ rank(Ti),
where the rank of Ti at θi−1 is defined as rank(Ti) = maxx∈Hi−1

rank(J(Ti, x, θi−1)), with
J(Ti, x, θi−1) representing the Jacobian matrix of Ti evaluated at x ∈ Hi−1 and θi−1.
Corollary 3.2.1 (Bound on Parameters for Transformer Block Optimization). Let Ni−1 rep-
resent the number of parameters required to optimize at transformer block i. Then, the following
inequality holds:

max(di − di−1, 0) ≤ Ni−1.

Recomputing the optimal number of parameters after each gradient step is computationally expen-
sive. However, as training progresses, the model learns to compress data, resulting in fewer param-
eters being responsible for the local variance of data points. Therefore, it is reasonable to assume
that the intrinsic dimensionality of the data and the rank of the transformer blocks decrease during
training.
Conjecture 3.1 (Transformer Rank Bound Dynamics). Let i ∈ {1, 2, . . . , N}, and consider the
process of fine-tuning. During this process, both the rank of each transformer block rank(Ti) and
the intrinsic dimension di of the manifoldHi decrease. Let d0i denote the initial intrinsic dimension.
Then, the following inequality holds:

d0i ≤ rank(T ti),

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

where T ti represents the transformer block after the t-th gradient step. As fine-tuning progresses,
this inequality becomes progressively tighter, implying that the gap between the initial intrinsic
dimension and the rank of the transformer block reduces over time.

3.3 METHODOLOGY

Figure 2 provides a schematic representation of the GeLoRA methodology, which begins by com-
puting the the intrinsic dimensions of data representations across the model’s hidden states, allowing
for an understanding of the manifold structure that each layer captures. For each layer i, let di repre-
sent the intrinsic dimension of the data manifold at the input, and di+1 the intrinsic dimension at the
output. To ensure efficient low-rank adaptation (LoRA) parameters that align with the model’s ge-
ometry, the minimal rank ri is set for each layer according to the condition ri ≥ max(di+1− di, 0),
where the difference di+1 − di indicates the required capacity to capture any dimensional expan-
sion of the data manifold between consecutive layers. An adaptive scaling factor αi is then applied
across layers to maintain a consistent ratio αi/ri = const, preserving the proportion of adaptation
strength relative to rank. This enables an efficient fine-tuning process that balances expressivity with
computational efficiency.

Step 1: Compute Intrinsic
Dimensions

di

Transformer Block i

di+1

Step 2: Set Minimal LoRA
Ranks

Block Index

Rank

ri ≥ max(di+1 − di, 0)
(Minimal Rank)

Step 3: Efficient Finetuning

Expressivity

Computational Cost

GeLoRA

Better Tradeoff

Figure 2: Schematic of the GeLoRA methodology. The process includes intrinsic dimension anal-
ysis (Step 1), setting minimal LoRA ranks based on these dimensions (Step 2), and performing
efficient fine-tuning to achieve an optimal balance between computational efficiency and model ex-
pressivity (Step 3).

To estimate the intrinsic dimension di of the hidden state i, we employ the two-nearest-neighbors
(2-NN) method Facco et al. (2017). Given a dataset in a high-dimensional feature space, we begin
by identifying, for each data point xj , its nearest and second-nearest neighbors, computing their
respective distances r1(j) and r2(j). We then compute the ratio µj = r2(j)

r1(j)
, which encapsulates

local geometric information. Under the assumption of locally uniform data density, the cumulative
distribution function of the ratio µ = r2

r1
is given by

F (µ|di) = 1− µ−di

for µ ≥ 1 and di > 0. The intrinsic dimension di can be estimated by fitting the empirical dis-
tribution of the observed ratios {µj}Nj=1 to this theoretical distribution, either through maximum
likelihood estimation or through linear regression in log-log space of the complementary cumulative
distribution.

In high-dimensional settings, the 2-NN method tends to provide a conservative estimate, often serv-
ing as a lower bound on the true intrinsic dimension. To illustrate this, we conduct experiments on
established benchmark datasets, observing the 2-NN method’s behavior relative to the ground truth.
To mitigate the risk of underestimating the intrinsic dimension—resulting in an inaccurate value of
zero rank in some cases—we add a small offset of 1 to each rank lower bound. Furthermore, rank
lower bound is computed for each transformer block as a whole, including the Key, Query, Value,
and Output matrices. Since we cannot localize the specific important parameters within each matrix,
we set the rank of each matrix in the transformer block equal to the computed intrinsic dimension.

rKi
= rQi

= rVi
= rOi

= max(di+1 − di, 0) + 1,

where rKi
, rQi

, rVi
, and rOi

are, respectively, the LoRA ranks of the Key, Query, Value and Output
matrices of the transformer block i. A pseudocode description of GeLoRA is presented in Appendix
B.1.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

3.4 FINE-TUNING TECHNIQUES AND DATASETS

We evaluate the performance of our GeLoRA technique across several natural language processing
tasks. First, we assess its performance on the GLUE benchmark for natural language understanding
(Wang et al., 2019), using tasks such as CoLA (Warstadt et al., 2019), SST-2 (Socher et al., 2013),
MRPC (Dolan & Brockett, 2005), STS-B (Cer et al., 2017), QNLI (Rajpurkar et al., 2016), and RTE
(Dagan et al., 2006; Bar-Haim et al., 2006; Giampiccolo et al., 2007). We then evaluate question
answering performance using the SQuAD dataset (Rajpurkar et al., 2016). Finally, we investigate
instruction-following tasks by fine-tuning the model on the Airoboros dataset (Durbin, 2024) and
evaluating on MT-Bench (Zheng et al., 2023a). For natural language understanding and question
answering, we use the DeBERTaV3 model (He et al., 2021), following established practices in the
literature. For instruction-following tasks, we fine-tune using Phi-2 (Li et al., 2023). We compare
GeLoRA’s performance against several fine-tuning techniques, including weight update tuning (Za-
ken et al., 2022), adapter-based methods (Houlsby et al., 2019; Pfeiffer et al., 2021), and LoRA and
its variants (Hu et al., 2021; Ding et al., 2023; Zhang et al., 2023).

3.5 EXPERIMENTAL SETTING

We implemented all algorithms using PYTORCH, based on the publicly available HUGGINGFACE
TRANSFORMERS (Wolf et al., 2020) code-base. For optimization, we used the ADAMW optimizer
(Loshchilov & Hutter, 2019), which features parameters set to ϵ = 10−6, β1 = 0.9, and β2 = 0.999,
and we fixed the batch size to 32. To facilitate fair comparisons across different fine-tuning methods,
we employed OPTUNA (Akiba et al., 2019) for hyperparameter tuning, optimizing parameters such
as learning rate, weight decay, warm-up ratio, learning scheduler type, and LoRA dropout over 50
trials for each method. The numerical results were averaged over five runs with random seeds, and
we report standard deviations to ensure statistical robustness. The alpha rank ratio for low-rank
adaptation techniques was fixed at 32, consistent with prior work (Hu et al., 2021; Zhang et al.,
2023), and was not fine-tuned further. For estimating intrinsic dimension, we used the SCIKIT-
DIMENSION package (Bac et al., 2021). All experiments were conducted on NVIDIA A100-SXM4
GPUS. Additional details regarding the training process can be found in the Appendix E.

3.6 NUMERICAL RESULTS

3.6.1 NATURAL LANGUAGE UNDERSTANDING: GLUE BENCHMARK

Table 1: Results with DeBERTaV3-base on GLUE test set. The best results for each dataset are
highlighted in bold, while the second-best results are underlined. We report the average correlation
for STS-B. Full FT represent full fine-tuning, HA Adapter represents Houlsby Adapters, and PF
Adapter represents Pfeiffer Adapters.

Method # Params CoLA STS-B MRPC QNLI SST-2 RTE QQP MNLI Average
Full FT 184.42M 68.28± 1.39 91.32± 0.45 73.53± 3.25 93.81± 0.21 94.68± 0.30 73.67± 1.33 88.54± 0.23 89.65± 0.19 84.19
BitFit 0.11M 68.66± 1.87 89.40± 0.57 85.2± 1.56 92.10± 0.13 94.54± 0.30 75.11± 2.52 86.25± 0.27 86.04± 0.58 84.66

HA Adapter 0.65M 68.46± 1.08 91.26± 0.13 86.76± 0.44 93.52± 0.40 95.32± 0.35 80.43± 2.78 89.08± 0.06 89.07± 0.19 86.74
PF Adapter 0.62M 68.59± 1.43 89.85± 0.13 88.24± 1.07 93.33± 0.30 95.55± 0.41 79.14± 2.95 88.60± 0.14 88.82± 0.07 86.52

LoRAr=1 0.08M 69.68± 0.92 88.29± 3.28 88.43± 1.37 93.83± 0.13 95.04± 0.43 80.29± 1.33 90.41± 0.05 89.64 86.95
LoRAr=2 0.15M 69.04± 1.51 88.60± 3.09 87.75± 0.69 93.79± 0.17 95.04± 0.22 80.43± 1.60 90.78± 0.11 89.77 86.90

SoRAr=1 0.08M 61.78± 2.37 78.88± 6.55 87.45± 3.06 88.66± 0.68 91.94± 0.52 82.32± 2.49 81.17
SoRAr=2 0.15M 67.85± 1.33 84.33± 3.90 88.04± 2.00 89.76± 0.41 91.40± 0.32 78.84± 3.74 84.04

AdaLoRAr=1 0.15M 69.28± 0.33 92.08± 0.15 84.61± 0.91 93.84± 0.15 95.07± 0.42 74.96± 3.82 89.92± 0.10 90.12± 0.20 86.23
AdaLoRAr=2 0.22M 64.76± 1.49 91.56± 0.12 87.25± 0.93 94.07± 0.12 95.44± 0.34 81.87± 0.95 90.12± 0.08 90.13± 0.26 86.90

GeLoRA – 70.96± 0.96 91.66± 0.48 89.9± 0.79 93.87± 0.23 95.05± 0.24 81.29± 1.64 90.81± 0.12 89.84± 0.22 87.92

Our experimental results demonstrate the effectiveness of GeLoRA across multiple tasks in the
GLUE benchmark. As shown in Table 1, GeLoRA achieves competitive or superior performance
compared to existing parameter-efficient fine-tuning methods while maintaining a minimal param-
eter footprint. Specifically, GeLoRA obtains an average score of 87.92 across all evaluated tasks,
outperforming strong baselines like HA Adapter (86.74), LoRA (86.95) and its variants (86.90).
On individual tasks, GeLoRA shows particularly strong performance on CoLA (70.96) and MRPC
(89.90), achieving the best results among all parameter-efficient methods, while maintaining com-
petitive performance on other tasks. The results are particularly impressive when considering the
performance-to-parameter ratio. While other techniques achieves better results on some tasks (e.g.,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

95.55 on SST-2), it requires six orders of magnitude more parameters. Our method maintains com-
parable performance while being substantially more parameter-efficient, making it particularly suit-
able for resource-constrained scenarios. What’s particularly noteworthy is GeLoRA’s parameter
efficiency, as detailed in Table 2. The method adaptively allocates parameters based on task com-
plexity, ranging from 0.09M parameters for simpler tasks like QNLI and SST-2, to 0.13M parameters
for more complex tasks such as MRPC and RTE. This adaptive parameter allocation results in opti-
mal mean ranks while using significantly fewer parameters compared to full fine-tuning (184.42M
parameters) and competitive with other efficient methods like LoRA and its variants (0.08M-0.22M
parameters). Furthermore, our approach is more intuitive because models do not need to treat all
datasets or tasks equally. During the pretraining phase, they may have already gained prior knowl-
edge relevant to certain tasks or datasets, which reduces the need for extensive fine-tuning to achieve
strong performance.

Table 2: Number of parameters in GeLoRA for each task.

Task CoLA STS-B MRPC QNLI SST-2 RTE MNLI QQP
Params 0.10M 0.11M 0.13M 0.09M 0.09M 0.13M 0.10M 0.12M
Mean Rank 1.33 1.50 1.75 1.25 1.17 1.75 1.33 1.58
Rounded Mean Rank 1 2 2 1 1 2 1 2

A potential question that arises is how increasing the LoRA ranks uniformly, or introducing greater
complexity into the adaptive variants AdaLoRA and SoRA, might impact their performance, and
how they would compare to GeLoRA. To address this, we conduct a comparison in a high-rank
setting, where we adjust the lower rank bounds of GeLoRA by applying an offset to align with the
higher ranks selected for the other fine-tuning techniques. Specifically, we set the ranks as follows:

rKi
= rQi

= rVi
= rOi

= max(di+1 − di, 0) + o,

where o is the applied offset to GeLoRA ranks.

Table 3: Results with DeBERTaV3-base on GLUE test set using higher ranks. The best results for
each dataset are highlighted in bold, while the second-best results are underlined. We report the
average correlation for STS-B.

Method # Params CoLA STS-B MRPC QNLI SST-2 RTE Average
LoRAr=4 0.3M 67.52± 0.38 89.84± 1.36 89.12± 2.09 93.77± 0.10 95.39± 0.40 81.73± 1.55 86.23
SoRAr=4 0.3M 63.47± 1.99 81.68± 7.93 87.06± 1.15 90.04± 0.67 92.46± 0.59 86.09± 2.69 83.47
AdaLoRAr=4 0.44M 68.62± 1.22 90.54± 0.23 84.31± 1.45 94.11± 0.12 95.39± 0.44 79.71± 1.24 85.45

GeLoRA −− 68.53± 0.71 91.38± 0.43 88.12± 0.73 93.15± 0.17 95.44± 0.35 80.92± 1.47 86.26

Moreover, using dataset-specific ranks aligns with a common practice used to enhance performance
during fine-tuning across various benchmarks, which is intermediate task tuning. This approach
involves fine-tuning a model on a different task from the target task as a preliminary warm-up step.
While this methodology is primarily intuitively motivated—rooted in the idea of learning common
features and fostering common-sense reasoning—its theoretical justification remains less clear. In
this regard, we aim to provide a plausible explanation for the effectiveness of this approach. We
focus on three tasks: MRPC (Dolan & Brockett, 2005), STS-B (Cer et al., 2017), and RTE (Dagan
et al., 2006; Bar-Haim et al., 2006; Giampiccolo et al., 2007). Although each dataset has a specific
focus, they all assess semantic relationships between pairs of texts, presenting a strong case for a
sequential fine-tuning strategy. MRPC targets the identification of paraphrases, where two sentences
convey the same idea using different wording. STSB evaluates the degree of semantic similarity
between sentences on a continuous scale ranging from 0 to 5. RTE determines whether one sentence
entails another, reflecting a distinct aspect of semantic relationships. These tasks require the model
to comprehend nuanced semantic properties, including synonyms, paraphrases, and entailment. As a
result, the underlying language representations across these datasets exhibit significant similarities.
Consequently, we hypothesize that fine-tuning on MRPC can facilitate the subsequent fine-tuning
processes for STSB and RTE.

We posit that the main reason for this enhanced performance stems from data compression, as the
model learns features relevant to the target tasks during intermediate training. To evaluate this
hypothesis, we theorize that the lower bound of intrinsic dimensions will become looser after com-
pression. Our experimental results support this hypothesis. For instance, we observe a decrease in

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

the mean intrinsic dimension for RTE (from 13.47 to 12.97) as shown in Figure 3a, while Figure
3b shows that the mean intrinsic dimension for STS-B remains consistent (from 13.19 to 13.01),
albeit with a change in their profiles as shown in Figure 3a and Figure 3b. Additionally, we note
similarities in the behavior of different layers: the lower layers, responsible for basic features (such
as syntax and grammar), remain largely unchanged; however, the higher layers, which capture more
complex features, exhibit significant compression. The intermediate layers, as indicated by recent
studies on the geometry of hidden representations, show a slight increase in their capacity due to the
model’s specialization in the semantics of the intermediate task. Thus, the decrease in the mean in-
trinsic dimensions corresponds to a reduction in the lower bounds presented in Corollary 3.2.1. This
loosening of the bounds indicates that the number of parameters required for optimal performance
has decreased, leading to more efficient training.

(a) Intrinsic dimension profile of the RTE dataset us-
ing DebertaV3 before and after intermediate task tun-
ing using MRPC.

(b) Intrinsic dimension profile of the STS-B dataset
using DebertaV3 before and after intermediate task
tuning using MRPC.

Figure 3: Intrinsic dimension profiles of RTE and STS-B datasets using DebertaV3 before and after
intermediate task tuning using MRPC.

Finally, we evaluate the efficiency of different techniques pertaining to the same budget constraint.
We measured the clock time for training across six datasets, conducting experiments for 20 epochs
on all datasets except for RTE, which was run for 50 epochs. All experiments were executed on
identical computing infrastructure, using eight NVIDIA A100-SXM4 GPUS with a consistent
batch size of 32. To ensure a fair comparison between different techniques, we adjusted the ranks of
LoRA and its variants to match the rounded mean rank of GeLoRA.

Table 4 reveals that GeLoRA demonstrates superior performance while incurring less computational
overhead compared to the other techniques. In contrast, the SoRA method experiences additional
computational overhead during training due to the gradient calculations required for the proximal
gradient approach used to enforce sparsity via the l0 norm. On the other hand, BitFit requires
training the task-specific head for better performance which adds complexity to the method.

Table 4: Training computational cost (runtime) in seconds for DeBERTaV3-base fine-tuning on
GLUE tasks. The runtime for each fine-tuning is indicated in seconds. The best results for each
dataset are highlighted in bold.

Dataset GeLoRA SoRA LoRA AdaLoRA BitFit HAdapter PAdaper
CoLA 85.68± 2.27 159.42± 0.80 100.95± 10.53 165.43± 0.28 157.27± 1.07 117.98± 0.07 113.52± 0.11
STS-B 59.13± 3.26 116.19± 0.50 78.26± 6.92 157.50± 8.36 122.68± 0.40 84.51± 0.06 81.27± 0.04
MRPC 40.42± 0.30 86.03± 1.13 58.75± 1.73 112.61± 1.36 94.93± 0.34 57.41± 0.10 55.09± 0.03
QNLI 736.57± 3.34 1617.92± 1.94 865.76± 4.11 2328.60± 24.81 1341.47± 21.03 1254.14± 1.21 1205.86± 1.83
SST-2 475.58± 5.10 1041.62± 1.82 482.38± 5.11 1140.65± 2.25 871.10± 5.05 807.91± 0.57 775.33± 0.56
RTE 75.62± 0.29 158.25± 1.43 116.28± 7.30 207.89± 4.42 80.5± 0.24 104.38± 0.06 100.40± 0.11

Average 245.5 529.91 283.73 685.45 444.66 404.39 388.58

3.6.2 QUESTION ANSWERING: SQUAD

Our experimental results demonstrate the efficiency of GeLoRA against baseline approaches on
SQuADv1.1 and SQuADv2.0 benchmarks. GeLoRA achieves state-of-the-art performance with
EM/F1 scores of 86.72/92.84 and 83.15/86.25 respectively, surpassing other fine-tuning techniques

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

while using only a fraction of trainable parameters. Table 5 reveals consistent performance improve-
ments over existing parameter-efficient methods. GeLoRA outperforms LoRA variants by margins
of 0.45-2.27 points in EM score on SQuADv1.1, with similar gains observed on SQuADv2.0. The
performance delta is more pronounced when compared to adapter-based methods, showing improve-
ments of 2.14 and 3.72 points over HAdapter and PAdapter respectively on the SQuAD v1.1 dataset.

Table 5: Results with DeBERTaV3-base on SQuADv1.1 and SQuADv2.0. Here # Params is the
number of trainable parameters. We report both the exact match and F1-score. The best results in
each setting are shown in bold.

Params SQuADv1.1 SQuADv2.0
EM F1 EM F1

Full FT 183.83M 86.12± 0.28 92.68± 0.13 83.03± 0.49 86.21± 0.51

HAdapter 0.06M 84.58± 0.20 91.57± 0.13 80.79± 1.10 84.28± 1.13
PAdapter 0.03M 83.00± 0.06 90.57± 0.10 78.17± 0.95 81.94± 0.94
LoRAr=2 0.01M 84.45± 0.35 91.35± 0.25 83.15± 0.77 86.16± 0.74
LoRAr=1 7e−3M 86.23± 0.16 92.51± 0.16 81.09± 0.66 84.22± 0.63
AdaLoRAr=1 0.15M 81.12± 0.35 84.23± 0.31
AdaLoRAr=2 0.22M 86.27± 0.31 92.61± 0.27 81.68± 0.51 84.80± 0.50

GeLoRA 8e−3M 86.72± 0.27 92.84± 0.20 83.15± 0.22 86.25± 0.24

4 CONCLUSION AND FUTURE WORK

In this work, we introduced GeLoRA, a theoretically grounded technique designed for the efficient
fine-tuning of large language models. GeLoRA effectively addresses the expressivity-efficiency
trade-off inherent in low-rank adaptation techniques. Our approach is straightforward yet pow-
erful, supported by theoretical analyses that ensure an optimal balance between expressivity and
computational efficiency. We theoretically demonstrated that the number of parameters requiring
optimization per transformer block is lower bounded by the difference in the intrinsic dimensions
of the corresponding input and output hidden representations. This finding provides a method for
estimating the optimal ranks for low-rank adaptation techniques, and connecting the manifold of
data representations to the manifold of model parameters. Empirically, our methodology surpasses
current state-of-the-art approaches on the GLUE benchmarks while maintaining computational ef-
ficiency. Additionally, GeLoRA offers a potential theoretical justification for the effectiveness of
intermediate task tuning in certain scenarios. However, we acknowledge that our technique shifts
some computational overhead to the preprocessing step and relies on a local estimator of intrinsic
dimensions, specifically the Two Nearest Neighbors (TwoNN) method. We believe this aspect can
be further improved through the application of persistent homology dimensions to estimate intrinsic
dimensions, as this approach considers both local and global topological features of the manifold.
Moreover, it can be computed efficiently on GPUs by leveraging parallelization.

REFERENCES

Armen Aghajanyan, Luke Zettlemoyer, and Sonal Gupta. Intrinsic dimensionality explains the ef-
fectiveness of language model fine-tuning, 2020.

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna: A
next-generation hyperparameter optimization framework, 2019. URL https://arxiv.org/
abs/1907.10902.

Shun-Ichi Amari. Information geometry. Int. Stat. Rev., 89(2):250–273, August 2021.

Alessio Ansuini, Alessandro Laio, Jakob H. Macke, and Davide Zoccolan. Intrinsic dimension
of data representations in deep neural networks, 2019. URL https://arxiv.org/abs/
1905.12784.

Jonathan Bac, Evgeny M. Mirkes, Alexander N. Gorban, Ivan Tyukin, and Andrei Zinovyev. Scikit-
dimension: A python package for intrinsic dimension estimation. Entropy, 23(10):1368, October
2021. ISSN 1099-4300. doi: 10.3390/e23101368. URL http://dx.doi.org/10.3390/
e23101368.

10

https://arxiv.org/abs/1907.10902
https://arxiv.org/abs/1907.10902
https://arxiv.org/abs/1905.12784
https://arxiv.org/abs/1905.12784
http://dx.doi.org/10.3390/e23101368
http://dx.doi.org/10.3390/e23101368

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Roy Bar-Haim, Ido Dagan, Bill Dolan, Lisa Ferro, and Danilo Giampiccolo. The second pascal
recognising textual entailment challenge. Proceedings of the Second PASCAL Challenges Work-
shop on Recognising Textual Entailment, 01 2006.

Lorenzo Basile, Nikos Karantzas, Alberto D’Onofrio, Luca Bortolussi, Alex Rodriguez, and Fabio
Anselmi. Investigating adversarial vulnerability and implicit bias through frequency analysis,
2024. URL https://arxiv.org/abs/2305.15203.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020. URL
https://arxiv.org/abs/2005.14165.

N. N. Čencov. Statistical decision rules and optimal inference, volume 53 of Translations of Math-
ematical Monographs. American Mathematical Society, Providence, R.I., 1982. ISBN 0-8218-
4502-0. Translation from the Russian edited by Lev J. Leifman.

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-Gazpio, and Lucia Specia. SemEval-2017
task 1: Semantic textual similarity multilingual and crosslingual focused evaluation. In Steven
Bethard, Marine Carpuat, Marianna Apidianaki, Saif M. Mohammad, Daniel Cer, and David Ju-
rgens (eds.), Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-
2017), pp. 1–14, Vancouver, Canada, August 2017. Association for Computational Linguistics.
doi: 10.18653/v1/S17-2001. URL https://aclanthology.org/S17-2001.

Emily Cheng, Corentin Kervadec, and Marco Baroni. Bridging information-theoretic and geometric
compression in language models. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceed-
ings of the 2023 Conference on Empirical Methods in Natural Language Processing, pp. 12397–
12420, Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/
2023.emnlp-main.762. URL https://aclanthology.org/2023.emnlp-main.762.

Ido Dagan, Oren Glickman, and Bernardo Magnini. The pascal recognising textual entailment chal-
lenge. In Joaquin Quiñonero-Candela, Ido Dagan, Bernardo Magnini, and Florence d’Alché Buc
(eds.), Machine Learning Challenges. Evaluating Predictive Uncertainty, Visual Object Classi-
fication, and Recognising Tectual Entailment, pp. 177–190, Berlin, Heidelberg, 2006. Springer
Berlin Heidelberg. ISBN 978-3-540-33428-6.

Fahim Dalvi, Hassan Sajjad, Nadir Durrani, and Yonatan Belinkov. Analyzing redundancy in pre-
trained transformer models, 2020. URL https://arxiv.org/abs/2004.04010.

Francesco Denti, Diego Doimo, Alessandro Laio, and Antonietta Mira. The generalized ratios
intrinsic dimension estimator. Sci Rep, 12(1):20005, November 2022.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms, 2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding, 2019. URL https://arxiv.org/
abs/1810.04805.

Ning Ding, Xingtai Lv, Qiaosen Wang, Yulin Chen, Bowen Zhou, Zhiyuan Liu, and Maosong Sun.
Sparse low-rank adaptation of pre-trained language models, 2023.

Diego Doimo, Aldo Glielmo, Alessio Ansuini, and Alessandro Laio. Hierarchical nucleation in deep
neural networks, 2020. URL https://arxiv.org/abs/2007.03506.

William B. Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop on Paraphrasing (IWP2005), 2005. URL
https://aclanthology.org/I05-5002.

Jon Durbin. airoboros-gpt4-1.4.1-mpt. https://huggingface.co/datasets/
jondurbin/airoboros-gpt4-1.4.1-mpt, 2024. Accessed: 2024-11-28.

11

https://arxiv.org/abs/2305.15203
https://arxiv.org/abs/2005.14165
https://aclanthology.org/S17-2001
https://aclanthology.org/2023.emnlp-main.762
https://arxiv.org/abs/2004.04010
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2007.03506
https://aclanthology.org/I05-5002
https://huggingface.co/datasets/jondurbin/airoboros-gpt4-1.4.1-mpt
https://huggingface.co/datasets/jondurbin/airoboros-gpt4-1.4.1-mpt

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Elena Facco, Maria d’Errico, Alex Rodriguez, and Alessandro Laio. Estimating the intrinsic di-
mension of datasets by a minimal neighborhood information. Scientific Reports, 7(1):12140, Sep
2017. ISSN 2045-2322. doi: 10.1038/s41598-017-11873-y. URL https://doi.org/10.
1038/s41598-017-11873-y.

Xinlong Feng and Zhinan Zhang. The rank of a random matrix. Applied Mathematics and
Computation, 185(1):689–694, 2007. ISSN 0096-3003. doi: https://doi.org/10.1016/j.amc.
2006.07.076. URL https://www.sciencedirect.com/science/article/pii/
S0096300306009040.

R A Fisher. On the mathematical foundations of theoretical statistics. Philos. Trans. R. Soc. Lond.,
222(594-604):309–368, January 1922.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and Bill Dolan. The third PASCAL recogniz-
ing textual entailment challenge. In Satoshi Sekine, Kentaro Inui, Ido Dagan, Bill Dolan, Danilo
Giampiccolo, and Bernardo Magnini (eds.), Proceedings of the ACL-PASCAL Workshop on Tex-
tual Entailment and Paraphrasing, pp. 1–9, Prague, June 2007. Association for Computational
Linguistics. URL https://aclanthology.org/W07-1401.

V. Guillemin and A. Pollack. Differential Topology. AMS Chelsea Publishing. AMS Chelsea
Pub., 2010. ISBN 9780821851937. URL https://books.google.com/books?id=
FdRhAQAAQBAJ.

Zeyu Han, Chao Gao, Jinyang Liu, Jeff Zhang, and Sai Qian Zhang. Parameter-efficient fine-tuning
for large models: A comprehensive survey, 2024. URL https://arxiv.org/abs/2403.
14608.

Soufiane Hayou, Nikhil Ghosh, and Bin Yu. Lora+: Efficient low rank adaptation of large models,
2024.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Deberta: Decoding-enhanced bert
with disentangled attention, 2021. URL https://arxiv.org/abs/2006.03654.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp,
2019. URL https://arxiv.org/abs/1902.00751.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021.

Yahao Hu, Yifei Xie, Tianfeng Wang, Man Chen, and Zhisong Pan. Structure-aware low-rank
adaptation for parameter-efficient fine-tuning. Mathematics, 11:NA, Oct 2023. ISSN 22277390.
doi: 10.3390/math11204317. URL https://doi.org/10.3390/math11204317.

Stanisław Jastrzębski, Zachary Kenton, Devansh Arpit, Nicolas Ballas, Asja Fischer, Yoshua Ben-
gio, and Amos Storkey. Three factors influencing minima in sgd, 2018. URL https:
//arxiv.org/abs/1711.04623.

Henry Kvinge, Davis Brown, and Charles Godfrey. Exploring the representation manifolds of stable
diffusion through the lens of intrinsic dimension, 2023. URL https://arxiv.org/abs/
2302.09301.

Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Jason Yosinski. Measuring the intrinsic dimension
of objective landscapes, 2018. URL https://arxiv.org/abs/1804.08838.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation, 2021.
URL https://arxiv.org/abs/2101.00190.

Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar, and Yin Tat Lee.
Textbooks are all you need ii: phi-1.5 technical report. arXiv preprint arXiv:2309.05463, 2023.

Zequan Liu, Jiawen Lyn, Wei Zhu, Xing Tian, and Yvette Graham. Alora: Allocating low-rank
adaptation for fine-tuning large language models, 2024.

12

https://doi.org/10.1038/s41598-017-11873-y
https://doi.org/10.1038/s41598-017-11873-y
https://www.sciencedirect.com/science/article/pii/S0096300306009040
https://www.sciencedirect.com/science/article/pii/S0096300306009040
https://aclanthology.org/W07-1401
https://books.google.com/books?id=FdRhAQAAQBAJ
https://books.google.com/books?id=FdRhAQAAQBAJ
https://arxiv.org/abs/2403.14608
https://arxiv.org/abs/2403.14608
https://arxiv.org/abs/2006.03654
https://arxiv.org/abs/1902.00751
https://doi.org/10.3390/math11204317
https://arxiv.org/abs/1711.04623
https://arxiv.org/abs/1711.04623
https://arxiv.org/abs/2302.09301
https://arxiv.org/abs/2302.09301
https://arxiv.org/abs/1804.08838
https://arxiv.org/abs/2101.00190

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019. URL https:
//arxiv.org/abs/1711.05101.

Aleksandar Petrov, Philip H. S. Torr, and Adel Bibi. When do prompting and prefix-tuning work?
a theory of capabilities and limitations, 2024. URL https://arxiv.org/abs/2310.
19698.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé, Kyunghyun Cho, and Iryna Gurevych. Adapter-
fusion: Non-destructive task composition for transfer learning, 2021. URL https://arxiv.
org/abs/2005.00247.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions
for machine comprehension of text, 2016. URL https://arxiv.org/abs/1606.05250.

Alex Rodriguez, Maria d’Errico, Elena Facco, and Alessandro Laio. Computing the free energy
without collective variables. J Chem Theory Comput, 14(3):1206–1215, February 2018.

Sebastian Ruder. An overview of gradient descent optimization algorithms, 2017. URL https:
//arxiv.org/abs/1609.04747.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. Recursive deep models for semantic compositionality over a sentiment tree-
bank. In David Yarowsky, Timothy Baldwin, Anna Korhonen, Karen Livescu, and Steven Bethard
(eds.), Proceedings of the 2013 Conference on Empirical Methods in Natural Language Process-
ing, pp. 1631–1642, Seattle, Washington, USA, October 2013. Association for Computational
Linguistics. URL https://aclanthology.org/D13-1170.

Ke Sun and Frank Nielsen. A geometric modeling of occam’s razor in deep learning, 2024. URL
https://arxiv.org/abs/1905.11027.

Lucrezia Valeriani, Diego Doimo, Francesca Cuturello, Alessandro Laio, Alessio Ansuini, and Al-
berto Cazzaniga. The geometry of hidden representations of large transformer models, 2023.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding, 2019.
URL https://arxiv.org/abs/1804.07461.

Alex Warstadt, Amanpreet Singh, and Samuel R. Bowman. Neural network acceptability judgments.
Transactions of the Association for Computational Linguistics, 7:625–641, 2019. doi: 10.1162/
tacl_a_00290. URL https://aclanthology.org/Q19-1040.

Sumio Watanabe. Algebraic Geometry and Statistical Learning Theory. Cambridge Monographs
on Applied and Computational Mathematics. Cambridge University Press, 2009.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gug-
ger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art
natural language processing. In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing: System Demonstrations, pp. 38–45, Online, October 2020. As-
sociation for Computational Linguistics. URL https://www.aclweb.org/anthology/
2020.emnlp-demos.6.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg. Bitfit: Simple parameter-efficient fine-
tuning for transformer-based masked language-models, 2022. URL https://arxiv.org/
abs/2106.10199.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Nikos Karampatziakis, Pengcheng He,
Yu Cheng, Weizhu Chen, and Tuo Zhao. Adalora: Adaptive budget allocation for parameter-
efficient fine-tuning, 2023.

13

https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/2310.19698
https://arxiv.org/abs/2310.19698
https://arxiv.org/abs/2005.00247
https://arxiv.org/abs/2005.00247
https://arxiv.org/abs/1606.05250
https://arxiv.org/abs/1609.04747
https://arxiv.org/abs/1609.04747
https://aclanthology.org/D13-1170
https://arxiv.org/abs/1905.11027
https://arxiv.org/abs/1804.07461
https://aclanthology.org/Q19-1040
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://arxiv.org/abs/2106.10199
https://arxiv.org/abs/2106.10199

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging llm-as-a-judge with mt-bench and chatbot arena, 2023a. URL https://arxiv.org/
abs/2306.05685.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging llm-as-a-judge with mt-bench and chatbot arena, 2023b. URL https://arxiv.org/
abs/2306.05685.

14

https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2306.05685

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A MATHEMATICAL FORMALISM

In this section, we provide the mathematical definitions, theorems, and algorithms that serve as the
foundation for the methods and theorems presented in this paper.

A.1 INTRINSIC DIMENSIONALITY

A.1.1 DEFINITION AND EXAMPLE

Definition A.1 (Intrinsic Dimensionality). Let M ⊆ RD be a manifold embedded in a D-
dimensional ambient space. The intrinsic dimensionality (ID) ofM is defined as the smallest num-
ber of coordinates d such that all data points onM can be locally approximated by a d-dimensional
Euclidean space. Formally, for every point x ∈M, there exists a neighborhoodN (x) and a smooth
map ϕ : Rd → RD such that ϕ(Rd) ∩N (x) =M∩N (x).

In practical terms, the intrinsic dimensionality d represents the number of degrees of freedom re-
quired to describe the structure ofM, regardless of the ambient space’s dimensionality D.

Example. Consider a helical curve H embedded in three-dimensional space (R3) (Figure 4) with
the parametric representation:

x(t) =

[
r cos(t)
r sin(t)
ct

]
, t ∈ R,

where r > 0 is the radius and c > 0 is the vertical scaling factor.

• Although the helix is embedded in R3, the parameter t uniquely determines any point on
the curve.

• Hence, the helix is a one-dimensional (d = 1) manifold, since it can be locally approxi-
mated by a one-dimensional Euclidean space (R1).

Figure 4: A helical curve in 3D space with an intrinsic dimension of 1, fully described by a single
parameter despite its 3D embedding.

A.1.2 METHODOLOGY: TWO NEAREST NEIGHBORS ESTIMATOR

Choice Justification. The Two Nearest Neighbor (TwoNN) intrinsic dimension (ID) estimator,
proposed by Facco et al. (2017), uses local geometric properties to estimate the intrinsic dimension
of datasets. It is particularly well-suited for NLP datasets because:

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

• Scalability: The estimator efficiently computes the ID using only distances to the first two
nearest neighbors of each point, even for large datasets.

• Robustness: It produces consistent results across dataset scales Denti et al. (2022).

• Validity: The assumption of local constant density, crucial for the TwoNN method, is satis-
fied in NLP datasets, as validated using the Point Adaptive kNN (PAk) method (Rodriguez
et al., 2018; Valeriani et al., 2023).

Methodology. The TwoNN estimator follows these steps:

1. Nearest Neighbor Distances: For each data point xi, compute:

• ri1: Distance to its first nearest neighbor.
• ri2: Distance to its second nearest neighbor.

2. Compute Ratios: Calculate the ratio µi = ri2
ri1

for each point.

3. Pareto Distribution Assumption: The ratios µi follow a Pareto distribution p(µi|d) =

dµ−d−1
i , where d is the intrinsic dimension.

4. Cumulative Distribution Function (CDF): The Pareto CDF is given by F (µ) = 1−µ−d.
The empirical CDF is approximated as:

Femp(µσ(i)) =
i

N
,

where µσ(i) are the sorted values of µi in ascending order and N is the total number of
points.

5. Linear Regression: By plotting log(µσ(i)) against − log(1 − Femp(µσ(i))), the slope of
the line gives the intrinsic dimension d.

To ensure robustness, the TwoNN estimator is applied to random subsets of the dataset of decreasing
sizes (e.g., N,N/2, N/4, . . .), and the ID is chosen where the estimates stabilize.

Hands-on Example: Manual TwoNN Calculation. Consider a toy dataset of five points in two
dimensions, with coordinates:

x1 = (0, 0), x2 = (1, 0), x3 = (2, 0), x4 = (0, 1), x5 = (2, 2).

• Step 1: Compute Nearest Neighbor Distances For each point xi, compute distances to
all other points. For example:

For x1 : r12 = 1, r13 = 2, r14 = 1, r15 ≈ 2.83.

The nearest neighbors of x1 are ri1 = 1 and ri2 = 1.

• Step 2: Compute Ratios For each point xi, calculate µi = ri2
ri1

. For example:

µ1 =
ri2
ri1

=
2

1
= 2, µ2 ≈ 1.41.

• Step 3: Sort Ratios and Compute Empirical CDF Sort the ratios µi in ascending order:

µσ(1) ≤ µσ(2) ≤ · · · ≤ µσ(N).

The empirical CDF is:

Femp(µσ(i)) =
i

N
.

• Step 4: Linear Regression to Estimate d Take the logarithm of the sorted ratios:

log(µσ(i)), and − log(1− Femp(µσ(i))).

Plot log(µσ(i)) vs. − log(1 − Femp(µσ(i))) and fit a straight line through the origin. The
slope of the line is the intrinsic dimension d.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Computational Complexity. The TwoNN estimator requires finding the two nearest neighbors for
each data point in the dataset. This operation has a computational complexity of O(n2) for a naive
approach or O(n log(n)) when using optimized nearest neighbor search methods (e.g., KD-trees or
ball trees). For a dataset with n points and a model with L transformer blocks (e.g., where distances
need to be computed across L hidden representations), the overall complexity becomes:

O(L · n log(n)) or O(L · n2),

depending on the algorithm used for nearest neighbor computation.

A.2 TRANSFORMER ARCHITECTURE

Definition A.2 (Single-head Self-attention Layer). Let k, d ∈ N. Consider matrices Q,K, V ∈
Rk×d. For any integer n ∈ N and vectors x1, . . . , xn ∈ Rd, self-attention with parameters (Q,K, V)
maps the sequence (x1, . . . , xn) ∈ Rd×n to

f(x1, . . . , xn) =

V n∑
j=1

softmax
(
x⊤i Q

⊤Kxj√
k

)
xj

1≤i≤n

∈ (Rk)n, (1)

Definition A.3 (Multi-head Self Attention Layer). Let d ∈ N andH be a divisor of d. For 1 ≤ h ≤
H , let Q(h),K(h), V (h) ∈ Rk×d with k := d/H , and W (h) ∈ Rd×k. Multi-head self-attention
with parameters (Q(h),K(h), V (h),W (h))1≤h≤H maps any sequence (x1, . . . , xn) ∈ (Rd)n to

fMH(x1, . . . , xn) =

H∑
h=1

W (h)f (h)(x1, . . . , xn) ∈ (Rd)n, (2)

where f (h) denotes single-head self-attention with parameters (Q(h),K(h), V (h)).

B GELORA: FRAMEWORK AND THEORETICAL PROOFS

In this section, we provide the pseudocode for the GeLoRA framework along with detailed proofs
of the theorems presented in this paper.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

B.1 GELORA: PSEUDOCODE

Algorithm 1 GeLoRA (Geometry-aware Low-Rank Adaptation)

Require:
1: ModelM with L transformer layers
2: Dataset D
3: Desired constant ratio c for αi/ri

Ensure:
4: Optimal LoRA ranks ri and scaling factors αi for each layer
5: function ESTIMATEINTRINSICDIMENSION(X)
6: for each point xj in X do
7: r1(j)← distance to nearest neighbor of xj
8: r2(j)← distance to second nearest neighbor of xj
9: µj ← r2(j)/r1(j)

10: end for
11: // Fit empirical distribution to theoretical CDF: F (µ|d) = 1− µ−d

12: d← FitDistribution({µj}) ▷ Using log-log regression or MLE
13: return d
14: end function
15: function COMPUTEGELORAPARAMETERS(M,D)
16: // Initialize arrays for dimensions and parameters
17: d← array of size L+ 1 ▷ Intrinsic dimensions
18: r← array of size L ▷ LoRA ranks
19: α← array of size L ▷ Scaling factors
20: // Step 1: Compute intrinsic dimensions for each layer
21: for i← 0 to L do
22: Xi ← GetHiddenStates(M,D, layer = i)
23: di ← EstimateIntrinsicDimension(Xi)
24: end for
25: // Step 2: Compute ranks for each layer
26: for i← 0 to L− 1 do
27: dim_difference← max(di+1 − di, 0)
28: base_rank← dim_difference + 1 ▷ Add offset of 1
29: // Set equal ranks for all matrices in transformer block
30: rKi , rQi , rVi , rOi ← base_rank
31: end for
32: // Step 3: Compute scaling factors maintaining αi/ri = const
33: total_rank←

∑L−1
i=0 ri

34: for i← 0 to L− 1 do
35: αi ← c · ri ▷ Ensures αi/ri = c
36: end for
37: return r,α
38: end function
39: // Main execution
40: function MAIN
41: model← LoadModel()
42: dataset← LoadDataset()
43: ranks, scaling_factors← ComputeGeLoRAParameters(model, dataset)
44: ApplyLoRAParameters(model, ranks, scaling_factors)
45: end function

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

B.2 MATHEMATICAL PROOFS

B.2.1 PROOF OF THEOREM 3.1 – INTRINSIC DIMENSION AS A LOWER BOUND

Theorem B.1 (Intrinsic Dimension as a Lower Bound). The intrinsic dimension ˆidim(ϕ) is a
lower bound to the local dimensionality d(ϕ).

d(ϕ) ≥ ˆidim(ϕ).

Proof. The local dimensionality d(ϕ) of a neuromanifold is defined as the rank of the Fisher In-
formation Matrix (FIM), which corresponds to the number of non-zero eigenvalues of the FIM.
However, in practice, while the FIM is almost surely of full rank, many of its eigenvalues can be
exceedingly small, on the order of ϵ ∈ R+, where ϵ is a small positive threshold.

According to the Cramér-Rao bound, the variance of parameter estimates is inversely proportional to
the eigenvalues of the FIM. Specifically, for an eigenvalue on the order of ϵ, the variance of the cor-
responding parameter is at least 1/ϵ. Parameters associated with such small eigenvalues contribute
negligible information about the model and can therefore be considered effectively uninformative.

By disregarding parameters associated with small eigenvalues, we obtain the definition of the intrin-
sic dimension idim(ϕ), which represents the minimal number of parameters necessary to describe
the structure of the manifold. The specific value of the intrinsic dimension depends on the threshold
ϵ used to exclude eigenvalues below a certain magnitude. This threshold determines the uninfor-
mative directions that are discarded, yielding an estimate of the ground truth intrinsic dimension.
Consequently, the estimated intrinsic dimension ˆidim(ϕ) is always less than or equal to the local
dimensionality d(ϕ):

ˆidim(ϕ) ≤ d(ϕ).

Thus, the estimated intrinsic dimension ˆidim(ϕ) provides a lower bound for the local dimensionality
d(ϕ), completing the proof.

B.2.2 PROOF OF THEOREM 3.2 – RANK BOUND OF TRANSFORMER BLOCKS

Theorem B.2 (Rank Bound of Transformer Blocks). LetM denote a language model consisting
of N transformer blocks. For each i ∈ {1, 2, . . . , N}, the i-th transformer block is represented
by Ti : Rni−1 × Rpi−1 → Rni , which maps the hidden state Hi−1 ⊂ Rni−1 and parameters
θi−1 ∈ Rpi−1 to the next hidden stateHi ⊂ Rni . Assume that the hidden stateHi lies on a manifold
Ni with intrinsic dimension di embedded in Rni , whileHi−1 lies on a manifoldNi−1 with intrinsic
dimension di−1 embedded in Rni−1 . The rank of the transformer block Ti is constrained by the
inequality

di ≤ rank(Ti),
where the rank of Ti at θi−1 is defined as rank(Ti) = maxx∈Hi−1

rank(J(Ti, x, θi−1)), with
J(Ti, x, θi−1) representing the Jacobian matrix of Ti evaluated at x ∈ Hi−1 and θi−1.

Proof. Let i ∈ {1, 2, . . . , N}, and consider the map Ti : Rni−1 × Rpi−1 → Rni to be the i-th
transformer block, which maps the hidden stateHi−1 ⊂ Rni−1 and parameters θi−1 ∈ Rpi−1 to the
next hidden stateHi ⊂ Rni . Assume that idim(Hi−1) = di−1 and idim(Hi) = di.

Given that idim(Hi−1) = di−1 ≤ ni−1, we can define a smooth bijective parameterization ϕ :
U → Rni−1 from an open set U ⊂ Rdi−1 to an open subset O ⊂ Hi−1. We now extend this
parameterization to include the parameters θi−1 ∈ Rpi−1 by considering the map ψ : U → Rni−1 ×
Rpi−1 that maps each point x ∈ U to (x, θi−1).

Since Ti is smooth almost everywhere, we can apply the constant rank theorem 1 for manifolds to
the composed map Ti ◦ ψ, obtaining:

idim(Ti(Hi−1)) = rank(Ti ◦ ψ) = rank(JTi◦ψ),

1By Sard’s Theorem (Guillemin & Pollack, 2010), critical points—where the Jacobian rank is lower—map
to a set of measure zero. These regions of lower ranks contribute negligibly to the representation manifolds.
Therefore, we can disregard them and focus only on regions where the rank is constant and maximal.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

where JTi◦ψ is the Jacobian matrix of the composition Ti ◦ ψ.

Using the chain rule, the rank of the composition is bounded by the minimum rank of the individual
Jacobians:

rank(JTi◦ψ) = rank(JTi
· Jψ) ≤ rank(JTi

)

Thus, the dimension of Ti(Hi−1), which corresponds to the intrinsic dimension di of the hidden
stateHi, satisfies:

di = idim(Hi) ≤ rank(Ti).
This completes the proof.

B.2.3 PROOF OF COROLLARY 3.2.1 – BOUND ON PARAMETERS FOR TRANSFORMER BLOCK
OPTIMIZATION

Corollary B.2.1 (Bound on Parameters for Transformer Block Optimization). Let Ni−1 rep-
resent the number of parameters required to optimize at transformer block i. Then, the following
inequality holds:

max(di − di−1, 0) ≤ Ni−1.

Proof. We begin by considering the result from Theorem 3.2, which asserts:

di ≤ rank(Ti).

where Ti is the transformation applied at block i.

The rank of Ti, rank(Ti), corresponds to the number of non-noisy directions in its input space,
meaning θi and x ∈ Hi−1.

rank(Ti) = Number of non-noisy directions atHi−1 + Number of non-noisy directions at θi

By the definition of intrinsic dimensionality, the number of non-noisy directions atHi−1 is bounded
by di−1, the intrinsic dimensionality ofHi−1. Thus, we have:

Number of non-noisy directions atHi−1 ≤ di−1

Consequently, we can rewrite the inequality from Theorem 3.2 as follows:

di ≤ di−1 +Ni−1,

where Ni−1 represents the number of non-noisy directions in the parameter space that needs to be
optimized.

SinceNi−1 represents the number of parameters to be optimized at block i, and by definitionNi−1 ≥
0, we conclude:

max(di − di−1, 0) ≤ Ni−1.

This completes the proof.

B.3 INTUITIVE PROOF OF CONJECTURE 3.1 – TRANSFORMER RANK BOUND DYNAMICS

Conjecture B.1 (Transformer Rank Bound Dynamics). Let i ∈ {1, 2, . . . , N}, and consider the
process of fine-tuning. During this process, both the rank of each transformer block rank(Ti) and
the intrinsic dimension di of the manifoldHi decrease. Let d0i denote the initial intrinsic dimension.
Then, the following inequality holds:

d0i ≤ rank(T ti),

where T ti represents the transformer block after the t-th gradient step. As fine-tuning progresses,
this inequality becomes progressively tighter, implying that the gap between the initial intrinsic
dimension and the rank of the transformer block reduces over time.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Proof. Here, we outline an intuitive proof of our conjecture. Before fine-tuning, the hidden states
explore a large, unconstrained space, leading to a high intrinsic dimension d0i of the manifold Ni
and a relatively high rank for the transformer block T 0

i . During fine-tuning, the model becomes
specialized for a specific task. It learns to focus on relevant features, causing the hidden states to
lie on a lower-dimensional subspace, which reduces the intrinsic dimension di. Simultaneously, the
rank of Ti decreases as the block’s transformation focuses on fewer independent directions, filtering
out irrelevant information. As both the intrinsic dimension and rank decrease during fine-tuning, the
inequality d0i ≤ rank(Ti) becomes tighter.

This completes the proof.

C DATASETS STATISTICS

C.1 GLUE BENCHMARK

We present the statistics for the GLUE (Wang et al., 2019) datasets used in our experiments in Table
6.

Table 6: Summary of the GLUE benchmark datasets.

Corpus Task #Train #Dev #Test #Label Metrics
CoLA Acceptability 8.5k 1k 1k 2 Matthews Corr.

SST-2 Sentiment 67k 872 1.8k 2 Accuracy

RTE NLI 2.5k 276 3k 2 Accuracy

MRPC Paraphrase 3.7k 408 1.7k 2 Accuracy

QNLI QA/NLI 108k 5.7k 5.7k 2 Accuracy

STS-B Similarity 7k 1.5k 1.4k – Pearson/Spearman Corr.

C.2 SQUAD DATASETS

We present the statistics for the SQUAD (Rajpurkar et al., 2016) datasets used in our experiments in
Table 7.

Table 7: Statistics of the SQuAD dataset.

Train # Validation

SQuAD v1.1 87,599 10,570
SQuAD v2.0 130,319 11,873

C.3 AIROBOROS DATASET

We present the statistics for the Airoboros (Durbin, 2024) dataset used in our experiments in Table
8.

Table 8: Statistics of the Airoboros dataset.

Train

Airobors 29,400

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

C.4 MT-BENCH BENCHMARK

We present the statistics for the MT-BENCH (Zheng et al., 2023b) dataset used in our experiments
in Table 9.

Table 9: Statistics of the MT-BENCH dataset.

Samples

MT-BENCH 80

D EXAMPLES OF RANK PATTERNS

Figure 5: GeLoRA rank pattern for CoLA

Figure 6: GeLoRA rank pattern for MRPC

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Figure 7: GeLoRA rank pattern for RTE

Figure 8: GeLoRA rank pattern for SST-2

Figure 9: GeLoRA rank pattern for QNLI

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Figure 10: GeLoRA rank pattern for STSB

E TRAINING DETAILS

We employ OPTUNA to fine-tune the hyperparameters for the following techniques: LoRA,
GeLoRA, BitFit, and Full Finetuning, while using the optimal parameters for SoRA from the orig-
inal paper. The ranges for hyperparameters include a learning rate between 8e−5 and 1e−3, LoRA
dropout, warmup ratio, and weight decay between 0 and 0.1, as well as two types of schedulers:
linear and cosine.

Hereafter, we summarize the optimal parameters identified across 50 trials, which were used in the
fine-tuning process.

Table 10: Hyperparameters for GeLoRA for each task

Hyperparameter CoLA STS-B MRPC QNLI SST-2 RTE

Learning Rate 8.00e−5 1.69e−4 7.53e−4 1.88e−4 1.61e−4 1.51e−4

Weight Decay 1.00e−1 9.43e−2 5.48e−2 3.00e−2 3.22e−2 6.78e−2

Warmup Ratio 6.00e−2 1.65e−2 3.04e−2 5.91e−2 7.63e−2 6.35e−2

LoRA Dropout 5.00e−2 5.69e−2 1.88e−2 5.36e−2 4.68e−2 7.16e−2

Scheduler Type Linear Cosine Linear Linear Cosine Cosine

Table 11: Hyperparameters for LoRA for each task

Hyperparameter CoLA STS-B MRPC QNLI SST-2 RTE

Learning Rate 3.88e−4 9.80e−5 4.14e−4 2.12e−4 1.27e−4 3e−4

Weight Decay 4.88e−2 3.30e−2 8.94e−2 3.03e−4 3.90e−2 2.96e−2

Warmup Ratio 9.63e−2 3.99e−2 6.28e−2 7.89e−2 8.33e−2 4.9e−2

LoRA Dropout 9.85e−2 1.00e−1 5.51e−2 7.19e−2 8.09e−3 5.13e−2

Scheduler Type Cosine Linear Linear Linear Linear Cosine

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Table 12: Hyperparameters for Full Finetuning for each task

Hyperparameter CoLA STS-B MRPC QNLI SST-2 RTE

Learning Rate 1.12e−4 1.03e−4 6.87e−4 1.03e−4 1.27e−4 9.29e−5

Weight Decay 5.53e−2 3.21e−2 7.48e−2 5.63e−3 3.90e−2 6.35e−2

Warmup Ratio 2.34e−2 9.30e−2 7.44e−2 4.76e−2 8.33e−2 3.33e−2

Scheduler Type Cosine Cosine Cosine Cosine Linear Cosine

Table 13: Hyperparameters for BitFit for each task

Hyperparameter CoLA STS-B MRPC QNLI SST-2 RTE

Learning Rate 7.94e−4 5.53e−4 8.61e−4 7.91e−4 3.36e−4 1.00e−3

Weight Decay 2.00e−2 8.89e−2 9.89e−2 4.70e−3 3.16e−2 1.11e−2

Warmup Ratio 1.00e−1 2.75e−2 8.10e−2 7.07e−2 8.33e−2 6.19e−2

Scheduler Type Cosine Linear Cosine Linear Cosine Linear

25

	Introduction
	Related Work
	GeLoRA: Geometric Low Rank Adaptation
	Intuition
	Theoretical Formulation
	Methodology
	Fine-Tuning Techniques and Datasets
	Experimental setting
	Numerical Results
	Natural Language Understanding: GLUE Benchmark
	Question Answering: SQuAD

	Conclusion and Future Work
	Mathematical Formalism
	Intrinsic Dimensionality
	Definition and Example
	Methodology: Two Nearest Neighbors Estimator

	Transformer Architecture

	GeLoRA: Framework and Theoretical Proofs
	GeLoRA: Pseudocode
	Mathematical Proofs
	Proof of Theorem 3.1 – Intrinsic Dimension as a Lower Bound
	Proof of Theorem 3.2 – Rank Bound of Transformer Blocks
	Proof of Corollary 3.2.1 – Bound on Parameters for Transformer Block Optimization

	Intuitive Proof of Conjecture 3.1 – Transformer Rank Bound Dynamics

	Datasets Statistics
	GLUE Benchmark
	SQUAD Datasets
	Airoboros Dataset
	MT-BENCH Benchmark

	Examples of rank patterns
	Training Details

