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Abstract

Temporal graph structure learning for long-term human-centric video understanding
is promising but remains challenging due to the scarcity of dense graph annotations
for long videos. It is the desired capability to learn the dynamic spatio-temporal
interactions of human actors and other objects implicitly from visual information
itself. Toward this goal, we present a novel Time-Evolving Conditional cHaracter-
centric graph (TECH) for long-term human-centric video understanding with
application in Movie QA. TECH is inherently a recurrent system of the query-
conditioned dynamic graph that evolves over time along the story and follows
throughout the course of a movie clip. As aiming toward human-centric video
understanding, TECH uses a two-stage feature refinement process to draw attention
to human characters and their interactions while treating the interactions with
non-human objects as contextual information. Tested on the large-scale TVQA
dataset, TECH clearly shows advantages over recent state-of-the-art models.

1 Introduction

Capturing the dynamic story in long-term human-centric video presents a powerful testbed for
temporal graph modeling. An important setting is Movie QA, where the questions are to “probe” a
certain aspect of the story – answering them would demonstrate a high degree of understanding. Here
the challenges lie in the analysis of, and reasoning about the long-term temporal dynamic relationships
of the human characters and the surroundings with the guidance of the question being asked. As
movies are long and contain an abundant amount of information, it is also key to selectively attend to
the most relevant visual entities in relation to the query. Current methods [4, 5, 7, 6, 10, 11, 12, 17]
fall short of meeting these challenges.

Dynamic graph learning offers a natural scheme to solve these problems since graphs are coherent
structures to represent the human-centric relationship within a movie clip. Toward this end, we
propose a novel Time-Evolving Conditional cHaracter-centric graph (TECH) that inherits key ad-
vanced properties of temporal graph learning for long-term human-centric video understanding with
application in Movie QA task. Unlike other approaches where graphs often stay static with pre-existed
relations, TECH is a recurrent system of query-conditioned dynamic graphs that evolves along the
time dimension. These dynamic structures allow TECH to effectively model the progressive nature
of information in movie data. In addition, TECH introduces a two-stage representation refinement
process that allows it to focus on the interactions between human characters given the contextual
information of their interactions with the surrounding environment. Arguably, understanding the rela-
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Figure 1: The overall structure of our proposed TECH for the Movie QA. Taking as input visual
entities lives, TECH recurrently refines each entity representation with its surrounding entities living
in the same shot and its own past state. The refined features are then passed through a query-specific
information aggregation module to summarize the information carried by each entity over time.
Later, TECH draws its main focus on the interactions between human characters using a hierarchical
character-centric graph. Finally, an answer decoder is used to map the joint representation of
multimodal inputs to the correct answer.

tionships across human characters is key in human-centric video understanding as these relationships
are often the topic of interest by human queries. Tested on the large-scale TVQA dataset, we clearly
demonstrate the modeling benefits of TECH against the most recent state-of-the-art models in Movie
QA.

2 TECH: Time-Evolving Conditional Character-centric Graph

We present a novel method for solving Movie QA by representing the visual content of the movie as
a dynamic query-conditioned graph of character-object that evolves over time.

Following [2], we detect and track visual features of entities (human characters and non-human
objects) in a video, assuming that they live throughout the course of the video of S shots. This results
in N connected sequences of entities over shots V = {zn,s}N,S

n=1,s=1. Details of visual processing are
provided in the supplementary. The query and answer are encoded similar to those in [4, 11]: Each
query is represented as contextual embedding matrix Q = {Qp ∈ R1×d}LQ

p=1, and a global vector
qg = mean_pooling(Q) ∈ Rd.

Give these visual and linguistic features, we build our model termed Time-Evolving Conditional
cHaracter-centric graph (TECH) to capture the dynamic interactions between human characters and
their surroundings in response to the query. Our TECH is composed of three major modules: (1) Time-
Evolving Conditional Graphs over Video Shots, (2) Query-specific Temporal Information Aggregation
and (3) Hierarchical Character-centric Graph. The readout of TECH is a joint representation ready
for answer prediction. Fig. 1 illustrates how these components interact with each other.

2.1 Time-Evolving Conditional Graphs over Video Shots

Shot-based Entities Graph: We build a dynamic graph Gs (Vs, Es) for each video shot s based
on the interactions between entities living in the same shot. Vertices Vs are a set of N entities
Vs = {zn(s)}Nn=1taken from the representative frame of the shot s. For the sake of readability, we
adhere refer to zn as the feature of object n at shot s. The edges Es ∈ RN×N are an adjacency matrix
implying the relationships between the entities. We obtain Es as a query-induced correlation matrix
of the vertices’ features:

Es = norm
(
AA>

)
; forA = {an}Nn=1 , and an = ReLU

(
w>a ([zn, zn � qg])

)
, (1)

where norm is a normalization operator which is the softmax function in our implementation. wa is
learnable parameters.
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Entity-based Graphs Evolving over Time: Recall that a video typically contains multiple video
shots where each shot s is represented as the above defined graph Gs (Vs, Es). It is crucial to
effectively connect these shot-based graphs to reflect the continuous flow of the spatio-temporal
nature of movie clips. In this work, we design a recurrent graph network that iteratively refines the
representation of each vertex at the present shot s by the information received from its neighbors
within the current shot and the information of itself at the previous shots. Mathematically, assuming
H0

s = {zn(s) ∈ Rd}Nn=1 as the representation of the vertices at iteration 0, the refined representations
of the vertices at iteration l are given by:

TGCNs

(
H l−1

s

)
= W l−1

2 ReLU
(
W l−1

1 H l−1
s Es + bl−1 +W l−1

3 HL
s−1
)
,

H l
s = ReLU

(
H l−1

s + TGCNs

(
H l−1

s

))
, (2)

where l ∈ [1, L], Es is the adjacency matrix given by Eq. 1. HL
s−1 is outputs of the refined

representations of entities at the previous video shot. At the end of this stage, we have a set of S
spatio-temporal representations for each of human characters and non-human objects across video
shots Z̄n =

{
HL

n,s | HL
n,s ∈ Rd

}S
s=1

.

2.2 Query-specific Temporal Information Aggregation

While visual content in a given movie clip may contain a large amount of information, the infor-
mation relevant to a query is more specific. Thus, we design a query-specific temporal information
aggregation module to retrieve visual moments that are only relevant to the query:

z̃n =
1

LQ

LQ∑
p=1

Attention(Qp, Z̄n, Z̄n) ∈ Rd, (3)

where Qp is the p-th word in the contextual query Q of length LQ, and the attention function is
defined in Eq. 5.

2.3 Hierarchical Character-centric Graph

In human-centric video understanding, there are two types of entity-level relations of interest:
character-character and character-object. While one would naturally be more interested in the
relationship between characters and how it develops throughout the course of a movie clip, the
interactions between the characters with their surroundings often provide contextual information.
Inspired by this observation, we design a hierarchical character-centric graph to characterize the
different levels of interest in the character-object relationships as respect to human queries. In
particular, we treat the visual entities Z̃ = {z̃n}Nn=1 obtained by the aggregation function described
above as of two different types: human characters C = {ci}Ii=1 ∈ Rd×I, and non-human objects
O = {oj}Pj=1 ∈ Rd×P, where Z̃ = C ∪O. The graph module operates through two stages of feature
refinement: object-to-character, and character-to-character.

Object-to-Character Refinement For each detected human character ci in C, we build a dynamic
graph Gci , whose nodes are the human character ci and all other detected non-human objects in O.
Let Xi = {ci, O} as the features of the nodes, we follow the procedure of building dynamic graphs
with shot-based features in Sec. 2.1 to build the graph Gciof node features Xi and an adjacency
matrix AO2C

i . Finally, we refine the representation of the nodes using Deep Graph Convolutional
Network (DGCN) [9]: X̄i = DGCN(Xi, A

O2C
i ).

Character-to-Character Refinement Let C̄ = {x̄i}Ii=1 be the the character embedding after the
the last step. We then build a dynamic graph among only the characters with node features C̄ and the
relationships between the characters are denoted by an adjacency matrix AC2C . We then again refine
the representation of the characters with DGCN: Ĉ = DGCN(C̄, AC2C). Finally, we retrieve a joint
representation, ready for answer decoding: r = 1

LQ

∑LQ

p=1 Attention(Qp, Ĉ, Ĉ) ∈ Rd. The answer
decoder is presented in the supplemental material.
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3 Experiments

We evaluate the effectiveness of TECH on TVQA dataset [10]. As our main focus is to understand
characters and the relationships with their surroundings solely from a visual perspective, we do not
use subtitles and timestamp annotations in our experiments. The dataset contains a total of 21, 763
clips from six American TV series. Each movie clip is associated with seven multi-choice-related
questions with five candidate answers, resulting in 152K questions.

Models Val. Acc↑
TVQA w. CNN feat. [10] 42.01
TVQA w. visual concept [10] 44.27
BERT Video QA [16] 44.63
STAGE [11] 45.83
DenseCap* [4] 45.85
TECH 47.79

Table 1: Performance of TECH in com-
parison with state-of-the-art methods on
TVQA dataset (* = no captions used).

Comparison against state-of-the-art methods Table 1
presents the performance of our proposed method TECH
against most recent state-of-the-art (SOTA) methods on
the TVQA validation set. For fair comparisons, we do not
mention models that are extensively pretrained on large-
scale video-text data or models that use external dense
captions such as [1, 3, 4, 18, 19]. As showed, TECH sets
a new state-of-the-art result by achieving 47.79% in QA
accuracy on the validation set, which is around 2 absolute
points better than the latest advances in Movie QA. The
results confirm the benefits of utilizing structured data by
TECH compared to existing methods in movie understanding task.

Ablation studies To provide more insights of TECH, we conduct multiple ablation studies to
examine the contributions of individual modules in TECH. Details of the experimental results are
given in Table 2.

Model Val. Acc.↑
Full model 47.79
w/o query-induced mat. 46.95
w/o time-evolving graph 46.97
w/o query-specific agg. 47.30
w/o char. centric graph 47.10

Table 2: Ablation studies on the TVQA
dataset

B Effectiveness of the query-induced correlation matrix:
We examine the contribution of our query-guided corre-
lation matrix as described in Sec. 2.1. In particular, we
deliberately set the values of the edges of the graphs with
uniform values. This results in a considerable decrease
in performance, confirming that TECH effectively selects
meaningful connections between characters and their sur-
rounding objects toward answering a given query.

B Effectiveness of the time-evolving conditional graphs:
To verify the impact of our time-evolving conditional graphs, we ablate the recurrent graph refinement
step as in Sec. 2.1 from the full model. This degrades the performance of TECH by around 0.8 points.
The result clearly demonstrates the significance of modeling the evolving of information over time in
movie understanding.

B Effectiveness of the query-specific temporal information aggregation: Rather than using the
aggregation operator as in Sec. 2.2, we utilize the mean pooling operation instead. Results show that
doing this would lead to a marginal decrease in performance.

B Effectiveness of hierarchical character-centric graph: We investigate the effectiveness of our
hierarchical character-centric graph by replacing the structure as in Sec. 2.3 with the simple average
pooling operator to get the representation as an input of the answer decoder. Results suggest that this
would hurt the model’s performance by nearly 0.7 points.

4 Conclusion

This paper introduced a Time-Evolving Conditional cHaracter-centric graph (TECH) for long-term
human-centric video understanding with application in Movie QA. Built upon sequences of human
characters and non-human objects living in space-time, we designed TECH as a recurrent system
of query-dependent dynamic graphs that allow information to effectively flow from early points to
later points in time. The design of TECH has shown that modeling temporal graphs was crucial for
movie understanding as it helped reflect the evolution of events in movie clips. TECH also showed
the benefits of paying attention to human characters and their interactions within a movie clip over
the interactions with other non-human objects. With advantages in model design, TECH clearly
advances recent state-of-the-art Movie QA models on the large-scale TVQA dataset.
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A Supplemental Material

A.1 Model Details

Visual features A movie clip typically contains multiple video shots by nature. Hence, we divide
each video input into shots using the common shot transition detection algorithm TransNet V2 [14].
For each video shot, we parse it into visual entities of human characters and non-human objects
using object detection. These detected human characters and non-human objects are tracked and
linked across shots using their visual salience and geometrical positions within respective video
frames following [2]. Formally, given a video with S shots, we only take one key frame per shot to
reduce computation cost. We now represent the given video as a total of N sequences of entities with
appearance features denoted by Za = {zan,s | zan,s ∈ R1024}N,S

n=1,s=1 and positional features denoted
by Zp = {zpn,s | zpn,s ∈ R4}N,S

n=1,s=1, then obtain position-aware visual features of the detected
entities at shot s using the following multiplicative gating mechanism:

zn,s = tanh(Wzazan,s + bza)� σ(Wzpzpn,s + bzp), (4)

where σ(·) ∈ (0, 1) is the sigmoid function and� denotes element-wise product between two vectors.

Attention function We utilize the attention mechanism [15] that takes as input a triplet of query
q ∈ Rd, keys K ∈ Rd×M , and values V ∈ Rd×M :

Attention(q,K, V ) :=

M∑
m=1

softmaxm(
(Wqq)

>WkKm√
d

)WvVm ∈ Rd, (5)

where Wk, Wq and Wv are learnable parameters.

Answer decoder As the task Movie QA in TVQA is defined as a multiple choice test, given input
as the joint representation r and a set Qg = {qg,i}5i=1 represented five question-answer choice pairs,
we use a MLP network with two fully-connected layers, then simply normalize the output by the
softmax function to rank answer candidates:

yi = MLP
(
Wr[r;Wqgqg,i + bqg ] + br

)
, (6)

yprob
i = softmaxi (Wyyi + by) . (7)

Finally, the predicted answer is taken as ȳ = argmaxi

({
yprob
i

}5

i=1

)
.

Loss function In this paper, the cross-entropy is selected as the loss function to train our model.

A.2 Implementation Details

We use Faster-RCNN trained on MS-COCO for frame-wise character-object detection and DeepSort
for multiple object tracking. The RoBERTa pretrained model [13] is utilized to embed the QA pairs
into vectors with a dimension size of 768. The number of characters and objects per video is 4 and
6, respectively. The dimension of hidden features in our model is set to 128. The default setting of
GCN layers is 2. We apply the Adam optimizer [8] with an initial learning rate of 10−4.

A.3 Qualitative Analysis

Figure 2 provides examples where TECH handles successfully while DenseCap struggles. Keys
to answering these questions lie in the capability to capture the long-term temporal dynamics of
human characters with their surrounding environment. DenseCap without explicit long-term temporal
dependencies modeling struggles to predict correct answers.
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Figure 2: Qualitative examples show advantages of TECH in handling long-term temporal relation-
ships in video while DenseCap struggles.
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