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Abstract
Deep Neural Networks (DNNs) are capable of
learning complex and versatile representations,
however, the semantic nature of the learned con-
cepts remains unknown. A common method used
to explain the concepts learned by DNNs is Fea-
ture Visualization (FV), which generates a syn-
thetic input signal that maximally activates a par-
ticular neuron in the network. In this paper, we
investigate the vulnerability of this approach to
adversarial model manipulations and introduce a
novel method for manipulating FV without sig-
nificantly impacting the model’s decision-making
process. The key distinction of our proposed ap-
proach is that it does not alter the model architec-
ture. We evaluate the effectiveness of our method
on several neural network models and demon-
strate its capabilities to hide the functionality of
arbitrarily chosen neurons by masking the orig-
inal explanations of neurons with chosen target
explanations during model auditing.

1. Introduction
Deep Neural Networks (DNNs) have gained widespread
adoption in various domains due to their remarkable learn-
ing capabilities (LeCun et al., 2015). Nevertheless, the fac-
tors driving the decisions of DNNs often remain unknown
and poorly understood, turning them into a “black box”.
This lack of transparency has led to the development of
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Figure 1: The Gradient-Slinghot method manipulates the
result of the Activation-Maximization (AM) for a given neu-
ron with minimal change in its behavior. The figure shows
manipulation of pixel-AM (top, “zero” logit in MNIST
model) and Feature Visualization (bottom, “cat” logit in
CIFAR10 model), where the AMs are manipulated with lit-
tle change to the performance (measured by AUROC).

various approaches aiming to explain the decisions of neu-
ral networks in recent years (e.g. Simonyan et al., 2014;
Sundararajan et al., 2017; Bach et al., 2015). The field
of mechanistic interpretability seeks to explain DNNs by
identifying understandable features and reverse-engineering
the connections between them (e.g. Olah et al., 2017; 2020;
Bricken et al., 2023). Besides insights into the models, these
approaches also unveiled the tendencies of DNNs to pick up
spurious correlations or biases from the training data (La-
puschkin et al., 2019; Goh et al., 2021; Bianchi et al., 2023;
Bykov et al., 2023b). Given the popularity of Deep Learn-
ing in safety-critical fields (e.g. Piccialli et al., 2021; de
la Escalera et al., 2003), these techniques are considered a
cornerstone to achieving trustworthy DNNs.

A well-known method for explaining the concepts learned
by a model is Activation-Maximization (AM) (Erhan et al.,
2009; Olah et al., 2017; Fel et al., 2023). This approach
aims to explain the features learned by a network during
training by illustrating maximally activating input stimuli
for specific units. To date, little is known about the trust-

1



Manipulating Feature Visualizations with Gradient Slingshots

worthiness of AM-based explanation methods. This work
analyzes the susceptibility of these explanation techniques
to adversarial manipulations (Dombrowski et al., 2019; Heo
et al., 2019; Anders et al., 2020). Although previous re-
search has shown that synthetic AM explanations can be
manipulated, e.g., by embedding the target network into a
fooling circuit (Geirhos et al., 2024), this paper presents
the first attempt towards generating arbitrary synthetic AM
outputs while maintaining the original model architecture
and performance.

Concretely, we present the Gradient Slingshots method,
which manipulates synthetically generated Activation-
Maximization signals while preserving the original func-
tionality of the representations (see Figure 1). We show
that these manipulation techniques can successfully conceal
problematic and malicious representations within Deep Neu-
ral Networks (DNNs), making them potentially undetectable
during model audits.

2. Related Work
Activation-Maximization (AM) (Erhan et al., 2009; Si-
monyan et al., 2014) is a popular approach for explain-
ing what abstractions latent representations in DNNs have
learned to detect, by illustrating what features and patterns
maximally activate them. This could be done either by
searching for signals in the corpus of natural data (Szegedy
et al., 2013; Borowski et al., 2020; Bykov et al., 2023a), or
signals could be generated synthetically (Erhan et al., 2009;
Olah et al., 2017; Fel et al., 2023). Such methods allow
for identifying neurons that contribute to undesirable model
behavior (Bykov et al., 2023a; Goh et al., 2021), detection
of backdoor attacks (Casper et al., 2023), and explaining
probabilistic models (Grinwald et al., 2023). Synthesizing
such inputs in an unconstrained input domain often produces
non-interpretable outputs (Olah et al., 2017) which can be
circumvented by regularization strategies or by using a dif-
ferentiable parametrization of the optimized input (Nguyen
et al., 2016; Mordvintsev et al., 2018). Olah et al. (2017)
and Fel et al. (2023) employ Feature Visualization (FV) ap-
proaches based on the parameterization of input signals via
Fourier transform, which serves the purpose of decorrelating
and whitening of the image optimization domain.

The sensitivity of synthetic AM to adversarial manipulations
is not well understood. Geirhos et al. (2024) introduced two
attack schemes on synthetic AM: one involves engineering
“fooling circuits”, while the other replaces “silent units” with
manipulated computational blocks. Although the architec-
tural “add-ons”, such as a convolutional filter encoding the
target image, offer precise control over the AM output, they
are easily detected by inspecting a model’s code. In contrast,
we propose using a manipulation loss term, eliminating the
need for conspicuous architectural modifications.

3. Gradient Slingshots
In this section, we present the Gradient Slingshot (GS) at-
tack that can manipulate the outcome of AM with minimal
impact on the model behavior. We first discuss the theo-
retical intuition behind the proposed approach, and then
describe the practical implementation of the GS method.

3.1. Activation Maximization

Let F be a set of almost everywhere differentiable functions
from an input domain D ⊂ Rd to R. Given a function
f ∈ F, representing the activation of a particular neuron,
the AM method aims to find an input x ∈ D such that it
maximizes the output of the neural representation f . Such
optimization problem is non-convex (Erhan et al., 2009), and
gradient-based methods are often employed to find the local
solution. Conventionally, the optimization process starts
from a randomly sampled initialization point x(0) ∼ I,
where I is a probability distribution with support defined
on D. The update rule for gradient ascent is then given by

x(i+1) = x(i) + ϵ∇xf(x
(i)), (1)

where ϵ ∈ R+ is the learning rate.

3.2. Theoretical Basis

Let f ∈ F be a single neuron within the DNN. We assume
that the adversary performing the manipulation procedure
is aware of the initialization distribution I with x̃ = E [I],
as well as the AM optimization algorithm. The goal of the
adversary is to fine-tune the original neuron f to obtain a
function f∗ so that the result of the AM procedure converges
to a pre-defined target signal s ∈ D, while minimizing the
impact on the network behavior.

Let g ∈ F be a function with a global optimum at s, such
that ∀x ∈ D we have

∇g(x) = γ(s− x), (2)

where γ ∈ R is a constant hyperparameter. This condition
ensures all partial derivatives are directed towards our target
point s, ensuring convergence of the optimization procedure
to this point. Integrating the linear differential equation
yields a quadratic function of the form

g(x) =
1

ϵ

(
s⊤x− 1

2
x⊤x

)
+ C. (3)

Gradient Slingshots (GS) aim to fine-tune the original func-
tion only in a small subset of D, retaining the original be-
havior elsewhere. In more detail, the manipulated version
f∗ of the original function f then takes the form

f∗(x) =

{
f(x) x ∈ D \M
g(x) x ∈ M

, (4)
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where g ∈ F is is as described in Equation (3) and M ⊂ D
is the manipulation subset. Intuitively, M corresponds to the
subset of the input domain that can be reached throughout
the AM optimization procedure. This synthetic subset is
distinct from the domain of natural images (Nguyen et al.,
2019; Geirhos et al., 2024).

We define the ball around the expected initialization B =
{x : ||x̃− x|| ≤ RB , x ∈ D} , where the radius RB is de-
termined by the adversary utilizing the knowledge of the
distribution I. We call the initialization region B “sling-
shot zone”, as it corresponds to high-amplitude gradi-
ents directed at the target. Further, we define L =
{x : ||s− x|| ≤ RL, x ∈ D}, where RL is a parameter. We
refer to L as the “landing zone”, since changing the be-
havior in the neighborhood of the target point s ensures the
stable convergence of a gradient ascent algorithm, implying
∇g(s) = 0. For standard gradient ascent, we can guarantee
the convergence of AM to the target when M = B ∪ L
(see Appendix A.1 for proof). Advanced optimization tech-
niques like Adam (Kingma & Ba, 2017), or AM algorithms
involving transformation robustness (Olah et al., 2017), ex-
pand the manipulation subspace M to include “slingshot”
zones around the initialization mean and points likely to
be reached in the input space during the AM procedure.
In the following, we focus on plain gradient ascent. We
demonstrate our approach on a toy model in Appendix B.

3.3. Practical Implementation

Let a feature-extractor F = {f1, ..., fk}, fi ∈ F,∀i ∈
[1, ..k] be a collection of individual scalar functions, such
that F (x) = (f1(x), ..., fk(x)) . Let m ∈ [1, ..., k] be an
index of the neuron that is set to be manipulated. To sim-
plify the notation, let J = [1, ..., k] \ {m} be a collection
of indexes of neurons, except the neuron m. We denote the
optimized version fθ

i of any fi ∈ F with a superscript θ,
signifying the set of optimized parameters of the model.

We introduce two loss terms: one responsible for manipu-
lating the AM objective, and another for maintaining the
behavior of the original functions.

Let M be a distribution with support defined on a manipula-
tion set M ⊂ D. This is the sampling procedure that defines
sampling from the “slingshot” and “landing” zones. Let M
be a collection of N i.i.d. samples from this distribution:

M = {x1, ..., xN ′ ∈ D : ||x̃− x||∞ ≤ σs}∪
{xN ′ , ..., xN ∈ D : ||s− x||∞ ≤ σl} , (5)

where 1 ≤ N
′ ≤ N , x̃ = E(I), s is the target image and

σs and σl are the manipulation radii in the “slingshot” and
“landing” zones respectively. σs is chosen to adequately
span points highly likely to be drawn from I.

The manipulation loss term, which measures the difference

between existing and required gradients in the manipulated
neuron on M :

LM(θ) =
1

N

∑
x∈M

∥∥∇fθ
m(x)− γ(s− x)

∥∥2
2
. (6)

The preservation term LP measures how the activations
in the manipulated feature-extractor F ∗ differ from the ac-
tivations in the original feature-extractor F . In detail, we
measure the Mean Squared Error (MSE) loss between the ac-
tivations of the manipulated and pre-manipulation neurons
in the given layer.

As the activations of the neural representation fm are more
susceptible to being changed by the manipulation procedure,
we may need to assign more weight to the changes in this
neuron. Given a training set X, we define the following
term for a neuron index subset A ⊂ [1, ..., k]:

LA
P (θ) =

1

|A| · |X|
∑
x∈X

∑
a∈A

||fθ
a (x)− fa(x)||22. (7)

We then formulate the preservation loss term as

LP (θ) = w · LJ
P (θ) + (1− w) · L{m}

P (θ), (8)

where w ∈ [0, 1] is a constant parameter, LJ
P controls the

performance in all neural representations in layer F except
for the manipulated fm, and L{m}

P controls the performance
in the neural representation fm.

Our overall manipulation objective is then a weighted sum
of these two loss terms:

L(θ) = αLP(θ) + (1− α)LM(θ), (9)

where α ∈ [0, 1] is a constant parameter.

4. Evaluation
We perform our evaluation tests on CNNs trained on
MNIST (Deng, 2012) and CNNs trained on CIFAR-
10 (Krizhevsky et al., 2009). The details regarding data pre-
processing, model architectures, training, adversarial fine-
tuning, and AM procedures can be found in Appendix C.

The CNNs trained on the MNIST dataset were manipulated
to alter their AM in the pixel domain (Erhan et al., 2009).
We refer to this approach as pixel-AM. We select an image
of a cross symbol as the target image (see Figure 1) and
manipulate the output neuron responsible for classifying
digit 0. The manipulation result, represented in Figure 1,
closely resembles the target image. The AUROC values
in Figure 1 indicate that the neuron after the manipulation
remains a 0 detector.

The CNNs trained on the CIFAR-10 dataset underwent ma-
nipulation to alter their AM in the scaled Fourier frequency
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Table 1: Manipulated models: Test accuracy, along with the
mean and standard deviation of the similarity (MSE, scaled
by 100) between the manipulated AM and the target image.

MNIST (PIXEL-AM) CIFAR-10(FV)

α ACC. LPIPS ↓ ACC. LPIPS ↓
ORIGINAL 99.867 15.0± 1.2 86.330 26.7± 1.9

1.0 · 10−4 91.058 14.4± 4.0 10.330 21.7± 3.5
3.3 · 10−4 93.058 20.3± 3.9 21.470 21.9± 3.1
6.7 · 10−4 94.967 11.3± 1.3 44.610 19.4± 4.4
1.0 · 10−3 94.750 28.4± 2.0 50.430 19.4± 4.4
3.3 · 10−3 96.967 16.8± 3.4 72.500 12.2± 1.8
6.7 · 10−3 97.300 31.8± 7.9 78.720 11.7± 1.8
1.0 · 10−2 97.358 17.4± 3.3 82.390 7.2± 1.0
3.3 · 10−2 97.958 15.6± 4.6 84.880 12.1± 1.2
6.7 · 10−2 98.450 16.2± 4.1 85.220 12.4± 2.6
1.0 · 10−1 98.883 15.3± 4.1 85.570 14.3± 1.6

Figure 2: Sample FVs and similarity to target at different
values of α for a CNN trained on CIFAR-10. Both very low
and high values of α result in low similarity to the target.

domain (Olah et al., 2017), an approach which we refer
to simply as Feature Visualization (FV). We use an image
with the text “FAKE” as the target image (see Figure 1) and
manipulate a neuron responsible for the class “cat” in the
output layer. From Figure 1, we can observe that the AM
output of the manipulated models is perceptually similar
to the target image. The AUROC values in this figure indi-
cate that, even after manipulation, the neuron remains a cat
detector. We then measure the similarity between the AM
output and the target images using the Learned Perceptual
Image Patch Similarity (LPIPS) (Zhang et al., 2018) metric.

4.1. Accuracy – Manipulation Trade-Off

The manipulation procedure involves a trade-off between
preserving the model performance and achieving the ma-
nipulation objective (Equation (9)). In this experiment, we
manipulate multiple models by varying the parameter α,
which controls the weights of manipulation and preserva-
tion loss terms, and fixing the other fine-tuning parameters.

The experimental results for MNIST models with pixel-AM
and CIFAR-10 models with FV are represented in Table 1.
As anticipated, we observe that very high values of α cor-
respond to a decrease in the similarity of the AM output

Figure 3: “Catfish” neuron: 16 classification models of
varying depth (“A” - “D”) and width (×8 - ×64) trained
on CIFAR-10 were manipulated to change the FV of the
cat output neuron to a fish image. The figure depicts a
sample FV for model B64, the target image, and sample
FVs of the manipulated models, along with the change in
the test accuracy. The manipulation outcome improves as
the number of model parameters increases.

to the target image. Conversely, very low values of α also
result in diminished similarity levels. We hypothesize that
low values of α tend to significantly perturb the overall ac-
tivation landscape, drastically increasing the magnitude of
the gradients in the areas surrounding the “landing zone”.
We provide additional evaluation results, including further
similarity metrics, in Appendix D.1. Figure 2 illustrates
the variation in the LPIPS metric for FV as the parameter
α changes. Full experimental results with two additional
similarity metrics can be found in Appendix D.1.

4.2. Effect of Model Size

In the following, we investigate the influence of the number
of model parameters on manipulation success in terms of
similarity to the target image and changes in model perfor-
mance. Research has shown that even shallow networks
with significant width exhibit extensive memorization ca-
pabilities (Hornik et al., 1989; Zhang et al., 2021), crucial
in our manipulation context requiring target image memo-
rization. Conversely, deeper models can approximate more
complex functions (Eldan & Shamir, 2016).

To assess the impact of the model size on the attack, we
create image classification models with varying depth and
width. Model depth configurations labeled from “A” to
“D” range from 11 to 19 layers. Width configurations are
expressed as a factor, where the baseline number of units in
each layer is multiplied by this factor (see Appendix C for
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details). The original models are trained on the CIFAR-10
dataset. We perform adversarial fine-tuning to replace the
FV output with the image of a goldfish obtained from the
ImageNet (Russakovsky et al., 2015) dataset.

Figure 3 visually illustrates sample FV outputs for all 16
model configurations and demonstrates the change in test
accuracy between the manipulated and original models. The
corresponding quantitative evaluation is presented in Ap-
pendix D.2. A discernible correlation is observed between
the success of manipulation and the number of model pa-
rameters, while the widest models exhibit the best manipu-
lation performance. However, for specifications “×16” and
“×64”, the deepest models do not yield the closest similarity
to the target image. This could be attributed to the shat-
tered gradients effect (Balduzzi et al., 2017), which poses
challenges in training deeper models.

4.3. Effect on Activation Maximization in the Natural
Image Domain

Given that our manipulation objective (Equation (9)) in-
volves an activation-preserving loss term for the training set,
we expect that AM in the natural domain (Borowski et al.,
2020) yields semantically consistent results before and after
manipulation.

For this evaluation we select two manipulated models
from Section 4.1: MNIST model α = 0.067 for pixel-AM
and CIFAR-10 model α = 0.01 for FV. From Figure 4 we
observe that the top 4 most activating images in the test set
before and after manipulation remain semantically consis-
tent in both settings. In theory, inspection of discrepancies
between generative and natural-domain AM results can be
used to detect a Gradient Slingshot attack. However, natural-
domain AM can also be manipulated (Nanfack et al., 2024),
making this defense strategy unreliable. Further quantitative
experiments can be found in Appendix D.3.

Figure 4: Top-4 overall most activating natural signals (n-
AMS) in the test set before and after manipulation. The
manipulation had no significant impact on the semantic
meaning of the top n-AMS signals.

5. Limitations and Future Work
A notable limitation of this study is its focus on the most ba-
sic algorithm for Activation Maximization, namely, gradient
ascent without regularization. An avenue for future research
involves adapting the Gradient Slingshot methodology to
accommodate various AM algorithms. However, in Ap-
pendix E, we offer preliminary evidence of the robustness
of our method to optimization method adjustments, such as
gradient clipping or the use of Adam (Kingma & Ba, 2017).

In the evaluation section, we utilized small-dimensional
datasets and smaller models. Extending our manipulation
approach to higher-dimensional datasets and larger models
may pose challenges due to the computationally demand-
ing task of determining optimal hyperparameters, as illus-
trated in Section 4.1, as well as the curse of dimensionality.
Addressing these limitations may necessitate further im-
provements to our method. We present preliminary results
for ImageNet (Simonyan & Zisserman, 2015) and a Wide
ResNet50 (Zagoruyko & Komodakis, 2016) in Appendix F.

6. Conclusion
Activation-Maximization (AM) methods are extensively em-
ployed for uncovering features learned by Deep Neural
Networks (DNNs). In this study, we theoretically and em-
pirically illustrate that these methods can be manipulated
to display arbitrary images while maintaining the original
model architecture and avoiding a substantial decrease in
performance. By shedding light on the possibility of such
manipulations, we hope to heighten the caution of AI system
users and auditors regarding AM-based methods findings.
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A. Method
In the following, we provide the proof of convergence for a model manipulated with our Gradient Slingshot method when
gradient ascent optimization is used to generate Activation Maximization explanations.

A.1. Proof of Convergence for Gradient Ascent

Let B and L be the “slingshot” and “manipulation” zones with parameters RB and RL, respectively, as described in Sec-
tion 3.1, and let M ′ = B ∪ L. We assume x(0) ∈ M ′, since B is constructed to encompass the likely initialization points
according to the distribution I. Let f∗∗ be a version of the original function f , manipulated on the subset M ′, analogously
to Equation (4):

f∗∗(x) =

{
f(x) x ∈ D \M ′

g(x) x ∈ M ′ , (10)

The multiplier γ in Equation (2) controls the “steepness” of the gradient, and assuming the adversary is aware of the learning
rate ϵ, setting γ = 1/ϵ ensures that the target signal will be reached in one gradient ascent step:

x(1) = x(0) + ϵ∇xg(x
(0)) = x(0) +

(
s− x(0)

)
= s. (11)

Consecutive optimization steps do not change the outcome anymore, since ∇g(x(t)) = 0,∀t ∈ [1,∞] by the construction of
g (Equation (2)). Thereby, we can guarantee that gradient ascent initialized in x(0) ∈ M ′ performed on f∗∗ converges in the
target s.

In case the exact learning rate ϵ is not known, we can guarantee the convergence of the gradient ascent performed on f∗∗ in
s by selecting the parameter RL ∈ R according to the following lemma:

Lemma A.1. In case the adversary does not know the exact value of the learning rate ϵ, but knows the interval ϵ ∈
[a, b], 0 < a ≤ b, a, b ∈ R, the parameter RL should be selected such as:

RL ≥ b− a

a+ b
(||s− x̃||+RB) , (12)

where the lower bound is achieved when γ = 2
a+b .

The lemma identifies the relation between the boundaries of the learning rate and the parameter RL. If the adversary knows
the learning rate, i.e. a = b = ϵ, the Lemma indicates that RL can be set to 0, indicating that to perform the successful
manipulation, the “landing zone” only needs to contain the target point L = {s}.

Proof of the Lemma 3.1. We want that ∀α ∈ [a, b],∀x ∈ B :

x+ ϵ∇g(x) ∈ L, ⇔
x+ ϵγ (s− x) ∈ L ⇔

∥x+ ϵγ (s− x)− s∥ ≤ RL ⇔
∥x+ ϵγs− ϵγx− s∥ ≤ RL ⇔

∥s (ϵγ − 1)− x (ϵγ − 1)∥ ≤ RL, ⇔
∥(s− x) (ϵγ − 1)∥ ≤ RL ⇔
|ϵγ − 1| ∥s− x∥ ≤ RL

Using the triangle inequality:

∥s− x∥ ≤ ∥s− x̃∥+ ∥x̃− x∥ = ∥s− x̃∥+RB

Therefore it is sufficient if RL suffices:

|ϵγ − 1| (∥s− x̃∥+RB) ≤ RL,∀ϵ ∈ [a, b],∀x ∈ B

9
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To find the optimum parameter γ we solve the following min-max problem:

min
γ>0

max
ϵ∈[a,b]

|ϵγ − 1|

We can rewrite the maximization problem as follows:

max
ϵ∈[a,b]

|ϵγ − 1| = max {bγ − 1, 1− aγ}

To minimize the maximum value, we should choose γ such that

bγ − 1 = 1− aγ ⇔
(a+ b) γ = 2 ⇔

γ =
2

a+ b

In this case:

max
ϵ∈[a,b]

|ϵγ − 1| =

max {bγ − 1, 1− aγ} =

b− a

a+ b
.

In practice, we cannot always ensure that our manipulated neural network will precisely approximate g(x) in manipulation
regions. Therefore, we relax the requirement for our “slingshot” mechanism to precisely “hit the target” in the following
lemma:
Lemma A.2. Let f∗ ∈ F be the manipulated function, and RB ∈ R, and ϵ ∈ [a, b], 0 < a ≤ b, a, b ∈ R. Let g ∈ F, such
that

∇g(x) = γ(s− x) + ξ(x), (13)

and ||ξ(x)|| ≤ Q,∀x ∈ D. Then RL should be selected such as:

RL ≥ b− a

a+ b
(||s− x̃||+RB) + bQ, (14)

with the lower bound is achieved when γ = 2
a+b .

Proof of the Lemma 3.2. We want that ∀ϵ ∈ [a, b],∀x ∈ B :

x+ ϵ∇g(x) ∈ L ⇔
x+ ϵ (γ (s− x) + ξ(x)) ∈ L ⇔

∥x+ ϵ (γ (s− x) + ξ(x))− s∥ ≤ RL ⇔
∥(s− x) (ϵγ − 1)− ϵξ(x)∥ ≤ RL

We know that:

∥(s− x) (ϵγ − 1)− ϵξ(x)∥ ≤
|ϵγ − 1| (∥s− x̃∥+RB) + ϵ ∥ξ(x)∥ =

|ϵγ − 1| (∥s− x̃∥+RB) + ϵQ

Solving the min-max problem, we achieve the necessary condition for RL

RL ≥ b− a

a+ b
(∥s− x̃∥+RB) + bQ,

where the right part of inequality achieves minimum at γ = 2
a+b .
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Figure 5: Illustration of the Gradient-Slingshot method on a toy example. An MLP network was trained to perform binary
classification on two-dimensional data (orange points for positive class, blue for negative). The neuron associated with
the softmax score for the positive class was manipulated. The figures, from left to right: A) the activation landscape of
the original neuron, with designated points x̃ and s, B) “slingshot” and “landing” zones, C) the activation landscape after
manipulation including a cross-section plane between the two points, and D) illustration of the manipulated function’s
behavior in the cross-section plane. The manipulated function in the “slingshot” and “landing” zones exhibits parabolic (as
in Equation (3)). Since B ∩ L = ∅, the parabolas in B and L are identical, differing only in the bias constant. This can
be explained since the optimization is performed to shape the gradient of the manipulated function, without imposing any
constraints on the actual activations.

B. Toy Experiment
To illustrate the proposed method, we created a toy experiment, where a Multilayer Perceptron (MLP) network was trained
to distinguish between two classes using two-dimensional data points.

Initially, a 2-dimensional classification problem was formulated by uniformly sampling 512 data points for the positive class
within the two-dimensional ball A+ =

{
x : ∥x∥ < 2, x ∈ R2

}
, and the same number of points for the negative class from

the disc A− =
{
x : 4 < ∥x∥ < 5, x ∈ R2

}
. The dataset was partitioned into training and testing subsets, with 128 and 896

data points respectively. The MLP architecture is as follows: input (2 units) -> fully connected (100 units) x5 -> softmax (2
units). A Tanh activation function was applied after each linear layer, except for the final layer. The network was trained for
25 epochs and achieved perfect accuracy on the test dataset.

The Gradient-Slingshot method was employed to manipulate the post-softmax neuron responsible for the score of the
positive class. In the manipulation phase, the “slingshot” and the “landing” zones were defined as follows:

B = {x : ∥x− x̃∥2 < 5}, (15)
L = {x : ∥x− s∥2 < 5}, (16)

where x̃ = (20,−15), and s = (25,−5).

For the set M , we generated a total of N = 20000 points, which were sampled from the uniform distribution over the union
of B and L. The set X consisted of |X| = 15000 points, with both coordinates independently sampled from a normal
distribution N (0, 10). The parameter γ was set to 0.005. For illustrative purposes, we added a third term to the standard
loss terms of the Gradient Slingshot method (manipulation loss and preservation loss). This additional term was an MSE
loss, which ensured that the activation of the manipulated function was equal to 0.2 at the target point s.

Figure 5 visually demonstrates the manipulation procedure and illustrates how the proposed method alters the activation
landscape. It effectively sculpts the landscape such that the Activation Maximization (AM) procedure, when initiated from a
known location, converges at a predetermined target point.

C. Details on Evaluation Experiments
We offer supplementary experimental details concerning the experiment outlined in Section 4, encompassing dataset
specifics, model training, manipulation procedures, and the AM optimization parameters targeted in both our manipulation
and evaluation.
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Table 2: CIFAR-10 CNN configurations with added layers. The convolutional layer parameters are denoted as
“conv⟨receptive field size⟩-⟨number of channels⟩”. The numbers of channels are expressed as a multiplicative factor
×r, where r is a parameter controlling the width of a model. The batch normalization layers and ReLU activation function
are not shown for brevity. The model depth configurations are labeled from “A” to “D”.

LAYERS A B C D

INPUT (32 × 32 RGB IMAGE)
CONV3-(1× r) ✓ ✓ ✓ ✓
CONV3-(1× r) ✓ ✓ ✓

MAXPOOL
CONV3-(2× r) ✓ ✓ ✓ ✓
CONV3-(2× r) ✓ ✓ ✓

MAXPOOL
CONV3-(4× r) ✓ ✓ ✓ ✓
CONV3-(4× r) ✓ ✓ ✓ ✓
CONV1-(4× r) ✓ ✓
CONV3-(4× r) ✓

MAXPOOL
CONV3-(8× r) ✓ ✓ ✓ ✓
CONV3-(8× r) ✓ ✓ ✓ ✓
CONV1-(8× r) ✓ ✓
CONV3-(8× r) ✓

MAXPOOL
CONV3-(8× r) ✓ ✓ ✓ ✓
CONV3-(8× r) ✓ ✓ ✓ ✓
CONV1-(8× r) ✓ ✓
CONV3-(8× r) ✓

MAXPOOL
FC-8× r

DROPOUT(0.5)
FC-10

C.1. Datasets

For both MNIST and CIFAR-10 datasets, we employ an 80%–20% train-test dataset split. The data is normalized for both
datasets. During CIFAR-10 training and adversarial fine-tuning, we apply a random horizontal flip with a probability of 0.5,
pad all images with 4 pixels on each side, and then randomly crop them back to the original size of 32 × 32.

C.2. Model Architecture and Training

The MNIST CNN architecture is as follows: input -> conv (5x5, 16) -> max pooling (2x2)-> conv (5x5, 32) -> max pooling
(2x2) -> fully connected (512 units) -> fully connected (256 units) -> fully connected (120 units) -> fully connected (84
units) -> softmax (10 units). ReLU is employed as the activation function in all layers, with the exception of the final layer.
We train the model with the SGD optimizer using learning rate of 0.001 and momentum of 0.9 until convergence.The final
test set accuracy of this model is 99.87%.

The CNN architectures for CIFAR-10 are detailed in Table 2. Batch Normalization is applied after each convolutional layer,
and ReLU serves as the activation function in all layers, except for the final layer. The convolutional layer stacks of models
“A64”, “B64”, “C64”, and “D64” align with those in the VGG11, VGG13, VGG16, and VGG19 architectures (Simonyan &
Zisserman, 2015). In Figure 1, Section 4.1, and Appendices D.3 and E, when mentioning a CNN trained on CIFAR-10,
we refer to model architecture A64. In Section 4.2, the evaluation involves the 16 models. The original 16 models for
CIFAR-10 were trained using AdamW (Loshchilov & Hutter, 2019) with a learning rate of 0.001 and weight decay of 0.01
until convergence. The final test set accuracies of the original CIFAR-10 models and the FVs of the cat output neuron are
presented in Figure 6.
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Figure 6: 16 classification models of varying depth (“A” - “D”) and width (×8 - ×64) trained on CIFAR-10 were manipulated
to change the FV of the cat output neuron to a fish image. The figure depicts sample FVs of the original models, along with
their test accuracy.

C.3. Adversarial fine-tuning

In all MNIST experiments, where pixel-AM is manipulated, we use “cross” (Figure 1) as the target image. In CIFAR-10
experiments, where FV is manipulated, we use “FAKE” (Figure 1) as the target image in Section 4.1 and Appendices D.3
and E and “catfish” (Figure 3) as the target image in Section 4.2. Unless otherwise specified, we fine-tune the original
networks based on our defined loss function in Equation 9, with coefficients w = 0.1 and γ = 10.0. For MNIST models,
we employ the sampling set M (defined in Equation (5)) with parameters σs = σl = 1.0. For CIFAR-10, the signals are
sampled in the scaled frequency domain (Olah et al., 2017), and the parameters are σs = σl = 0.1. For both MNIST and
CIFAR-10, the number of sampled signals N is equal to the size of the train set, and the number of points sampled from the
“slingshot” and “landing” zones are equal. In FV manipulation, the target image is parameterized in the scaled frequency
domain. During the fine-tuning process, we temporarily replaced the ReLU activation functions with Softplus, following the
approach discussed in (Dombrowski et al., 2019). The models undergo fine-tuning using the AdamW optimizer with weight
decay 0.01 until convergence. For the MNIST experiments in Section 4.1 and CIFAR-10 “catfish” experiments in Section 4.2,
a learning rate of 0.001 is used. For CIFAR-10 “FAKE” experiments in Figure 1, Section 4.1, and Appendices D.3 and E, a
learning rate of 0.0001 is used. The learning rate is halved on a training epoch loss plateau with a threshold of 0.001.

In Section 4.1, the parameter α is varied. In Figure 1 and Appendices D.3 and E, we use the manipulated CNN fine-tuned
with parameter α = 0.067 from Section 4.1 in MNIST experiments, and the manipulated CNN fine-tuned with parameter
α = 0.01 from Section 4.1 in CIFAR-10 experiments. In Section 4.2, parameter α = 0.01 is uniformly employed for all
manipulated models.

C.4. Activation Maximization Procedure

In Section 4 and Appendix E, we always assume that the auditor performs the AM optimization with a learning rate ϵ = 0.1
for T = 100 steps, employing the standard gradient ascent as the optimizer and sampling each element of x(0) independently
from N (0, 0.01). For the manipulation loss, we set γ = 1/ϵ = 10.0. Both in pixel-AM and FV settings, we initialize signals
randomly from a normal distribution with a mean of zero and a standard deviation of 0.01. For pixel-AM, the initialization
signal is in the input domain. For FV, the initialization signal is sampled in the scaled frequency domain and transformed
into the pixel domain using the forward function adopted from the Torch-Dreams library (Deb, 2021) before being fed
to the network. The forward function involves inverse Fast Fourier Transform. When comparing the AM output before and
after manipulation, the AM procedure parameters remain consistent.
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D. Manipulation Evaluation
In the following section, we present supporting experiments for the accuracy-manipulation trade-off study (Appendix D.1).
Additionally, we provide a quantitative evaluation of the effects of model size on manipulation success (Appendix D.2) and
the effects of out manipulation method on AM in the natural domain (Appendix D.3).

D.1. Accuracy – Manipulation Trade-Off

To compare the AM output to the target images, three image similarity metrics, Mean Squared Error (MSE), the Structural
Similarity Index (SSIM) (Wang et al., 2004) and Learned Perceptual Image Patch Similarity (LPIPS) (Zhang et al., 2018),
are employed. MSE serves as an error measure, with values close to 0 signifying a high degree of resemblance. SSIM, on
the other hand, is a perceptual similarity metric ranging between 0 and 1, where a higher SSIM value indicates increased
similarity between images, and a value of 1 denotes identical images. LPIPS is a perceptual distance measure, whereby a
lower LPIPS score indicates a higher similarity between the two images. In our study, the LPIPS calculations rely on the
deep embeddings extracted from an AlexNet model (Krizhevsky et al., 2012) that has been pre-trained on the ImageNet
dataset (Simonyan & Zisserman, 2015). The results of the evaluation with these metrics are presented in Table 3 and Table 4,
expanding upon the experimental results in Table 1.

Table 3: CNN trained on CIFAR-10: Test accuracy, along with the mean and standard deviation of similarity between the
FV in the manipulated neuron and the target image.

α ACCURACY MSE ↓ LPIPS ↓ SSIM ↑
ORIGINAL 86.330 0.051± 0.004 0.267± 0.019 0.045± 0.022

1.0 · 10−4 10.330 0.016± 0.003 0.217± 0.035 0.217± 0.035
3.3 · 10−4 21.470 0.012± 0.002 0.219± 0.031 0.167± 0.037
6.7 · 10−4 44.610 0.019± 0.007 0.194± 0.044 0.213± 0.060
1.0 · 10−3 50.430 0.013± 0.006 0.194± 0.044 0.280± 0.061
3.3 · 10−3 72.500 0.007± 0.002 0.122± 0.018 0.399± 0.042
6.7 · 10−3 78.720 0.008± 0.001 0.117± 0.018 0.396± 0.032
1.0 · 10−2 82.390 0.003± 0.000 0.072± 0.010 0.513± 0.032
3.3 · 10−2 84.880 0.009± 0.001 0.121± 0.012 0.272± 0.026
6.7 · 10−2 85.220 0.011± 0.003 0.124± 0.026 0.198± 0.039
1.0 · 10−1 85.570 0.011± 0.001 0.143± 0.016 0.164± 0.033
1.0 · 100 86.350 0.051± 0.003 0.269± 0.018 0.048± 0.021

Table 4: CNN trained on MNIST: Test accuracy, along with the mean and standard deviation of the similarity between
pixel-AM in the manipulated neuron and the target image.

α ACCURACY MSE ↓ LPIPS ↓ SSIM ↑
ORIGINAL 99.867 0.139± 0.007 0.150± 0.012 0.038± 0.032

1.0 · 10−4 91.058 0.138± 0.014 0.144± 0.040 0.104± 0.086
3.3 · 10−4 93.058 0.167± 0.019 0.203± 0.039 0.017± 0.089
6.7 · 10−4 94.967 0.020± 0.001 0.113± 0.013 0.782± 0.006
1.0 · 10−3 94.750 0.117± 0.002 0.284± 0.020 0.179± 0.014
3.3 · 10−3 96.967 0.148± 0.008 0.168± 0.034 0.070± 0.047
6.7 · 10−3 97.300 0.102± 0.033 0.318± 0.079 0.308± 0.211
1.0 · 10−2 97.358 0.052± 0.036 0.174± 0.033 0.598± 0.202
3.3 · 10−2 97.958 0.056± 0.042 0.156± 0.046 0.599± 0.232
6.7 · 10−2 98.450 0.029± 0.012 0.162± 0.041 0.732± 0.091
1.0 · 10−1 98.883 0.035± 0.015 0.153± 0.041 0.706± 0.118
1.0 · 100 99.292 0.146± 0.006 0.162± 0.015 0.032± 0.039
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D.2. Effect of Model Size

We further provide the quantitative evaluation of the model size experiments described in Section 4.2 in Table 5.

Table 5: Quantitative evaluation of the model size impact: Rows labeled “A” to “D” indicate model depth, and columns
denote the multiplicative factor of model width. Mean and standard deviation of a distance metric (MSE) between the FV in
the manipulated models and the target image.

×8 ×16 ×32 ×64

A 0.113± 0.015 0.049± 0.005 0.043± 0.007 0.025± 0.005
B 0.082± 0.015 0.087± 0.007 0.051± 0.005 0.033± 0.005
C 0.116± 0.026 0.073± 0.007 0.046± 0.011 0.015± 0.002
D 0.076± 0.038 0.082± 0.01 0.033± 0.004 0.026± 0.035

D.3. Effect on Activation Maximization in the Natural Image Domain

For this evaluation we select two manipulated models from Section 4.1: MNIST model α = 0.067 for pixel-AM and
CIFAR-10 model α = 0.01 for FV. We collect from the test data the set S∗ of top-100 n-AMS in the manipulated model
and the set S of top-100 n-AMS in the original model. The Jaccard similarity coefficient between S∗ and S is 0.55 for the
pixel-AM and MNIST model setting and 0.30 for the FV setting and CIFAR-10 model. A substantial overlap in top n-AMS
signals before and after manipulation is observed, underscoring the importance of conducting AM on natural images as a
manipulation defense strategy.

E. Going Beyond Standard Gradient Ascent
Until now, we have explored attack modes focused on standard gradient ascent. However, we observed that while our
manipulation loss term directly targets only gradient ascent, when we apply various adjusted forms of AM to resulting
fine-tuned models, the AM output still resembles the target images, or, at the very least, deviates noticeably from the original
AM. We theorize that by making the “slingshot” and “landing” zones sufficiently large, our manipulation becomes more
robust to various AM optimization algorithm variations.

In the following sections, we evaluate several adjustments to the plain gradient ascent algorithms:

1. Gradient clipping (GC)
Gradient clipping is a method employed to mitigate the issue of exploding gradients, typically observed in DNNs. This
method is also being used in the scope of synthetic AM. We constrain the gradient norm to 1.0.

2. Transformation robustness (TR)
Transformation robustness has been introduced as a technique aimed at enhancing the interpretability of FVs. This
technique is realized through the application of random perturbations to the signal at each optimization step and
facilitates finding signals that induce heightened activation even when slightly transformed (Nguyen et al., 2019; Olah
et al., 2017). We apply the following sequence of transformations1:

• padding with 3 pixels on each side for MNIST and 5 pixels for CIFAR-10;
• random affine transformation with the range of degrees from -20° to 21°, scaling factor from -0.75 to 1.025 and

fill value 0.5;
• random rotation with the range of degrees from -20° to 21°;
• randomly crop back to the original image size

3. Changing the optimizer algorithm to Adam
Adam (Kingma & Ba, 2017), a popular optimization algorithm for training neural network weights, can also be applied
in AM settings. When employing Adam as an AM optimizer, we always reduce the AM learning rate ϵ to ϵ/10.

1The transformations are implemented using Torchvision. See https://pytorch.org/vision/main/
transforms.html for further details.
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Figure 7: Different strategies for Pixel-AM manipulation
with a CNN trained on MNIST. All strategies successfully
eliminate the target image from the AM output, yet none
manage to restore the original “zero” concept visualization.

Figure 8: Different strategies for FV manipulation with a
CNN trained on CIFAR-10. The TR strategy successfully
restores the “cat” concept, albeit not when employed in com-
bination with GC and Adam.

In the quantitative evaluation of each strategy, we expect the AM to be similar to the target image and dissimilar to the AM
of the corresponding neuron in the original model. Accordingly, we defined the following two metrics:

• Distance to Target For evaluating how different AM outputs are from the pre-defined target image, Q = 100 AM
signals x∗

q , ∀q ∈ {1, ..., Q} are sampled from manipulated neural representation f∗
m. We define Distance to Target

metric D2T : F× D → R as:

D2T (f∗
m, s) =

1

Q

Q∑
q=1

LPIPS (xq, s) . (17)

• Distance to Original For evaluating how different AM outputs of the manipulated model are from the signals obtained
from the original model, Q = 100 AM outputs x∗

q , ∀q ∈ {1, ..., Q} are sampled for the manipulated model f∗
m, as

well as Q AM outputs xq′ , ∀q′ ∈ {1, ..., Q} from the original model fm. We define Distance to Original metric
D2O : F× F → R as:

D2O(f∗
m, fm) =

1

Q2

Q∑
q=1

Q∑
q′=1

LPIPS
(
x∗
q , xq′

)
. (18)

We evaluated the proposed AM adjustments in the context of both manipulation experiments: AM in the pixel domain and
FV. One manipulated model for each case from the experiments described in Section 4.1 was selected for the evaluation:
MNIST model α = 0.067 for pixel-AM and CIFAR-10 model α = 0.01 for FV.

Table 6: Quantitative evaluation of AM adjustment strategies across the metrics Distance to Target (D2T ) and Distance to
Original (D2O), for pixel-AM manipulation (CNN trained on MNIST) and FV manipulation (CNN trained on CIFAR-10).

STRATEGIES PIXEL-AM FV

D2T ↓ D2O ↑ D2T ↓ D2O ↑
NONE 0.1581 0.1661 0.0705 0.2138
GC 0.3219 0.2199 0.0817 0.2230
TR 0.2699 0.2922 0.2692 0.0730
ADAM 0.3367 0.1426 0.0791 0.1923
ADAM+GC+TR 0.3112 0.2301 0.1680 0.1863

The visual outcomes of applying the different strategies for pixel-AM are depicted in Figure 7. Figure 8 showcases sample
results of implementing the strategies for FV. Quantitative evaluation of the AM adjustments is presented in Table 6. For
pixel-AM, all strategies eliminate the target image from the AM output (D2T ). However, none of the strategies restore
the original AM, as measured by similarity to the original (D2O). Perceptually, none of the manipulated AMs resemble a
zero. For FVs, the TR strategy is the only one to counteract manipulation and reveal an image similar to a cat. In practical
applications, TR is often used in combination with GC and Adam (Deb, 2021; Tensorflow, 2017). This combination proves
to be less resistant to manipulation.
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F. Going Beyond Toy Models
Manipulable explanations are not confined to VGG-similar architectures and smaller dimensional datasets, such as MNIST
and CIFAR-10. We provide an example of our manipulation on a different architecture and another high-dimensional
dataset. We manipulate the Feature Visualizations of the “wolf spider” output neuron of a Wide ResNet50 (Zagoruyko
& Komodakis, 2016) pre-trained on ImageNet (Russakovsky et al., 2015). The pre-trained model was obtained from the
Torchvision library (Marcel & Rodriguez, 2010). The target image is a photo of a dalmatian2.

For the preservation loss of the manipulation, we use a subset of 64 ImageNet classes, each containing 600 samples. For
testing, we use a subset of 20 different ImageNet classes, including “wolf spider”. Interestingly, after the manipulation, the
model’s overall performance only slightly decreases from 84.13% to 81.86%, despite using only a subset of ImageNet for
the preservation loss and despite testing on different classes.

Figure 9: Visualization of feature visualization (FV) results for a Wide Resnet50 pre-trained on ImageNet, depicting the
target image and the manipulated AM of the “wolf spider” output neuron across various optimization steps.

From Figure 9, we can directly observe the effect of the Gradient Slingshot method. After a single step, the state of AM
optimization is perceptually very similar to the target image; however, the step 1 image is noisy. Intuitively, the “slingshot”
missed the “landing” zone, causing subsequent steps to move further away from the target. We attribute this to the “landing”
zone of the manipulated model not being large enough. The curse of dimensionality makes manipulation with substantial
radii of “slingshot” and “landing” zones computationally challenging. We hypothesize that performing this experiment
across a hyperparameter grid may yield better results.

The manipulation fine-tuning parameters was performed with coefficients α = 0.1, w = 0.1, γ = 200.0. We employ
the sample the manipulation set M in the scaled frequency domain with parameters σs = σl = 1.0 · 10−8. The number
of sampled signals N is equal to the size of the train set, and the number of points sampled from the “slingshot” and
“landing” zones are equal. The models undergo fine-tuning using the Adam optimizer with a learning rate of 1.0 · 10−6

until convergence. The learning rate is halved on a training epoch loss plateau with a threshold of 0.001. The AM is
performed with a standard gradient ascent with a learning rate ϵ = 0.005, sampling each element of x(0) independently
from N (0, 1.0 · 10−9).

2Photo by Maja Dumat / CC BY 2.0.
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