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Abstract
Using deep neural networks as computational
models to simulate cognitive processes can pro-
vide key insights into human behavioral dynamics.
Challenges arise when environments are highly
dynamic, obscuring stimulus-behavior relation-
ships. However, the majority of current research
focuses on simulating human cognitive behaviors
under ideal conditions, neglecting the influence of
environmental disturbances. We propose CogRe-
act, which integrates drift-diffusion with deep
reinforcement learning to simulate granular ef-
fects of dynamic environmental stimuli on the hu-
man cognitive process. Quantitatively, it improves
cognition modeling by considering the temporal
effect of environmental stimuli on the cognitive
process and captures both subject-specific and
stimuli-specific behavioral differences. Qualita-
tively, it captures general trends in the human
cognitive process under stimuli. We examine our
approach under diverse environmental influences
across various cognitive tasks. Overall, it demon-
strates a powerful, data-driven methodology to
simulate, align with, and understand the vagaries
of human cognitive response in dynamic contexts.

1. Introduction
Modeling human cognition is a fundamental challenge in
understanding human behaviors (Jaffe et al., 2023). In partic-
ular, modeling the effects of environmental dynamics (e.g.,
stress (Cheng, 2017) and feedback (Costa et al., 2019)) on
cognitive performance could elucidate behavioral responses
to tasks (Cheng, 2017) and inform the design of feedback
mechanisms to augment cognition (Costa et al., 2019). How-
ever, prior research (Jaffe et al., 2023; Peterson et al., 2018;
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Battleday et al., 2021; Peterson et al., 2021) predominantly
concentrates on modeling human cognition under standard
and ideal conditions, often neglecting the nuanced impact
of environmental stimuli (Do et al., 2021). Alternatively,
some studies treat environmental stimuli as a constant factor
throughout the cognitive process (Bourgin et al., 2019).

We propose that a more nuanced modeling approach is im-
perative, particularly when dealing with dynamic stimuli
that can fluctuate over time, contingent upon user perfor-
mance. This nuanced approach involves stimuli variation at
fine-grained timescales, exerting a continuous influence on
human cognitive behaviors. To illustrate, consider an ani-
mated visual stimulus conveying time pressure (Slobounov
et al., 2000). Such stimuli inform users of the passage of
time, evoking sensations of pressure. Representing these
stimuli as a binary existence indicator would oversimplify
their nuanced effects. Therefore, this paper raises a funda-
mental question: How to simulate the impact of dynamic
environmental stimuli on the regulation of human cogni-
tive behaviors with precision at a fine-grained level?

We address this question starting by examining how dy-
namic time pressure stimuli (Zur & Breznitz, 1981) influ-
ence cognitive performance, particularly within the context
of a math arithmetic task, a widely utilized benchmark for
evaluating human cognition and logical reasoning (Lin et al.,
2011; Judd & Klingberg, 2021; Daitch et al., 2016). The
dynamism inherent in time pressure feedback encompasses
two primary facets. Firstly, the presentation of time pres-
sure can be dynamic, involving the delivery of progressively
changing visual frames over time (Fig. 5(a)), thereby in-
stilling a sense of urgency. Secondly, the presence of time
pressure may vary dynamically across different trials. Since
time pressure stimuli represent a well-established feedback
modality to modulate human cognitive performance (Cheng,
2017; Slobounov et al., 2000; Moore & Tenney, 2012; Ed-
land & Svenson, 1993; Whittaker et al., 2016), modeling
such a modulation effect holds the promise to offer valu-
able insights in understanding human cognition (Jaffe et al.,
2023) and facilitating adaptive intervention design for regu-
lating user performance (Costa et al., 2019).

In this paper, we introduce a systematic hybrid framework
(CogReact) depicted in Fig. 1. This framework integrates
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Figure 1. Illustration of the overall framework. First, we train a logical reasoning agent to solve cognitive tasks without considering
user response. Second, we transfer features extracted from the logical reasoning agent without time pressure to real user choice and
response time (initial estimation). Third, the initial estimated response time and predicted choice probability generate an evidence
accumulation trajectory in the drift-diffusion model. Lastly, the DRL agent simulates influence of stimuli perturbation on cognitive
process by taking dynamic environmental stimuli as input and takes a specific action to modulate evidence accumulation process. When
evidence accumulator achieves the boundary threshold, the final prediction of response time is generated and the DRL agent achieves a
terminate state.

a classical closed-form cognitive model into a data-driven
deep reinforcement learning (DRL) approach, allowing for
a comprehensive and explainable simulation of the impacts
of dynamic, fine-grained time pressure stimuli.

While neural networks (NNs) are recognized for their pro-
ficiency in function approximation and have been applied
to model cognitive behaviors (Bourgin et al., 2019), their
inherent black-box nature poses challenges in representing
the internal mechanisms of the cognitive process.

To address this limitation, our framework integrates DRL
with the drift-diffusion model (DDM), a sequential sampling
method widely employed in cognitive modeling (Ratcliff
& McKoon, 2008; Steyvers et al., 2019). DDM posits that
humans make decisions by accumulating evidence until
reaching a boundary threshold (Fudenberg et al., 2020). The
simulated choice and response time are then determined
based on the corresponding boundary and accumulation
time. While DDM excels in representing the cognition pro-
cess in an explicable and fine-grained manner, it primarily
focuses on posterior estimation of user decisions rather than
predicting user future performance under stimuli.

On the other hand, DRL, with NNs at its core, offers a step-
by-step interaction environment. This environment enables
the incorporation of the fine-grained cognitive process in-
herent in DDM while retaining the function approximation
capabilities of NNs. This hybrid approach bridges the gap
between the transparency of classical cognitive models and
the flexibility of data-driven methods, presenting a promis-
ing avenue for modeling the intricate dynamics of cognition
under dynamic time pressure stimuli.

In addition, we further show the generalization ability of
our framework by extending it into two additional public

datasets in more diverse task (decision making, learning)
and feedback modalities (numeric, textual). In summary,
our contribution is three-folded:

• We propose CogReact, a hybrid framework to incorpo-
rate classical cognition models (drift-diffusion model)
with deep reinforcement learning to simulate perturba-
tion of environmental stimuli on evidence accumula-
tion process during human cognitive response.

• We comprehensively validate the effectiveness of our
framework by comparing with a range of baselines and
extensive ablation studies. Additionally, we are open-
sourcing our code and a newly collected large dataset1,
comprising 21,157 logical reasoning responses, as a
contribution to the research community.

• We demonstrate how our framework is adapted to three
representative cognitive tasks: mathematical reason-
ing, decision making, and learning. This adaptation
for both discrete user inputs and continuous behaviors
establishes a foundation for extending the framework
to accommodate diverse user cognitive responses.

2. Related Work
Cognitive Process Models. The existing literature has
amassed empirical evidence supporting feasibility of model-
ing human cognition (De Boeck & Jeon, 2019). Traditional
cognitive models, exemplified by BEAST (Erev et al., 2017)
and the drift-diffusion model (DDM) (Ratcliff & McKoon,
2008; Steyvers et al., 2019), are characterized by closed-
form structures. For example, DDM (Ratcliff & McKoon,

1https://github.com/cogreact/CogReact
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2008) treats the cognitive process as an evidence accumula-
tion process for humans to make decisions, thus simulating
the speed-accuracy tradeoff (Heitz, 2014).

Cognitive Simulation with Machine Learning. More re-
cently, there has been a notable shift toward the integration
of machine learning techniques (Cichy & Kaiser, 2019)
for simulating human behaviors (Peysakhovich & Naecker,
2017; Lake et al., 2017; Ma & Peters, 2020) across an ar-
ray of tasks, including visual cognition (Cho et al., 2023;
Wenliang & Seitz, 2018), categorization (Battleday et al.,
2017), decision making (Binz & Schulz, 2024; Peterson
et al., 2021; Bourgin et al., 2019), game strategy (Hartford
et al., 2016), human exploration (Binz & Schulz, 2022),
word learning (Ritter et al., 2017), etc.

Response Time Simulation. Of particular note, recurrent
neural networks (RNNs) (Jaffe et al., 2023; Song et al.,
2017; 2016) have been adapted to execute various cogni-
tive tasks (Yang et al., 2019) emulating human performance
and the balance between accuracy and response time ob-
served in biological vision (Spoerer et al., 2020). Recently,
(Goetschalckx et al., 2024) computed human-like reaction
time from convolutional RNN using evidential deep learning
(Sensoy et al., 2018). Furthermore, task-DyVA (Jaffe et al.,
2023) modeled cognitive response time with RNN-based
latent dynamical systems.

These existing models predominantly simulate response
time under ideal conditions. In contrast, limited work has
focused on modeling the impact of external stimuli pertur-
bations, such as environmental stress, on task performance.
We argue that a more nuanced modeling approach is essen-
tial, especially when addressing dynamic external stimuli
that fluctuate over time based on user performance. This
refined approach requires capturing stimuli variations at fine-
grained timescales, which exert a continuous and evolving
influence on human cognitive behaviors.

3. Model and Methodology
3.1. Math Reasoning Task and Dataset

We used a math arithmetic task with time pressure visual
stimuli as our initial model exploration context. The illus-
tration of the task and stimuli is depicted in Fig. 5 and
in Appendix A.2. In each math trial, participants were
presented with two two-digit numbers and tasked with de-
termining whether their subtraction result was divisible by a
given one-digit number. Participants made a binary decision
for each trial, with varying settings of time pressure stimuli
described below.

We collected an extensive dataset encompassing 21,157
valid responses (choice accuracy and response time) from
44 participants engaged in the task (see Fig. 6(a)). To

enhance dataset diversity and evaluate our model under dy-
namic environmental stress, participants were randomly and
uniformly distributed across four distinct groups: None
Group: Participants experienced no time pressure for any
trial. Static Group: Time pressure was consistently applied
for each trial. Random Group: There was a 50% probability
of time pressure being applied for each trial. Rule Group:
Time pressure was adaptively applied based on user past per-
formance using a rule-based strategy (more details of such
strategy are provided in Appendix A.3.4). This collection
has been approved by the Institutional Review Board (IRB)
in our local institution. More details are in Appendix A.2.

Our dataset analysis in Appendix A.4 revealed that human
accuracy remained unaffected by external stimuli, as partic-
ipants were instructed to prioritize accuracy over speed to
control the speed-accuracy tradeoff (Heitz, 2014). Conse-
quently, to model cognitive response due to external stimuli,
we focus on simulating response time rather than choice
accuracy, aligning with (Goetschalckx et al., 2024).

3.2. CogReact Framework

Inspired by exploratory analysis (Appendix A.4) and exist-
ing cognitive theories (Roseboom et al., 2019; Yang et al.,
2019; Mickey & McClelland, 2014), our framework com-
prises four key steps, as illustrated in Fig. 1. In the initial
step, we train a long short-term memory (LSTM)-based logi-
cal reasoning agent (termed math agent) to proficiently solve
the designated cognitive task. The second step involves the
knowledge transfer from these trained agents to establish
mappings from the LSTM agent to human performance met-
rics. This yields predictions for human response time and
accuracy for each trial. Moving to the third step, we em-
ploy a fine-grained Drift-Diffusion Model (DDM) to decode
human performance, extracting detailed information about
response time and accuracy. This step is pivotal in gener-
ating the evidence accumulation process (EA) reflective of
the underlying cognitive mechanisms. In the final step, we
introduce a deep reinforcement learning (DRL) agent to the
framework. This agent plays a crucial role in simulating the
impact of stimuli perturbation on the evidence accumulation
process. By leveraging DRL, we can capture the nuanced
dynamics of how external stimuli, such as time pressure,
influence the intricate logical reasoning processes modeled
by the DDM. We describe details of the first two steps in
Section 3.3 and the last two steps in Section 3.4.

3.3. Math Agent and Transfer to Humans

To simulate the impact of time pressure, it is imperative
to first predict user baseline performance in ideal condi-
tions without time pressure. Drawing inspiration from prior
research that models human subjects’ time perception by
capturing internal activities in perceptual classification net-
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Table 1. Evaluation of selected baselines in math reasoning task.
For MAPE, we show its mean value (Mean), standard deviation
(STD). More complete results with more baselines are in Table 4.

MAPE

Model Input Type Model Type Name Mean STD

I.
Task: Video,
Feedback: Video

hGRU 0.3335 0.2486
LSTM + AlexNet 0.3344 0.2602
LSTM + VGG-16 0.3355 0.2708
LSTM + ViT-B-16 0.3339 0.2573
MLP + 3D ResNet 0.3330 0.2507

II.
Task: Encoded String,
Feedback: Video

LSTM-V1 + 3D ResNet 0.3334 0.261
LSTM-V2 + 3D ResNet 0.3376 0.2169
MLP + 3D ResNet 0.3331 0.2550
Transformer + 3D ResNet 0.3306 0.2496
CogReact 0.2999 0.2318

III.
Task: Numeric,
Feedback: Video

LSTM-V1 + 3D ResNet 0.3341 0.2617
LSTM-V2 + 3D ResNet 0.3286 0.2538
MLP + 3D ResNet 0.3333 0.2579
Transformer + 3D ResNet 0.3315 0.2526

IV.
Task: Numeric,
Feedback: Numeric

Decision Tree 0.3617 0.3640
Linear Regression 0.3595 0.3608
LSTM 0.3059 0.2434
MLP 0.3293 0.2441
Random Forest 0.3650 0.3684
SVM 0.3299 0.3108
Transformer 0.3052 0.2446
CogReact 0.2703 0.2224

V.
Task: Encoded String,
Feedback: Numeric

Decision Tree 0.3639 0.3639
Linear Regression 0.3512 0.3469
LSTM 0.3278 0.2478
MLP 0.3333 0.2577
Random Forest 0.3600 0.3630
SVM 0.3245 0.3101
Transformer 0.3299 0.2481

works (Roseboom et al., 2019), we have devised a baseline
prediction model. Specifically, (Roseboom et al., 2019) con-
structed a neural network functionally akin to human visual
processing for image classification. The network was then
exposed to input videos of natural scenes, causing changes
in network activations. The accumulation of salient changes
in activation was subsequently used to estimate duration,
effectively gauging the perceived passage of time in the
video through a Support Vector Machine (SVM).

Similarly, our baseline prediction model employs an LSTM
neural network to address cognitive tasks (Yang et al., 2019).
In particular, we train an LSTM-based math answer agent
(Fig. 1(a)) to learn and respond to math questions, thereby
achieving functional similarity with human cognition in
math tasks (Yang et al., 2019). The intermediate output of
the LSTM layer serves as input features for the SVM, estab-
lishing mappings between agents and humans to estimate
user choice and response time (Fig. 1(b)). The rationale
of this approach is that distinct math questions may pose

varying levels of difficulty, leading to user choice biases
and variations in response time (Hanich et al., 2001). The
LSTM-based agent has the capacity to capture these poten-
tial differences in difficulty levels (Mickey & McClelland,
2014; Zaremba & Sutskever, 2014), and the SVM is em-
ployed to map these to user choice (via SVC, a classification
model in SVM) and response time (via SVR, a regression
model in SVM). More details on the rationale of the math
answer agent and SVM models are provided in Appendix
A.5, A.6, Fig. 7.

3.4. Hybrid DRL to Simulate Stimuli Perturbation

To simulate how dynamic time pressure perturbs human
logical reasoning process, we conceptualize this process
as an evidence accumulation (EA) process in line with the
Drift-Diffusion Model (DDM) (Ratcliff & McKoon, 2008)
(Fig. 1(c)). The EA process segments user cognition into
sequential steps, facilitating the fine-grained modeling of
dynamic time pressure. The boundary threshold and accu-
mulation time parameters in the DDM are derived from the
predicted responses obtained from the previous SVM model.
In order to simulate the dynamic impact of time pressure
visual stimuli, we introduce a DRL agent. The visual stimuli
are segmented into frames, aligning with the steps in the
EA process. For each frame, the specific visual stimuli are
applied to the DRL agent (Fig. 1(d)), which, akin to how
participants’ logical reasoning processes may be influenced
by each frame of stimuli, modulates the EA process. In
particular, for each frame of time pressure stimuli, the DRL
agent adjusts the EA process by introducing a positive, neu-
tral, or negative bias (action space of the DRL agent). This
modulation may result in the evidence accumulator reaching
the boundary threshold either earlier or later. The output
from this DRL-modulated EA process serves as the final
prediction of user response time (Details in Appendix A.7).

4. Evaluation
4.1. Human Response Time Simulation Performance

We first demonstrate the effectiveness of our CogReact
framework in human response time simulation by compar-
ing with baselines using different stimuli encoding schemes.

The model input is composed of three parts: math task
stimuli, environmental feedback stimuli (time pressure),
and task question ID. The question ID is a numeric value
indicating the trial number for participants in the math task.
Our exploratory analysis in Appendix A.4 has depicted the
relevance of question ID in human response time.

In CogReact, the math task stimuli are represented by one-
hot encoded textual strings and the feedback stimuli are
represented by videos. However, there are also different
ways to extract features from the model input. For example,
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Figure 2. Experimental results in the logical reasoning task. a,b,c,d: Examples of user response time in chronological order from one
participant in each group predicted by the Hybrid/Pure DRL agent in LOPO-level training, compared with ground truth. e: Pearson
correlation between predictions from Hybrid/ Pure DRL agent (HD: Hybrid DRL, PD: Pure DRL) and human real response time (ground
truth) in four training strategies (All: General-level, Group: Group-level, Ind: Individual-level, LOPO: LOPO-level). Small gray dots,
medium dots, and large gray dots represent Pearson correlation of prediction results from each participant’s testing set, each group’s
testing set (red:none, yellow:static, black:random, blue:rule) and whole testing set, respectively. The right y axis depicts overall average
MAPE of two agents in four training strategies. f,g: Training curve for Pure DRL (f) and Hybrid DRL (g) models.

we can treat both task stimuli and feedback stimuli as nu-
meric values directly or we can put both math task stimuli
and feedback stimuli into the whole video as model input,
just as humans watch them in the task. Therefore, we eval-
uate five types of model input to represent the features of
task stimuli and feedback stimuli and use corresponding
baseline models, as depicted in Table 1 and Table 4. More
details of each model input type and the training/testing
hyperparameters/process are depicted in Appendix A.9.

When encoding both task stimuli and feedback stimuli into
a whole video, we use hGRU (Goetschalckx et al., 2024),
LSTM with pre-trained vision models (Jaffe et al., 2023),
and MLP with pre-trained 3D ResNet (Bourgin et al., 2019)
as the baseline. These models are adapted into our problem
corresponding to the recent state-of-the-art (SOTA) mod-
els in human decision making (Bourgin et al., 2019) and
response time prediction (Goetschalckx et al., 2024; Jaffe
et al., 2023). Similarly, for other types of model input, we
also use related SOTA models in the specific input type
domain. More details of baseline models and adaptation
into our problems are depicted in Appendix A.9.

We use Mean Average Percentage Error (MAPE) instead of
Mean Squared Error (MSE) to evaluate the response time
difference between real humans and simulations because
human response times exhibit high individual differences

(Faust et al., 1999). Therefore, for deep learning models,
we use MAPE loss function instead of MSE loss function.
Training details are in Appendix A.9.

Results are depicted in Table 1 and Table 4, showing that
CogReact in both Type II and Type IV has the best response
time prediction performance (lowest MAPE) by comparing
with other models in both the same and different model input
types. Specifically, CogReact in Type IV has a more efficient
representation (numeric encoding) during the model infer-
ence process and achieves the best performance. We also
perform statistical analysis in both Kolmogorov-Smirnov
test and Permutation test because they do not necessarily
assume the data to be normally distributed. We applied them
in all baselines. Results in Table 5 show that CogReact in
Type II achieves significantly lower MAPE (p < 0.001)
than most baselines except for LSTM/Transformer in Type
IV (numeric for task/feedback). This is due to different
task/feedback modality encoding since CogReact uses Type
II (Task: String, Feedback: Video). When we apply CogRe-
act to numeric encoding of Type IV as well, results in Table
6 show that ours can also achieve significantly lower MAPE
(p < 0.001) than LSTM/Transformer in Type IV.

MAPE Variance. Despite the superiority, we observed high
variance in MAPE, largely driven by individual differences
across users and variability in the math trials they completed.
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These factors interact, amplifying prediction error variance.
To isolate their effects, we held one factor constant while
averaging over the other: (a) Fixing Users: Averaging pre-
dicted and actual response times across all trials per user,
then computing MAPE, yielded a mean of 0.1388 (STD:
0.0641, 95% CI: [0.0316, 0.2378]). (b) Fixing Trials: Aver-
aging across users per trial and computing MAPE resulted in
a mean of 0.1403 (STD: 0.0865, 95% CI: [0.0292, 0.2855]).
Both approaches significantly reduced variance compared
to the overall results (Mean: 0.2703, STD: 0.2224, 95% CI:
[0.0093, 0.7631]), suggesting that the high variability stems
from the interaction of user and trial differences.

The performance improvement stems from the entire frame-
work, including useful features from the math logical rea-
soning agent and the integration of the drift-diffusion model
in the DRL agent to simulate feedback stimuli in a fine-
grained manner. In what follows, we run ablation studies to
show the unique importance of each component.

4.2. Importance of Task Encoding with Math Agent

To demonstrate that the math answer agent indeed captures
representative features from math questions, in the first
ablation study, we compare SVM models (second step in
our framework) with two additional settings where the SVM
models do not take features captured from the math answer
agent as input. Instead, they take raw three-digit numbers
from the math questions or one-hot encoded vectors (same
as the input of the math logical reasoning agent in Appendix
A.5) of raw numbers as input, along with the question ID.
The SVM performance in the three settings is depicted in
Table 3. Notably, SVM models with features from the math
answer agent exhibit significantly higher accuracy (0.9613)
and F1-score (0.8996) for user choice prediction and lower
MAPE (0.3652) for response time estimation than other
settings, underscoring the effectiveness of the math answer
agent in capturing representative math question features and
the feasibility of predicting user baseline performance in
ideal conditions without environmental stimuli using SVM.

4.3. Why Does the Logical Reasoning Agent Work?

The second ablation study explores why the math logical rea-
soning agent can extract useful features from math questions
(first step of our framework). We answer this question by
exploring its math task solving performance under different
numbers of output neurons from LSTM layer.

Note that the math answer agent aims to solve math tasks
correctly instead of predicting human choice. In short, given
one math question as input, it could directly output the arith-
metic reasoning answer. Therefore, its training and testing
have no correlation with real-user responses. Hence, we
prepare a separate dataset that is independent of the human
dataset to train the agent. Finally, we traverse all possible

combinations of three numbers in math questions and got a
dataset containing 20,414 samples, which is split into train-
ing set (80%) and testing set (20%). Given that the first two
numbers of math questions are both two-digit, the arithmetic
reasoning result is chosen from 0 to 8. Consequently, the
ground truth encompasses 9 classes.

We experimented with different numbers of output neu-
rons (32, 64, 128, 256) from the LSTM layer. After 100
epochs of training, the logical reasoning agent with 256 neu-
rons achieved remarkable results, attaining a training loss of
0.0001 and 100% accuracy (Fig.9(b)). The confusion matrix
(Fig.9(a)) for the testing set also demonstrates that this neu-
ron configuration yields over 99% accuracy for all classes,
resulting in an overall test accuracy of 99.93%. Moreover,
even for other neuron numbers, the test accuracy is also high
enough (more than 95%). These outcomes affirm that the
LSTM-based logical reasoning agent adeptly solves math
arithmetic problems in the majority of cases. This aligns
with existing work (Mickey & McClelland, 2014; Zaremba
& Sutskever, 2014), which demonstrated the capacity of
neural networks to learn mathematical equivalence. The
success of the logical reasoning agent in solving arithmetic
problems lays a foundation and explains its capability for
extracting representative features from math questions to
construct cognition models.

4.4. Importance of Integrating DDM into DRL Agents

The third ablation examines the importance of DDM in DRL
agents, to simulate the perturbation of external stimuli on hu-
man response time in a fine-grained manner. We introduce a
baseline DRL model called the pure DRL agent, which does
not incorporate the DDM. Specifically, this pure DRL agent
does not segment time pressure visual stimuli into frames.
Instead, for each trial from the dataset, it directly takes the
entire time pressure visual stimuli as input and outputs one
action representing the overall change in response time due
to time pressure. The final estimation of regulated response
time is the sum of this action and the basic response time
estimated by the SVR models (details in Appendix A.8, Fig.
8). Moreover, we also directly remove the whole hybrid
DRL agent and only use SVR models to predict response
time as another ablation baseline.

We employ both MAPE and Pearson correlation to compare
the performance of the hybrid DRL and pure DRL agents.
Four model training strategies are used below: (a). General-
level involves splitting the entire dataset into training (80%)
and testing (20%) sets for overall model evaluation. (b).
Group-level trains and tests a specific model using data
from each group, revealing performance across different
time pressure stimuli. (c). Individual-level trains and tests
a model using data from a specific participant, assessing per-
sonalized model feasibility incorporating subject-specific
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Figure 3. a,b,c,d: Time pressure effect trajectories of four groups, respectively. e: Box plot of relative response time change across four
groups in the whole dataset. f,g,h: Box plot of mean value of time pressure effect trajectories (f), standard deviation of action trajectories
(g), slope of time pressure effect trajectories (h) of four groups in predicted testing dataset by Hybrid DRL agent. The slope of one
trajectory is calculated from the start point to the end point of the trajectory.

behavioral differences. Shuffling is applied to training and
testing sets to prevent overfitting artifacts. (d). As shuf-
fled testing disrupts the temporal trend of user response
time across different math trials, we incorporate Leave-
One-Participant-Out (LOPO) training as an additional
training strategy. This strategy selects all data from one
participant as the testing set and uses data from other partic-
ipants in the same group as the training set. By traversing
every participant’s data as the testing set, we ensure a com-
prehensive assessment of model performance in capturing
temporal trends of response time.

Fig. 10 illustrates the average MAPE of the testing set for
each individual user (a,b,c,d) and each group (e,f,g,h). Both
the hybrid DRL and pure DRL agents show an improve-
ment in response time estimation compared to SVM results.
However, the hybrid DRL agent consistently achieves lower
MAPE compared to the pure DRL agent in most cases, indi-
cating the superiority of the hybrid DRL agent in response
time estimation. The overall average MAPE for the entire
testing set by both agents is depicted on the right y-axis of
Fig. 2(e), further supporting this conclusion. Fig. 2(e) also
reveals that the hybrid DRL agent exhibits a larger Pear-
son correlation in individual testing sets (small dots), group
testing sets (medium dots), and the whole testing set (large
dots) compared to the pure DRL agent in most cases, across
all four training strategies. Both MAPE and Pearson corre-
lation demonstrate the superior performance of the hybrid

DRL agent in modeling the effect of time pressure stimuli.

To compare which agent design better captures the trend of
response time change in user overall tasks, we visualize the
prediction results and real user response time for the testing
set from one participant of each group in LOPO-level in
chronological order. Fig. 2(a,b,c,d) clearly demonstrate that
the hybrid DRL agent more accurately captures the trend of
user response time compared to the pure DRL agent.

4.5. Training Efficiency

The training curves for both hybrid and pure agents are
presented in Fig. 2(f,g). The pure DRL and hybrid DRL
agents converge at approximately 800,000 steps and 20,000
steps, respectively. It is important to note that the meaning of
one step differs between the two agents. For the hybrid DRL
agent, one step represents one frame of time pressure stimuli
during one trial, whereas one step for the pure DRL agent
represents the entire trial. Consequently, a direct comparison
of steps is not meaningful. Instead, we compare the training
time required for both agents to achieve convergence on
the same hardware (GeForce RTX 2080 Ti) and the same
dataset. The results in Fig. 2(f,g) indicate that the hybrid
DRL agent converges in approximately one-tenth of the
time compared to the pure DRL agent (4.42 minutes vs.
38.30 minutes). This outcome underscores the advantage of
incorporating an explicit cognitive model (i.e., the DDM) in
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the hybrid DRL agent to improve training efficiency.

4.6. Interpretability

An essential advantage of the cognition-inspired hybrid DRL
agent is its interpretability, compared to deep learning and
the pure DRL agent, which directly output estimated re-
sponse time changes for each trial, obscuring the internal
mechanism regarding how time pressure stimuli modulate
the logical reasoning process. In contrast, the hybrid DRL
agent can generate a trajectory of the time pressure effect
on response time corresponding to user logical reasoning
process. Therefore, visualizing the trajectories of the hybrid
DRL agent enables extracting new insights of how time
pressure stimuli affect the human logical reasoning process.

We explore this benefit in Fig. 3(a,b,c,d,e,f,g,h). Here,
the action trajectory represents the trajectory of actions
taken by the hybrid DRL agent during one episode, with
each episode corresponding to one math trial of users. The
time pressure effect trajectory is the accumulated actions
multiplied by δp. δp represents one unit of evidence per step,
transforming the normalized action value into the evidence
accumulation process. We visualize the time pressure effect
trajectories across the four groups in Fig. 3(a,b,c,d). Each
curve represents one trajectory predicted by the hybrid DRL
agent during one trial.

We observe that the time pressure effect trajectories are more
concentrated in the random and rule groups but divergent in
the none and static groups (Fig. 3(a,b,c,d)). This suggests
that participants in the random and rule groups, especially
the random group, are better regulated by the corresponding
type of time pressure stimuli, resulting in similar trends in all
time pressure effect trajectories in this group. Quantitatively,
the random group has the lowest standard deviation (STD)
of action trajectories (Fig. 3(g)) and the highest average
value and slope for the time pressure effect trajectories (Fig.
3(f,h)). These findings in the simulation results indicate that
the random group experiences the most effective regulation
of user cognition performance.

This observation aligns with the expectation that users may
quickly adapt to none or static time pressure, ceasing to be
regulated by them after a few trials. However, users may not
anticipate the time pressure in the random group, leading
to a more prolonged regulation effect. This result in the
hybrid DRL simulation is also consistent with real human
results in our initial exploratory findings (Appendix A.4, Fig.
6(e)), where participants in the random group demonstrated
a significantly larger reduction in response time, compared
with other groups. These experiments affirm the hybrid
DRL agent’s capability to explain and support observations
in the real humans’ response time performance.

The comparative analysis between the hybrid and pure DRL

Unencoded 
Hybrid RL

Unencoded 
Hybrid RL

Unencoded 
Hybrid RL

Unencoded 
Hybrid RL

Unencoded 
Hybrid RL

Unencoded 
Hybrid RL

Decision Making Task Learning Task

Random 
Forest

Decision Tree

Linear 
Regression

Random 
Forest

Decision Tree

Linear 
Regression

Hybrid DRL

Pure DRL

Unencoded
Hybrid DRL

Hybrid DRL

Pure DRL

Unencoded
Hybrid DRL

Figure 4. Results in decision making(left) and learning(right) task.

agent designs across three key aspects (response time esti-
mation performance, training efficiency, and interpretability)
highlights the advantages of the hybrid DRL approach in
capturing the nuanced dynamics of time pressure stimuli on
user response time in the logical reasoning process.

5. Generalization
We further evaluate the generalization ability of our model in
two additional public datasets: CPC182 for decision making
and PeerEdu for learning (Xu et al., 2025). Table 2 depicts
the datasets’ properties and summarizes diverse tasks and
feedback modalities for modeling. Dataset details and our
framework adaptation are depicted in Appendix A.11.

Baselines: As both datasets lack video input, we adopt the
same baselines as Type IV/V in Table 1, aligning with base-
lines commonly used in prior work (Bourgin et al., 2019)
that benchmarks the CPC18 dataset. For fair comparison,
in the PeerEdu dataset, we use the same embeddings from
OpenAI’s text-embedding-3-small model to encode textual
data for model input of baselines.

Performance: Consistent with prior experiments, we use
MAPE to evaluate modeling error. As shown in Fig. 4, our
hybrid DRL model achieves the lowest MAPE across both
datasets compared to all baselines, highlighting its effec-
tiveness in generalizing across diverse tasks and feedback
modalities. Moreover, the statistical analyses (same with
previous evaluations) also show significant improvement of
our model over all baseline models in Table 7 and Table 8.

Ablation Study: We further explore the role of each com-
ponent using variants of our framework, as shown in the

2https://cpc-18.com/data/
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Table 2. Task/feedback information and dataset properties.
Task Information Simulation Modality Dataset Information

Task Type Response Type User Action Cognitive Response Task Feedback Stage 1 Source Size User
Math Reasoning Active Binary Response Time String Visual Math Agent Ours 21,157 50
Decision Making Active Binary Response Time Numeric Numeric Risk Agent Public 30,489 240
Learning Passive Continuous Curiosity Textual Textual LLM Agent Public 12,804 300

textured bar results in Fig. 4. The pure DRL variant re-
moves the DDM component from the DRL loop, where
the action space directly represents response time/curiosity
changes without segmenting the evidence accumulation pro-
cess (similar to Section 4.4). The unencoded hybrid DRL
variant removes the first step of the framework (risk/LLM
agent for embedding extraction), while the encoded SVM
variant only includes the first two steps (risk/LLM agent +
SVM) without the DDM or the DRL loop.

Fig. 4 shows that all variants perform worse than the full
framework (hybrid DRL), underscoring the unique and crit-
ical roles of each component. Moreover, the statistical anal-
yses (same with previous evaluations) also show significant
improvement of our model over most ablation models in
Table 7 and Table 8. Removing the first step (unencoded
hybrid DRL) causes a slight performance drop, whereas
removing the DDM (pure DRL) leads to a significant error
increase, performing worse than all baselines. This high-
lights the dominant role of incorporating DDM into the DRL
loop in modeling feedback modulation effects on cognitive
responses. Additionally, removing both DDM and DRL
(encoded SVM) also degrades performance, emphasizing
the importance of the hybrid DRL loop.

Interestingly, the encoded SVM variant (risk/LLM agent +
SVM) performs worse than the straightforward SVM base-
line (without risk/LLM agent), suggesting potential draw-
backs of using risk/LLM embeddings for SVM. However,
removing the risk/LLM agent (unencoded hybrid DRL) re-
sults in worse performance compared to the full hybrid DRL
model. This discrepancy suggests that, while the extracted
features from the risk/LLM agent may not directly bene-
fit the SVM, they still improve the hybrid DRL model by
enhancing and expanding the observation space during the
evidence accumulation process.

DDM in Deep Learning Models. Our previous findings
demonstrated the advantage of integrating DDM into DRL.
To investigate whether this performance gain arises primar-
ily from the deep learning (DL) architecture within DRL
or from the reinforcement learning (RL) component itself,
we conducted an additional study that directly incorporated
DDM into DL models without RL. Specifically, we adapted
LSTM, MLP, and Transformer architectures-identical to
those used in Baseline Model Type IV-with unchanged hy-
perparameters, modifying them to predict DDM parameters
instead of response times. The final response times were

then derived from these predicted parameters. Additionally,
we introduced a variant of MLP (MLPv2), which shares the
same neural network architecture as our Hybrid DRL model,
to assess whether the observed performance gains could
be attributed solely to the combination of DL and DDM.
This experiment was conducted across three datasets, with
the same statistical analyses performed in previous evalua-
tions. The results (Fig. 11) indicate that while DL+DDM
integration sometimes outperforms standalone DL models,
its performance remains significantly inferior to that of the
Hybrid DRL model (p < 0.001). These findings highlight
that the improvement observed in the hybrid DRL model
cannot be attributed solely to DL+DDM integration; rather,
the RL component plays a critical and complementary role
in achieving superior performance.

6. Discussion, Limitations, and Conclusion
We propose a computational framework for simulating en-
vironmental stimuli perturbations on human cognitive pro-
cesses, including logical reasoning, decision-making, and
learning, across diverse task and feedback modalities. By
integrating the drift-diffusion model from cognitive science
with deep reinforcement learning, our framework achieves
higher simulation accuracy, improved training efficiency,
and enhanced interpretability, capturing the granular effects
of dynamic stimuli on cognitive processes. The successful
adaptation of our framework for continuous behaviors (e.g.,
curiosity in learning tasks) lays a foundation for extending
it to handle continuous user inputs beyond binary responses.
This advancement has the potential to offer new insights
into machine learning and neuroscience by fostering com-
putational models that better understand human cognition.

One limitation is our focus on response time simulation.
Future extensions could incorporate additional cognitive
measures. A potential path involves training task-solving
agents, like the logical reasoning agent in math tasks, to em-
ulate human task performance. Building on prior research
that highlights the effectiveness of machine learning models
in more than 20 cognitive tasks (Yang et al., 2019), our
framework could be extended to other domains by linking
extracted features from task-solving agents to real user re-
sponses using models like SVM. Finally, by dynamically
adapting the action and observation spaces to task-specific
feedback, the DRL agent could simulate the nuanced effects
of stimuli across diverse cognitive scenarios.
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Kaşikçi, I., Gattas, S., and Parvizi, J. Mapping human
temporal and parietal neuronal population activity and
functional coupling during mathematical cognition. Pro-
ceedings of the National Academy of Sciences, 113(46):
E7277–E7286, 2016.

10

https://openreview.net/forum?id=eiC4BKypf1
https://openreview.net/forum?id=eiC4BKypf1
https://keras.io


CogReact: A Reinforced Framework to Model Human Cognitive Reaction Modulated by Dynamic Intervention

De Boeck, P. and Jeon, M. An overview of models for
response times and processes in cognitive tests. Frontiers
in psychology, 10:102, 2019.

Do, S., Chang, M., and Lee, B. A simulation model of
intermittently controlled point-and-click behaviour. In
Proceedings of the 2021 CHI Conference on Human Fac-
tors in Computing Systems, pp. 1–17, 2021.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,
Heigold, G., Gelly, S., et al. An image is worth 16x16
words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2020.

Edland, A. and Svenson, O. Judgment and decision making
under time pressure. In Time pressure and stress in hu-
man judgment and decision making, pp. 27–40. Springer,
1993.

Erev, I., Ert, E., Plonsky, O., Cohen, D., and Cohen, O. From
anomalies to forecasts: Toward a descriptive model of de-
cisions under risk, under ambiguity, and from experience.
Psychological review, 124(4):369, 2017.

Faust, M. E., Balota, D. A., Spieler, D. H., and Ferraro, F. R.
Individual differences in information-processing rate and
amount: implications for group differences in response
latency. Psychological bulletin, 125(6):777, 1999.

Fudenberg, D., Newey, W., Strack, P., and Strzalecki, T.
Testing the drift-diffusion model. Proceedings of the
National Academy of Sciences, 117(52):33141–33148,
2020.

Goetschalckx, L., Govindarajan, L. N., Karkada Ashok, A.,
Ahuja, A., Sheinberg, D., and Serre, T. Computing a
human-like reaction time metric from stable recurrent vi-
sion models. Advances in Neural Information Processing
Systems, 36, 2024.

Golan, T., Raju, P. C., and Kriegeskorte, N. Controversial
stimuli: Pitting neural networks against each other as
models of human cognition. Proceedings of the National
Academy of Sciences, 117(47):29330–29337, 2020.

Han, J. and Moraga, C. The influence of the sigmoid func-
tion parameters on the speed of backpropagation learning.
In Proceedings of the International Workshop on Artifi-
cial Neural Networks: From Natural to Artificial Neural
Computation, IWANN ’96, pp. 195–201, Berlin, Heidel-
berg, 1995. Springer-Verlag. ISBN 3540594973.

Hanich, L. B., Jordan, N. C., Kaplan, D., and Dick, J. Perfor-
mance across different areas of mathematical cognition in
children with learning difficulties. Journal of educational
psychology, 93(3):615, 2001.

Hartford, J. S., Wright, J. R., and Leyton-Brown, K. Deep
learning for predicting human strategic behavior. Ad-
vances in neural information processing systems, 29,
2016.

Heitz, R. P. The speed-accuracy tradeoff: history, physi-
ology, methodology, and behavior. Frontiers in neuro-
science, 8:86875, 2014.

Huys, Q. J., Maia, T. V., and Frank, M. J. Computational
psychiatry as a bridge from neuroscience to clinical ap-
plications. Nature neuroscience, 19(3):404–413, 2016.

Jaffe, P. I., Poldrack, R. A., Schafer, R. J., and Bissett, P. G.
Modelling human behaviour in cognitive tasks with latent
dynamical systems. Nature Human Behaviour, pp. 1–15,
2023.

Judd, N. and Klingberg, T. Training spatial cognition en-
hances mathematical learning in a randomized study of
17,000 children. Nature Human Behaviour, 5(11):1548–
1554, 2021.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks.
Advances in neural information processing systems, 25,
2012.

Kumbhar, O., Sizikova, E., Majaj, N., and Pelli, D. G. Any-
time prediction as a model of human reaction time. arXiv
preprint arXiv:2011.12859, 2020.

Lake, B. M., Ullman, T. D., Tenenbaum, J. B., and Gersh-
man, S. J. Building machines that learn and think like
people. Behavioral and brain sciences, 40, 2017.

Legg, A. M. and Locker Jr, L. Math performance and its
relationship to math anxiety and metacognition. North
American Journal of Psychology, 11(3), 2009.

Lin, C.-T., Chen, S.-A., Chiu, T.-T., Lin, H.-Z., and Ko,
L.-W. Spatial and temporal eeg dynamics of dual-task
driving performance. Journal of neuroengineering and
rehabilitation, 8(1):1–13, 2011.

Linsley, D., Kim, J., Veerabadran, V., Windolf, C., and Serre,
T. Learning long-range spatial dependencies with horizon-
tal gated recurrent units. Advances in neural information
processing systems, 31, 2018.

Ma, W. J. and Peters, B. A neural network walks into a lab:
towards using deep nets as models for human behavior.
arXiv preprint arXiv:2005.02181, 2020.

11



CogReact: A Reinforced Framework to Model Human Cognitive Reaction Modulated by Dynamic Intervention

Mehrer, J., Spoerer, C. J., Kriegeskorte, N., and Kietzmann,
T. C. Individual differences among deep neural network
models. Nature communications, 11(1):1–12, 2020.

Mickey, K. W. and McClelland, J. L. A neural network
model of learning mathematical equivalence. In Proceed-
ings of the annual meeting of the cognitive science society,
volume 36, 2014.

Moore, D. A. and Tenney, E. R. Time pressure, performance,
and productivity. In Looking back, moving forward: A
review of group and team-based research, volume 15, pp.
305–326. Emerald Group Publishing Limited, 2012.

Noti, G., Levi, E., Kolumbus, Y., and Daniely, A.
Behavior-based machine-learning: A hybrid approach
for predicting human decision making. arXiv preprint
arXiv:1611.10228, 2016.

Pajares, F. and Miller, M. D. Role of self-efficacy and self-
concept beliefs in mathematical problem solving: A path
analysis. Journal of educational psychology, 86(2):193,
1994.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
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A. Appendix
A.1. Ethics Statement

Our experiment for human data collection in logical reason-
ing tasks was approved by the Institutional Review Board
(IRB) at our local institution. We do not anticipate any
risk during data collection and we have obtained informed
consent from all participants beforehand. Our work may
provide insights to integrate classical cognitive theories into
machine learning models. In neuroscience, effective com-
putational models for response time could pave the way for
understanding many key cognitive behaviors and neurobi-
ological disorders(Goetschalckx et al., 2024; Huys et al.,
2016). We do not anticipate the negative impact on society
in this context.

A.2. Task and Dataset

As depicted in Section. 1, we used a math arithmetic
task with time pressure visual stimuli as our model explo-
ration context. The illustration of the task and stimuli is
depicted in Appendix Fig. 5. In short, each math trial
was composed of two two-digit numbers Num1, Num2

and one one-digit number Num3, formatted as: Num1 ≡
Num2 (modNum3). To solve this question, participants
first subtracted Num2 from Num1 and judged whether
the subtraction result could be divisible by Num3. If it
was divisible, they selected ”True” button. Otherwise, they
selected ”False” button. When the time pressure stimuli hap-
pened, a progress bar was shown on top of the math question,
which added one unit for each second and reset and added
again when it accumulated five units. The human response
time was then calculated from the time when the math task
appeared per trial, to the time when the participants clicked
one button to answer it.

We collected an extensive dataset encompassing 21,157
valid responses from 44 participants engaged in the math
task (see Fig. 6(a)). To enhance dataset diversity and eval-
uate our model under dynamic environmental stress, par-
ticipants were randomly and uniformly distributed across
four distinct groups: None Group: Participants experienced
no time pressure for any trial. Static Group: Time pressure
was consistently applied for each trial. Random Group:
There was a 50% probability of time pressure being ap-
plied for each trial. Rule Group: Time pressure was adap-
tively applied based on users’ past performance using a
rule-based strategy (more details of such strategy are in Ap-
pendix A.3.4). Each participant engaged in a two-day study,
featuring one exercise session (20 trials) and one formal
session (300 trials) per day, when we collected participants’
choices and response time per trial. This collection has
been approved by the Institutional Review Board (IRB) at
our local institution. We do not anticipate any risk dur-
ing data collection and we have obtained informed consent

from all participants beforehand. More dataset details are in
Appendix A.3.

A.3. Dataset Collection

A.3.1. PARTICIPANTS

We recruited 50 participants in total (age 21.44 ± 3.22 y
(mean ± SD); 27 female) from our local institution to finish
the math modular task (details in Fig. 5(a)). Participants
were recruited by email groups at our local institution and
came from a variety of majors including engineering, com-
puter science, biology, and so on. Six participants took
part in the preliminary study to explore potential configura-
tions of study design, whose results were removed. Other
44 participants were randomly and uniformly divided into
4 groups in order to fully capture the potential effects of
time pressure in cognition performance, as described before.
Two participants withdrew from the study and three did not
finish the study completely. We also removed another three
participants’ results whose study duration was longer than 3
hours. This was much longer than normal study duration of
other participants (within 1 hour) and suggested that partici-
pants neither focused on the task nor took this experiment
seriously. Finally, we had 36 participants: None Group (10),
Static Group (9), Random Group (7), Rule Group (10). This
study has been approved by the Institutional Review Board
(IRB) at our local institution. We have obtained informed
consent from all participants before study.

A.3.2. PROCEDURE

All participants took part in a two-day study. For each day,
they were asked to first finish an exercise session containing
20 math trials and then finish a formal session containing
300 math trials. The exercise session aimed to familiar-
ize the users with tasks and measure users’ baseline per-
formance (without time pressure). In the formal session,
different time pressure mechanisms were provided for differ-
ent groups as mentioned above. Additionally, participants
were requested to rate their current attention/anxiety status
on a 7-point Likert scale every 30 trials. There was also a
5-min rest between exercise session and formal session. It
took each participant an average of one hour for the study
per day. In the study, participants were told to always take
accuracy as the priority and then try their best to answer
questions as soon as possible. The compensation rule for
each participant (ranging from $10 to $100) also prioritized
average accuracy over response time in order to encourage
participants to follow our instructions. We finally obtained
a large data set of 21,157 logical responses after removing
invalid user response.
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A.3.3. MATH QUESTION GENERATION AND
DISTRIBUTION

All math questions are composed of two two-digit numbers
(Num1, Num2) and one one-digit number (Num3). We
denote the three numbers as Num1 = ab, Num2 = cd,
Num3 = e, respectively. So each math question could be
denoted as ab ≡ cd (mod e), where a ∈ [1, 10), b ∈ [2, 10),
c ∈ [1, 10), d ∈ [1, b), e ∈ [3, 10). All math questions are
randomly generated for each trial. We have traversed all
possible combinations of math digits in the math question
format, which are distributed uniformly in the whole math
space for the four groups. Participants’ accuracy and the
provided time pressure feedback are also distributed uni-
formly.

A.3.4. GROUPS

Here we describe details of four groups in dataset collection.
None Group: Participants experienced no time pressure for
any trial. Static Group: Time pressure was consistently
applied for each trial. Random Group: There was a 50%
probability of time pressure being applied for each trial.
Rule Group: Time pressure was adaptively applied based on
users’ past performance using a rule-based strategy. More
details about such strategy are depicted below.

Rule-based strategy is designed to provide adaptive time
pressure feedback for each trial according to participants’
past performance in the Rule group. There is a response
buffer to update and save user response of most recent 20 tri-
als. For each new user response, it is updated in the response
buffer. Then we calculate five metrics (mean response time,
delta response time, mean accuracy, push counter, and toler-
ant counter) in the buffer to decide whether the time pressure
feedback is delivered to participants in the next trial. The
time pressure feedback only happens if: (a). Mean response
time exceeds its threshold RT. Here we use the average re-
sponse time in exercise session of each specific participant
to be RT. (b). Delta response time exceeds its threshold
deltaRT = 1 second. (c). Mean accuracy is lower than its
threshold accuracy TA. Here we use the average accuracy
in exercise session of each specific participant to be TA.
(d). Push counter is lower than its threshold PC = 3. (e).
Tolerant counter achieves its threshold TC = 2. When the
time pressure feedback is decided to be delivered to the
participant in the next trial, push counter adds 1 unit and
tolerant counter is reset to 0.

These five metrics aim to ensure that time pressure feedback
does not increase user response time but could increase user
accuracy. Push counter and tolerant counter are designed
to avoid introducing too much distraction to users. The
strategy tolerates for a few trials and does not deliver time
pressure feedback even if the first three metrics achieve
the threshold. After the tolerant counter achieves the TC

threshold, it delivers time pressure feedback. In addition,
if the strategy delivers time pressure for too many times
(exceeding PC threshold), the time pressure feedback is still
not delivered to users. Therefore, rule-based strategy is
a relatively conservative strategy which cares more about
avoiding introducing additional distraction to users.

A.4. Dataset Exploration

To investigate the impact of different time pressure stim-
uli on cognition performance, we conducted an initial ex-
ploratory analysis on the dataset. To mitigate the influence
of chance factors, we divided the 300 trials of the formal
session into five blocks of equal size and calculated the
block-wise averages for accuracy, response time, attention,
and anxiety scores. Recognizing the inherent variability in
users’ baseline performance, we aimed to elucidate the im-
pact of time pressure across different groups by comparing
the relative change in user performance and status across
the four groups. Specifically, let Ri denote the average re-
sult of Blocki, where R1 (Block1) represents the baseline
performance. The final relative result for Blocki (i > 1) is
(Ri −R1)/R1 for accuracy and response time change and
Ri −R1 for attention and anxiety change. This adjustment
accounts for the fact that attention/anxiety scores linearly
reflect user status, while response time/accuracy changes
need to be normalized against participants’ individual base-
line performances. The obtained results were then analyzed
using repeated-measures ANOVA. To discern specific dif-
ferences, Bonferroni-corrected paired post hoc t-tests were
employed for pairwise comparisons between the groups,
enabling a thorough exploration of the impact of different
time pressure stimuli on cognition performance and user
status.

A.4.1. RESPONSE TIME

In the analysis of between-subjects effects, the ANOVA re-
vealed a significant effect of Group (F3,32 = 3.015, P =
0.044 < 0.05) (Fig. 6(e)). Specifically, a significant differ-
ence was identified between the none group (mean ± SD:
−0.012± 0.021) and the random group (−0.105± 0.025)
with p = 0.039 < 0.05. The rule group showed a larger
reduction in response time (−0.034± 0.021) compared to
the none group but a smaller reduction compared to the
static group (−0.054± 0.022). Notably, the random group
exhibited the most substantial reduction in response time.
These results suggest that different types of time pressure
stimuli may exert varying effects on response time.

Regarding within-subjects tests, a significant effect was
observed across blocks (F3,96 = 7.121, P < 0.001) (Fig.
6(e)), specifically between the following blocks: Block2
(−0.031 ± 0.011) vs. Block4 (−0.070 ± 0.014): p =
0.023 < 0.05, Block2 vs. Block5 (−0.072 ± 0.014):
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Progress Bar Math Trial

Selection Button

(a) (b) (c)

A Ba b

Figure 5. a: Math arithmetic task and time pressure feedback. Each math trial is composed of two two-digit numbers Num1, Num2 and
one one-digit numer Num3, formatted as: Num1 ≡ Num2 (modNum3). To solve this question, participants first subtract Num2

from Num1 and judge whether the subtraction result could be divisible by Num3. If it is divisible, they select ”True” button. Otherwise,
they select ”False” button. When the time pressure feedback happens, a progress bar will be shown on top of the math question, which
adds one unit for each second and reset and add again when it accumulates five units. b: Overall trend of relative change of response
time/accuracy (left y axis), and attention/anxiety (right y axis), respectively, across 4 blocks.

p = 0.026 < 0.05, Block3 (−0.033 ± 0.013) vs. Block4:
p = 0.008 < 0.01, Block3 vs. Block5: p = 0.025 < 0.05.

No interaction was found between Block and Group
(F9,96 = 0.958, P = 0.48). Furthermore, there was no
significant effect of Date (F1,32 = 0.003, P = 0.959) (Fig.
6(a)), and no other significant interaction effects were iden-
tified (all P > 0.05). These findings provide valuable
insights into the differential impact of time pressure stimuli
on response time and underscore the significance of within-
subject variations across different blocks.

A.4.2. ACCURACY

No significant effect was observed in Group (F3,32 =
0.081, P = 0.97 > 0.05), Block (F3,30 = 0.313, P =
0.816 > 0.05) (Fig. 6(f)), or Date (F1,32 = 0.861, P =
0.36 > 0.05) (Fig. 6(b)). Additionally, no other signif-
icant interaction effects were identified (all P > 0.05).
This outcome aligns with expectations, as participants were
instructed to prioritize accuracy over response time consis-
tently. Consequently, the accuracy of users’ choices should
generally be high, while response time may vary depending
on the stimuli. The lack of significant effects in these factors
supports the study design and participants’ adherence to the
specified priority in their decision-making process.

The above results suggest that both time pressure stimuli
and block number (not experiment date) may impact user re-
sponse time. This evidence contributes valuable insights and
aligns with prior theory (Slobounov et al., 2000; Alexander

et al., 2003), providing a foundation to inform the design of
our cognition model. The observed effects underscore the
relevance of considering both math task and question ID in
modeling and understanding the dynamics of user response
time under varying conditions.

A.5. Math Logical Reasoning Agent

Existing work revealed humans’ varied performance on dif-
ferent cognitive tasks of diverse difficulty levels (Hanich
et al., 2001). Therefore, it is essential to first encode features
such as difficulty levels of cognitive tasks so that we could
model participants’ varied responses to different math ques-
tions stem from features inherent in the questions. These
features may influence user choice and response time even
in ideal conditions (i.e., without external stimuli). To cap-
ture such features, we train a logical reasoning agent capable
of solving math questions in a manner similar to humans.
Subsequently, feature representations are extracted from the
intermediate output of this logical reasoning agent.

Illustrated in Fig. 1 and Fig. 7, we employ an LSTM-
based logical reasoning agent that takes a math question as
input and outputs the corresponding answer. For example,
given the sequence “61 ≡ 26(mod 4)” as input, the agent
outputs ”3” (the remainder of the subtraction result, ”35,”
of ”61” and ”26,” divided by ”4”). It is essential to note the
distinction from the data collection process, where users are
required to choose whether the subtraction result (”35”) of
”61” and ”26” is divisible by ”4”–a binary selection task.
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Figure 6. a,b,c,d: overall distribution of relative change of response time (a), accuracy (b), attention (c), and anxiety (d), respectively,
across 2 days. e,f,g,h: box plot of relative change of response time (e), accuracy (f), attention (g), and anxiety (h), respectively, across 4
groups and 4 blocks.
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In other words, the logical reasoning agent is trained to an-
swer math arithmetic tasks correctly, rather than to predict
user responses. This design choice ensures that the agent
learns the potential arithmetic reasoning process and gener-
ates representative features of math questions, rather than
performing a binary classification task.

The logical reasoning agent is a sequence-to-sequence
model based on an LSTM model. Before inputting
the math question into the LSTM, the math question
is encoded into sequence vectors from original string
format. Each math question is denoted as ab ≡ cd (mod e),
comprising 11 characters. We use one-hot encod-
ing to deal with the characters. Specifically, each
character is mapped into a 1 × 17 vector, where the
location of this character in a pre-built character dictionary
([‘0’,‘1’,‘2’,‘3’,‘4’,‘5’,‘6’,‘7’,‘8’,‘9’,‘≡’,‘(’,‘m’,‘o’,‘d’,‘)’,‘
’]) is denoted as 1, and other locations are denoted as 0. So
we finally obtain the 11× 17 vector for each math question.

For each math question string (1 × 11), we use sequence
encoding mentioned above to encode it into a sequence
vector (11× 17), which is then fed into the LSTM model.
The hidden unit is 256 neurons, which is then connected
with 17 neurons with softmax activation function. Finally,
the neuron with the highest probability is the final output
answer. We use Keras(Chollet et al., 2015) to implement the
model (loss function: categorical cross entropy, optimizer:
Adam, learning rate: 0.001).

The logical reasoning agent aims to solve math tasks cor-
rectly. In short, given one math question as input, it directly
outputs the arithmetic reasoning answer. Therefore, the
training and testing of logical reasoning agent have no cor-
relation or connection with real users’ response. Hence, we
prepare a separate dataset that is independent with users’
dataset to train the logical reasoning agent. Finally, we
have traversed all possible combinations of three numbers
in math questions and gotten a dataset including 20414 sam-
ples, which is split into training set (80%) and testing set
(20%).

A.6. SVM Model Configuration

As previously mentioned, the second step in our simulation
framework (Fig. 1) involves transferring features captured
by the logical agent to real responses of humans by utilizing
SVM models to predict users’ baseline performance without
time pressure. The features comprise the intermediate out-
put of the LSTM layer, with the output neuron number set to
256, resulting in 256 features captured by the math answer
agent. During cognition performance analysis, we observed
that users’ performance is influenced by the block number.
Therefore, for each trial, we introduce the question id as
an additional input feature, concatenated with the previous
256 features for SVM models. The question id denotes the

corresponding trial number in the dataset, resulting in a total
of 257 features for predicting user response for each sam-
ple/trial. Users’ response encompasses both user choice and
response time. Consequently, the SVM models consist of a
binary SVM classifier (SVC) to predict user choice (True or
False selection) and an SVM regressor (SVR) to estimate
user response time.

The SVM model is implemented with scikit-learn(Pedregosa
et al., 2011). We use default regularization parameter, kernel,
and other parameters for both SVM classifier (SVC) and
regressor (SVR). The SVR takes 256 features from LSTM
layer of math logical reasoning agent as well as question id
for input and predicts user response time. The SVC not only
predicts user response (choice) but also the probability Rp

for each possible response, which serves as the boundary
threshold in the drift-diffusion model.

A.7. Hybrid DRL Agent with Drift-Diffusion Model

A.7.1. DRIFT-DIFFUSION MODEL (DDM)

The DDM assumes that users make decision by accumulat-
ing evidence for each choice and make the final selection
when the evidence accumulator achieves the threshold. Our
framework incorporates the SVM model’s predicting results
into the DDM. Specifically, we use the output probability
of SVC as the accumulated evidence, whose start point is
0.5. The boundary threshold is Rp, which is the probability
when SVC makes the predictions. Different from traditional
DDM that uses Bayesian modelling to draw a distribution of
user response time, we need to have a fine-grained trajectory
from start point to end point for each math trial to support
our reinforcement learning process. Here we use Sigmoid
function(Han & Moraga, 1995) to represent the trajectory
from the start point to the end point. When users are solving
math questions, they are usually more confident given more
time to answer (Legg & Locker Jr, 2009; Pajares & Miller,
1994). Therefore, we could use a monotonic function to
represent the trajectory T , i.e. the Sigmoid function. More-
over, we use Brownian motion (Smith, 2016) to add noise
into the Sigmoid curve in order to introduce the randomness
in decision making trajectory (Smith, 2016). Note that the
final simulated trajectory is not always monotonic because
such trajectory is modulated and modified by the DRL agent
adaptively according to the environmental stimuli.

A.7.2. DRL TRAINING LOOP

The DRL training loop is composed of observation space,
action space, reward, terminal state, and learning policy. The
observation space serves as the model entrance to accept
math question information and external stimuli as input.
The action space contains a set of potential actions that the
DRL agent could take to perform simulation. The reward is
used to guide the DRL agent to update its strategy powered
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Table 3. Performance of user choice classification of SVC models and response time estimation of SVR models across three math question
representations: Feature label: SVM (both SVC and SVR) takes features extracted from logical reasoning agent as input, String label:
SVM (both SVC and SVR) takes encoded vectors of raw math numbers as input, Digits label: SVM (both SVC and SVR) takes raw
numeric math numbers as input.

Choice Classification Response Time Regression (MAPE)

Input Accuracy F1-Score Precision Recall Mean STD Lower Upper

Digits 0.8107 0.0000 0.0000 0.0000 0.3740 0.3772 0.0121 1.4185
String 0.8174 0.0724 0.9333 0.0377 0.3813 0.3847 0.0135 1.4891
Feature 0.9613 0.8996 0.8833 0.9166 0.3652 0.3648 0.0108 1.3612

Figure 7. The detailed architecture of our CogReact framework. First, we use math questions to train a math answer agent to solve them
without considering users’ response. Second, for each math question, we transfer features extracted from LSTM layer in math answer
agent without time pressure to make predictions of user choice and response time using SVM (initial estimation). The initial estimated
response time and predicted choice probability will generate evidence accumulation trajectory in the drift-diffusion model. Third, the DRL
agent will take math question and each frame of dynamic time pressure stimuli as input and take specific action to modulate evidence
accumulation process. When evidence accumulator achieves boundary threshold, the final prediction of response time is generated and
DRL agent achieves terminate state.
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by the learning policy to take the optimal action so as to
achieve highest possible reward. Terminal state represents
the end of one training episode.

A.7.3. OBSERVATION SPACE

The observation space consists of two parts: math question
information and dynamic time pressure visual stimuli. For
each math trial, the math question is encoded as a sequence
vector (11× 17) just like the logical reasoning agent. The
dynamic time pressure visual stimuli is segmented into vi-
sual frames just like what users perceive in the study. Given
frame rate f , for each frame i, we can obtain the specific
image Si of the visual stimuli for input in the observation
space (we set f = 5). In order to encode the frame for input,
we use a default CNN feature extractor in Stable Baselines3
(Raffin et al., 2021) to extract features automatically from
the time pressure image.

A.7.4. ACTION SPACE

The action space contains one action with continuous nu-
meric value from −1 to 1. The hybrid DRL agent takes
one step for each frame i. When the output action a is 0,
it means that the current time pressure frame has no effect
on evidence accumulator in drift-diffusion model. When
the output action a is from -1 to 0 or 0 to +1, then it means
current time pressure frame leads to negative or positive
change δ on evidence accumulator. The change δ is ob-
tained from the trajectory of drift diffusion model. Given
boundary threshold Rp, start point Sp, response time Rt and
frame rate f , the change δ of evidence accumulation in each
frame is δ = λ× δp, δp = |Rp − Sp|/(f ×Rt), where λ is
the discounting factor to avoid the DRL agent introducing
too aggressive bias.

A.7.5. TERMINAL STATE

Terminal state happens when the evidence accumulator
achieves boundary threshold (Rt) or the hybrid DRL agent
achieves maximum steps in one episode. Here, one episode
represents one math trial in the dataset. Here we set the
maximum response time to 10 seconds, consistent with the
largest response time in our dataset. So the maximum step
number N = RTmax × f = 10 × 5 = 50 steps. If the
DRL agent takes Sn steps when the evidence accumula-
tor achieves Rt, then the new predicted response time is
Rrl = Sn/f .

A.7.6. REWARD

For each step during per episode, the hybrid DRL agent only
gets reward in the terminal state. For other situations, the
reward is 0. The reward mainly aims to encourage the hybrid
DRL agent to behave similarly with real users. Therefore,

the reward function is:

ri =

{
|Erl − Esvm|/Esvm + P ∗, Erl < Esvm

0, Erl ≥ Esvm

(1)

where Erl and Esvm are the estimated error rate of the hy-
brid DRL’s predicting response time (Rrl) and the SVM’s
predicting response time (Rsvm = Rt) compared with real
response time (Ru) respectively, i.e. Erl = |Rrl −Ru|/Ru,
Esvm = |Rsvm − Ru|/Ru. P ∗ is the penalty caused by
terminal state if the hybrid DRL agent’s step number ex-
ceeds the maximum step threshold (P ∗ = −1). Otherwise,
P ∗ = 0.

A.7.7. LEARNING ALGORITHM AND POLICY

We use Proximal Policy Optimization (PPO) (Schulman
et al., 2017) as the learning algorithm and multilayer per-
ceptron (MLP) to be the policy for agent training. All
hyperparameters and network architectures follow the de-
fault settings in Stable Baselines3(Raffin et al., 2021). The
hybrid DRL model is implemented with PyTorch(Paszke
et al., 2019), Stable Baselines3(Raffin et al., 2021), and
Gym(Brockman et al., 2016).

A.8. Pure Deep Reinforcement Learning (DRL) Agent

The pure DRL model is implemented with PyTorch(Paszke
et al., 2019), Stable Baselines3(Raffin et al., 2021), and
Gym(Brockman et al., 2016).

Most parts of the pure DRL agent is the same as the hybrid
DRL agent. The main difference lies in the way to represent
effect of time pressure in human cognition performance.
The hybrid DRL agent segments cognition process of each
trial into frames and each action represents specific effect
on each frame/step. However, for the pure DRL agent, it
directly takes the whole visual stimuli as input and output
one action which represents the whole response time change
due to time pressure. The final estimation of regulated
response time is the sum of this action and basic response
time estimated by SVR models.

A.8.1. DRL TRAINING LOOP

The DRL training loop is similar with the hybrid DRL agent,
which is still composed of observation space, action space,
reward, terminal state, and learning policy. More details are
depicted below.

A.8.2. OBSERVATION SPACE

The observation space still consists of two parts: math ques-
tion information and dynamic time pressure visual stimuli.
For each math trial, the math question encoding is the same
as the hybrid DRL agent. For time pressure, different from
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Figure 8. The detailed architecture of the pure DRL agent without drift-diffusion model.

the hybrid DRL agent, the pure DRL agent does not seg-
ment visual stimuli into frames. Instead, it takes whole time
pressure stimuli video (lasting 5 seconds) as input. We first
use a pre-trained Inception-V3 model(Szegedy et al., 2015)
in Keras(Chollet et al., 2015) to extract features from this
video. The dimension of output features from each frame of
the video is 1× 2048. For the whole video, we use the same
frame rate as the hybrid DRL agent (f = 5). So finally
we have 5 seconds × 5 = 25 frames. The final feature
dimension of this time pressure visual stimuli in observation
space of the pure DRL agent is 25× 2048.

A.8.3. ACTION SPACE

The action space contains one action (Rδ) with continuous
numeric value which is normalized into the range from −1
to 1. Different from the hybrid DRL where each step is one
frame of user cognition process, here each step of the pure
DRL agent is just one trial of users’ response. For each trial,
user baseline performance is obtained from SVM models.
The action of the pure DRL agent represents perturbation
for baseline response time (Rt) because of time pressure
stimuli. Therefore, the final estimation of user response
time is Rrl = Rt + Rδ × RTmax, where RTmax = 10 is
the maximum of user response time in the dataset.

A.8.4. TERMINAL STATE

The terminal state happens when final estimated response
time Rrl exceeds normal range (smaller than 0 or larger than
RTmax = 10) or the pure DRL agent achieves maximum
steps in one episode. Here, one step represents one math
trial in the dataset. Here we set the maximum step number
to be 60 steps, which is the same as the trial number of each
block in our user study result analysis.

A.8.5. REWARD

Different from the hybrid DRL agent that could only obtain
reward in terminate state, for the pure DRL agent, it gets
reward during each step (each trial in user dataset). The
reward mainly aims to encourage the pure DRL agent to
simulate effect of time pressure visual stimuli that is similar
with real users’ response. Therefore, the reward function is:

ri =

{
|Erl − Esvm|/Esvm + P ∗, Erl < Esvm

0, Erl ≥ Esvm

(2)

where Erl and Esvm are the estimated error rate of the
pure DRL’s predicting response time (Rrl) and the SVM’s
predicting response time (Rsvm = Rt) compared with real
response time (Ru) respectively, i.e. Erl = |Rrl −Ru|/Ru,
Esvm = |Rsvm − Ru|/Ru. P ∗ is the penalty caused by
terminal state if the pure DRL agent’s estimated response
time exceeds the normal range (0 to 10 seconds) (P ∗ = −1).
Otherwise, P ∗ = 0.

A.8.6. LEARNING ALGORITHM AND POLICY

We use Proximal Policy Optimization (PPO)(Schulman
et al., 2017) as the learning algorithm and multilayer percep-
tron (MLP) to be the policy for agent training. All hyperpa-
rameters and network architectures follow default settings
in Stable Baselines3(Raffin et al., 2021).

A.9. Baseline Models

Our baseline models are adapted into our problem corre-
sponding to the recent State-of-the-Art (SOTA) computa-
tional models in human decision making (Bourgin et al.,
2019) and response time prediction (Goetschalckx et al.,
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2024; Jaffe et al., 2023).

The whole dataset is first split into raw training (80%) and
test set (20%). The raw training set is then split into model
training set (80%) and validation set (20%). The validation
set is used to select the best epoch.

All neural network-based models use MAPE loss function,
Adam optimizer (Kingma & Ba, 2014) with learning rate
of 0.001 and batch size of 16. All models are trained on 2
Nvidia RTX A6000 GPUs (48GB GPU memory). All neural
network models are implemented by PyTorch (Paszke et al.,
2019) and other machine learning models are implemented
by scikit-learn (Pedregosa et al., 2011).

• Baseline Type 1: Model Input Format: Task: Video,
Feedback: Video, Question ID: Numeric Value.

– hGRU (Linsley et al., 2018): This model comes
from (Goetschalckx et al., 2024) to simulate
human response time in visual tasks. We use
(Goetschalckx et al., 2024; Linsley et al., 2018) to
implement this model. The original hGRU model
accepts image as input. We adjust the dimensions
to accept video (including both task and time pres-
sure visual feedback) as input. This model is
trained from beginning without pre-trained mod-
els. The output of hGRU model is then concate-
nated with question ID for input into a linear layer
(64 neurons) to predict response time. Each epoch
takes about 40 minutes for training. We report the
results for the best epoch out of 30 (based on
performance on the validation set).

– LSTM + AlexNet: This model is based on (Jaffe
et al., 2023) that uses LSTM to simulate human
response time in cognitive tasks. Here we use
the same LSTM configurations as (Jaffe et al.,
2023). To adapt it to accept video as input, we
first use pre-trained AlexNet (Krizhevsky et al.,
2012) from TorchVision (Paszke et al., 2019) to
extract features from each frame of the video. The
sequence of features from all frames are then in-
put into LSTM layer. The output of the LSTM
layer is then concatenated with question ID for
input into a linear layer (64 neurons) to predict
response time. Each epoch takes about 40 min-
utes for training. We report the results for the best
epoch out of 30 (based on performance on the
validation set).

– LSTM + VGG-16: This model is similar with
LSTM + AlexNet but we replace the AlexNet
with pre-trained VGG-16 (Simonyan & Zisser-
man, 2014) in TorchVision (Paszke et al., 2019)
to extract visual features from video frames. Each
epoch takes about 40 minutes for training. We re-

port the results for the best epoch out of 30 (based
on performance on the validation set).

– LSTM + ViT-B-16: This model is similar with
LSTM + AlexNet but we replace the AlexNet with
pre-trained ViT-B-16 (Dosovitskiy et al., 2020)
in TorchVision (Paszke et al., 2019) to extract
visual features from video frames. Each epoch
takes about 60 minutes for training. We report
the results for the best epoch out of 30 (based on
performance on the validation set).

– MLP + 3D ResNet: This model is based on (Bour-
gin et al., 2019) that uses MLP to predict human
decision making. We follow the same MLP ar-
chitecture as (Bourgin et al., 2019). To adapt it
to accept video input, we first use pre-trained 3D
ResNet (Tran et al., 2018) in TorchVision (Paszke
et al., 2019) to extract features from the video
directly (instead of each video frame). The ex-
tracted features are then concatenated with ques-
tion ID for input into the MLP model. Each epoch
takes about 25 minutes for training. We report the
results for the best epoch out of 30 (based on
performance on the validation set).

• Baseline Type 2: Model Input Format: Task: Encoded
String, Feedback: Video, Question ID: Numeric Value

– LSTM-V1 + 3D ResNet: This model is based on
(Jaffe et al., 2023) that uses LSTM to simulate
human response time in cognitive tasks. Here
we use the same LSTM configurations as (Jaffe
et al., 2023). To adapt it to accept video input, we
first use pre-trained 3D ResNet (Tran et al., 2018)
in TorchVision (Paszke et al., 2019) to extract
features from the video directly (instead of each
video frame). The extracted feedback video fea-
tures are then concatenated with both math task
string with one-hot encoding and question ID for
input into the LSTM model. The output of the
LSTM layer is then passed into a linear layer (64
neurons) to predict response time. Each epoch
takes about 12 minutes for training. We report
the results for the best epoch out of 30 (based on
performance on the validation set).

– LSTM-V2 + 3D ResNet: This model is similar
with LSTM-V1 + 3D ResNet. The difference is
that the extracted feedback video features are first
fed into the LSTM layer and then the output is
concatenated with both math task string with one-
hot encoding and question ID to predict response
time. Each epoch takes about 12 minutes for train-
ing. We report the results for the best epoch out of
30 (based on performance on the validation set).

– MLP + 3D ResNet: This model is based on (Bour-
gin et al., 2019) that uses MLP to predict human
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decision making. We follow the same MLP ar-
chitecture as (Bourgin et al., 2019). To adapt it
to accept video input, we first use pre-trained 3D
ResNet (Tran et al., 2018) in TorchVision (Paszke
et al., 2019) to extract features from the video
directly (instead of each video frame). The ex-
tracted features are then concatenated with both
math task string with one-hot encoding and ques-
tion ID for input into the MLP model. Each epoch
takes about 15 minutes for training. We report the
results for the best epoch out of 30 (based on
performance on the validation set).

– Transformer + 3D ResNet: This model is simi-
lar with MLP + 3D ResNet. The difference is
that we replace the MLP model with the trans-
former model. We follow the default architecture
of transformer in (Vaswani et al., 2017). Each
epoch takes about 12 minutes for training. We re-
port the results for the best epoch out of 30 (based
on performance on the validation set).

• Baseline Type 3: Model Input Format: Task: Numeric
Value, Feedback: Video, Question ID: Numeric Value.

– LSTM-V1 + 3D ResNet: This model is based on
(Jaffe et al., 2023) that uses LSTM to simulate
human response time in cognitive tasks. Here
we use the same LSTM configurations as (Jaffe
et al., 2023). To adapt it to accept video input, we
first use pre-trained 3D ResNet (Tran et al., 2018)
in TorchVision (Paszke et al., 2019) to extract
features from the video directly (instead of each
video frame). The extracted feedback video fea-
tures are then concatenated with both math task
digits and question ID for input into the LSTM
model. The output of the LSTM layer is then
passed into a linear layer (64 neurons) to predict
response time. Each epoch takes about 12 min-
utes for training. We report the results for the best
epoch out of 30 (based on performance on the
validation set).

– LSTM-V2 + 3D ResNet: This model is similar
with LSTM-V1 + 3D ResNet. The difference
is that the extracted feedback video features are
first fed into the LSTM layer and then the output
is concatenated with both math task digits and
question ID to predict response time. Each epoch
takes about 12 minutes for training. We report
the results for the best epoch out of 30 (based on
performance on the validation set).

– MLP + 3D ResNet: This model is based on (Bour-
gin et al., 2019) that uses MLP to predict human
decision making. We follow the same MLP ar-
chitecture as (Bourgin et al., 2019). To adapt it
to accept video input, we first use pre-trained 3D

ResNet (Tran et al., 2018) in TorchVision (Paszke
et al., 2019) to extract features from the video
directly (instead of each video frame). The ex-
tracted features are then concatenated with both
math task digits and question ID for input into the
MLP model. Each epoch takes about 15 minutes
for training. We report the results for the best
epoch out of 30 (based on performance on the
validation set).

– Transformer + 3D ResNet: This model is simi-
lar with MLP + 3D ResNet. The difference is
that we replace the MLP model with the trans-
former model. We follow the default architecture
of transformer in (Vaswani et al., 2017). Each
epoch takes about 12 minutes for training. We re-
port the results for the best epoch out of 30 (based
on performance on the validation set).

• Baseline Type 4: Model Input Format: Task: Numeric
Value, Feedback: Numeric Value, Question ID: Nu-
meric Value. For this baseline type, all input features
(task, feedback, question ID) are directly concatenated
into 1D array for input into models. The baseline
models in this type are mainly based on (Bourgin et al.,
2019), which presents several machine learning models
to predict human decision making with similar model
input.

– Decision Tree: We use scikit-learn (Pedregosa
et al., 2011) to implement this model and follow
all default settings in scikit-learn. The training
process takes within 10 minutes.

– Linear Regression: We use scikit-learn (Pe-
dregosa et al., 2011) to implement this model
and follow all default settings in scikit-learn. The
training process takes within 10 minutes.

– LSTM: This model is based on (Jaffe et al., 2023)
that uses LSTM to simulate human response time
in cognitive tasks. Here we use the same LSTM
configurations as (Jaffe et al., 2023). Each epoch
takes about 2 minutes for training. We report the
results for the best epoch out of 100 (based on
performance on the validation set).

– MLP: This model is based on (Bourgin et al.,
2019) that uses MLP to predict human decision
making. We follow the same MLP architecture as
(Bourgin et al., 2019). Each epoch takes about 2
minutes for training. We report the results for the
best epoch out of 100 (based on performance on
the validation set).

– Random Forest: We use scikit-learn (Pedregosa
et al., 2011) to implement this model and follow
all default settings in scikit-learn. The training
process takes within 10 minutes.
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– SVM: We use scikit-learn (Pedregosa et al., 2011)
to implement this model and follow all default
settings in scikit-learn. The training process takes
within 10 minutes.

– Transformer: We follow the default architecture
of transformer in (Vaswani et al., 2017). Each
epoch takes about 2 minutes for training. We
report the results for the best epoch out of 100
(based on performance on the validation set).

• Baseline Type 5: Model Input Format: Task: Encoded
String, Feedback: Numeric Value, Question ID: Nu-
meric Value. For this baseline type, the math task ques-
tions come with textual string format and get encoded
with one-hot encoding (Rodrı́guez et al., 2018), which
are then concatenated with feedback and question ID
for input into models. The baseline models in this
type are mainly based on (Bourgin et al., 2019), which
presents several machine learning models to predict
human decision making with similar model input. The
settings of these baseline models (Decision Tree, Lin-
ear Regression, LSTM, MLP, Random Forest, SVM,
Transformer) are the same as Baseline Type 4.

A.10. Further Discussion

Modelling dynamics in human cognitive responses to ex-
ternal stimuli is fundamental to understand how the brain
dynamically reacts to the environment. However, the pre-
vailing trend in contemporary research (Jaffe et al., 2023;
Peysakhovich & Naecker, 2017; Lake et al., 2017; Ma &
Peters, 2020; Mehrer et al., 2020; Golan et al., 2020; Kumb-
har et al., 2020; Battleday et al., 2017; 2020; Singh et al.,
2020; Peterson et al., 2018; Battleday et al., 2021; Peterson
et al., 2021; Noti et al., 2016; Bourgin et al., 2019; Plonsky
et al., 2017) predominantly centers on the modeling of hu-
man cognition within standardized and idealized contexts,
thereby often neglecting the nuanced influence exerted by
external stimuli. Conversely, certain investigations adopt an
oversimplified perspective by treating external stimuli as a
persistent and unchanging factor throughout the cognitive
processes (Bourgin et al., 2019). A more sophisticated mod-
eling methodology is deemed essential, particularly when
addressing dynamic environmental stimuli that exhibit tem-
poral fluctuations contingent upon user performance. This
refined approach advocates for a nuanced consideration of
stimuli variation at fine temporal scales, thereby perpetuat-
ing a continuous impact on human cognitive behaviors.

Our hybrid modeling approach, characterized by the incor-
poration of Deep Reinforcement Learning (DRL) to emulate
external stimuli within the explainable drift-diffusion model
at a granular level, takes into account subject-specific and
stimuli-specific behavioral distinctions. This distinctive
feature sets our framework apart from antecedent studies,

which predominantly concentrated on the coarse-grained
posterior estimation of decision-making through reinforce-
ment learning (Viejo et al., 2015; Pedersen et al., 2017).
The elucidative nature of our framework significantly aug-
ments our capacity to comprehend and interpret the intricate
interplay between environmental stimuli and cognitive be-
haviors.

The principles underlying CogReact may be extended to the
analysis of neural and physiological responses to external
stimuli. Although such data—whether derived from neural
activity or wearable sensors—pose significant challenges
for direct modeling due to their high-frequency, noisy time-
series nature, they hold considerable potential. Specifically,
these recordings can serve as proxies for the trajectory of
evidence accumulation in human decision-making and other
cognitive processes. Mapping these novel forms of evi-
dence accumulation within specific cognitive tasks offers a
promising avenue for capturing human cognition at a highly
fine-grained temporal and representational level.

A.11. Generalization in New Tasks and Datasets

A.11.1. DATASETS

We further evaluate the generalization ability of our model
in two additional public datasets. The first is CPC18, a
widely used benchmark for modeling human cognition in a
decision making task (Bourgin et al., 2019). In this dataset,
participants engaged in a gambling game where they made
binary decisions in each trial. Each choice offers different
reward/loss with certain probabilities, and feedback indi-
cates the alternative reward or loss if the participant had
selected the other option. Consistent with previous experi-
ments, the model predicts user response times per trial based
on the model input including task information (reward/loss
probability configurations of two choices) and feedback in-
formation (alternative reward/loss), represented as numeric
arrays. We obtained a total of 30,489 trials from 240 partici-
pants with valid response time from the raw dataset.

The second public dataset, PeerEdu (Xu et al., 2025), cap-
tures students’ cognitive states during learning with exter-
nal peer feedback. Students watched online video lectures
while their cognitive states, were passively recorded using
sensors. Specifically, we use one cognitive state named cu-
riosity (continuous value from 0 to 1) for evaluation, which
is the most significantly impacted by peer feedback from
(Xu et al., 2025). Unlike previous tasks requiring active
but binary human choice input, PeerEdu focuses on passive
yet continuous cognitive states without students’ active in-
put. Peer feedback was delivered by highlighting specific
regions on video lecture slides that peer students focused
on, updated continuously based on lecture progress.

To simulate curiosity in this learning task, each lecture was
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divided into transcripts, with each transcript representing a
sentence spoken by the lecturer. Task information includes
transcript content, while feedback information comprises
the highlighted text in peer feedback regions on the slides.
The model predicts curiosity for each transcript by taking
both task and feedback information (textual format) as input.
We obtained a total of 12,804 samples from 300 students in
PeerEdu, where each sample corresponds to the curiosity of
one student during one transcript with specific feedback.

A.11.2. FRAMEWORK ADAPTATION

To adapt our framework for the decision making task, we
replace the math agent with an LSTM-based risk agent in
the first step in Fig. 1. This risk agent, using the same
architecture as before, predicts potential reward/loss (feed-
back information) from task inputs in each gambling trial,
extracting risk features for the SVM model in the second
step. The second step keeps the same as Fig. 1 to predict
user choice and response time without feedback, which are
used to generate the evidence accumulation process in the
DDM step. The DRL loop incorporates an adjusted obser-
vation space to handle the task and feedback information in
decision making, while maintaining the same action space
and reward functions as the previous logical reasoning task
for simulating response time changes.

For the learning task adaptation, we replace the math agent
in our framework with a large language model (LLM), re-
ferred to as the LLM agent, to extract features from tex-
tual task and feedback information, leveraging the strong
textual data mining capabilities of LLMs (Wang et al.,
2023). Specifically, we use OpenAI’s text-embedding-3-
small model to generate embeddings from both task and
feedback information, which are then input into SVM mod-
els in the second step of Fig. 1. To handle the absence of
binary user input, we categorize curiosity values into high
or low levels based on their position relative to the median,
enabling SVM models to predict curiosity level (SVC: high
or low) and actual value (SVR), similar to predicting binary
choice and response time in previous tasks. This approach
enables adaptation to continuous response modeling without
significant changes to the framework and can be extended
to other continuous behaviors in the future. The DRL loop
incorporates an updated observation space to process embed-
dings from task and feedback information, with action space
and reward functions adjusted to align with the curiosity
scale.
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Table 4. Results for all baseline model performance on response time simulation in Math Task. For MAPE, we show its mean value
(Mean), standard deviation (STD), 2.5th (Lower) and 97.5th (Upper) percentiles of the MAPE distribution (95% confidence interval).

MAPE

Model Input Type Model Type Name Mean STD Lower Upper

Task: Video
Feedback: Video

hGRU 0.3335 0.2486 0.0153 0.9406
LSTM + AlexNet 0.3344 0.2602 0.0132 0.9954
LSTM + VGG-16 0.3355 0.2708 0.0128 1.0393
LSTM + ViT-B-16 0.3339 0.2573 0.0145 0.9852
MLP + 3D ResNet 0.3330 0.2507 0.0121 0.9390

Task: Encoded String
Feedback: Video

LSTM-V1 + 3D ResNet 0.3334 0.261 0.0151 0.9866
LSTM-V2 + 3D ResNet 0.3376 0.2169 0.0185 0.7618
MLP + 3D ResNet 0.3331 0.2550 0.0125 0.9601
Transformer + 3D ResNet 0.3306 0.2496 0.0145 0.9462
CogReact 0.2999 0.2318 0.0131 0.8029

Task: Numeric Value
Feedback: Video

LSTM-V1 + 3D ResNet 0.3341 0.2617 0.0152 0.9923
LSTM-V2 + 3D ResNet 0.3286 0.2538 0.0147 0.9707
MLP + 3D ResNet 0.3333 0.2579 0.0147 0.9731
Transformer + 3D ResNet 0.3315 0.2526 0.0152 0.9615

Task: Numeric Value
Feedback: Numeric Value

Decision Tree 0.3617 0.364 0.015 1.3729
Linear Regression 0.3595 0.3608 0.0113 1.3399
LSTM 0.3059 0.2434 0.0141 0.9253
MLP 0.3293 0.2441 0.0151 0.9257
Random Forest 0.3650 0.3684 0.0117 1.3448
SVM 0.3299 0.3108 0.0113 1.1827
Transformer 0.3052 0.2446 0.0112 0.9309
CogReact 0.2703 0.2224 0.0093 0.7631

Task: Encoded String
Feedback: Numeric Value

Decision Tree 0.3639 0.3639 0.0112 1.3917
Linear Regression 0.3512 0.3469 0.0105 1.3176
LSTM 0.3278 0.2478 0.0142 0.9397
MLP 0.3333 0.2577 0.0145 0.9724
Random Forest 0.3600 0.3630 0.0130 1.3620
SVM 0.3245 0.3101 0.0123 1.1952
Transformer 0.3299 0.2481 0.0142 0.9350
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Table 5. Statistical results by comparing our CogReact model in Type II (Task: Encoded String, Feedback: Video) with each of baseline
model respectively in the Math Task.

Statistical Tests for CogReact in Type II

Model Input Type Model Type Name Kolmogorov-Smirnov Permutation

Task: Video
Feedback: Video

hGRU p < 0.001 p < 0.001
LSTM + AlexNet p < 0.001 p < 0.001
LSTM + VGG-16 p < 0.001 p < 0.001
LSTM + ViT-B-16 p < 0.001 p < 0.001
MLP + 3D ResNet p < 0.001 p < 0.001

Task: Encoded String
Feedback: Video

LSTM-V1 + 3D ResNet p < 0.001 p < 0.001
LSTM-V2 + 3D ResNet p < 0.001 p < 0.001
MLP + 3D ResNet p < 0.001 p < 0.001
Transformer + 3D ResNet p < 0.001 p < 0.001

Task: Numeric Value
Feedback: Video

LSTM-V1 + 3D ResNet p < 0.001 p < 0.001
LSTM-V2 + 3D ResNet p < 0.001 p < 0.001
MLP + 3D ResNet p < 0.001 p < 0.001
Transformer + 3D ResNet p < 0.001 p < 0.001

Task: Numeric Value
Feedback: Numeric Value

Decision Tree p < 0.001 p < 0.001
Linear Regression p < 0.001 p < 0.001
LSTM p = 0.819 p = 0.263
MLP p < 0.001 p < 0.001
Random Forest p < 0.001 p < 0.001
SVM p < 0.001 p < 0.001
Transformer p = 0.920 p = 0.332

Task: Encoded String
Feedback: Numeric Value

Decision Tree p < 0.001 p < 0.001
Linear Regression p < 0.001 p < 0.001
LSTM p < 0.001 p < 0.001
MLP p < 0.001 p < 0.001
Random Forest p < 0.001 p < 0.001
SVM p < 0.001 p < 0.001
Transformer p < 0.001 p < 0.001
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Table 6. Statistical results by comparing our CogReact model in Type IV (Task: Numeric Value, Feedback: Numeric Value) with each of
baseline model respectively in the Math Task.

Statistical Tests for CogReact in Type IV

Model Input Type Model Type Name Kolmogorov-Smirnov Permutation

Task: Video
Feedback: Video

hGRU p < 0.001 p < 0.001
LSTM + AlexNet p < 0.001 p < 0.001
LSTM + VGG-16 p < 0.001 p < 0.001
LSTM + ViT-B-16 p < 0.001 p < 0.001
MLP + 3D ResNet p < 0.001 p < 0.001

Task: Encoded String
Feedback: Video

LSTM-V1 + 3D ResNet p < 0.001 p < 0.001
LSTM-V2 + 3D ResNet p < 0.001 p < 0.001
MLP + 3D ResNet p < 0.001 p < 0.001
Transformer + 3D ResNet p < 0.001 p < 0.001

Task: Numeric Value
Feedback: Video

LSTM-V1 + 3D ResNet p < 0.001 p < 0.001
LSTM-V2 + 3D ResNet p < 0.001 p < 0.001
MLP + 3D ResNet p < 0.001 p < 0.001
Transformer + 3D ResNet p < 0.001 p < 0.001

Task: Numeric Value
Feedback: Numeric Value

Decision Tree p < 0.001 p < 0.001
Linear Regression p < 0.001 p < 0.001
LSTM p < 0.001 p < 0.001
MLP p < 0.001 p < 0.001
Random Forest p < 0.001 p < 0.001
SVM p < 0.001 p < 0.001
Transformer p < 0.001 p < 0.001

Task: Encoded String
Feedback: Numeric Value

Decision Tree p < 0.001 p < 0.001
Linear Regression p < 0.001 p < 0.001
LSTM p < 0.001 p < 0.001
MLP p < 0.001 p < 0.001
Random Forest p < 0.001 p < 0.001
SVM p < 0.001 p < 0.001
Transformer p < 0.001 p < 0.001

Table 7. Statistical results by comparing CogReact with each of baseline model and ablation model (our model variants in ablation studies)
respectively in PeerEdu dataset.

Statistical Tests for CogReact in PeerEdu

Model Input Type Model Type Name Kolmogorov-Smirnov Permutation

Task: Numeric Value
Feedback: Numeric Value

Pure DRL p < 0.001 p < 0.001
Unencoded Hybrid DRL p = 0.037 p < 0.001
Encoded SVM p < 0.001 p < 0.001
LSTM p < 0.001 p < 0.001
Transformer p < 0.001 p < 0.001
MLP p < 0.001 p < 0.001
SVM p < 0.001 p < 0.001
Random Forest p < 0.001 p < 0.001
Decision Tree p < 0.001 p < 0.001
Linear Regression p < 0.001 p < 0.001
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Table 8. Statistical results by comparing CogReact with each of baseline model and ablation model (our model variants in ablation studies)
respectively in CPC dataset.

Statistical Tests for CogReact in CPC

Model Input Type Model Type Name Kolmogorov-Smirnov Permutation

Task: Numeric Value
Feedback: Numeric Value

Pure DRL p < 0.001 p < 0.001
Unencoded Hybrid DRL p = 0.058 p = 0.677
Encoded SVM p < 0.001 p < 0.001
LSTM p < 0.001 p < 0.001
Transformer p < 0.001 p < 0.001
MLP p < 0.001 p < 0.001
SVM p < 0.001 p < 0.001
Random Forest p < 0.001 p < 0.001
Decision Tree p < 0.001 p < 0.001
Linear Regression p < 0.001 p < 0.001
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Figure 9. a. Confusion matrix (x axis: ground truth, y axis: prediction) for testing set prediction of the logical reasoning agent (LSTM
neuron = 256). b. Training loss and accuracy with training epochs across four kinds of LSTM neurons of the logical reasoning agent.
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Figure 10. Evaluation results in the logical reasoning task for MAPE in different levels. a,b,c,d,e,f,g,h: Average MAPE for each participant
(a,b,c,d)/group (e,f,g,h) in predictions of testing set from Hybrid DRL agent, Pure DRL agent, and SVM model in four training strategies
(a,e. Individual-Level, b,f. Group-Level, c,g. General-Level, d,h. LOPO-Level), respectively. (The number around the circle represents
participant id in a,b,c,d).

Figure 11. Comparison results between our CogReact Model (Hybrid DRL) and baseline deep learning models with / without DDM
in three datasets. For statistical analysis with both Kolmogorov-Smirnov test and Permutation test, ∗ indicates p < 0.05, ∗∗ indicates
p < 0.01, ∗ ∗ ∗ indicates p < 0.001. The results show that the MAPE of our model is significantly (p < 0.001) smaller than all deep
learning models with / without DDM in all three datasets.
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