
Online Laplacian-Based Representation Learning in Reinforcement Learning

Maheed H. Ahmed 1 Jayanth Bhargav 1 Mahsa Ghasemi 1

Abstract

Representation learning plays a crucial role in re-
inforcement learning, especially in complex envi-
ronments with high-dimensional and unstructured
states. Effective representations can enhance the
efficiency of learning algorithms by improving
sample efficiency and generalization across tasks.
This paper considers the Laplacian-based frame-
work for representation learning, where the eigen-
vectors of the Laplacian matrix of the underlying
transition graph are leveraged to encode mean-
ingful features from raw sensory observations of
the states. Despite the promising algorithmic ad-
vances in this framework, it remains an open ques-
tion whether the Laplacian-based representations
can be learned online and with theoretical guaran-
tees along with policy learning. We address this
by formulating an online optimization approach
using the Asymmetric Graph Drawing Objective
(AGDO) and analyzing its convergence via online
projected gradient descent under mild assump-
tions. Our extensive simulation studies empiri-
cally validate the convergence guarantees to the
true Laplacian representation. Furthermore, we
provide insights into the compatibility of differ-
ent reinforcement learning algorithms with online
representation learning.

1. Introduction
Representation learning is an important part of machine
learning that involves learning compact and useful represen-
tations of data. The quality of these representations signifi-
cantly impacts the performance and efficiency of machine
learning algorithms (Bengio et al., 2013). In reinforcement
learning (RL), agents often deal with complex environments
characterized by high-dimensional and unstructured states.

1Electrical and Computer Engineering, Purdue University, West
Lafayette, IN 47907, USA. Correspondence to: Maheed H. Ahmed
<ahmed237@purdue.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

This makes representation learning important for discov-
ering and encoding meaningful features from raw sensory
inputs. The main goal of RL is to learn an optimal strat-
egy (policy) that maps each state to an action, aiming to
maximize the expected reward based on the dynamics of
the environment. Learning a good representation can im-
prove the sample efficiency of value-function approxima-
tion algorithms (Farebrother et al., 2023), a major family
of RL algorithms, and enhance generalizations across dif-
ferent tasks (Yuan & Lu, 2022). In addition, representation
learning has found applications in reward shaping (Wu et al.,
2018), learning options with larger coverage (Machado et al.,
2017a; Jinnai et al., 2019; Chen et al., 2024), zero-shot learn-
ing (Touati et al., 2022), and transfer learning (Gimelfarb
et al., 2021; Barreto et al., 2017).

A graph representation is often used to learn a representa-
tion, i.e., a low-dimensional embedding, of the states (Ma-
hadevan & Maggioni, 2007; Wu et al., 2018). States of an
environment can be viewed as nodes of a graph, and the tran-
sition probability between states under a given policy can
be viewed as weighted edges between these nodes. States
that are closely connected in the graph are expected to have
similar representations in the embedding space. One repre-
sentation that retains this property is the eigenvectors of the
graph Laplacian. Formally, the d-eigenvectors of the graph
Laplacian corresponding to the d-smallest eigenvalues are
used to construct an embedding function that maps a state
to a vector in Rd. We refer to those d-eigenvectors as the
d-smallest eigenvectors for the remainder of this paper.

Constructing the graph and performing eigendecomposi-
tion on the Laplacian is only feasible in the tabular settings
where the number of states is small. Therefore, Wu et al.
(2018) proposed a scalable method to compute the small-
est eigenvectors by solving an unconstrained version of the
graph drawing objective (Koren, 2005) which is suitable
for large and continuous state-spaces. However, the graph
drawing objective does not have a unique minimizer, rather
the rotations of the smallest eigenvectors are also its mini-
mizers. To tackle this challenge, Wang et al. (2021) propose
the generalized graph drawing objective which breaks the
symmetry and only has the smallest eigenvectors as a unique
minimizer. Gomez et al. (2023) show that under gradient
descent dynamics, the unconstrained version of the general-
ized graph drawing objective has permutations of the small-

1

Online Laplacian-Based Representation Learning in Reinforcement Learning

est eigenvectors as equilibrium points. They propose the
augmented Lagrangian Laplacian objective (ALLO) which
has the smallest eigenvectors and the corresponding eigen-
values as the stable equilibrium under stochastic gradient
descent-ascent dynamics.

The Laplacian-based representation can be computed or
learned for a given policy according to its induced Markov
chain. However, in RL the policy updates during the training
phase as new data comes in, which will in turn necessitate
recomputation of the representation. To avoid this complex-
ity, in practice, the Laplacian-based representation is learned
for a uniformly random policy in a pretraining phase and
then used throughout training. Nevertheless, that fixed rep-
resentation may not be effective for the policies encountered
during RL. Recently, Klissarov & Machado (2023) showed
that learning the representation in an online manner while
simultaneously updating the policy can improve exploration
and increase the total reward. In Figure 1, we illustrate
an example, comparing the representations of a uniform
policy and a non-uniform policy, that further underscores
the need for adapting the representation. The non-uniform
policy shows that some cells, despite being far from the
target in terms of Euclidean distance, are actually closer in
the embedding space than neighboring cells. This suggests
that using the current representation to design rewards could
offer a better signal for improving the policy. Klissarov
& Machado (2023) proposed online deep Laplacian-based
options for temporally extended exploration where a set
of policies (also known as options) are trained to select
exploratory actions using an estimated Laplacian representa-
tion of the current overall policy. They provide an extensive
empirical analysis of how learning options while updating
the representation increase the received rewards; however,
the theoretical analysis of online representation learning
while updating the policy has remained an open question.

Figure 1: The Laplacian representation of a uniform policy
(left) and a non-uniform policy (right). The color represents
the entry corresponding to each state in the second eigen-
vector of the Laplacian. The bordered cell is the target.

Motivated by this, we derive a framework for online learn-
ing of the Laplacian representation. We summarize our

contributions below:

• We introduce the Asymmetric Graph Drawing Objec-
tive (AGDO), a simplified version of ALLO that elimi-
nates the need for dual variables.

• We prove that under gradient descent dynamics, the
only stable equilibrium for AGDO is the set of d-
smallest eigenvectors.

• We theoretically and empirically establish that opti-
mizing the online version of AGDO converges to a
stationary point under the assumption of bounded drift.

2. Literature Review
In this section, we review existing studies and research direc-
tions in representation learning for reinforcement learning,
focusing on topics closely linked to this study.

Proto-Value Functions. Mahadevan (2005) introduced
proto-value functions, a set of basis functions that are inde-
pendent of the reward function. These functions are defined
as the eigenfunctions of the normalized Laplacian of the
graph generated by a random walk over the state space. This
representation has been demonstrated to reduce the number
of samples required for training linear value function ap-
proximators (Mahadevan & Maggioni, 2007). The process
of generating the graph involves collecting samples from
the environment and connecting neighboring states with
edges. However, this method does not adequately account
for the stochastic nature of transitions and requires a dis-
crete state space. In continuous state settings, Mahadevan
(2012) proposes using the Nyström method to interpolate
the values of eigenfunctions at unseen states based on visited
states. Additionally, Xu et al. (2014) suggests enhancing
representative state selection by applying K-means cluster-
ing to collected samples and constructing a graph from the
resulting centroids.

Laplacian Representation Using the Graph Drawing
Objective. Wu et al. (2018) formulated a linear opera-
tor that represents the graph over the state-space generated
by a fixed policy, capturing the stochastic nature of transi-
tions, and is applicable to continuous state spaces. They
demonstrated that obtaining the eigenfunctions of the graph
Laplacian, typically solved via the graph drawing objective
(Koren, 2005), can be achieved through stochastic optimiza-
tion using collected samples without explicitly constructing
the graph. Additionally, they illustrated a method to re-
cover these eigenfunctions up to orthonormal rotation by
training a neural network. For precise eigenfunction recov-
ery, Wang et al. (2021) introduced the generalized graph
drawing objective, which breaks the symmetry inherent in

2

Online Laplacian-Based Representation Learning in Reinforcement Learning

the traditional graph drawing objective. Despite the con-
strained generalized objective ensuring the uniqueness of
the global minimizer being the Laplacian eigenfunctions,
Gomez et al. (2023) demonstrated that stochastic optimiza-
tion using the unconstrained objective—employed in neural
network training—does not necessarily converge to these
eigenfunctions. Consequently, they proposed the augmented
Lagrangian Laplacian objective, which has the eigenvectors
of the Laplacian as the unique stable equilibrium. Other
equilibrium points correspond to permutations of the eigen-
vectors.

Learning the Laplacian representation with any of these
objectives is conducted under a fixed policy, typically
a uniformly random policy in practice. Klissarov &
Machado (2023) introduced online deep covering eigenop-
tions (DCEO), an online algorithm that concurrently learns
the Laplacian representation and options (Sutton, 1998), a
well-established formulation of temporally extended actions
in Markov Decision Processes (MDPs). They demonstrated
that the online version of DCEO achieves performance com-
parable to a two-stage variant of the algorithm, where the
representation is learned under a fixed uniform policy, with
both approaches outperforming other baselines in multiple
benchmarks.

Successor Features. The deep successor representation,
introduced by Kulkarni et al. (2016) as an extension of the
successor representation (Dayan, 1993), decomposes the
value function into a successor feature function and a re-
ward predictor function. The successor function encodes the
discounted expected value of representations of all future
states within a given horizon. Leveraging concepts from
TD learning and Deep Q-networks (Mnih et al., 2015), both
the representation and the successor feature function can be
learned simultaneously with neural networks. Successor fea-
tures have found diverse applications, such as sub-goal states
generation in sparse reward environments (Kulkarni et al.,
2016), transfer learning (Barreto et al., 2017; Gimelfarb
et al., 2021), and options discovery (Machado et al., 2017b;
2023). Notably, Machado et al. (2017b) demonstrated a
connection between the eigenvalues and eigenvectors of
the successor representation matrix and the eigenvalues and
eigenvectors of the normalized Laplacian defined as proto-
value functions.

Contrastive Learning in Reinforcement Learning. Con-
trastive learning is a machine learning method used for
learning representations that distinguish between similar
and dissimilar pairs of data points using a contrastive loss
function. Formally, an encoder is tasked with mapping data
points to a latent representation where similar points are
closely positioned in the latent space. For instance, Laskin
et al. (2020) introduced the contrastive unsupervised rep-

resentations for reinforcement learning algorithm, where
they train an encoder network using a contrastive loss with
pairs of images randomly augmented from the same source
image. The learned representation is subsequently utilized
to train a deep reinforcement learning agent. Furthermore,
augmented temporal contrast was developed by Stooke et al.
(2021), which involves selecting similar sample pairs from
samples that are separated by a short time distance. This
approach is closely related to the Laplacian approach to
representation learning, as states that are connected in the
graph have a higher probability of appearing in consecutive
samples than disconnected states.

In this work, we focus on extending the Laplacian-based
representation learning, which has been shown in recent
literature to be effective in learning options with high cover-
age Machado et al. (2017a); Jinnai et al. (2019); Klissarov
& Machado (2023); Chen et al. (2024), to the online set-
ting. While empirical results, such as those by Klissarov
& Machado (2023), have demonstrated that online repre-
sentation learning is effective and promising, a thorough
theoretical analysis of the convergence and accuracy of these
learned representations in the online setting is still lacking.
Therefore, our work seeks to address this gap by develop-
ing a theoretical framework that ensures the stability and
accuracy of Laplacian representations in an online learning
context.

3. Preliminaries
In this section, we provide the necessary background to
introduce the problem and present the proposed formula-
tion and its theoretical analysis. We begin by introducing
Markov decision processes within the context of reinforce-
ment learning. Next, we highlight the closely related, exist-
ing methods of learning the Laplacian representation.

Notation We use ⟨v, u⟩ to denote the dot product between
two vectors v and y. For a vector x, the L2 norm, denoted
∥x∥, is defined as ∥x∥ =

√∑
i |xi|2. The L2 norm of a

matrix, is defined as ∥A∥ = sup
x ̸=0

∥Ax∥
∥x∥ and is equivalent to

the spectral norm defined as the largest singular value of
the matrix. Finally, the L∞ norm, denoted ∥A∥∞, is the
maximum absolute row sum of the matrix, i.e., ∥A∥∞ =
maxi

∑
j |aij |.

Reinforcement Learning. In the reinforcement learning
setting, an agent interacts with an environment, which is
modeled as a Markov decision process (MDP). A reward
agnostic MDP is represented by the tuple (S,A, T , µ0)
where S is the finite state space, A is the finite actions
space, T : S × A → ∆(S) is the transition probability,
and µ0 ∈ ∆(S) is the initial state probability distribution.
We consider the environment to be reward-agnostic and

3

Online Laplacian-Based Representation Learning in Reinforcement Learning

that the agent has a policy π : S → ∆(A) from which
actions are samples each time step. The policy induces
a Markov chain from the MDP defined by the transition
probability Pπ where Pπ(s, s′) = P(st+1 = s′|st =
s, T , π) =

∑
a∈A π(a|s)T (s′|s, a). We assume that the

induced Markov chain has a unique stationary distribution
ρπ ∈ ∆(S). We formally define this in Assumption 4.1.

Laplacian Representation. A graph is defined by a set
of nodes V and an adjacency matrix W ∈ R|V|×|V |. For
two nodes ν, ν′, Wν,ν′ is non-zero if and only if there exists
an edge from ν to ν′. The Laplacian matrix L is defined
as L = D −W where the degree matrix D is a diagonal
matrix with Dν,ν =

∑|V|
j=1 Wν,j . The Laplacian encodes a

lot of useful information about the underlying graph. For
example, the second to the smallest eigenvalue also known
as the Fiedler value determines the algebraic connectivity
of the graph (Fiedler, 1973).

In the tabular setting, under a fixed policy π, an MDP can
be represented as a graph, where V = S and the adjacency
matrix Wπ is defined as f(Pπ) where f maps Pπ to a
symmetric matrix. More generally, consider the following
formulation given by Wu et al. (2018):

• A Hilbert SpaceHπ is R|S| with the inner product be-
tween two elements u, v ∈ Hπ defined as ⟨u, v⟩Hπ =∑

s∈S u(s)v(s)ρπ(s).

• A linear operator A : Hπ → Hπ is defined as Au(s) =∑
s′∈S A(s, s′)u(s′)ρπ(s′).

• The self adjoint operator Wπ : Hπ → Hπ is defined
as

Wπ(s, s′) =
1

2

Pπ(s, s′)

ρπ(s′)
+

1

2

Pπ(s′, s)

ρπ(s)
(1)

• The Laplacian Lπ is defined as Lπ = I−Wπ .

• With a slight abuse of notation we define Aρπ :(
R|S|, ⟨., .⟩

)
→
(
R|S|, ⟨., .⟩

)
as a matrix whose en-

tries are defined as Aρπ (s, s′) = A(s, s′)ρπ(s′) for
some operator A : Hπ → Hπ. Note that for a vector
u ∈ R|S| the matrix multiplication Aρπu is equivalent
to Au.

We denote the d-smallest eigenvectors of Lπ as
eπ1 , e

π
2 , . . . , e

π
d . The Laplacian embedding function ϕπ :

S → Rd embeds a state s to the d-dimensional vector
whose i-th element correspond to the s-th element of eπi , i.e.
ϕ(s) = [eπ1 [s], e

π
2 [s], . . . , e

π
d [s]]

⊺.

Learning the Laplacian Representation. Optimizing the
graph drawing objective (GDO) (Koren, 2005) retrieves the

smallest d-eigenvectors up to orthonormal rotation. The
graph drawing objective is defined as

min
u∈Rd|S|

d∑
i=1

⟨ui, L
πui⟩;

s.t. ⟨uj , uk⟩ = δjk, 1 ≤ k, j ≤ d,

(2)

where δjk is the Kronecker delta. The unconstrained ap-
proximation of GDO is defined as

min
u∈Rd|S|

d∑
i=1

⟨ui, L
πui⟩+ b

d∑
j=1

d∑
k=1

(⟨uj , uk⟩ − δjk)
2
, (3)

where b is a hyper-parameter.

One advantage of using the graph drawing objective is
that the unconstrained approximation of the graph draw-
ing objective can be optimized by stochastic gradient de-
scent using samples collected from the environment with-
out constructing the graph or the Laplacian (Wu et al.,
2018). Formally, if the inner product is defined in terms
of ρπ, the loss can be defined as

∑d
i=1⟨ui, L

πui⟩Hπ =

Es∼ρπ,s′∼Pπ(.|s)[
∑d

i=1(ui(s)− ui(s
′))2].

The generalized graph drawing objective proposed by Wang
et al. (2021) breaks the symmetry in the graph drawing
objective and has the set of the smallest d-eigenvectors as a
unique minimizer.

The generalized graph drawing objective (GGDO) is defined
as

min
u∈Rd|S|

d∑
i=1

ci⟨ui, L
πui⟩

such that ⟨uj , uk⟩ = δjk, 1 ≤ k, j ≤ d

(4)

and the unconstrained approximation of GGDO is defined
as

min
u∈Rd|S|

d∑
i=1

ci⟨ui, L
πui⟩+

b

d∑
j=1

d∑
k=1

min(cj , ck) (⟨uj , uk⟩ − δjk)
2

(5)

The unconstrained GGDO is guaranteed to have a unique
equilibrium point only in the limit b → ∞. However, for
other values, rotations of the smallest d-eigenvectors can
still be an equilibrium point. The augmented Lagrangian
Laplacian objective (ALLO) suggested by (Gomez et al.,
2023) is a dual objective that has a unique stable equilibrium
point of the smallest d-eigenvalues and the corresponding
smallest d-eigenvectors. Other unstable equilibrium points

4

Online Laplacian-Based Representation Learning in Reinforcement Learning

correspond to permutations of the eigenvectors and eigen-
values. The ALLO is defined as follows

max
β

min
u∈Rd|S|

d∑
i=1

⟨ui, L
πui⟩+

d∑
j=1

j∑
k=1

βjk (⟨uj , [[uk]]⟩ − δjk)+

b

d∑
j=1

j∑
k=1

(⟨uj , [[uk]]⟩ − δjk)
2

(6)

where [[.]] is the stop gradient operator, and whatever is inside
the operator is treated as a constant when computing the
gradient. The stop gradient operator has the same effect on
breaking the symmetry as the introduction of the constant
hyper-parameters in GGDO.

4. Online Learning of the Laplacian
Representation

We first formulate the problem of learning the Laplacian
representation while simultaneously updating the policy. We
then provide theoretical bounds for the convergence of the
learned representation.

4.1. Problem Definition

We formulate the problem of learning the Laplacian rep-
resentation while the policy is updating as a sequence of
Asymmetric GDOs (AGDOs) varying in time. To break
the symmetry in GDO we apply the stop gradient operator
similar to ALLO. We assume the policy π0 is initialized
randomly and some learning algorithm updates the policy
in T discrete time steps producing a policy πt after each
update. Learning the Laplacian representation can then be
represented by the sequence of objectives as follows

min
u∈C(t)

L(t)(u) = min
u∈C(t)

d∑
i=1

⟨ui, L
(t)ui⟩H(t)+

b

d∑
j=1

j−1∑
k=1

(⟨uj , [[uk]]⟩H(t))
2
+

b

2

d∑
i=1

(⟨ui, ui⟩H(t) − 1)
2

(7)

where C(t) ⊂ Rd|S| is a convex and closed set. We write Lπt

andHπt as L(t) andH(t) for simpler notation. In addition,
we assume that b > 0. We refer to this objective as the
asymmetric graph drawing objective (AGDO).1

1Here we have a slightly different application of the stop gradi-
ent operator than the objective proposed by Gomez et al. (2023).

Note that for a fixed policy, AGDO is a special case of
ALLO with β = 0. Another similarity between AGDO
and ALLO is that AGDO can be viewed as solving ALLO
with added regularization for the dual parameters β with a
regularization parameter Γ. Adding a regularization term

−Γ
∑d

j=1

∑j
k=1

β2
jk

2 to (6) yields a closed form solution

for maximization over β with β∗
jk(u) =

⟨uj ,[[uk]]⟩H(t)−δjk
Γ .

Substituting reduces (6) to

min
u∈Rd|S|

d∑
i=1

⟨ui, L
(t)ui⟩H(t)+

(b+
1

2Γ
)

d∑
j=1

j∑
k=1

(⟨uj , [[uk]]⟩H(t) − δjk)
2

(8)

which is the same as ALLO (β = 0) with b replaced with
b+ 1

2Γ which is also a constant hyperparameter.

We lay the assumptions for our theoretical analysis.

Assumption 4.1. For each policy πt, the induced Markov
chain is ergodic and has a unique stationary distribution
with non-zero entries, i.e., min

t
min
s∈S

ρπt(s) = ρmin > 0.

Assumption 4.2. For two consecutive time steps t and
t+1, the policies πt and πt+1 satisfy max

s∈S

∑
a∈A |πt(a|s)−

πt+1(a|s)| ≤ δ
(t)
π . Additionally, the bound δ

(t)
π on the

policy drift satisfies
∑T

t=0 δ
(t)
π = O(f(T)) for some sub-

linear function f .

Assumption 4.1 guarantees that the induced Markov chain
has a unique stationary distribution and the induced proba-
bility measure ρ(t) assigns a non-zero value to every state.
Assuming a unique stationary distribution is a common as-
sumption in the theoretical reinforcement learning literature
(Melo et al., 2008; Even-Dar et al., 2009). Note that go-
ing from ρ(t)(s) = 0 to ρ(t+1)(s) > 0 is equivalent to
adding a node to the graph which would make the dimen-
sions of the spaces inconsistent. A more general assump-
tion can be made that ρ(t+1) is absolutely continuous with
respect to ρ(t), i.e. ρ(t)(s) = 0 =⇒ ρ(t+1)(s) = 0,
in which case, the same analysis can be done to the set
S ′ = {s ∈ S : ρ(t+1)(s) ̸= 0}.

Assumption 4.2 assumes the drift in the policy caused by the
policy learning algorithm is bounded. This bounded drift
assumption is valid for many policy learning algorithms in
RL, such as trust region policy optimization (TRPO) (Schul-
man et al., 2015) and proximal policy optimization (PPO)
(Schulman et al., 2017). In addition, we require the learning
algorithm to converge to some policy such that the total drift

The penalty term for the norm of ui does not have the stop gradient
operator which does not change the gradient but ensures the term
is propagated to the Hessian for the stability analysis. We provide
more discussion in A.2

5

Online Laplacian-Based Representation Learning in Reinforcement Learning

is sub-linear in T . For example, two commonly used tech-
niques in on-policy deep reinforcement learning—learning
rate annealing and gradient clipping (Andrychowicz et al.,
2020; Engstrom et al., 2020)—can ensure that the sequence
of policy updates remains bounded while gradually decreas-
ing over time.

4.2. Convergence Analysis of AGDO

We first define the function g
(t)
ui : Rd|S| → R|S|, which is

the gradient of (7) with respect to ui taking into account the
stop gradient operator, as

g(t)ui
(u) =

2L(t)ui + 2b

i−1∑
j=1

⟨ui, [[uj]]⟩H(t) [[uj]]

⊙ ρ+

(2b (⟨ui, ui⟩H(t) − 1)ui)⊙ ρ

(9)

where ⊙ is the Hadamard product. The vectors ui are up-
dated using the update equation

u
(t+1)
i ← ProjC(t)(u

(t)
i −ηg(t)ui

(u(t))) = u
(t)
i −ηG(t)

ui
(u(t))

(10)
where η > 0 is the learning rate, ProjC(t) is the projection to
C(t), and G

(t)
ui is the gradient map defined as G(t)

ui (u
(t)) =

1
η (u

(t)
i − ProjC(t)(u

(t)
i − ηg

(t)
ui (u

(t))).

We show in Lemma 4.3 that for a fixed policy, if C(t) =
Rd|S|, the equilibrium points of performing gradient descent
to minimize the function L(t) defined in (7) correspond to
permutations of the eigenvectors. We defer all detailed
proofs to Appendix A.

Lemma 4.3. If C(t) = Rd|S|, u∗(t) is an equilibrium
point of the objective L(t) in (7) under gradient descent
dynamics, iff u∗(t)

i = e
(t)
σ(i)mi, and ⟨u∗(t)

i , u
∗(t)
i ⟩H(t) =

mi

(
1−

λ
(t)

σ(i)

b

)
for some permutation σ : S → S where

mi ∈ {0, 1}, i.e. zero or more vectors u∗(t)
i can be zero.

This result is similar to Lemma 2 derived by Gomez et al.
(2023) with the norm of the vectors being different and the
fact that vectors can be zero. However, we show in Theorem
4.4 that only the identity permutation with non-zero vectors
corresponds to a stable equilibrium under proper selection
of hyperparameters.

Theorem 4.4. The only stable equilibrium point from
Lemma 4.3 minimizing the objective L(t) in (7) under gradi-
ent descent dynamics is the one corresponding to the identity
permutation with none of the vectors being zero, under an
appropriate selection of the barrier coefficient b, if the high-
est eigenvalue multiplicity is 1.

4.3. Convergence Analysis of Online AGDO

In this section, we present a theoretical analysis of the con-
vergence of the online PGD algorithm. We first begin by
establishing certain properties of the PGD algorithm.

We consider the case where the vectors u(t)
i are constrained

such that their norm is bounded. We define C(t) as C(t) =
{u ∈ Rd|S| : ⟨ui, ui⟩ ≤ 2

ρmin
}. This set has two interesting

properties. First, it includes all equilibrium points for all
b > 1 (as established in Lemma 4.3). Second, the gradient
function g(t) defined in (9) is Lipchitz continuous over C(t).
The following result establishes this property.

Proposition 4.5. The loss function L(t) defined in (7) is
α-smooth with Lipschitz continuous gradient g(t) such that

∥g(t)(u)− g(t)(u′)∥ ≤ α∥u− u′∥ (11)

for any u, u′ ∈ C(t) with α = 2 +
(
2 + 12+4d

ρmin

)
b.

Next, we present some preliminary results, which we will
later use in the convergence analysis. In Lemma 4.6, we
characterize the drift in the policy-induced Markov chain,
the Laplacian operator, and the loss function.

Lemma 4.6. Under Assumptions 4.1 and 4.2, we have the
following:

(a) ∥P (t+1) − P (t)∥∞ ≤ δ
(t)
π

(b) ∥ρ(t+1) − ρ(t)∥∞ ≤ δ
(t)
ρ = κ(t)δ

(t)
π

(c) ∥(ρ(t+1)⊗1)⊙L
(t+1)

ρ(t+1)−(ρ(t)⊗1)⊙L
(t)

ρ(t)∥ ≤ δ
(t)
L =√

|S|
(
δ
(t)
π + δ

(t)
ρ

)
+ δ

(t)
ρ

(d)
∣∣L(t+1)(u)− L(t)(u)

∣∣ ≤ δ
(t)
L =

2dδ
(t)
L

ρmin
+

8bd2δ
(t)
ρ

ρ2min

;

∀u ∈ C(t)

where κ(t) is a condition number on the induced Markov
chain by π(t).

Note that Lemma 4.6(b) follows directly from previous work
on the perturbation analysis of stationary distributions of
Markov chains (Haviv & Van der Heyden, 1984; Funderlic
& Meyer Jr, 1986; Cho & Meyer, 2000). For example,
Cho & Meyer (2000) gives the following condition number
κ(t) = 1

2max
j

max
i ̸=j

mij

mjj
, where mij is the mean first passage

time from state i to state j and mjj is the mean return time
to state j. For other possible options of condition numbers,
review the comparative study by Cho & Meyer (2001).

Finally, we show in Theorem 4.7 that running online pro-
jected gradient descent on AGDO achieves ergodic conver-
gence.

6

Online Laplacian-Based Representation Learning in Reinforcement Learning

Algorithm 1 Online PGD of AGDO

1: Input: Initial policy π0, learning rate η, initial vector
u(0), policy learning algorithm A

2: for t = 1 to T do
3: Interact with the environment and add transitions to

the replay buffer
4: u

(t+1)
i ← ProjC(t)(u

(t)
i − ηg

(t)
ui (u

(t)))
5: Get πt by updating πt−1 using A
6: end for

Theorem 4.7. Under Assumptions 4.1 and 4.2, running
Algorithm 1 on the sequence of losses as defined in (7) for

T time steps, with a constant learning rate η =
1

α
, we have,

Et∼Uniform{1,2,...,T}

[
∥G(t)(u(t))∥2

]
≤

2α

T

(
L(1)(u(1))− L∗ +

T∑
t=1

δ
(t)
L

)
= O

(
f(T)

T

) (12)

whereL∗ is the minimum valueL(t) can take and G(t) refers
to the concatenation of the gradient vectors G(t)

ui . Moreover,
the OPGD algorithm (Algorithm 1) under the time-varying
loss function ((7)) asymptotically converges to the critical
point.

5. Empirical Analysis
We evaluate the accuracy of the proposed method in the
fixed policy setting and the online setting. We evaluate the
importance of different components of the algorithm as well.

Experiments Setup We consider the grid world environ-
ments shown in Figure 4. For each experiment, a fixed target
location is sampled uniformly at random, and the agent re-
ceives a reward of +1 if the agent reaches the location. For
each instance of the environment, a fixed target is sampled
uniformly at random at the beginning of the training process.
At the start of each episode or when the agent reaches the tar-
get, the new agent location is sampled uniformly at random.
We consider a maximum episode length of 1000 steps. The
matrix P̂ (t), used to compute the Laplacian L̂(t), is defined
using a weighted sum between the actual P (t) and the ini-
tial distribution, as suggested by Wu et al. (2018) to handle
episodic Markov Decision Processes (MDPs). To compute
the true Laplacian representation, we perform eigen decom-
position on the matrix L̂

(t)

ρ(t) , which is equivalent to applying

the Laplacian operator in the spaceH(t).

We follow the same setting as Gomez et al. (2023), where
we set d = 11 and use the (x, y) coordinates as input to the
encoder network, a fully connected neural network with 3

0.0 0.5 1.0 1.5 2.0
Environment Steps ×105

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

C
os

in
e

Si
m

ila
ri

ty

AGDO
ALLO

(a) GridRoom-1

0.0 0.5 1.0 1.5 2.0
Environment Steps ×105

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

C
os

in
e

Si
m

ila
ri

ty

AGDO
ALLO

(b) GridMaze-11

Figure 2: Average cosine similarity between the true Lapla-
cian representation and the learned representation using
AGDO and ALLO for a fixed uniform policy.

0.0 0.5 1.0 1.5 2.0
Environment Steps ×105

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

C
os

in
e

Si
m

ila
ri

ty

GridRoom-1
GridRoom-4
GridMaze-9
GridMaze-11

(a) AGDO

0.0 0.5 1.0 1.5 2.0
Environment Steps ×105

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

C
os

in
e

Si
m

ila
ri

ty

GridRoom-1
GridRoom-4
GridMaze-9
GridMaze-11

(b) ALLO

Figure 3: Average cosine similarity between the true Lapla-
cian representation and the learned representation using
AGDO and ALLO for a ppo policy.

7

Online Laplacian-Based Representation Learning in Reinforcement Learning

(a) GridRoom-1 (b) GridRoom-4 (c) GridMaze-9 (d) GridMaze-11

Figure 4: Environments tested in experiments where the grey areas are walls.

layers of size 256 each. We start training the encoder and the
agent after collecting 104 samples and run the experiment
until 2× 105 samples have been collected. We use a fixed
value of 5 for the barrier coefficient. The encoder network
is trained using an Adam optimizer with a learning rate of
10−3. For each collected sample, 10 batches are sampled to
update the encoder. For training the agent, we use proximal
policy optimization (PPO) (Schulman et al., 2017) as the
training algorithm with an initial clipping parameter 0.2
unless otherwise specified. We add an entropy regulariza-
tion term to discourage deterministic policies. To simulate
assumption 4.2, we schedule the clipping parameter to de-
crease from 0.2 to 0.01 starting from step 105 until the end
of the training. For the full experimental setup, please refer
to Appendix B. We provide an open-source implementa-
tion at https://github.com/MaheedHatem/onl
ine_laplacian_representation. In all figures,
we report the average cosine similarity of all dimensions
of the eigenvectors averaged across 5 seeds with the 95%
confidence interval highlighted.

Eigenvalue Accuracy (Fixed Setting) We start by com-
paring the performance of AGDO to ALLO in the fixed uni-
form policy setting. In Figure 2, we show that the average
cosine similarity of AGDO and ALLO is almost identical
for the same initial seeds. This result is similar to the anal-
ysis by Gomez et al. (2023) that showed that ALLO with
β = 0 achieved similar results to ALLO.

Eigenvalue Accuracy (Online Setting) Figure 3 shows
the results of optimizing both AGDO and ALLO in an online
setting where the agent’s policy is updated with the PPO
loss. Similar to the fixed setting, the results of AGDO and
ALLO are almost identical for the same set of seeds. In
addition, for all environments, the average similarity trends
upward as the training steps increase. For environments with
a large number of states (GridRoom-1 and GridRoom-4) we
notice that the accuracy is slightly lower at earlier stages of
the training, which is coherent with our theoretical analysis
(see Lemma 4.6 and Theorem 4.7) that the drift increases

with the number of states, resulting in slower convergence.
However, this can be mitigated by imposing stricter bounds
on the drift in the policy learning algorithm.

Ablation Study In this study, we aim to analyze three
points: (1) the importance of the drift bound assumption, (2)
the effect of the number of encoder update steps per sample
collected, and (3) the effect of noise caused by sampling
from the replay buffer when the policy was different.

To assert the importance of the bounded drift assumption,
we compare running PPO with different initial clipping pa-
rameters, vanilla policy gradient (VPG) (Sutton et al., 1999),
and deep Q-network (DQN) (Mnih et al., 2015). First note
that VPG is equivalent to PPO without clipping. We can see
in Figure 5a that the lower the clipping value is, i.e. the drift
bound between policies is smaller, the higher the accuracy
for the learned representation is. However, a small drift
might affect the performance of the learned policy. In addi-
tion, for DQN the change in the policy distribution can be
drastic for an ϵ−greedy policy with a small ϵ whenever the
Q-network changes the estimated optimal action in a state.
As for the new estimated optimal action, the probability will
shift from ϵ

|A| to 1 − ϵ. This explains why the accuracy
of the learned representation for DQN is much lower than
the on-policy methods. We conclude that the bounded drift
assumption is necessary for learning an accurate representa-
tion.

In Figure 5b, we analyze the effect of increasing the number
of steps. We vary the number of update steps per sample
between 1 and 20. While an increase in the number of steps
is expected to enhance accuracy, our findings indicate that
this is not observed. We hypothesize that this discrepancy is
due to the presence of noise, caused by sampling from the
replay buffer.

To confirm the previous hypothesis, we test in Figure 5c
the effect of varying the replay buffer size. Recall that es-
timating the AGDO loss in (7) is done through sampling
steps from the replay buffer. In the online setting, the buffer
would include steps from previous policies with different

8

https://github.com/MaheedHatem/online_laplacian_representation
https://github.com/MaheedHatem/online_laplacian_representation

Online Laplacian-Based Representation Learning in Reinforcement Learning

0.0 0.5 1.0 1.5 2.0
Environment Steps ×105

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

C
os

in
e

Si
m

ila
ri

ty

PPO 0.01-0.01
PPO 0.2-0.01
DQN
VPG

(a) Effect of drift

0.0 0.5 1.0 1.5 2.0
Environment Steps ×105

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

C
os

in
e

Si
m

ila
ri

ty

Steps=1
Steps=5
Steps=10
Steps=20

(b) Effect of number of update steps

0.0 0.5 1.0 1.5 2.0
Environment Steps ×105

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

C
os

in
e

Si
m

ila
ri

ty

Episodes=1
Episodes=20
Episodes=50
Episodes=400

(c) Effect of replay buffer size

Figure 5: Analysis of different aspects of online AGDO. (a) The effect of bounded drift on the accuracy of the learned
representation. (b) The effect of the number of update steps per sample collected. (c) The effect of the number of episodes
in the replay buffer.

stationary and transition distributions which would intro-
duce bias to our loss estimate. However, a small buffer size
would also increase the variance of the estimate. This is
confirmed by the results, as for a buffer that holds only one
episode we see a worse performance than a buffer that holds
20 episodes. On the other hand, increasing the buffer size
drastically also causes accuracy to drop as the samples used
have a different distribution which can be seen for buffers
with sizes 50 and 400.

6. Conclusion and Future Work
In this paper, we studied online Laplacian-based representa-
tion learning and demonstrated that it can be effectively inte-
grated with reinforcement learning, enabling simultaneous
updates of both representation and policy. Our theoretical
analysis, under mild assumptions, shows that running the
online projected gradient descent on the Asymmetric Graph
Drawing Objective achieves ergodic convergence, ensuring
that the learned representations are aligned with the underly-
ing dynamics. Additionally, our empirical studies reinforce
these findings and give insight into the compatibility of re-
inforcement learning algorithms with online representation
learning.

Our work opens new avenues for enhancing representation
learning in complex environments and lays out the assump-
tions needed for its success. Future research could investi-
gate how online Laplacian representation learning integrates
with various learning paradigms, such as linear value func-
tion approximations or options learning. Additionally, an
important direction would be to explore its applicability
in non-stationary settings, where the perceived transition
dynamics change over time either due to changes in the
environment or the interactions with other learning agents
in the multi-agent scenario.

Acknowledgements
This work was supported in part by the National Aeronautics
and Space Administration under Grant 80NSSC24M0070.

Impact Statement
This work focuses on efficient online representation learning
in reinforcement learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.

References
Andrychowicz, M., Raichuk, A., Stańczyk, P., Orsini, M.,

Girgin, S., Marinier, R., Hussenot, L., Geist, M., Pietquin,
O., Michalski, M., et al. What matters in on-policy rein-
forcement learning? a large-scale empirical study. arXiv
preprint arXiv:2006.05990, 2020.

Barreto, A., Dabney, W., Munos, R., Hunt, J. J., Schaul, T.,
van Hasselt, H. P., and Silver, D. Successor features for
transfer in reinforcement learning. In Advances in Neural
Information Processing Systems, volume 30. Curran Asso-
ciates, Inc., 2017. URL https://proceedings.ne
urips.cc/paper/2017/hash/350db081a66
1525235354dd3e19b8c05-Abstract.html.

Bengio, Y., Courville, A., and Vincent, P. Representation
learning: A review and new perspectives. IEEE transac-
tions on pattern analysis and machine intelligence, 35(8):
1798–1828, 2013.

Chen, J., Aggarwal, V., and Lan, T. A unified algorithm
framework for unsupervised discovery of skills based on
determinantal point process. Advances in Neural Infor-
mation Processing Systems, 36, 2024.

Chicone, C. Ordinary differential equations with applica-
tions. Springer, 2006.

9

https://proceedings.neurips.cc/paper/2017/hash/350db081a661525235354dd3e19b8c05-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/350db081a661525235354dd3e19b8c05-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/350db081a661525235354dd3e19b8c05-Abstract.html

Online Laplacian-Based Representation Learning in Reinforcement Learning

Cho, G. E. and Meyer, C. D. Markov chain sensitivity
measured by mean first passage times. Linear Algebra
and its Applications, 316(1-3):21–28, 2000.

Cho, G. E. and Meyer, C. D. Comparison of perturbation
bounds for the stationary distribution of a Markov chain.
Linear Algebra and its Applications, 335(1-3):137–150,
2001.

Dayan, P. Improving generalization for temporal difference
learning: The successor representation. Neural computa-
tion, 5(4):613–624, 1993.

Engstrom, L., Ilyas, A., Santurkar, S., Tsipras, D., Janoos,
F., Rudolph, L., and Madry, A. Implementation matters
in deep policy gradients: A case study on PPO and TRPO.
In International Conference on Learning Representations,
2020.

Even-Dar, E., Kakade, S. M., and Mansour, Y. Online
Markov decision processes. Mathematics of Operations
Research, 34(3):726–736, 2009.

Farebrother, J., Greaves, J., Agarwal, R., Lan, C. L.,
Goroshin, R., Castro, P. S., and Bellemare, M. G. Proto-
value networks: Scaling representation learning with aux-
iliary tasks. arXiv preprint arXiv:2304.12567, 2023.

Fiedler, M. Algebraic connectivity of graphs. Czechoslovak
mathematical journal, 23(2):298–305, 1973.

Funderlic, R. E. and Meyer Jr, C. Sensitivity of the sta-
tionary distribution vector for an ergodic Markov chain.
Linear Algebra and its Applications, 76:1–17, 1986.

Gimelfarb, M., Barreto, A., Sanner, S., and Lee, C.-G. Risk-
aware transfer in reinforcement learning using successor
features. In Advances in Neural Information Process-
ing Systems, volume 34, pp. 17298–17310. Curran Asso-
ciates, Inc., 2021. URL https://proceedings.ne
urips.cc/paper/2021/hash/90610aa0e24
f63ec6d2637e06f9b9af2-Abstract.html.

Gomez, D., Bowling, M., and Machado, M. C. Proper
Laplacian representation learning. arXiv preprint
arXiv:2310.10833, 2023.

Haviv, M. and Van der Heyden, L. Perturbation bounds
for the stationary probabilities of a finite Markov chain.
Advances in Applied Probability, 16(4):804–818, 1984.

Jinnai, Y., Park, J. W., Machado, M. C., and Konidaris, G.
Exploration in reinforcement learning with deep cover-
ing options. In International Conference on Learning
Representations, 2019.

Klissarov, M. and Machado, M. C. Deep Laplacian-based
options for temporally-extended exploration. In Proceed-
ings of the 40th International Conference on Machine

Learning, pp. 17198–17217. PMLR, July 2023. URL
https://proceedings.mlr.press/v202/k
lissarov23a.html.

Koren, Y. Drawing graphs by eigenvectors: theory and
practice. Computers & Mathematics with Applications,
49(11-12):1867–1888, 2005.

Kulkarni, T. D., Saeedi, A., Gautam, S., and Gershman, S. J.
Deep successor reinforcement learning. arXiv preprint
arXiv:1606.02396, 2016.

Laskin, M., Srinivas, A., and Abbeel, P. CURL: Contrastive
unsupervised representations for reinforcement learning.
In Proceedings of the 37th International Conference on
Machine Learning, pp. 5639–5650. PMLR, November
2020. URL https://proceedings.mlr.pres
s/v119/laskin20a.html.

Machado, M. C., Bellemare, M. G., and Bowling, M. A
Laplacian framework for option discovery in reinforce-
ment learning. In International Conference on Machine
Learning, pp. 2295–2304. PMLR, 2017a.

Machado, M. C., Rosenbaum, C., Guo, X., Liu, M.,
Tesauro, G., and Campbell, M. Eigenoption discovery
through the deep successor representation. arXiv preprint
arXiv:1710.11089, 2017b.

Machado, M. C., Barreto, A., Precup, D., and Bowling, M.
Temporal abstraction in reinforcement learning with the
successor representation. Journal of Machine Learning
Research, 24(80):1–69, 2023.

Mahadevan, S. Proto-value functions: Developmental re-
inforcement learning. In Proceedings of the 22nd inter-
national conference on Machine learning - ICML ’05,
pp. 553–560, Bonn, Germany, 2005. ACM Press. ISBN
978-1-59593-180-1. doi: 10.1145/1102351.1102421.
URL http://portal.acm.org/citation.cf
m?doid=1102351.1102421.

Mahadevan, S. Representation policy iteration. arXiv
preprint arXiv:1207.1408, 2012.

Mahadevan, S. and Maggioni, M. Proto-value functions:
A Laplacian framework for learning representation and
control in Markov decision processes. Journal of Machine
Learning Research, 8(10), 2007.

Melo, F. S., Meyn, S. P., and Ribeiro, M. I. An analysis
of reinforcement learning with function approximation.
In Proceedings of the 25th international conference on
Machine learning, pp. 664–671, 2008.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., et al. Human-level control

10

https://proceedings.neurips.cc/paper/2021/hash/90610aa0e24f63ec6d2637e06f9b9af2-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/90610aa0e24f63ec6d2637e06f9b9af2-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/90610aa0e24f63ec6d2637e06f9b9af2-Abstract.html
https://proceedings.mlr.press/v202/klissarov23a.html
https://proceedings.mlr.press/v202/klissarov23a.html
https://proceedings.mlr.press/v119/laskin20a.html
https://proceedings.mlr.press/v119/laskin20a.html
http://portal.acm.org/citation.cfm?doid=1102351.1102421
http://portal.acm.org/citation.cfm?doid=1102351.1102421

Online Laplacian-Based Representation Learning in Reinforcement Learning

through deep reinforcement learning. nature, 518(7540):
529–533, 2015.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz,
P. Trust region policy optimization. In International
conference on machine learning, pp. 1889–1897. PMLR,
2015.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Stooke, A., Lee, K., Abbeel, P., and Laskin, M. Decoupling
representation learning from reinforcement learning. In
Proceedings of the 38th International Conference on Ma-
chine Learning, pp. 9870–9879. PMLR, July 2021. URL
https://proceedings.mlr.press/v139/s
tooke21a.html.

Sutton, R. S. Between MDPs and semi-MDPs: Learning,
planning, and representing knowledge at multiple tempo-
ral scales. 1998.

Sutton, R. S., McAllester, D., Singh, S., and Mansour, Y.
Policy gradient methods for reinforcement learning with
function approximation. Advances in neural information
processing systems, 12, 1999.

Touati, A., Rapin, J., and Ollivier, Y. Does zero-
shot reinforcement learning exist? arXiv preprint
arXiv:2209.14935, 2022.

Wang, K., Zhou, K., Zhang, Q., Shao, J., Hooi, B., and
Feng, J. Towards better Laplacian representation in rein-
forcement learning with generalized graph drawing. In
Proceedings of the 38th International Conference on Ma-
chine Learning, pp. 11003–11012. PMLR, July 2021.
URL https://proceedings.mlr.press/v1
39/wang21ae.html.

Wu, Y., Tucker, G., and Nachum, O. The Laplacian in RL:
Learning representations with efficient approximations.
arXiv preprint arXiv:1810.04586, 2018.

Xu, X., Huang, Z., Graves, D., and Pedrycz, W. A clustering-
based graph Laplacian framework for value function ap-
proximation in reinforcement learning. IEEE Transac-
tions on Cybernetics, 44(12):2613–2625, December 2014.
ISSN 2168-2275. doi: 10.1109/TCYB.2014.2311578.

Yuan, H. and Lu, Z. Robust task representations for offline
meta-reinforcement learning via contrastive learning. In
Proceedings of the 39th International Conference on Ma-
chine Learning, pp. 25747–25759. PMLR, June 2022.
URL https://proceedings.mlr.press/v1
62/yuan22a.html.

11

https://proceedings.mlr.press/v139/stooke21a.html
https://proceedings.mlr.press/v139/stooke21a.html
https://proceedings.mlr.press/v139/wang21ae.html
https://proceedings.mlr.press/v139/wang21ae.html
https://proceedings.mlr.press/v162/yuan22a.html
https://proceedings.mlr.press/v162/yuan22a.html

Online Laplacian-Based Representation Learning in Reinforcement Learning

A. Proofs
A.1. Proof of Lemma 4.3

Proof. For an equilibrium point

g(t)ui
(u∗(t)) =

2L(t)ui + 2b

i−1∑
j=1

⟨ui, uj⟩H(t)uj + 2b (⟨ui, ui⟩H(t) − 1)ui

⊙ ρ = 0,

and since ρmin > 0, we can divide each element of the vectors on both sides by ρ(s) and we get,

g(t)ui
(u∗(t)) = 2L(t)ui + 2b

i−1∑
j=1

⟨ui, uj⟩H(t)uj + 2b (⟨ui, ui⟩H(t) − 1)ui = 0,

We proceed by induction. For the base case with i = 1, we have

g(t)ui
(u∗(t)) = 2L(t)u

∗(t)
1 + 2b

(
⟨u∗(t)

1 , u
∗(t)
1 ⟩H(t) − 1

)
u
∗(t)
1 = 0

Hence, either u
∗(t)
1 = e

(t)
σ(1); for some permutation σ : S → S and −2λ(t)

σ(1) = 2b
(
⟨u∗(t)

1 , u
∗(t)
1 ⟩H(t) − 1

)
(i.e.,

⟨e(t)σ(1), e
(t)
σ(1)⟩H(t) = 1−

λ
(t)

σ(1)

b) or u∗(t)
1 = 0.

Suppose now that either u∗(t)
j = e

(t)
σ(j) and ⟨e(t)σ(j), e

(t)
σ(j)⟩H(t) = 1 −

λ
(t)

σ(j)

b or u∗(t)
j = 0 for all j < i then the gradient

becomes

g(t)ui
(u∗(t)) = 2L(t)u

∗(t)
i + 2b

(
⟨u∗(t)

i , u
∗(t)
i ⟩H(t) − 1

)
u
∗(t)
i +

2b

i−1∑
j=1

⟨u∗(t)
i , e

(t)
σ(j)⟩H(t)e

(t)
σ(j)1u

∗(t)
j ̸=0

= 0

Since the eigenvectors form a basis, let u∗(t)
i =

∑|S|
k=1 cike

(t)
σ(k). The gradient then becomes

g(t)ui
(u∗(t)) =

|S|∑
k=1

(
2λ

(t)
σ(k) + 2b

(
⟨u∗(t)

i , u
∗(t)
i ⟩H(t) − 1

))
cike

(t)
σ(k)

+ 2b

i−1∑
j=1

⟨u∗(t)
i , e

(t)
σ(j)⟩H(t)e

(t)
σ(j)1u

∗(t)
j ̸=0

= 0.

(13)

Since the eigenvectors form a basis, all coefficients must be zero. For j < i and u
∗(t)
j ̸= 0, we have:(

2λ
(t)
σ(j) + 2b

(
⟨u∗(t)

i , u
∗(t)
i ⟩H(t) − 1

))
cij + 2b⟨u∗(t)

i , e
(t)
σ(j)⟩H(t) = 0 (14)

Now note that

cij =
⟨u∗(t)

i , e
(t)
σ(j)⟩H(t)

⟨e(t)σ(j), e
(t)
σ(j)⟩H(t)

.

Equation 14 then becomes2λ
(t)
σ(j) + 2b

(
⟨u∗(t)

i , u
∗(t)
i ⟩H(t) − 1

)
⟨e(t)σ(j), e

(t)
σ(j)⟩H(t)

+ 2b

 ⟨u∗(t)
i , e

(t)
σ(j)⟩H(t) = 0

12

Online Laplacian-Based Representation Learning in Reinforcement Learning

Reordering the terms, we have:2λ
(t)
σ(j) + 2b

(
⟨u∗(t)

i , u
∗(t)
i ⟩H(t) − 1 + ⟨e(t)σ(j), e

(t)
σ(j)⟩H(t)

)
⟨e(t)σ(j), e

(t)
σ(j)⟩H(t)

 ⟨u∗(t)
i , e

(t)
σ(j)⟩H(t) = 0.

Substituting ⟨e(t)σ(j), e
(t)
σ(j)⟩H(t) = 1−

λ
(t)

σ(j)

b , we have:2b⟨u∗(t)
i , u

∗(t)
i ⟩H(t)

⟨e(t)σ(j), e
(t)
σ(j)⟩H(t)

 ⟨u∗(t)
i , e

(t)
σ(j)⟩H(t) = 0,

which implies that either ⟨u∗(t)
i , e

(t)
σ(j)⟩H(t) = cij = 0 or

2b⟨u∗(t)
i ,u

∗(t)
i ⟩H(t)

⟨e(t)
σ(j)

,e
(t)

σ(j)
⟩H(t)

= 0, but the second condition is only true if

u
∗(t)
i = 0 which implies that ⟨u∗(t)

i , e
(t)
σ(j)⟩H(t) is always zero. For k ≥ i in (13) or u∗(t)

k = 0(
2λ

(t)
σ(k) + 2b

(
⟨u∗(t)

i , u
∗(t)
i ⟩H(t) − 1

))
cik = 0

which implies that either cik = 0 or ⟨u∗(t)
i , u

∗(t)
i ⟩H(t) = 1 −

λ
(t)

σ(k)

b . Note that cik and cij can both be simultaneously
non-zero only if λ(t)

σ(k) = λ
(t)
σ(j), i.e, u∗(t)

i is a linear combination of eigenvectors for the same eigenvalue. Thus, we conclude

that either u∗(t)
i = e

(t)
σ(i) and ⟨e(t)σ(i), e

(t)
σ(i)⟩H(t) = 1−

λ
(t)

σ(i)

b or u∗(t)
i = 0. For non-zero, u∗(t)

i it is required that b > λ
(t)
σ(i).

A.2. Proof of Theorem 4.4

Proof. Let

g(t)(u) =


g
(t)
1 (u)

g
(t)
2 (u)

...
g
(t)
d (u)

 , (15)

where g
(t)
1 is defined in (9).

We start by computing the Jacobian of g(t) while applying the stop gradient operator. The matrix J(t) = J(g(t)) is defined
such that each row of the matrix corresponds to the gradient of an entry of g(t). We choose to apply the stop gradient
operator when computing the Jacobian as optimizing the loss functions with the stop gradient operator is analogous to
solving for ui’s sequentially while fixing uj where j < i as shown by Gomez et al. (2023). Analyzing the stability of those
sequential losses would not include a cross gradient term between ui and uj .

To determine the stability of the equilibrium points, we analyze eigenvalues of the Jacobian evaluated at them (Chicone,
2006). Let mi = 1

u
∗(t)
i ̸=0

, and ρ
(t)
diag a diagonal matrix where ρ

(t)
diag(s, s) = ρ(t)(s) then

J
(t)
ij (u

(t)) = (∇ui
g(t)uj

(u)⊤)⊤
2L

(t)

ρ(t) ⊙ (ρ(t) ⊗ 1) + 2b
(
⟨u(t)

i , u
(t)
i ⟩H(t) − 1

)
ρ
(t)
diag+

2b

(
2(u

(t)
i ⊙ ρ(t))⊗ (u

(t)
i ⊙ ρ(t)) +

i−1∑
k=1

(u
(t)
k ⊙ ρ(t))⊗ (u

(t)
k ⊙ ρ(t))

) , if i = j

0 , otherwise

(16)

Substituting the equilibrium points with the form derived in Lemma 4.3, i.e u
∗(t)
i = e

(t)
σ(i)mi, ⟨u(t)

i , u
(t)
i ⟩H(t) =

13

Online Laplacian-Based Representation Learning in Reinforcement Learning(
1−

λ
(t)

σ(i)

b

)
mi, and ⟨u(t)

i , u
(t)
j ⟩H(t) = 0 for i ̸= j we get,

J
(t)
ij (u

∗(t)) = (∇ui
g(t)uj

(u
∗(t)
i)⊤)⊤

=



2L
(t)

ρ(t) ⊙ (ρ(t) ⊗ 1)− 2λ
(t)
σ(i)ρ

(t)
diagmi + 2bρ

(t)
diag(mi − 1)+

4b(e
(t)
σ(i) ⊙ ρ(t))⊗ (e

(t)
σ(i) ⊙ ρ(t))mi+

2b

i−1∑
k=1

(e
(t)
σ(k) ⊙ ρ(t))⊗ (e

(t)
σ(k) ⊙ ρ(t))mk

, if i = j

0 , otherwise

(17)

Note that J(t) is a block diagonal matrix and its eigenvalues are the union of the diagonal blocks. We proceed to
analyze the conditions for the block matrices to be positive definite, i.e when ⟨vi,J(t)

ii (u
∗(t))vi⟩ is greater than zero

∀vi ∈ {v ∈ R|S| : v ̸= 0}. Since the Laplacian operator is self-adjoint, the eigenvectors form a basis for R|S|, we
can represent each vi as a linear combination of eigenvectors. Let vi =

∑|S|
k=1 cike

(t)
σ(k) in ⟨vi,J(t)

ii (u
∗(t))vi⟩ we get

⟨
∑|S|

k=1 cike
(t)
σ(k),J

(t)
ii (u

∗(t))
∑|S|

k=1 cike
(t)
σ(k)⟩.

We first compute J
(t)
ii (u

∗(t))
∑|S|

k=1 cke
(t)
σ(k) by replacing Jii(u

∗(t))(t) with (17), we get

J
(t)
ii (u

∗(t))

|S|∑
k=1

cke
(t)
σ(k) =

(
2L

(t)

ρ(t) ⊙ (ρ(t) ⊗ 1)− 2λ
(t)
σ(i)ρ

(t)
diagmi + 2bρ

(t)
diag(mi − 1)

) |S|∑
k=1

cike
(t)
σ(k)+4b(e

(t)
σ(i) ⊙ ρ(t))⊗ (e

(t)
σ(i) ⊙ ρ(t))mi + 2b

i−1∑
j=1

(e
(t)
σ(j) ⊙ ρ(t))⊗ (e

(t)
σ(j) ⊙ ρ(t))mk

 |S|∑
k=1

cike
(t)
σ(k)

(18)

Note that (
(e

(t)
σ(j) ⊙ ρ(t))⊗ (e

(t)
σ(j) ⊙ ρ(t))

)
e
(t)
σ(k) = 0 ∀k ̸= j

and (
(e

(t)
σ(j) ⊙ ρ(t))⊗ (e

(t)
σ(j) ⊙ ρ(t))

)
e
(t)
σ(j) = ⟨e

(t)
σ(j), e

(t)
σ(j)⟩H(t)(e

(t)
σ(j) ⊙ ρ(t))

=

1−
λ
(t)
σ(j)

b

 (e
(t)
σ(j) ⊙ ρ(t)).

Also note that 2L(t)

ρ(t) ⊙ (ρ(t)⊗ 1) is a matrix with
(
2L

(t)

ρ(t) ⊙ (ρ(t) ⊗ 1)
)
(s, s′) = L(s, s′)ρ(t)(s′)ρ(t)(s), and therefore for

any x ∈ R|S| (
2L

(t)

ρ(t) ⊙ (ρ(t) ⊗ 1)
)
x = 2(Lx)⊙ ρ(t). (19)

Substituting in (18) we get,

J
(t)
ii (u

∗(t))

|S|∑
k=1

cke
(t)
σ(k) =

|S|∑
j=1

(
2
(
λ
(t)
σ(j) − λ

(t)
σ(i)mi

)
+ 2b(mi − 1)

)
cij(e

(t)
σ(j) ⊙ ρ(t))

+ 4bcii(e
(t)
σ(i) ⊙ ρ(t))mi − 4ciiλ

(t)
σ(i)(e

(t)
σ(i) ⊙ ρ(t))mi

+

i−1∑
j=1

2bcij(e
(t)
σ(j) ⊙ ρ(t))mj −

i−1∑
j=1

2cijλ
(t)
σ(j)(e

(t)
σ(j) ⊙ ρ(t))mj

(20)

14

Online Laplacian-Based Representation Learning in Reinforcement Learning

Now we reduced J
(t)
ii (u

∗(t))
∑|S|

k=1 cke
(t)
σ(k) to a linear combination (e

(t)
σ(1) ⊙ ρ(t), e

(t)
σ(2) ⊙ ρ(t), ..., e

(t)
σ(|S|) ⊙ ρ(t)) with some

coefficients (a1, a2, ..., a|S|). Since ⟨cije(t)σ(j), akcike
(t)
σ(k) ⊙ ρ(t)⟩ = akcikcij⟨e(t)σ(j), e

(t)
σ(k)⟩H(t) and ⟨e(t)σ(j), e

(t)
σ(k)⟩H(t) = 0

for j ̸= k we have

⟨
|S|∑
k=1

cike
(t)
σ(k),J

(t)
ii (u

∗(t))

|S|∑
k=1

cike
(t)
σ(k)⟩ =

|S|∑
k=1

akc
2
ik⟨e

(t)
σ(k), e

(t)
σ(k)⟩H(t) (21)

Since ⟨e(t)σ(k), e
(t)
σ(k)⟩H(t) > 0 and c2ik ≥ 0, ak must be positive ∀k for J(t)

ii (u
∗(t)) to be positive definite. We group the

conditions from (20) that are required to be positive below
2b(mi +mj − 1)− 2λ

(t)
σ(i)mi + 2λ

(t)
σ(j)(1−mj) ∀1 ≤ j < i ≤ d

6bmi + 2λ
(t)
σ(i) − 6λ

(t)
σ(i)mi − 2b ∀1 ≤ i ≤ d

2(λ
(t)
σ(j) − λ

(t)
σ(i)mi) + 2b (mi − 1) ∀1 ≤ i < j ≤ |S|.

(22)

If any u
∗(t)
i = 0, then the third condition becomes 2λ(t)

σ(j) − 2b which is always negative under the selection of hyperparame-

ters discussed in Lemma 4.3, hence it is unstable. For equilibrium points where all u∗(t)
i are non-zero, i.e mi = 1∀ i, the

conditions becomes


2b− 2λ

(t)
σ(i) ∀1 ≤ j < i ≤ d

4b− 4λ
(t)
σ(i) ∀1 ≤ i ≤ d

2(λ
(t)
σ(j) − λ

(t)
σ(i)) ∀1 ≤ i < j ≤ |S|.

(23)

The third condition indicates that 2(λ(t)
σ(j) − λ

(t)
σ(i)) has to be positive which is only true for the identity permutation and if

the maximum eigenvalue multiplicity of the Laplacian is 1. The second and first conditions imply that b− λ
(t)
σ(i) must be

positive which is true when b > λ
(t)
σ(i)∀ 1 ≤ i ≤ |S| which is already a requirement of Lemma 4.3.

A.3. Proof of Proposition 4.5

Proof. To show that the gradient function g(t) is Lipschitz continuous, we proceed to show that the spectral norm of the
Jacobian is bounded ∀u ∈ C(t). Notice that the Jacobian defined in (16) is a block diagonal matrix, hence its singular
values are the union of the singular values of the block matrices J(t)

ii (u), and ∥J(t)(u)∥ = maxi∥J(t)
ii (u)∥. By the triangle

inequality we have,

∥J(t)
ii (u)∥ ≤

∥∥∥2L(t)

ρ(t) ⊙ (ρ(t) ⊗ 1)
∥∥∥+ ∥∥∥2b(⟨u(t)

i , u
(t)
i ⟩H(t) − 1

)
ρ
(t)
diag

∥∥∥+∥∥∥4b(u(t)
i ⊙ ρ(t))⊗ (u

(t)
i ⊙ ρ(t))

∥∥∥+ 2b

i−1∑
k=1

∥∥∥(u(t)
k ⊙ ρ(t))⊗ (u

(t)
k ⊙ ρ(t))

∥∥∥
(24)

We start by bounding the first term, by (19) we know that for any vector x ∈ R|S|,
(
2L

(t)

ρ(t) ⊙ (ρ(t) ⊗ 1)
)
x = 2(Lx)⊙ ρ(t).

For any x ∈ R|S| with ∥x∥ = 1,

∥∥∥(L(t)

ρ(t) ⊙ (ρ(t) ⊗ 1)
)
x
∥∥∥ =

∥∥∥(Lx)⊙ ρ(t)
∥∥∥ =

√
⟨(Lx)⊙ ρ(t), (Lx)⊙ ρ(t)⟩

=

√∑
s∈S

((Lx)(s))2ρ(t)(s)2 ≤
√∑

s∈S
((Lx)(s))2ρ(t)(s)

=
√
⟨(Lx), (Lx)⟩H(t) = ∥Lx∥H(t) ≤ ∥L∥H(t) ∥x∥H(t) ≤ ∥L∥H(t) .

15

Online Laplacian-Based Representation Learning in Reinforcement Learning

Therefore, ∥∥∥(2L(t)

ρ(t) ⊙ (ρ(t) ⊗ 1)
)∥∥∥ ≤ 2 ∥L∥H(t)

(i)
≤ 2, (25)

where (i) follows from ∥L∥H(t) ≤ 1 (Wu et al., 2018).

For the second term, since ∥ρ(t)diag∥ ≤ 1 and ⟨u(t)
i , u

(t)
i ⟩H(t) ≤ 2

ρmin
, we have∥∥∥2b(⟨u(t)

i , u
(t)
i ⟩H(t) − 1

)
ρ
(t)
diag

∥∥∥ ≤ 2b
∥∥∥⟨u(t)

i , u
(t)
i ⟩H(t)ρ

(t)
diag

∥∥∥+ 2b
∥∥∥ρ(t)diag

∥∥∥ ≤ 4b

ρmin
+ 2b. (26)

For the remaining terms, note that for any x ∈ R|S| with ∥x∥ = 1,∥∥∥((u(t)
i ⊙ ρ(t))⊗ (u

(t)
i ⊙ ρ(t))

)
x
∥∥∥ =

∥∥∥⟨u(t)
i , x⟩H(t)(u

(t)
i ⊙ ρ(t))

∥∥∥ ≤ ∥x∥H(t)∥u(t)
i ∥H(t)

∥∥∥u(t)
i ⊙ ρ(t)

∥∥∥
≤ ∥x∥∥u(t)

i ∥
∥∥∥u(t)

i ⊙ 1
∥∥∥ = ∥u(t)

i ∥
2

(i)

≤ 2

ρmin
,

(27)

where (i) follows from u
(t)
i being an element of the constraint set C(t).

Combining equations 25, 26, and 27 in (24), we get

∥J(t)
ii (u)∥ ≤ α = 2 +

(
2 +

12 + 4d

ρmin

)
b.

As the spectral norm of each block matrix J
(t)
ii (u) is bounded by α ∀u ∈ C(t), the spectral norm of J (t)(u) is bounded by α

and the gradient g(t) is Lipschitz continuous with the Lipschitz constant α ∀u ∈ C(t).

A.4. Proof of Lemma 4.6

Proof for Lemma 4.6 (a)

Proof. We denote A(i, :) as the i-th row of the matrix A.∥∥∥P (t+1) − P (t)
∥∥∥
∞

= max
s∈S

∥∥∥P (t+1)(s, :)− P (t)(s, :)
∥∥∥
1

= max
s∈S

∥∥∥∥∥∑
a∈A

(π(t+1)(a|s)− π(t)(a|s))T (s, a, :)

∥∥∥∥∥
1

(i)
≤ max

s∈S

∑
a∈A

∣∣∣π(t+1)(a|s)− π(t)(a|s)
∣∣∣ ∥T (s, a, :)∥1

(ii)
= max

s∈S

∑
a∈A

∣∣∣π(t+1)(a|s)− π(t)(a|s)
∣∣∣ = δ(t)π ,

where (i) is by the triangle inequality, and (ii) from the fact that ∥T (s, a, :)∥1 = 1.

Proof for Lemma 4.6 (c)

Proof. First note that the elements of the matrix (ρ(t) ⊗ 1)⊙ L
(t)

ρ(t) are defined as

(ρ(t) ⊗ 1)⊙ L
(t)

ρ(t)(s, s
′) = ρ(t)(s)1s=s′ − ρ(t)(s)W (t)(s, s′)ρ(t)(s′)

= ρ(t)(s)1s=s′ −
1

2
P (t)(s, s′)ρ(t)(s)− 1

2
P (t)(s′, s)ρ(t)(s′).

Hence, by applying the triangle inequality, we have

16

Online Laplacian-Based Representation Learning in Reinforcement Learning

∥∥∥(ρ(t+1) ⊗ 1)⊙ L
(t+1)

ρ(t+1) − (ρ(t) ⊗ 1)⊙ L
(t)

ρ(t)

∥∥∥
=
∥∥∥ρ(t+1)

diag − ρ
(t)
diag − (ρ(t+1) ⊗ 1)⊙W

(t+1)

ρ(t+1) + (ρ(t) ⊗ 1)⊙W
(t)

ρ(t)

∥∥∥
≤
∥∥∥ρ(t+1)

diag − ρ
(t)
diag

∥∥∥+ ∥∥∥(ρ(t+1) ⊗ 1)⊙W
(t+1)

ρ(t+1) − (ρ(t) ⊗ 1)⊙W
(t)

ρ(t)

∥∥∥
≤ δ(t)ρ +

∥∥∥(ρ(t+1) ⊗ 1)⊙W
(t+1)

ρ(t+1) − (ρ(t) ⊗ 1)⊙W
(t)

ρ(t)

∥∥∥
≤ δ(t)ρ +

1

2

∥∥∥(ρ(t+1) ⊗ 1)⊙ P (t+1) − (ρ(t) ⊗ 1)⊙ P (t)
∥∥∥

+
1

2

∥∥∥∥((ρ(t+1) ⊗ 1)⊙ P (t+1) − (ρ(t) ⊗ 1)⊙ P (t)
)⊤∥∥∥∥

And since ∥A⊤∥ = ∥A∥ we have∥∥∥(ρ(t+1) ⊗ 1)⊙ L
(t+1)

ρ(t+1) − (ρ(t) ⊗ 1)⊙ L
(t)

ρ(t)

∥∥∥
≤ δ(t)ρ +

∥∥∥(ρ(t+1) ⊗ 1)⊙ P (t+1) − (ρ(t) ⊗ 1)⊙ P (t)
∥∥∥ (28)

Now we proceed to bound the second term, adding and subtracting (ρ(t+1) ⊗ 1)⊙ P (t) and applying the triangle inequality
we have ∥∥∥(ρ(t+1) ⊗ 1)⊙ P (t+1) − (ρ(t) ⊗ 1)⊙ P (t)

∥∥∥
≤
∥∥∥(ρ(t+1) ⊗ 1)⊙ (P (t+1) − P (t))

∥∥∥+ ∥∥∥((ρ(t+1) ⊗ 1)− ρ(t) ⊗ 1))⊙ P (t)
∥∥∥

(i)
≤
√
|S|max

s∈S

∥∥∥ρ(t+1)(s)
(
P (t+1)(s, :)− P (t)(s, :)

)∥∥∥
1

+
√
|S|max

s∈S

∥∥∥(ρ(t+1)(s)− ρ(t)(s)
)
P (t)(s, :)

∥∥∥
1

≤
√
|S|
∥∥∥ρ(t+1)

∥∥∥
∞

max
s∈S

∥∥∥P (t+1)(s, :)− P (t)(s, :)
∥∥∥
1

+
√
|S|
∥∥∥ρ(t+1) − ρ(t)

∥∥∥
∞

max
s∈S

∥∥∥P (t)(s, :)
∥∥∥
1

(ii)
≤
√
|S|
(
δ(t)π + δ(t)ρ

)
where (i) stems from the identity ∥A∥ ≤

√
n∥A∥∞ for the n × n matrix A and (ii) follows from

∥∥ρ(t+1)
∥∥
∞ ≤ 1,∥∥P (t)(s, :)

∥∥
1
= 1, and Lemma 4.6(a).

Proof for Lemma 4.6 (d)

Proof. Recall that the loss function is given by:

L(t)(u) =

d∑
i=1

⟨ui, L
(t)ui⟩H(t) + b

d∑
j=1

j−1∑
k=1

(⟨uj , [[uk]]⟩H(t))
2
+

b

2

d∑
i=1

(⟨ui, ui⟩H(t) − 1)
2 (29)

We are interested in finding a bound for the difference:

∆L(t)(u) = |L(t+1)(u)− L(t)(u)|. (30)

The first term in the loss function is:
d∑

i=1

⟨ui, L
(t)ui⟩H(t) . (31)

17

Online Laplacian-Based Representation Learning in Reinforcement Learning

Substituting the inner product and applying the triangle inequality, we have the following:

∣∣∣∣∣
d∑

i=1

⟨ui, L
(t+1)ui⟩H(t+1) −

d∑
i=1

⟨ui, L
(t)ui⟩H(t)

∣∣∣∣∣ ≤
d∑

i=1

∣∣∣((u⊤
i ⊙ ρ(t+1)⊤)L

(t+1)

ρ(t+1)(ui)− (u⊤
i ⊙ ρ(t)

⊤
)L

(t)

ρ(t)(ui)
)∣∣∣ . (32)

The above expression can be re-written as follows:

d∑
i=1

∣∣∣(u⊤
i

(
(ρ(t+1) ⊗ 1)⊙ L

(t+1)

ρ(t+1) − (ρ(t) ⊗ 1)⊙ L
(t)

ρ(t)

)
ui

)∣∣∣ . (33)

From Lemma 4.6(c),
∥∥∥(ρ(t+1) ⊗ 1)⊙ L

(t+1)

ρ(t+1) − (ρ(t) ⊗ 1)⊙ L
(t)

ρ(t)

∥∥∥ ≤ δ
(t)
L . Thus, we have:

d∑
i=1

∣∣∣(u⊤
i

(
(ρ(t+1) ⊗ 1)⊙ L

(t+1)

ρ(t+1) − (ρ(t) ⊗ 1)⊙ L
(t)

ρ(t)

)
ui

)∣∣∣ ≤ δ
(t)
L

d∑
i=1

∥ui∥2 (34)

The difference in the regularization terms is:∣∣∣∣∣∣b
d∑

j=1

j−1∑
k=1

(
(⟨uj , [[uk]]⟩H(t+1))

2 − (⟨uj , [[uk]]⟩H(t))
2
)
+

b

2

d∑
j=1

(
(⟨uj , uj⟩H(t+1) − 1)

2 − (⟨uj , uj⟩H(t) − 1)
2
)∣∣∣∣∣∣ .

(35)

Using the rule x2 − y2 = (x+ y) · (x− y) and applying the triangle inequality, we can rewrite the above expression as
follows:

b

d∑
j=1

j−1∑
k=1

|⟨uj , [[uk]]⟩H(t+1) + ⟨uj , [[uk]]⟩H(t) | |⟨uj , [[uk]]⟩H(t+1) − ⟨uj , [[uk]]⟩H(t) |+

b

2

d∑
j=1

|⟨uj , uj⟩H(t+1) + ⟨uj , uj⟩H(t) − 2| |(⟨uj , uj⟩H(t+1) − ⟨uj , uj⟩H(t))|

≤b
d∑

j=1

j−1∑
k=1

|⟨uj , [[uk]]⟩H(t+1) + ⟨uj , [[uk]]⟩H(t) | |(⟨uj , [[uk]]⟩H(t+1) − ⟨uj , [[uk]]⟩H(t))|+

b

2

d∑
j=1

|⟨uj , uj⟩H(t+1) + ⟨uj , uj⟩H(t) | |(⟨uj , uj⟩H(t+1) − ⟨uj , uj⟩H(t))|

(36)

Note that
|⟨uj , [[uk]]⟩H(t+1) + ⟨uj , [[uk]]⟩H(t) | ≤ 2∥uj∥ · ∥[[uk]]∥ (37)

and that

|⟨uj , [[uk]]⟩H(t+1) − ⟨uj , [[uk]]⟩H(t) | =

∣∣∣∣∣∑
s∈S

uj(s)(ρ
(t+1)(s)− ρ(t)(s))[[uk]](s)

∣∣∣∣∣
≤ ∥uj∥ · ∥[[uk]]∥ · ∥ρ(t+1) − ρ(t)∥∞ ≤ ∥uj∥ · ∥[[uk]]∥ · δ(t)ρ

(38)

18

Online Laplacian-Based Representation Learning in Reinforcement Learning

where δ
(t)
ρ is defined in Lemma 4.6(b).

Combining the bounds for both the first and second parts, the total bound on L(t+1)(u)− L(t)(u) is:

|L(t+1)(u)− L(t)(u)| ≤ δ
(t)
L

d∑
i=1

∥ui∥2 + b

d∑
j=1

j∑
k=1

(
2∥uj∥2∥[[uk]]∥2δ(t)ρ

)
. (39)

We have |L(t+1)(u)− L(t)(u)| ≤ δ
(t)
L , where δ

(t)
L is given by

δ
(t)
L = δ

(t)
L

d∑
i=1

∥ui∥2 + b

d∑
j=1

j∑
k=1

(
2∥uj∥2∥[[uk]]∥2δ(t)ρ

)
. (40)

We know that ∥ui∥2 ≤ 2/ρmin. Substituting this, we have

δ
(t)
L =

2dδ
(t)
L

ρmin
+

8bd2δ
(t)
ρ

ρ2min

. (41)

Note: From Lemma 4.6(b) and Lemma 4.6(c), we have δ
(t)
L ≤ C1δ

(t)
π and δ

(t)
ρ ≤ C2δ

(t)
π , for some constants C1, C2. Thus,

we have |L(t+1)(u)− L(t)(u)| ≤ δ
(t)
L = (C1 + C2)δ

(t)
π . This implies that the drift in the loss function decreases with the

decrease in the drift between the policies πt and πt+1.

A.5. Proof of Theorem 4.7

Proof. Recall that the update rule for projected gradient descent in (10) is given by:

u
(t+1)
i ← u

(t)
i − ηG(t)

ui
(u

(t)
i),

We need to prove that the gradient norm ∥g(t)(ut)∥ asymptotically approaches zero as t → ∞, which would ensure the
convergence to a critical point. In order to prove this, we will establish that the sum of the squared gradients remains finite
over time, despite the loss function being time-varying.

Recall the following assumptions:

• The gradient of the time-varying loss function L(t)(u) is Lipschitz continuous with constant α > 0 for all t, that is,

∥g(t)(u1)−∇ug
(t)(u2)∥ ≤ α∥u1 − u2∥, ∀u1, u2.

• From Lemma 4.6, we have the change in the loss function from time t to time t+ 1 is bounded by a constant δL, i.e.,

∥L(t+1)(u)− L(t)(u)∥ ≤ δ
(t)
L , ∀u.

• Additionally, it is easy to see that the loss function L(t)(u) is bounded from below by a constant L∗, i.e.,

L(t)(u) ≥ L∗, ∀u, t.

The descent lemma for a loss function with Lipschitz continuous gradients and learning rate η is given by:

L(t+1)(u(t+1)) ≤ L(t+1)(u(t))− η∥G(t)(u(t))∥2 + η2

2
α∥G(t)(u(t))∥2.

This can be rewritten as:

L(t+1)(u(t+1)) ≤ L(t)(u(t))− η∥G(t)(u(t))∥2 + η2

2
α∥G(t)(u(t))∥2 + δ

(t)
L ,

19

Online Laplacian-Based Representation Learning in Reinforcement Learning

where δ(t)L represents the drift that accounts for the time-variation in the loss function between time t and t+ 1. Rearranging
this inequality, we obtain:

L(t+1)(u(t+1)) ≤ L(t)(u(t))−
(
η − η2

2
α

)
∥G(t)(u(t))∥2 + δ

(t)
L .

To ensure that the loss function decreases at each time step, except for the small drift δL, we require that:

η − η2

2
α > 0.

This gives the condition on the learning rate:

η <
2

α
.

Thus, the learning rate must satisfy η ≤ 2
α .

At each step, we can bound the change in the loss function as follows:

L(t)(u(t))− L(t+1)(u(t+1)) ≥
(
η − η2

2
α

)
∥G(t)(u(t))∥2 − δ

(t)
L .

Summing this inequality over t = 1, 2, . . . , T , we get:

T∑
t=1

(
L(t)(u(t))− L(t+1)(u(t+1))

)
≥

T∑
t=1

((
η − η2

2
α

)
∥G(t)(u(t))∥2 − δ

(t)
L

)
.

The left-hand side of this inequality is a telescoping sum, so it simplifies to:

L(1)(u(1))− L(T+1)(u(T+1)) ≥
T∑

t=1

((
η − η2

2
α

)
∥G(t)(u(t))∥2 − δ

(t)
L

)
.

Rearranging, we get:
T∑

t=1

∥G(t)(u(t))∥2 ≤ L
(1)(u(1))− L(T+1)(u(T+1))

η − η2

2 α
+

∑T
t=1 δ

(t)
L

η − η2

2 α
.

Since the loss function L(t)(u) is bounded from below by L∗, we have:

L(1)(u(1))− L∗ ≥
T∑

t=1

((
η − η2

2
α

)
∥G(t)(u(t))∥2 − δ

(t)
L

)
.

We can further simplify this to:

T∑
t=1

∥G(t)(u(t))∥2 ≤ L
(1)(u(1))− L∗

η − η2

2 α
+

∑T
t=1 δ

(t)
L

η − η2

2 α
. (42)

Dividing both sides by T , we get

Et∼Uniform{1,2,...,T}

[
∥G(t)(u(t))∥2

]
≤ L

(1)(u(1))− L∗

T
(
η − η2

2 α
) +

∑T
t=1 δ

(t)
L

T
(
η − η2

2 α
) . (43)

Setting η = 1
α , we have

Et∼Uniform{1,2,...,T}

[
∥G(t)(u(t))∥2

]
≤ 2α

T

(
L(1)(u(1))− L∗ +

T∑
t=1

δ
(t)
L

)
. (44)

20

Online Laplacian-Based Representation Learning in Reinforcement Learning

From Assumption 4.2, we have that the asymptotic sum of the squared gradients lim
T→∞

∞∑
t=1

∥G(t)(u(t))∥2 remains finite, i.e.,

lim
T→∞

T∑
t=1

∥G(t)(u(t))∥2 <∞. Therefore, we have:

lim
t→∞

∥G(t)(u(t))∥ = 0.

This shows that the gradients asymptotically approach zero over time, proving that the projected gradient descent algorithm
applied to the time-varying loss function converges asymptotically to a critical point.

B. Additional Experimental Details
We provide hyper-parameters for the Asymmetric Graph Drawing Objective (AGDO), Proximal Policy Optimization (PPO),
and Deep-Q Network (DQN) in Table 1.

Table 1: Hyper-parameters for AGDO, PPO, and DQN.

Hyper-Parameter AGDO PPO DQN
d 11 - -
Replay Max Episodes 20 - -
Updates per Episodic Step 5 - -
Total Training Steps 200,000 - -
Maximum Episode Length 10,000 - -
Learning Rate 0.001 3× 10−4 3× 10−4

Optimizer Adam Adam Adam
Barrier Coefficient 5 - -
Encoder Network Hidden Dimensions [256, 256, 256] - -
Batch Size 256 256 256
Replay Buffer Size - 500 steps 50,000 steps
Update Every - 500 steps 1 step
Training Batches per Update - 10 1
Actor and Critic Hidden Dimensions - [64, 64] -
Q-Network Hidden Dimensions - - [64, 64]
Discount Factor - 0.99 0.99
Entropy Coefficient - 0.01 -
Initial Clip Ratio - 0.2 -
Final Clip Ratio - 0.01 -
Initial Epsilon - - 1
Final Epsilon - - 0.1

Finally, we present the rewards obtained by the learning agents described in Section 5, as illustrated in Figure 6. Figure
6a shows the policies trained using the online version of AGDO across four different environments. In environments with
larger state spaces, the total rewards are comparatively lower.

Figure 5a demonstrates that larger clipping improves the learning representation. However, as discussed in Section 5, this
improvement comes at the cost of reduced policy quality and can be seen in Figure 6b.

Figures 6c and 6d depict the effects of tuning parameters that influence only the encoder training. As a result, the quality of
the policies remains consistent across these experiments. In Figure 6c, the number of steps per policy update determines
how frequently the encoder is updated. In Figure 6d, the size of the replay buffer is varied only for encoder training, while it
remains fixed during policy training.

21

Online Laplacian-Based Representation Learning in Reinforcement Learning

0.0 0.5 1.0 1.5 2.0
Environment Steps ×105

0

50

100

150

200

To
ta

l R
ew

ar
d

GridRoom-1
GridRoom-4
GridMaze-9
GridMaze-11

(a) Rewards for agents in Figure 3

0.0 0.5 1.0 1.5 2.0
Environment Steps ×105

0

10

20

30

40

50

60

70

To
ta

l R
ew

ar
d

PPO 0.01-0.01
PPO 0.2-0.01
DQN
VPG

(b) Rewards for agents in Figure 5a

0.0 0.5 1.0 1.5 2.0
Environment Steps ×105

0

10

20

30

40

50

60

70

To
ta

l R
ew

ar
d

Steps=1
Steps=5
Steps=10
Steps=20

(c) Rewards for agents in Figure 5b

0.0 0.5 1.0 1.5 2.0
Environment Steps ×105

0

10

20

30

40

50

60

70

To
ta

l R
ew

ar
d

Episodes=1
Episodes=20
Episodes=50
Episodes=400

(d) Rewards for agents in Figure 5c

Figure 6: Average reward obtained by agents trained in section 5.

22

