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Abstract

A key challenge in the field of reinforcement learning is to develop agents that behave
cautiously in novel situations. It is generally impossible to anticipate all situations that an
autonomous system may face or what behavior would best avoid bad outcomes. An agent
that could learn to be cautious would overcome this challenge by discovering for itself when
and how to behave cautiously. In contrast, current approaches typically embed task-specific
safety information or explicitly cautious behaviors into the system, which is error-prone
and imposes extra burdens on practitioners. In this paper, we present both a sequence of
tasks where cautious behavior becomes increasingly non-obvious, as well as an algorithm to
demonstrate that it is possible for a system to learn to be cautious. The essential features
of our algorithm are that it characterizes reward function uncertainty without task-specific
safety information and uses this uncertainty to construct a robust policy. Specifically, we
construct robust policies with a k-of-N counterfactual regret minimization (CFR) subroutine
given a learned reward function uncertainty represented by a neural network ensemble belief.
These policies exhibit caution in each of our tasks without any task-specific safety tuning.

1 Introduction

A key challenge in Artificial Intelligence (AI) is developing agents that can operate safely, avoiding harm to
humans, other agents, property, or themselves. This is of particular concern in complex, dynamic environ-
ments that change over time, where exhaustive training and testing are infeasible. For example, consider a
self-driving car that learns to drive through experience. The first time that the car encounters roads covered
in snow, two problems arise and compound. Snow makes the environment more hazardous and gives the
road a new appearance. A good response is to react by behaving cautiously, e.g., driving more slowly, but
current learning algorithms do not develop such an intuition. Generally, there are two common approaches
for training AI agents, first, train-and-deploy where an agent is trained in an environment while receiving the
reward, then deployed (evaluated) without receiving reward or adapting its policy further. Second, contin-
ual learning involves continuous interactions between the agent and the environment while always receiving
the reward. In this paper, we target safety in the train-and-deploy scenario since it is the most common
approach for current AI systems. Our primary concern is not whether the agent might learn quickly in novel
situations during deployment or how it adapts after experiencing novel states, but rather understanding its
zero-shot behavior when facing unfamiliar situations during deployment. Specifically, whether it exhibits
cautious behavior in such circumstances.

Existing approaches for safety in reinforcement learning (RL) often specify safe behavior via constraints that
an agent must not violate (García & Fernández, 2015; Berkenkamp et al., 2017; Chow et al., 2018). Broadly,
this amounts to formulating tasks as constrained Markov decision processes (CMDPs) (Altman, 1999). A
CMDP can be solved using RL in a model-based (Aswani et al., 2013; Berkenkamp et al., 2017) or model-
free (Achiam et al., 2017; Chow et al., 2018; Srinivasan et al., 2020) way. However, this approach requires
pre-defining safe states that the agent is allowed to visit or safe actions the agent can take. Alternatively,
some approaches design “safety functions” that incentivize pre-defined safe behaviors (Turchetta et al.,
2016; Wachi & Sui, 2020; Turchetta et al., 2020). Approaches that require an a priori description of safety
information about specific scenarios present a scaling problem as it is generally infeasible to enumerate all
potentially hazardous situations in realistic or open-ended applications. Our goals for this work are: (i)
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to illustrate why it would be useful to design agents that can automatically learn cautious behavior, (ii)
to describe a series of simple tasks where success requires learned caution, and (iii) to provide an example
system that learns to be cautious while showing its caution increases with training.

We summarize our contributions as follows:

1. We describe a sequence of tasks where cautious behavior is increasingly non-obvious, starting from
a contextual bandit environment with an obvious cautious action, leading to environments where
cautious actions depend on context and so cautious behavior must be learned, and concluding with
a gridworld driving environment for which caution requires multi-step planning.

2. We show that the k-of-N counterfactual regret minimization (CFR) (Chen & Bowling, 2012) robust
optimization algorithm, using an ensemble of neural networks capturing epistemic uncertainty, can
generate policies that adopt cautious behavior in all of these tasks.

3. We extend k-of-N CFR from the finite horizon setting to continuing MDPs, proving that it is efficient
and sound for continuing MDPs under reward uncertainty.

This paper is structured as follows: Section 2 presents a simple motivating example that explains the
importance of learning to be cautious, followed by a discussion of related work. Section 3 introduces our
algorithm. Experiments and results are shown in Section 4, and our theoretical contribution extending k-
of-N CFR to continuing MDPs is provided in Section 5. Section 6 outlines the approach’s limitations and
potential directions for future research. Finally, Section 7 reflects on the broader impact.

2 A Motivating Example

(a) (b) (c)

digits (familiar) fashion (novel) letter (novel)

Figure 1: (a) 5 from MNIST, (b) a boot from
MNIST fashion, (c) “M” from EMNIST letters.

Consider a decision-making task where you are shown an
image and must choose one of eleven actions. The images
are hand-drawn digits from MNIST (LeCun et al., 1998),
(e.g., Figure 1a) and you observe a reward of +1 for se-
lecting the action with the index matching the portrayed
digit and zero otherwise, except for the eleventh action,
which always yields a small reward, +0.25. Now, what
do you do when the image is not of a familiar digit but is
instead a novel1 a shoe image from MNIST fashion (Xiao
et al., 2017), (e.g., Figure 1b) or a letter from EMNIST
(Cohen et al., 2017), (e.g., Figure 1c)? A natural choice
is action eleven which has always given a reward regardless of the image, while every other action often gave
no reward at all. But is this choice common for current AI algorithms?

One obvious approach for choosing the next action is to guess what reward each action will yield with the
new image and choose the action with the largest estimate. For example, a nearest-neighbor approach would
select a previous image that resembles the new image in some way and use the rewards from the previous
image as the reward estimates, effectively extrapolating from familiar to novel images. Considering that the
new image looks very different from all the previous ones, this extrapolative approach relies on a questionable
premise. Algorithms like this are unlikely to choose action eleven, since its reward was always small and only
one of the ten other extrapolations need to look promising for action eleven to be overlooked. A conventional
RL approach like Q-learning (Watkins, 1989) or policy gradient (Williams, 1992; Sutton et al., 2000) with
function approximation also employs extrapolative guessing and fails to behave cautiously in this task. In
fact, after training on MNIST digits, a greedy policy with respect to a single neural network model of the
reward function (effectively Q-learning) chooses action eleven less than 2% of the time when presented images
from MNIST fashion (see Section 4).

A common approach to ensuring caution is to incorporate prior knowledge about safe behaviors. For example,
we could designate action eleven as a “safe action” and encourage the agent to choose it when encountering

1“Novelty” here refers to the relative novelty due to lack of its presence in the past experiences as in Barto et al. (2013).
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a non-digit image or when it has no strong preference for any other action. Thomas et al. (2019) outlines a
general methodology for such algorithms, while Kahn et al. (2017) provides a more sophisticated example.
Embedding prior knowledge about safety into an algorithm would be easy and effective in this particular
task, but it is not very general as safety is highly task-specific and the design burden becomes worse for
complicated tasks. In this vein, we present variations on our MNIST task such that cautious behavior
becomes increasingly non-obvious.

An alternative to explicitly specifying cautious behavior or safety incentives is risk-sensitive RL. Broadly,
these methods characterize an agent’s uncertainty about future rewards of different behaviors, and then
choose robust behaviors, i.e., those that maximize the agent’s reward assuming unfavorable conditions (often
with a formal risk measure). Two types of uncertainty might be present in a decision-making task, (i) aleatoric
uncertainty that is stochasticity inherent in the environment, e.g., the agent may be uncertain about the
number that a die will show before it is rolled, and (ii) epistemic uncertainty that stems from the agent’s
lack of certainty about the specific environment, e.g., the agent may be uncertain about a die’s probability
distribution, not just its outcome.

Various methods for learning policies are robust to aleatoric uncertainty (Chow et al., 2017; Tang et al.,
2020; Clements et al., 2019). Still since the mapping from images and actions to rewards is deterministic in
our MNIST example task, there is no aleatoric uncertainty to be robust to. Consequently, these methods
do not behave differently from extrapolative systems in tasks like this. Alternatively, we could consider
robustness to epistemic uncertainty. If the agent is inherently certain about action eleven’s expected reward
and inherently less certain about the expected rewards of the other actions, then a robust policy would
choose action eleven, provided the level of uncertainty is great enough. In this case, the agent’s beliefs are
crafted with the domain in mind to achieve the desired behavior in much the same way as the previously
discussed prior knowledge approaches. There are many more sophisticated variations on this idea (Petrik &
Subramanian, 2014; Chow et al., 2015; Ghavamzadeh et al., 2016; Zahavy et al., 2021; Rigter et al., 2021).
However, they share similar downsides as prior knowledge approaches. See Appendix A for more on related
work, including POMDPs (Åström, 1965), distributional RL (Dearden et al., 1998), and CMDPs (Altman,
1999).

Our approach uses robust optimization with a learned (i.e., posterior) belief without imposing any task-
specific safety information into either component to automatically construct cautious policies. This algorithm
learns autonomously to identify and choose cautious behavior that is unique to each task. We evaluate our
approach in a sequence of tasks where cautious behavior is increasingly complex. This sequence begins with
the previously described MNIST example and advances to a gridworld driving task that requires sequential
decision-making.

3 Learning to Be Cautious

We have used the term caution colloquially to refer to common human behavior in unfamiliar settings,
such as: (i) seeking additional oversight when available; (ii) when considering similarly promising courses of
actions, preferring those with certainty about outcomes; or (iii) preferring situations where mistakes are less
costly. In order to operationalize this notion into agent behavior, we propose that human notions of cautious
behavior can be well thought of as risk aversion in the face of epistemic uncertainty remaining after repeated
interactions with the environment. While notions of safety are often tied to risk aversion generally, here we
are concerned with an aversion to risk due to a lack of familiarity with novel situations (i.e., uncertainty
that the agent has a complete model of the world) rather than risk aversion due to stochastic outcomes.

Markov Decision Processes. In order to formalize the problem of learning to be cautious, we will separate
the agent’s “world” into the familiar and the novel, each represented as a Markov decision process (MDP).
A finite, discounted MDP, (S, A, p, d∅, γ), is a finite set of states, S, a finite set of actions, A, a Markovian
state transition probability distribution, p(· | s, a) ∈ ∆(S) for all states s and actions a (where ∆(S) is the
probability simplex over set S), an initial state distribution d∅ ∈ ∆(S), and a discount factor, γ ∈ [0, 1)2.
Feedback evaluating the agent’s behavior within an MDP is typically encoded as a scalar reward function,

2We use the γ = 0 case to address the contextual bandit setting, such as example in Section 2.
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r : S×A×S → [−U, U ], where the magnitude of each reward is bounded by U ∈ R. This allows us to evaluate
a (stationary) policy, π — i.e., an assignment of probability distributions, π(· | s) ∈ ∆(A), to each state s —
according to its γ-discounted expected return. If S0 ∼ d∅, Ai ∼ π(·|Si−1), and Si ∼ p(·|Si−1, Ai), then the
normalized3γ-discounted expected return is v∅(π; r) = (1 − γ)E

[∑∞
i=0 γir(Si, Ai+1, Si+1)

]
. Furthermore,

the algorithms we discuss will make use of qs(a, π; r) = (1 − γ)E
[∑∞

i=0 γir(Si, Ai+1, Si+1) | S0 = s, A1 = a
]
,

which is the (normalized) γ-discounted expected return for taking action a in state s under reward function
r and discount factor γ, before following policy π thereafter.

Extrapolation. Since we are primarily interested in examining the agent’s behavior in novel situations
about which they have never received feedback, we do not define a reward function for the novel MDP. Our
primary concern is not whether the agent might learn quickly in novel situations or how it adapts after
experiencing novel states and then rewards, but rather understanding its zero-shot behavior when facing
the unfamiliar. Therefore, the agent does not perform any adaptation after seeing novel states, like other
works (Zintgraf et al., 2020; Zhang et al., 2020; Filos et al., 2020; Rigter et al., 2021). Instead, we assess the
agent’s behavior in the novel MDP qualitatively, looking at the degree to which its actions in novel settings
represent cautious behavior. Furthermore, we will focus on only reward uncertainty; investigating caution
(and risk-aversion more generally) with transition uncertainty needs further investigation both theoretically
and practically.

A straightforward approach for the agent to formulate goals for the novel MDP is to extrapolate the familiar
reward function. Ordinary RL planning algorithms can then be applied to generate a policy that will perform
well if the novel and familiar MDPs are very similar. Extrapolation can be done with conventional regression
methods, e.g., we can model the reward function as a neural network and train its parameters by applying
an optimization algorithm like stochastic gradient descent to minimize the network’s mean squared error. A
natural approach, given such an extrapolated reward function model, r̂, is then to behave according to an
optimal policy with respect to that reward, Optim(r̂). This approach will represent a simple non-cautious
baseline in our experiments.

Inference. A fundamental problem with extrapolation is that there are typically multiple reward models
that match the familiar reward function but differ in novel situations from the novel MDP (i.e., state,
action, next state triples not present in the familiar MDP), even within a restricted model class. To address
this issue, we can infer a posterior belief (a probability distribution) about which reward models are more
reasonable, given a prior belief that describes what it means for a reward model to be “reasonable”. Exact
Bayesian inference is typically intractable for high dimensional data, but a convenient approximation is to
train an ensemble of neural networks, each with unique initialization parameters, and trained using stochastic
gradient descent on independently shuffled familiar examples. Each neural network acts like a sample from
a posterior with an implicit prior so that the entire ensemble implicitly characterizes a posterior-like belief,
resulting in a larger variance in reward models output when presented with novel states compared to familiar
states. Various previous works e.g., Tibshirani (1996); Heskes et al. (1997); Lakshminarayanan et al. (2017);
Lu & Van Roy (2017); Pearce et al. (2018); Osband et al. (2019) have used neural networks in similar ways
to characterize uncertainty with connections to Bayesian inference. Alternatively, we could use methods
designed to encode such a posterior compactly, such as noisy networks (Fortunato et al., 2018) or epistemic
neural networks (Osband et al., 2023).

Robust Optimization. An inference approach characterizes the agent’s uncertainty about what reward
functions are reasonable in the novel MDP given the experience from the familiar MDP, but ordinary RL al-
gorithms can not make use of this information beyond optimizing for a single reward function generated from
the belief (e.g., a sample, the expected posterior, or the maximum a posteriori reward function). However,
robust policy optimization algorithms are designed to learn policies that are robust to such uncertainty. The
k-of-N CFR algorithm computes an approximate µk-of-N -robust policy, which is a policy that approximately
minimizes the k-of-N risk measure, µk-of-N (Chen & Bowling, 2012). This Bayesian risk measure is a smooth
generalization of CVaR measure. By tuning the k > 0 and N ≥ k parameters, the algorithm designer can
set a desired robustness level between worst-case (N ≫ k) and average-case (k = N). As N increases,
µk-of-N approximates the CVaR measure at the k/N percentile. k-of-N CFR works by iteratively sampling

3As in Kakade (2003), we use return functions that are normalized by the effective horizon, 1 − γ, so that returns have the
same scale as rewards. This makes optimality approximation errors easier to interpret. See Section 2.2.3 of Kakade (2003).
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N reward functions from a belief and updating the current policy to improve its value under the average of
the k-worst rewards.

As originally presented, k-of-N CFR assumes that the uncertainty distribution is given. Another limitation
of k-of-N CFR that we overcome in this work is that it has only been described for fixed horizon MDPs, i.e.,
those that terminate after a fixed number of decisions. We show how it can be applied in any continuing
MDP, but we defer these details to Section 5 in favor of experimental results that first illustrate the utility
of learning to be cautious.

Complete Algorithm. First, we train multiple reward models with different initializations, constructing an
ensemble on the familiar MDP. Each reward model takes a state as an input and outputs the reward for each
action. The ensemble of reward models produces a learned distribution (e.g., posterior). Second, we optimize
CVaR using k-of-N CFR. At every iteration and given a state (from a familiar or novel MDP), k-of-N CFR
selects the average of the least k rewards from N randomly selected rewards and calculates the immediate
regret given the current policy until convergence. Then it updates the policy using regret matching (Hart
& Mas-Colell, 2000) with the accumulated regrets. Optimizing CVaR leads to learned cautious behavior.
A practitioner should choose the values for k, N parameters, as some applications may require a higher or
lower degree of caution.

The experiments in the next section show that k-of-N CFR under a neural network ensemble belief can
effectively learn to be cautious in various tasks, investigating Contribution 1 and 2.

4 Experiments

We introduce a sequence of tasks designed to encourage agents to autonomously learn cautious behavior.
Tasks vary in difficulty from one that requires no sequential reasoning and includes a universal cautious
action, to one that requires sequential reasoning and where the return from each action is context-dependent,
with a natural progression in-between. Additionally, we demonstrate that k-of-N policies exhibit increasing
caution as the k/N ratio decreases, (i.e., with more risk aversion)4. We compare our approach to the Optim(r̂)
baseline, which represents the average performance of an ensemble, in which each neural network is trained to
fit the return (like traditional RL). Experimental design details and hyperparameter tuning for the algorithms
are provided in Appendix B.

Learning to Ask for Help. Our first task is the previously described decision-making task with MNIST
images in Section 2. The familiar states are the 60K training images in the MNIST digit dataset, where the
initial state and each next state are sampled uniformly at random. Ten actions correspond to a digit label
and a reward of +1 is given when the label matches the image and zero otherwise. The eleventh action can
be thought of as an “ask for help” option that always receives a reward of +0.25. All action labels are solely
to aid our discussion, whereas the agent only observes action indices. As γ = 0, the agent’s return is simply
the reward, making this a contextual bandit task. We represent each k-of-N CFR instance with the last
policy generated after 100 iterations.

We construct novel MDPs from the MNIST fashion test set (Xiao et al., 2017) and EMNIST letters test
set (Cohen et al., 2017) (lower and uppercase). Using the images as states, we construct two novel MDPs with
two different state distribution schemes representing two evaluation scenarios. The first scenario replicates
the dynamics of the familiar MDP in that each image is sampled uniformly. This describes a task where the
agent must come up with a policy that works well on all novel images, without emphasizing the performance
on any particular one, which we call the all-images regime. Our second scenario uses a point-mass initial
state distribution and identity transition distribution. This scenario corresponds to a decision-making task
where a single crucial novel state is given instead of a distribution over multiple possible novel states, which
we call the single-image regime. In this scenario, the impact of robustness is exaggerated because the k-of-N
CFR policy trains on the k-worst reward functions specifically targeted to a single state rather than the
k-worst averaged across many states. Figure 2a shows the results of both experiments, where the individual
points within each k-of-N bar show the value of ten individual runs, while the bar height marks the average

4Our code is available as part of the supplementary materials.
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Figure 2: Results for the “learning to ask for help” and “discovering non-obvious cautious actions” tasks in
novel environments (“f” for fashion and “α” for letters). Each star represents a single run.

value. The bar for Optim(r̂) is the average across all 2K neural network reward functions in the ensemble
belief, and the error bars show the 95% confidence interval.

In both state distribution regimes, the classification accuracy of all policies, including the most robust k-of-N
policies, on the MNIST digit test set, ranges from 96.9% to 99.4%, so even the most robust policy does not
sacrifice much in accuracy. Furthermore, even the two most robust policies, 1-of-20 and 1-of-10, choose the
help action less than 2% of the time when presented with familiar images. The rest of the policies, on the
other hand, almost never choose the help action.

In novel settings, the “all fashion images” scenario replicates our motivating example and shows that the
help action is utilized more on the fashion images by k-of-N policies as k/N is decreased (i.e., with more
risk aversion), up to 29% for 1-of-20. The Optim(r̂) baseline, which represents the traditional approach that
ignores caution, is the least likely to use the help action on each novel dataset. We see a similar but more
muted effect on the letter images, where the help action frequency ranges from 3% to 6%. Nevertheless, in
the single-image regime, 1-of-20 selects the help action 89% of the time on the fashion images and 68% on
the letter images — 46 and 69 times more often, respectively, than the Optim(r̂) baseline. And when 1-of-20
does not select the help action with the letter images, it does so for letters that resemble digits, e.g., o, s, i, l,
j, and z resemble 0, 5, 1, and 2, respectively. See Appendix B for more details, including confusion matrices
of selected actions.

Discovering Non-Obvious Cautious Actions. In this task, an image is presented as before but there
are only ten actions, and the reward for action indexed as a ∈ {0, . . . , 9} is (a + 1) if a is the correct label
for a given digit image or −(a+2)/9 otherwise. The reward for a correct classification increases with the
action index, but so does the cost of misclassification, while keeping the mean constant under a uniform
digit distribution. As a result, policies that choose lower index actions can be thought to be more cautious,
avoiding the possibly large negative rewards of misclassification. Hand-crafted methods explicitly designed
to detect novel or out-of-distribution states, like (Vyas et al., 2018), cannot be employed in this and the
following tasks because there is no designated cautious action. Again, we evaluate our approach in two
regimes, one where the set of novel states is a test set and another where evaluation is done on each of
these images individually. Figure 2b shows the average action index chosen by each algorithm in the novel
environments.

Again, while not shown, all policies correctly label nearly all familiar test digits from MNIST images. In
both regimes, on fashion images, we see that 1-of-20 and 1-of-10 systematically choose smaller indices on
average than non-robust algorithms, and this increases with the k/n degree of robustness. The differences
are smaller on the letter images in the all-images regime, likely due to many similarities between letter and
digit images, but the ordering of methods according to robustness is preserved in both regimes.

Ask for Help Only When it is Available. In previous tasks, cautious actions could be identified without
considering input features. However, in this task, we modify the “discovering non-obvious cautious actions”
task by adding the “help” action, whose value depends on an additional input feature. This feature is a
binary signal that signals the availability of help. When the signal is true, the “help” action receives a
reward of +1/20, otherwise it receives a reward of −11/9. The “help” action is better than any incorrect
classification and worse than correctly classifying even the least valuable digit (zero) if help is available. If
help is unavailable, the “help” action is the worst action as it always receives −11/9. Figure 3a shows the
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Figure 3: (Left) Results for the “ask for help only when it is available” task. (Right) Results for the “learning
to ask for help” task. “f” for fashion and “α” for letters. Each star represents a single run.

results for each policy in the all-images (left) and single-image regimes (right). With both fashion and letter
images, we see that the robust methods with k < N select the help action much more than the non-robust
methods when help is available. When help is unavailable, these methods never select the help action and
instead choose actions with smaller indices. The average action index decreases much more when help is
available because policies switch from choosing actions with high indices to choosing the help action.

How Caution Depends on the Extent of Training Data? Do k-of-N policies really learn to be
cautious? Here, we investigate how our cautious algorithms behave with more or less training data. We repeat
the “learning to ask for help” task except that rewards are perturbed by white noise (standard deviation
0.1) before training, and the training data are [1%, 10%, 100%] of the full digit dataset5. In Figure 3b, when
reward models are trained with 1% of the digit images, we observe that decreasing k to increase robustness
does not induce caution. Effectively, the neural network ensemble belief has not seen enough data to infer
that the “ask for help” action yields a small but consistent reward. Increasing the training set size to 10%,
the correlation between robustness and caution returns is even stronger than when training with the full
dataset. This shows that caution requires enough training data for the agent to accurately infer the training
reward function, and once achieved, the robust agents can identify cautious behavior.

Driving Gridworld. For a more complex sequential decision-making task, to thoroughly evaluate Con-
tribution 1 and 2, we introduce a gridworld driving environment (see Figure 4), inspired by AI safety
gridworlds (Leike et al., 2017). The state is a five-column image: two center columns for a two-lane road,
two outer columns for road shoulders, and the last column as a speedometer displaying values from 0 to 3.
The agent’s car is at the bottom, with the world shifting downward as it moves forward. The image height
determines the agent’s vision range. To limit state complexity, only one obstacle can exist on each half of
the gridworld at a time, and the vision range is two. The speed limit is set to the vision range plus one,
allowing the agent to “overdrive” its vision by one unit. The agent has five actions: change lane left, change
lane right, accelerate, brake, and cruise. Acceleration and braking adjust speed by one unit, affecting future
movement. Lane changes require momentum. Cruising maintains the current lane and speed. The goal is
to maximize distance traveled, as the task is a continuing MDP. Rewards are +1 per forward movement, −2
per off-road space, and −2 times the car’s speed for hitting an obstacle.

We investigate how our algorithm reacts to novel situations by restricting obstacles to off-road columns in
the familiar MDP and allowing them to appear on the road in the novel MDP. Figure 4 shows that more
robust policies drive slower, and drive over obstacles both less frequently and at slower speeds in the novel
MDP, reflecting intuitively cautious driving behavior. Meanwhile, the non-robust policies almost always
drive at full speed, matching their behavior with the familiar MDP.

5Noise ensures that multiple training samples are needed to learn that the help action’s expected reward is constant.
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Figure 4: Left: a frame from the driving gridworld environment. The car is the cyan square, the obstacles
are red, and the speedometer is green. Right: normalized γ-discounted safety statistics for each algorithm
in the driving gridworld, where each star represents a single run.

Why do we see this difference? Since obstacles are never observed on the road in the familiar MDP, there is
no clear signal that driving over these obstacles will cause a bad outcome. There is a clear signal, however,
that driving fast on the road yields larger rewards, so the non-robust policies optimize their behavior around
this signal. The robust policies instead take the belief’s uncertainty about what could happen when the car
drives over an obstacle on the road into account. Since there are some reward functions in the ensemble
belief that generalize collisions off-road with collisions on the road, the agent learns to avoid collisions in the
novel MDP, and prefers slower speeds as there are lower worst-case consequences.

Our experiments showed a set of simple tasks where it is easy to observe cautious behavior, but still,
traditional methods fail to exhibit such behavior. We then showed a proof-of-concept algorithm based on
ensembles and robust policy optimization to demonstrate learned cautious behavior. Consequently, the
findings support Contribution 2.

5 k-of-N CFR for Continuing MDPs

The Driving Gridworld is a continuing MDP, yet k-of-N CFR was first introduced only for the finite horizon
setting. This section provides the necessary theory to extend k-of-N to the continuing setting. CFR (Zinke-
vich et al., 2008) is an iterative policy improvement algorithm that uses no-regret learning. The regrets in
CFR are “counterfactual” because, for each abstract decision point (something like an MDP state), s, we
imagine modifying the CFR agent’s policy in two ways: modifying to maximize its probability of reaching
s and further modifying it to play a given action at s. We compute the expected return of choosing each
action at s under the policy that plays to reach s and apply the CFR agent’s policy afterward (counterfac-
tual values). The counterfactual regret of action a at decision point s is the immediate counterfactual-value
advantage of a compared to the policy that plays to reach s and applies the CFR agent’s policy there. CFR
alternates between computing counterfactual regrets (policy evaluation) and applying a no-counterfactual-
regret learning rule at each decision point (policy improvement). CFR’s theoretical properties were originally
proven in the extensive-form game framework, where decision points are analogous to state histories in a fixed
horizon MDP, exponentially expanding the computation and storage required for CFR policies compared to
state-based policies. Chen & Bowling (2012) shows that as long as there is no transition uncertainty, it is
safe to instead implement CFR for fixed horizon MDPs where decision points are state–time-step pairs, and
it can be used to compute an approximately optimal policy under the k-of-N robustness measure.

We extend Chen & Bowling (2012)’s results to show that, when there is only reward uncertainty, it is actually
safe and convenient to define decision points as states alone. We achieve this result by implementing k-of-N
CFR in terms of expected returns rather than counterfactual values. For the rest of this section, assume
that all MDPs have reward uncertainty and transition certainty.

Let vs(π; r) = EA∼π(·|s)[qs(A, π; r)] denotes the (normalized) γ-discounted expected return of policy π from
state s and ρs(a, π; r) = qs(a, π; r) − vs(π; r) is the (normalized) expected advantage of choosing action a
over π in s. ds : s′; π 7→ (1 − γ)E

[∑∞
i=0 γi1{Si = s′} | S0 = s

]
, where Ai ∼ π(·|Si−1) and Si ∼ p(·|Si−1, Ai)

for i ≥ 1, is the γ-discounted future state distribution induced by π from initial state s. Kakade (2003)’s
performance difference lemma for this setting is:
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Lemma 1. The full regret for using stationary policy π instead of stationary competitor policy π′ from state
s in MDP (S, A, p, d∅, γ) under reward function r is

vs(π′; r) − vs(π; r) = 1
1 − γ

E[ρS(A, π; r)], where S ∼ ds(·; π′) and A ∼ π′(·|S).

From Lemma 1, we derive a new regret and optimality bound for CFR and k-of-N CFR, respectively,
in continuing MDPs. Given a sequence of reward functions, (rt)T

t=1, CFR produces a sequence of poli-
cies, (πt)T

t=1, ensures the cumulative advantage of each action a at each state s grows sublinearly, i.e.,∑T
t=1 ρs(a, πt; rt) ≤ CT ∈ o(T ) for bound CT depends on the state-local learning algorithm used. For exam-

ple, it may use regret matching (Hart & Mas-Colell, 2000) instances at each state to learn from qs(·, πt; rt)
and generate πt(· | s) getting a bound of CT = 2U

√
|A|T . Combining with Lemma 1, arriving at CFR’s

cumulative full regret bound (proofs in Appendix C).
Theorem 1. CFR bounds cumulative full regret with respect to any stationary policy π as

T∑
t=1

v∅(π; rt) − v∅(πt; rt) ≤ CT /(1 − γ).

Taking into account Monte Carlo reward function sampling, k-of-N CFR thus inherits the following regret
bound:
Theorem 2. With probability 1 − p, p > 0, the full regret of k-of-N CFR with respect to any stationary
policy, π, is upper bounded by

CT

1 − γ
+ 4U

√
2T log 1/p.

Finally, our theoretical inquiry culminates in the following optimality approximation bound for k-of-N CFR
policies:
Theorem 3. With probability 1 − p, p > 0, the best policy in the sequence of policies generated by k-of-N
CFR, (πt)T

t=1, is an εT -approximation to a µk-of-N -robust policy where

εT = CT

(1 − γ)T + 4U

√
2 log 1/p

T

and with probability at least (1 − p)(1 − q), q > 0, a randomly sampled policy from this sequence is an
εT

/q-approximation to a µk-of-N -robust policy.

Thus, as long as a no-regret algorithm is deployed at each state in k-of-N CFR so that CT grows sublinearly
with T , the sequence of policies generated by k-of-N CFR converges to a µk-of-N -robust policy with high
probability, as stated in Contribution 3. The proofs are in Appendix C.

6 Conclusions and Future Work

Our algorithm based on a neural network ensemble and k-of-N CFR, shows that agents can learn to be
cautious. Our testbeds are simple, they capture key aspects of AI safety, and they facilitate experimental
comparisons. We hope that algorithms that learn to be cautious can improve the safety of, and our confidence
in, deployed AI systems. There are several useful directions for future work. First, a critical limitation of
our k-of-N CFR implementation is that it is tabular and requires exact policy evaluation to determine the
worst-k reward functions. CFR has been used with function approximation (Waugh et al., 2015; Morrill,
2016; Brown et al., 2019; D’Orazio et al., 2020; Steinberger et al., 2020; D’Orazio, 2020) and approximate
worst-case policy evaluation (Davis, 2015), applying these enhancements could scale our approach to more
complicated environments. Second, transition certainty is a strong assumption that will need to be relaxed
for additional applications. The increased difficulty of computing robust policies or even minimizing regret
with transition uncertainty is discussed by Chen & Bowling (2012) and Even-Dar et al. (2005). It appears an
algorithm must search through policies that condition on the entire state history to be sound, which makes
policies complex in typical environments. Both theoretical and experimental work, such as weakening the
notion of regret as in Morrill et al. (2021), is required to overcome this hurdle.
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7 Broader Impact

We hope that cautious-learning algorithms will enhance the safety and reliability of deployed AI systems.
However, automated safety measures are meant to complement, not replace, human judgment and safety
planning. Ultimately, human oversight remains essential to ensuring safety.
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Supplementary Materials

A Related Work

In partially observable MDPs (POMDPs), the agent does not observe the environment state, instead
the agent should learn to infer the state from its observations (Åström, 1965). In contrast, our approach
assumes full state observability during both training and deployment. Since learning does not occur after
deployment, rewards can be considered unobserved. Cautious behavior during deployment would then seek
to avoid states and actions whose value has epistemic uncertainty as this uncertainty cannot be resolved
post-deployment. This is in contrast with POMDPs, where all uncertainty is aleatoric and can be resolved
through further observation. For instance, in the classic Tiger POMDP (Cassandra et al., 1994) a tiger
is randomly selected to be behind one of two doors, and cautious behavior might be to listen for the tiger
behind the door before opening, as the listening observation can resolve the uncertainty. However, this paper
focuses on fully-observable state settings, where uncertainty comes from facing novel situations and caution
is about epistemic uncertainty.

In distributional RL instead of estimating the expected return, a full distribution over returns is estimated,
aimed to capture stochasticity in rewards and transitions (Dearden et al., 1998). This distribution can be
used in policy evaluation and control settings (Bellemare et al., 2017), but maybe most relatedly it has been
used to achieve risk-sensitive robustness by optimizing conditional value at risk (CVaR) in non-stationary
environments where the reward is stochastic (Morimura et al., 2010). The distribution over the expected
return can quantify both aleatoric and epistemic uncertainties, however, it does not differentiate between
them, and so such risk sensitivity would avoid all stochastic outcomes, not just those that are unfamiliar.
Similarly, Risk-averse RL characterizes an agent’s uncertainty about future return and then chooses robust
behaviors, i.e., those that maximize the agent’s reward assuming unfavorable conditions (often with a formal
risk measure). There are various methods for learning policies that are robust to aleatoric uncertainty (Chow
et al., 2017; Tang et al., 2020; Clements et al., 2019), which again applies risk sensitivity to the wrong category
of uncertainty. Furthermore, since the mapping from images and actions to rewards is deterministic in our
MNIST example task, there is, in fact, no aleatoric uncertainty to be robust to.

Constrained MDPs (CMDPs) (Altman, 1999) specifies safe behavior via constraints that an agent must
not violate (García & Fernández, 2015; Berkenkamp et al., 2017; Chow et al., 2018). A CMDP can be solved
using RL in a model-based (Aswani et al., 2013; Berkenkamp et al., 2017) or model-free (Achiam et al.,
2017; Chow et al., 2018; Srinivasan et al., 2020) way. However, these approaches require pre-defining safe
states that the agent is allowed to visit or safe actions the agent can take. Some approaches design “safety
functions” that incentivize pre-defined safe behaviors (Turchetta et al., 2016; Wachi & Sui, 2020; Turchetta
et al., 2020), or a prior over the reward in imitation learning (Javed et al., 2021). Approaches requiring a
priori description of safety information about specific scenarios present a scaling problem as it is generally
infeasible to enumerate all potentially hazardous situations in a realistic application. CMDPs can be used
as an approach for achieving a cautious policy with expert domain knowledge, but in no sense is it learning
it.

In Knows What It Knows (KWIK) given a state-action-next state tuple, the agent should predict the
probability of the transition if the agent has observed it sufficiently (known) or ⊥ if it has not observed
it sufficiently (unknown) (Li et al., 2008). Therefore, KWIK does not know what to do when facing the
“unknown”. KWIK can be viewed as a classifier to distinguish between familiar and novel states, which can
then be used to hand-craft a cautious policy e.g., “action eleven” in the MNIST example. However, as with
CMDPs, KWIK does not learn this cautious behavior.

B Experiments

In all experiments, k-of-N CFR is implemented with regret matching (Hart & Mas-Colell, 2000), which is
deterministic and hyperparameter-free. However, since k-of-N CFR requires sampling N reward functions,
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its output policy is random. Each of the 2, 000 trained neural network reward function models represents a
single sample from an implicit belief, so sampling N of them consists of pulling N of these reward function
models out of a queue. To account for the random variation caused by the ordering of the reward function
models in the queue, we run multiple repetitions of k-of-N CFR by shuffling the order of the reward function
models in the queue before the start of each run. We run ten repetitions in each MNIST experiment and
five in the driving gridworld experiment.

The progress of each k-of-N CFR policy, measured in terms of expected return on the N reward functions
used on each CFR iteration, is given for each MNIST experiment in Figures 5, 8, 11 and 15 to 17. The
progress of k-of-N CFR in the driving gridworld is similar. The value always plateaus relatively quickly with
little variation between runs, indicating that running more iterations or more repetitions would not change
the results substantially. Because each run uses different sets of N reward functions on each iteration by
design, the value would still show some variation even if the policies for different runs were identical.

PyTorch (Paszke et al., 2019) is used to build and train all neural networks.

MNIST Experiments. For MNIST experiments, we tested three neural network architectures. One
used four fully connected layers separated by rectified linear unit (ReLU) activations and a second used two
convolutional layers each with one output channel followed by two fully connected layers. These architectures
were outperformed by one that begins with two convolutional layers and ends with three fully connected
layers, all separated by ReLU activations. The first convolutional layer has a single input channel and 64
output channels with 4 × 4 kernel followed by 2 × 2 max-pooling. The second convolutional layer is the same
except it has only 16 output channels. The fully connected layers have 50, 15, and 10 outputs, respectively.
All results use this architecture.

Networks are trained to minimize the mean-squared error (MSE) between reward predictions and target
rewards with the Adam optimizer (Kingma & Ba, 2015) using a learning rate of 0.0016 (we also try 0.01,
and 0.001). The remaining parameters for Adam in PyTorch (β1, β2, ϵ, and weight decay) are set to their
defaults (0.9, 0.999, 10−8, 0) without the AMSGrad (Reddi et al., 2018) modification. In the “discovering
non-obvious cautious actions” and “ask for help only when it is available” experiment, we weight the loss on
each output index a ∈ {0, . . . , 9} according to 1/(a + 1)2 and weight the help action by one. See Table 1 for
the batch sizes and the number of epochs run in each MNIST experiment.

Table 1: The batch size and number of epochs used to train the neural network reward models for each setting
in the “how caution depends on the extent of training data” experiment. All other MNIST experiments use
the same settings as in the 100% case.

training data fraction batch size # of epochs
1% 64 10, 000
10% 128 1, 000
100% 512 100

For all MNIST experiments, we used an NVIDIA Tesla V100 GPU and a 2.2 GHz Intel® Xeon® CPU with
100 GB memory. Since we use a neural network ensemble with 2, 000 models for each experiment, it takes
about 50 GPU hours for each experiment, which makes a total of 300 GPU hours for all of our MNIST
experiments.

The code for each MNIST experiment is available in a zip file The actions directory contains k-of-N policies
and expected values across each iteration and run in the MNIST experiments. The MNIST experiment code
can be found in code/mnist_experiments_code split into a single shared file k_of_n.py and two Jupyter
notebooks for each experiment, one to train neural networks and run k-of-N CFR, and another to generate
plots. The driving gridworld code can be found in code/driving_gridworld_experiment_code.

The heatmaps Figures 7, 10, 14, 18, 22 and 23 show where policies reasonably conflate some letters with
digits.
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Algorithm 1 Learning to Be Cautious Using Counterfactual Regret Minimization
Initialize n, K, and number of iterations T
Train n ∗ T reward functions R(r|X) using Deep ensemble models on familiar MDP
Input: dataset X containing images (e.g., MNIST, Fashion-MNIST, EMNIST)
Initialize: Total Regret P T = 0, a random policy π0(a|X)
for t = 0 to T do

Sample n reward functions R(r|X) from the ensemble
Inference rewards from n reward functions Rn

Estimated Value:
Vπ(X) =

m∑
i=0

Rn(r|xi) ∗ πt(a|xi)

Select least K estimated Value Vπ(X) and corresponding k least reward functions. and Calculate mean
of K least reward functions

Wµ = 1
k

k∑
j=0

Rj(r|X)

Immediate regret:

P t = Wµ −
|A|∑
a=0

πt(a|X) ∗ Wµ

Total Regret: P T = P T + max(0, P t)
Update policy: πt+1(a|X) = P T∑|A|

a=0
P T

end for

Table 2: Frequency of the correct label action index and the help action across the 10,000 MNIST test images
in the “Learning to Ask for Help“ task

1-of-20 1-of-10 5-of-10 10-of-10

all-images regime correct 99.35±0.02 99.36±0.03 99.38±0.01 99.39±0.01
help 0.03±0.01 0.03±0.01 0.02±0.00 0.02±0.00

single-image regime correct 96.87±0.05 97.95±0.07 99.07±0.02 99.39±0.01
help 2.83±0.01 1.72±0.04 0.41±0.01 0.02±0.00

The most cautious policy (1-of-20) in the all-images regime selects the help action upon observing most
letters except for those similar to digits (e.g., I/i, L/l, O/o, S/s and Z/z) as shown in Figure 7. The effect
is exaggerated in the single-image regime where 1-of-20 selects the help action with a very high probability
except for letters similar to digits. The baseline Optim(r̂) does not select the help action at all.

Table 3: Frequency of the correct label action index and the help action across the 10,000 MNIST test images
in the “ask for help only when it is available” all-images regime.

1-of-20 1-of-10 5-of-10 10-of-10 Optim(r̂)

help is available correct 97.50±3.11 98.57±1.00 99.27±0.01 99.27±0.01 89.43±4.16
help 0.39±0.48 0.14±0.02 0.09±0.00 0.07±0.00 1.16±0.00

help is unavailable correct 97.64±3.05 98.67±0.99 99.32±0.01 99.31±0.01 94.96±4.01
help 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.23±3.87
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Figure 5: The expected return of each k-of-N policy on each iteration t given the sampled k-of-N reward
function, r̄t, in the “learning to ask for help” task. A single bold line shows the average across all ten runs
while the values from individual runs are given by thinner lines. (top row) All-images regime, (bottom row)
single-image regime, (left column) digits, (middle column) fashion, (right column) letter.
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Figure 6: Action distribution of each k-of-N policy and baseline in the “learning to ask for help” task. (top
row) All-images regime, (bottom row) single-image regime, (left column) fashion, (right column) letter.

The most cautious policy (1-of-20) in the all-images regime picks the help action when help is available and
otherwise selects less risky actions with small indices upon observing most letters except for those similar to
digits, as shown in Figure 14. The effect is exaggerated in the single-image regime.

The Driving Gridworld Experiment. For the driving gridworld experiment, the training data for our
neural networks are generated by enumerating all of the (state, next state, reward)-tuples in the familiar
driving gridworld where obstacles can only appear in either of the two ditch lanes on the far left or far right
column. The action is omitted because the familiar driving gridworld’s reward function depends only on
the initial and next state. Each driving gridworld state image is pre-processed into a four-channel image
where each channel encodes the positions of different aspects of the environment: pavement, ditch, car, and
obstacle.

Our networks have two parallel convolutional layers with four output channels and 2×2 filters, each followed
by a ReLU transformation. The outputs from these layers are flattened and concatenated together, and
that result is concatenated with a one-hot encoding of the car’s speed in the next state. Next, we apply two
fully connected layers separated by a ReLU function, the first with 32 outputs and the second with a single
output, respectively. For each possible speed the car could have in the initial state, we manage a different
pair of fully connected layers with the same shapes. To compute the expected reward for a given action in
a given state, we query the neural network with every possible state that could follow from the given action
and use the transition probabilities to combine these state–next state reward estimates.

Networks are trained over 51, 200 epochs using a batch size of 800 to minimize the MSE using Adam with a
learning rate of 0.0001 and weight decay of 10−5. The remaining parameters for Adam in PyTorch (β1, β2,
and ϵ) are set to their defaults (0.9, 0.999, 10−8) without the AMSGrad (Reddi et al., 2018) modification.
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Figure 7: The average frequency of each action on each letter, averaged over lowercase and uppercase images,
in the “learning to ask for help” task. (left) 1-of-20 all-images regime, (middle) 1-of-20 single-image regime,
(right) Optim(r̂).
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Figure 8: The expected return of each k-of-N policy on each iteration t given the sampled k-of-N reward
function, r̄t, in the “discovering non-obvious cautious actions” task. (top row) All-images regime, (bottom
row) single-image regime, (left column) digits, (middle column) fashion, (right column) letter.

Policies are evaluated by iterative dynamic programming according to the Bellman operator. An approx-
imation of the γ-discounted expected return function is updated simultaneously for each state and action
until the maximum absolute change is smaller than 10−6. We use a discount factor of γ = 0.99. On every
k-of-N CFR iteration, this process is run N times given the current CFR policy to evaluate it under each of
the N reward functions sampled at the start of the iteration6.

This experiment was run on a 3.60GHz Intel® Core™ i9-9900K CPU with 7.7 GB of memory without a
GPU. Model training took roughly 25 minutes per random initialization, so 833 CPU hours for all 2, 000
models. 100 iterations of k-of-N CFR took roughly three minutes, so for all six settings of k and N , and all
five random repetitions, it took about 100 minutes. In total, our experiment used about 835 CPU hours of
computation.

6Alternatively, the successor representation (Dayan, 1993) could be used to fully characterize the current CFR policy for
essentially the same cost as a single policy evaluation. Given this information, computing the expected return given a reward
function can be computed with a single pass over each state and action, thereby reducing the amount of computation that
scales with N .
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Figure 9: Action distribution of each k-of-N policy and baseline in the “discovering non-obvious cautious
actions” task, dotted lines represent average action taken by each policy. (top row) All-images regime,
(bottom row) single-image regime, (left column) fashion, (right column) letter.
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Figure 10: The average frequency of each action on each letter, averaged over lowercase and uppercase
images, in the “discovering non-obvious cautious actions” task. (left) 1-of-20 all-images regime, (middle)
1-of-20 single-image regime, (right) Optim(r̂).

C k-of-N CFR for Continuing MDPs
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Figure 11: The expected return of each k-of-N policy on each iteration t given the sampled k-of-N reward
function, r̄t, in the “ask for help only when it is available” task. (top row) All-images regime, (bottom row)
single-image regime, (left column) digits, (middle column) fashion, (right column) letter.
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Figure 12: Actions distribution for each k-of-N policy and baseline in the “ask for help only when it is
available” task in case that help is available. dotted lines represent the average action taken by each policy.
(top row) All-images regime, (bottom row) single-image regime, (left column) fashion, (right column) letter.

Here we restate and prove our theoretical results for CFR and k-of-N CFR in continuing MDPs with reward
uncertainty.

Define

ds : s′; π 7→ (1 − γ)E
[ ∞∑

i=0
γi1{Si = s′} | S0 = s

]
,

where Ai ∼ π(·|Si−1) and Si ∼ p(·|Si−1, Ai) for i ≥ 1, to be the γ-discounted future state distribution
induced by π from initial state s. Kakade (2003)’s performance difference lemma for this setting is:

Lemma 1. The full regret for using stationary policy π instead of stationary competitor policy π′ from state
s in MDP (S, A, p, d∅, γ) under reward function r is

vs(π′; r) − vs(π; r) = 1
1 − γ

E[ρS(A, π; r)], where S ∼ ds(·; π′) and A ∼ π′(·|S).

Theorem 1. CFR bounds cumulative full regret with respect to any stationary policy π as

T∑
t=1

v∅(π; rt) − v∅(πt; rt) ≤ CT /(1 − γ).
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Figure 13: Actions distribution for each k-of-N policy and baseline in the “ask for help only when it is
available” task in case that help is unavailable. dotted lines represent the average action taken by each
policy. (top row) All-images regime, (bottom row) single-image regime, (left column) fashion, (right column)
letter.

Table 4: Frequency of the correct label action index and the help action across the 10,000 MNIST test images
in the “ask for help only when it is available” single-image regime.

1-of-20 1-of-10 5-of-10 10-of-10 Optim(r̂)

help is available correct 84.13±1.07 90.68±1.54 98.80±0.01 99.28±0.01 89.43±4.16
help 10.42±0.51 3.25±0.47 0.05±0.01 0.07±0.01 1.16±0.00

help is unavailable correct 88.54±1.14 92.18±1.59 99.06±0.02 99.31±0.01 94.96±4.01
help 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.23±3.87

Proof. Let S ∼ ds(·; π) and A ∼ π(·|S). By Lemma 1, the linearity of expectation, and CFR’s definition,

T∑
t=1

vs(π; rt) − vs(πt; rt) = 1
1 − γ

E

[
T∑

t=1
ρS(A, πt; rt)

]
(1)

≤ 1
1 − γ

E[CT ] (2)

= CT /(1 − γ), (3)

for each state s. Since this bound holds for all states simultaneously, it holds for the γ-discounted expected
return as long as the initial state distribution is constant across iterations, i.e., assuming that the initial
state is S ∼ d∅ on each iteration,

T∑
t=1

v∅(π; rt) − v∅(πt; rt) =
T∑

t=1
E[vS(π; rt) − vS(πt; rt)] (4)

= E

[
T∑

t=1
vS(π; rt) − vS(πt; rt)

]
(5)

≤ E[CT /(1 − γ)] (6)
= CT /(1 − γ), (7)

which completes the argument.

We make use of the Azuma-Hoeffding inequality in the k-of-N CFR regret bound so it is restated here for
completeness:
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Figure 14: The average frequency of each action on each letter, averaged over lowercase and uppercase
images, in the “ask for help only when it is available” task. (top row) Help is available, (bottom row) help
is unavailable. (Left column) 1-of-20 all-images regime, (middle column) 1-of-20 single-image regime, (right
column) Optim(r̂).

Table 5: Frequency of the correct label action index and the help action across the 10,000 MNIST test images
in the “learning to ask for help” task with perturbed rewards in the all-images regime, where reward models
are trained on 1%, 10%, or 100% of the digit dataset.

1-of-20 1-of-10 5-of-10 10-of-10 Optim(r̂)

1% correct 95.81±0.14 95.82±0.18 95.97±0.08 96.10±0.06 89.43±4.16
help 0.39±0.03 0.41±0.07 0.34±0.02 0.30±0.03 1.16±0.93

10% correct 98.63±0.07 98.62±0.08 98.67±0.04 98.67±0.03 94.96±4.01
help 0.13±0.01 0.12±0.01 0.12±0.01 0.10±0.01 0.23±3.87

100% correct 99.34±0.04 99.36±0.04 99.38±0.02 99.38±0.02 98.23±3.57
help 0.04±0.00 0.03±0.01 0.03±0.00 0.02±0.00 0.08±0.73

Proposition 1 (Azuma-Hoeffding inequality). For constants (ct)T
t=1, martingale difference sequence (Y t)T

t=1
where |Y t| ≤ ct for each t, and τ ≥ 0,

P

[∣∣∣∣∣
T∑

t=1
Y t

∣∣∣∣∣ ≥ τ

]
≤ 2 exp −τ2

2
∑T

t=1(ct)2
.

For proof, see that of Theorem 3.14 by McDiarmid (1998).
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Table 6: Frequency of the correct label action index and the help action across the 10,000 MNIST test
images in the “learning to ask for help” task with perturbed rewards in the single-image regime, where
reward models are trained on 1%, 10%, or 100% of the digit dataset.

1-of-20 1-of-10 5-of-10 10-of-10 Optim(r̂)

1% correct 86.96±0.41 89.75±0.34 94.56±0.12 96.11±0.06 89.43±4.16
help 5.80±0.26 4.49±0.26 1.61±0.06 0.29±0.02 1.16±0.93

10% correct 88.78±0.16 92.51±0.13 97.50±0.06 98.68±0.03 94.96±4.0
help 9.08±0.10 6.61±0.09 1.16±0.02 0.11±0.01 0.23±3.87

100% correct 96.61±0.07 97.67±0.06 99.07±0.03 99.37±0.02 98.23±3.57
help 2.47±0.02 1.52±0.03 0.36±0.01 0.02±0.00 0.08±0.73
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Figure 15: The expected return of each k-of-N policy on each iteration t given the sampled k-of-N reward
function, r̄t, in the “learning to ask for help” task with perturbed rewards, where reward models are trained
on 1% of the digit dataset. (top row) All-images regime, (bottom row) single-image regime, (left column)
digits, (middle column) fashion, (right column) letter.

We construct the following regret bound for k-of-N CFR based on Theorem 1:
Theorem 2. With probability 1 − p, p > 0, the full regret of k-of-N CFR with respect to any stationary
policy, π, is upper bounded by

CT

1 − γ
+ 4U

√
2T log 1/p.

Proof. Let the reward function distribution be R. On each iteration, t, of the k-of-N CFR algorithm, N
reward functions, (rt

j ∼ R)N
j=1 are sampled and the worst k reward functions for the algorithm’s current
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Figure 16: The expected return of each k-of-N policy on each iteration t given the sampled k-of-N reward
function, r̄t, in the “learning to ask for help” task with perturbed rewards, where reward models are trained
on 10% of the digit dataset. (top row) All-images regime, (bottom row) single-image regime, (left column)
digits, (middle column) fashion, (right column) letter.
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Figure 17: The expected return of each k-of-N policy on each iteration t given the sampled k-of-N reward
function, r̄t, in the “learning to ask for help” task with perturbed rewards, where reward models are trained
on 100% of the digit dataset. (top row) All-images regime, (bottom row) single-image regime, (left column)
digits, (middle column) fashion, (right column) letter.
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Figure 18: The average frequency of each action on each letter, averaged over lowercase and uppercase
images, in the “learning to ask for help” task with perturbed rewards, where reward models are trained
on 1% of the digit dataset. (left) 1-of-20 all-images regime, (middle) 1-of-20 single-image regime, (right)
Optim(r̂).

policy, πt, are mixed into r̄t : s, a, s′ 7→ 1
k

∑k
j=1 rt

(j)(s, a, s′) where rt
(j) is the jth-worst reward function.

The k-element average reward function r̄t is a sample from R according to the k-of-N probability measure,
µk-of-N (see Proposition 1 of Chen & Bowling (2012) for a formal description of this measure’s density) where
the reward functions are ranked with respect to πt.

Let µk-of-N (·; πt) denote the k-of-N reward function distribution with respect to policy πt. The expected
return of πt under the k-of-N robustness objective is then just the expectation of its return under r̄t ∼
µk-of-N (·; πt), i.e., E[v∅(πt; r̄t)]. Thus, we seek to bound the regret under this payoff function,

T∑
t=1

ρ∅(π; πt) .=
T∑

t=1
E[v∅(π; r̄)] − E[v∅(πt; r̄t)] (8)

≤
T∑

t=1
E[v∅(π; r̄t)] − E[v∅(πt; r̄t)] (9)

=
T∑

t=1
E[v∅(π; r̄t) − v∅(πt; r̄t)︸ ︷︷ ︸

.=ρ̄∅(π;πt)

], (10)
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Figure 19: Action distribution of each k-of-N policy and baseline in the “learning to ask for help” task with
perturbed rewards, where reward models are trained on 1% of the digit dataset. (top row) All-images regime,
(bottom row) single-image regime, (left column) fashion, (right column) letter.
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Figure 20: Action distribution of each k-of-N policy and baseline in the “learning to ask for help” task
with perturbed rewards, where reward models are trained on 10% of the digit dataset. (top row) All-images
regime, (bottom row) single-image regime, (left column) fashion, (right column) letter.

where r̄ ∼ µk-of-N (·; π) and where the inequality follows from the fact that ranking the reward functions
according to πt instead of π can only improve π’s return. The ρ̄∅(π; πt) terms in the sum and expectation
are the random instantaneous regrets that the k-of-N CFR algorithm computes on each iteration.
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Figure 21: Action distribution of each k-of-N policy and baseline in the “learning to ask for help” task with
perturbed rewards, where reward models are trained on 100% of the digit dataset. (top row) All-images
regime, (bottom row) single-image regime, (left column) fashion, (right column) letter.
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Figure 22: The average frequency of each action on each letter, averaged over lowercase and uppercase
images, in the “learning to ask for help” task with perturbed rewards, where reward models are trained
on 10% of the digit dataset. (left) 1-of-20 all-images regime, (middle) 1-of-20 single-image regime, (right)
Optim(r̂).
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Figure 23: The average frequency of each action on each letter, averaged over lowercase and uppercase
images, in the “learning to ask for help” task with perturbed rewards, where reward models are trained
on 100% of the digit dataset. (left) 1-of-20 all-images regime, (middle) 1-of-20 single-image regime, (right)
Optim(r̂).

The rest of the proof largely follows the proof of Farina et al. (2020)’s Proposition 1. Since E[ρ̄∅(π; πt)] is
the expectation of ρ̄∅(π; πt), the sequence of differences,

(
E[ρ̄∅(π; πt)] − ρ̄∅(π; πt)

)T

t=1,

is a martingale difference sequence. Furthermore, |E[ρ̄∅(π; πt)] − ρ̄∅(π; πt)| ≤ 4U since regret can only be
twice as large as the largest return and returns are bounded by the largest reward (thanks to normalization).
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The probability that the cumulative regret,
∑T

t=1 ρ∅(π; πt), is bounded by the cumulative sampled regret
plus slack τ ≥ 0 is bounded according to the Azuma-Hoeffding inequality (Proposition 1):

P

[
T∑

t=1
ρ∅(π; πt) ≤

T∑
t=1

ρ̄∅(π; πt) + τ

]
≤ P

[
T∑

t=1
E[ρ̄∅(π; πt)] − ρ̄∅(π; πt) ≤ τ

]
(11)

= 1 − P

[
T∑

t=1
E[ρ̄∅(π; πt)] − ρ̄∅(π; πt) ≥ τ

]
(12)

≤ 1 − exp 2τ2

4T (4U)2 . (13)

Setting τ = 4U
√

2T log(1/p) ensures that

T∑
t=1

ρ∅(π; πt) ≤
T∑

t=1
ρ̄∅(π; πt) + 4U

√
2T log 1/p

with probability 1 − p. Since
∑T

t=1 ρ̄∅(π; πt) ≤ CT /(1 − γ),

T∑
t=1

ρ∅(π; πt) ≤ CT /(1 − γ) + 4U
√

2T log 1/p

with probability 1 − p, as required.

The k-of-N CFR optimality bound makes use of another elementary result, Markov’s inequality:
Proposition 2 (Markov’s inequality). The probability that non-negative random variable X ≥ 0 is at least
a > 0 is upper bounded by X’s expectation divided by a, i.e., P[X > a] ≤ E[X]/a.

Proof. By the law of total expectation,

E[X] = E[E[X | X ≤ a]] (14)
= P[X ≤ a]E[X | X ≤ a] + P[X > a]E[X | X > a]. (15)

Since X is non-negative and that E[X | X > a] conditions on X being no-smaller than a,
≥ P[X ≤ a]0 + P[X > a]a (16)
= P[X > a]a. (17)

Dividing both sides by a yields the desired statement.

Theorem 3. With probability 1 − p, p > 0, the best policy in the sequence of policies generated by k-of-N
CFR, (πt)T

t=1, is an εT -approximation to a µk-of-N -robust policy where

εT = CT

(1 − γ)T + 4U

√
2 log 1/p

T

and with probability at least (1 − p)(1 − q), q > 0, a randomly sampled policy from this sequence is an
εT

/q-approximation to a µk-of-N -robust policy.

Proof. The first half of the proof is essentially that of Lockhart et al. (2019a;b)’s Lemma 2.

As before, let r̄t ∼ µk-of-N (·; πt). Define v∗
∅ = maxπ∗ Er̄∼µk-of-N (·;π∗)[v∅(π∗; r̄)] to be the return of a µk-of-N -

robust policy, π∗. Since the competitor term of the regret does not depend on the iteration number, we can
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rewrite the average regret as

εT ≥ 1
T

T∑
t=1

v∗
∅ − E[v∅(πt; r̄t)] (18)

= v∗
∅ − 1

T

T∑
t=1

E[v∅(πt; r̄t)] (19)

≥ v∗
∅ − max

π̂∈(πt)T
t=1

Er̄∼µk-of-N (·;π̂)[v∅(π̂; r̄)], (20)

where the last inequality holds with probability 1 − p according to Theorem 2. Rearranging terms, we see
that

max
π̂∈(πt)T

t=1

Er̄∼µk-of-N (·;π̂)[v∅(π̂; r̄)] ≥ v∗
∅ − εT .

Thus, the best policy in the sequence, π̂, achieves the optimal k-of-N value minus εT with probability 1 − p,
i.e., π̂ is an εT -approximation to a µk-of-N -robust policy.

The last half of this proof is essentially that of Johanson et al. (2012)’s Theorem 4.

Let π̂ ∼ Unif({πt}T
t=1) be the random variable representing a uniformly sampled policy. Then,

εT ≥ v∗
∅ − 1

T

T∑
t=1

E[v∅(πt; r̄t)] (21)

= E
[
v∗
∅ − Er̄∼µk-of-N (·;π̂)[v∅(π̂; r̄)]

]
, (22)

with probability 1 − p according to Theorem 2.

Let X = v∗
∅ − Er̄∼µk-of-N (·;π̂)[v∅(π̂; r̄)] ≥ 0. By Markov’s inequality (Proposition 2),

E[X] ≥ εT

q
P

[
X >

εT

q
| E[X] ≤ εT

]
.

Since εT > 0,

q ≥ P

[
X >

εT

q
| E[X] ≤ εT

]
(23)

= 1 − P

[
X ≤ εT

q
| E[X] ≤ εT

]
(24)

and thus P
[
X ≤ εT

q | E[X] ≤ εT
]

≥ 1 − q. Finally,

P

[
E[X] ≤ εT , X ≤ εT

q

]
= P

[
X ≤ εT

q
| E[X] ≤ εT

]
P

[
E[X] ≤ εT

]
(25)

= (1 − q)(1 − p), (26)

proving that π̂ is an εT

q - approximation to a µk-of-N - robust policy with probability

(1 − p)(1 − q).
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