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Abstract

World models play a crucial role in decision-making within embodied environments,
enabling cost-free explorations that would otherwise be expensive in the real world.
To facilitate effective decision-making, world models must be equipped with
strong generalizability to support faithful imagination in out-of-distribution (OOD)
regions, which present significant challenges for previous approaches. This paper
introduces WHALE, a framework for learning generalizable world models with the
behavior-conditioning technique, aiming to address the policy distribution shift, one
of the primary sources of world model generalization errors. Building upon this,
we instantiate WHALE as a scalable vision-based world model built on a spatial-
temporal transformer architecture, designed to support high-fidelity imagination
over long horizons. We further introduce WHALE-X, a 414M parameters world
model pre-trained on 970K Open X-Embodiment trajectories, exhibiting promising
scalability and generalizability in real-world manipulation tasks using minimal
demonstrations.

1 Introduction

Human beings can envision an imagined world in their minds, predicting how different actions
might lead to different outcomes [l 2]]. Inspired by this aspect of human intelligence, world
models [3] are designed to abstract real-world dynamics and provide such "what if” predictions.
As aresult, embodied agents can interact with world models instead of real-world environments to
generate simulation data, which can be used for various downstream tasks, including counterfactual
prediction [4]], off-policy evaluation [5], and offline reinforcement learning [6].

In the realm of embodied intelligence, interactive world models offer promise by reducing reliance
on costly real-world interactions through predictive modeling of future observations and dynam-
ics—thereby enabling efficient and effective policy evaluation and learning []. However, early world
models were largely limited to simple tasks or narrow environments, raising concerns about their
generalization and scalability to complex, real-world robotic scenarios [7, 18, [9]. Although recent
efforts have used larger datasets and model parameters to improve generalization [[10, [11}[12]], these
models still struggle to support robust, long-horizon decision-making. A fundamental challenge lies
in the distribution shift that arises from the policy divergence during training and evaluation phases,
which remains largely unaddressed.
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Figure 1: Qualitative evaluation on Meta-World, Open X-Embodiment, and our real-world tasks.

In this work, we first analyze how the world models effect the value gap of policy evaluation,
the discrepancy between the policy value in the real world and estimated in world models due
to distribution shift, revealing that standard world models fail to generalize when target policies
differ from training-time behaviors. Even with perfect in-distribution fitting, the divergence between
policy-induced trajectory distributions leads to significant extrapolation error, amplified by long-
horizon rollouts. Previously, PCM sought to address this issue by introducing a meta-dynamics
model conditioned on evaluation policies, which it implemented through the regularization of
RNN representations to recover policies. However, the limitation to the recurrent architecture and
proprioceptive-state control prohibits its applicability to transformers and scalability to complex,
high-dimensional embodied tasks.

To address this challenge, we introduce WHALE (World models with beHAvior-conditioning
LEarning), a framework for learning scalable and generalizable interactive world models for em-
bodied agents. WHALE extracts behavioral patterns from trajectories and embeds them into latent
representations that are conditioned on the world model, enabling it to recognize policy-specific
dynamics and adaptively mitigate distribution shifts during autoregressive rollouts. To instantiate this
framework, we propose a scalable embodied world model based on a spatial-temporal Transformer
architecture [14} [TT]], designed for accurate and coherent long-horizon imagination in visual control
tasks. Our model is trained on a large-scale dataset of 970k real-world robotic manipulation trajecto-
ries from the Open X-Embodiment dataset [13], resulting in a 414M parameters world model that
generalizes across diverse robots, tasks, and environments. This pre-trained world model serves as a
simulator for evaluating real-world policies and demonstrates strong generalizability across multiple
environments and robots.

Extensive experiments on both simulated benchmarks [16] and a real-world robotic platform demon-
strate that WHALE outperforms existing methods in video prediction fidelity and value estimation
accuracy. Furthermore, our ablation studies reveal consistent performance gains with increasing
model capacity and data scale, highlighting the framework’s excellent scalability and potential for
continued improvement with larger resources.

The primary contributions of this work are as follows:

* We propose WHALE, a behavior-conditioned world model framework that embeds behavior
latent representations to mitigate distribution shift.

* We instantiate the WHALE framework with a spatial-temporal Transformer-based architec-
ture and pre-train a 414M parameters world model on 970k real-world demonstrations.

* We conduct extensive experiments to show the scalability and generalizability of WHALE
across simulated and real-world tasks.



2 Related Works

Despite a long history [[17, [18] and rich literature on environment models [19} 20, 21} 22} 23]
24, 25]], the focus has primarily been on modeling transition dynamics within lower-dimensional
proprioceptive state spaces until recently. [3]] was the first to propose a general framework to
model dynamics for high-dimensional visual observations, introducing the term "world models".
This generic architecture soon achieved a series of notable successes in complex decision-making
tasks [[7} 26} 18, 27]. However, world models are supposed to answer "what if" questions: "What
will happen in the environment if the agent makes any possible decisions?", which must be highly
out-of-distribution and has yet to be fully addressed.

A potential solution to this generalization issue is to collect more data to train large world models.
Recently, advanced methods have leveraged modern action-conditioned video prediction models [28,
29] to model visual dynamics and pre-train from large-scale video experience data 111130, 31} 32} [12].
Despite the large amount, the available training data are normally collected by expert or near-
expert policies, leading to low data coverage, posing challenges to reasoning decision outcomes for
suboptimal policies in the learned world models [33]. Another line of work investigates the impact of
learning methods on world model generalizability. For single-step maximum likelihood objectives,
the autoregressive rollout suffers from policy divergence and compounding errors [20, 134} [35]].
To overcome the limitations in the standard MLE learning, a series of improvements have been
made [36} 137,14} 138 [39]. Despite the successes in lower-dimensional tasks, scaling these methods to
large amounts of high-dimensional visual data remains an open problem.

3 Foundations of World Model Learning

3.1 Problem Formulation

An markov decision process (MDP) [40] is specified by the tuple M = (S, A,r,T*,~, H, po),
where S is the state space, A is the action space, 7(s, a) is the reward function, 7*(s'|s, a) is the real
transition probability, v € (0, 1] is the discount factor, H is the decision horizon, and py(s) is the
initial state distribution. In this work, we simply consider the case where vy = 1 and H < oo.

In reinforcement learning [41]], the objective is to learn a policy that maximizes the expected return in
the MDP, which involves estimating the value of different policies. Specifically, the value of policy
7 is defined as: V. = E., (r,1+) [Zle r(st, at)], where trajectories 7y = (81,a1,...,5H,aH)
and rewards are obtained by rolling out policy 7 within dynamics 7.

An environment model 7" can be explicitly learned from offline data to imitate the real transition 7.

Given the value VT estimated within the model T', the model error induces a value gap |V — V|
for the policy 7. Since offline data are typically collected by a narrow range of (near-expert) policies,
the learned models may struggle with unfamiliar outcomes of novel behaviors and are expected to
generalize beyond the training experiences for counterfactual reasoning.

3.2 Generalizability of World Models

The common learning methods for world models regard the transition learning as a standard super-
vised learning problem, minimizing the negative log-likelihood (NLL) of the single-step transition
probabilities over the pre-collected trajectories in a teacher-forcing manner, i.e.,

H
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where (sub-)trajectory 75, = (s1,a1,82,...,5n,an),1 < h < H is generated by interaction of a
behavior policy p with the real dynamics 7™, and behavior 4 is assumed to be sampled from a
behavior policy distribution II. Minimizing the NLL equals minimizing the KL divergence loss

H
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usually utilized to evaluate any target policy 7 by simulating trajectories in an autoregressive manner:

H
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h=1
where the trajectory simulation distribution deviates from the training distribution.

In classical sequential modeling tasks like sentence generation and translation, the distribution shift
from teacher-forcing training to autoregressive generation diminishes as the model accuracy improves,
which therefore does not lead to significant negative impacts. For world model learning, however, the
distribution shift results from both the model prediction inaccuracy and the divergence between the
target policy and behavior policies, exacerbating the evaluation inaccuracy:
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where a distribution shift term induced by the policy divergence[]occurs in addition to the KL training
loss, further amplified by an H? factor caused by the superv1sed teacher-forcing learning. Even if the
world model perfectly models the training distribution, i.e. Ik, (7T'; IT) = 0, the variation of the target
policies could also significantly shift the trajectory simulation distribution to those large error areas,
resulting in degenerative generalizability. Further detailed analysis can be found in Appendix [A]

4 Learning Generalizable World Models for Embodied Decision-making

In this section, we introduce WHALE, a framework for learning scalable and generalizable world
models. The section is organized as follows: we begin with the foundation of behavior-conditioning
in Section[4.1] deriving an objective that encourages behavior embeddings to capture policy patterns.
We then present the practical architecture of WHALE in Section [4.2] Finally, in Section d.3] we
describe the pre-training and fine-tuning pipeline for WHALE-X, a 414M parameters world model
trained on large-scale real-world demonstrations.

4.1 Behavior-conditioning for Generalization

According to Eq (), the generalization error of the world model primarily arises from error com-
pounding caused by policy divergence. One solution to this policy generalization issue is to embed
the behavior information into the world model, allowing the model to actively recognize the behavior
patterns of the policies and adapt to the policy-induced distribution shift [13]. This adaptation effect
has been shown to reduce model generalization error caused by policy divergence, i.e. the last term
in Eq (I). For further analysis, please refer to Appendix [A] Building upon behavior-conditioning, we
introduce a learning objective to obtain behavior embeddings from training trajectories.

We would like to extract the decision patterns within training trajectories 7z into a behavior em-
bedding, reminiscent of the maximization of the evidence lower bound (ELBO) of the trajectory
likelihood conditioned on the history 7, [42}43]:
H
log P(ti|mh) > Eq, (2)rp) Z log oy (at|se, Te—1, 2) — Dxr.(¢e(2|7a)||py (2|mh)) + Const  (2)
t=h

where g, (2|7) is the posterior encoder, encoding the whole trajectory 7z into a latent variable
z; py(z|m,) denotes the prior predictor, allowing the prediction of z based on the history 77,;
Tw(an|Sn, Th—1, z) denotes the action decoder, recovering the decision action from the latent variable
z and the up-to-date history (7—1, sp). The information bottleneck requires the learned variable z to
effectively capture the decision pattern within the trajectory, embedding the information about the
behavior policy. Following this argument, we propose to learn the behavior embedding by maximizing
the ELBOs over H decision steps and adjusting the amount of KL constraints similar to 5-VAE [44]:

(’LU (b w THNDZ[ qs (2| TH) logﬂ-w ah|5h,7-h 1,% )+ﬁDKL(q¢'(Z|TH>||pw(Z‘Th)) (3)
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*Here W1 (d™, d") is the Wasserstein-1 distance between the 7-induced trajectory distribution d™ (7) and
the behavior trajectory distribution d"(7) = E,~11[d"(7)], and L is the Lipschitz constant of model loss w.r.t.
the trajectory, adapted from [13]].



Here, the KL terms constrain the embedding predictions from sub-trajectories up to each time step
h, encouraging them to approximate the posterior encoding. This ensures that the representation
remains policy-consistent, meaning that trajectories generated by the same policy exhibit similar
behavioral patterns and, consequently, similar representations.

The learned prior predictor p,, is then used to obtain behavior embeddings z;, from history 73, for
world model learning, where zj, serves as additional contexts for future prediction:
H

1
ETHN(#,T*) — ﬁ Z Ezh ~py ClTh) log T(Sh+1|7'h, Zh). (4)
h=1

When rolling out target policies or executing action sequences within the learned world models, the
prior predictor infers the latent behavior intentions from interaction history, adjusting the autoregres-
sive generation process to the target distribution on the fly for future imagination adaptively.

4.2 Practical Implementation

In this section, we describe the practical implementation and general algorithm of WHALE, a scalable
and generalizable world model built upon a Spatial-Temporal Transformer [45] backbone.
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Figure 2: Model architecture of WHALE.

Figure 2] illustrates the model architecture of WHALE, consisting of three main components: video
tokenizer, behavior-conditioning model, and dynamics model.

Video Tokenizer. The video tokenizer is implemented as a VQ-VAE [46]], which compresses the
pixel-based observations s into the discerete tokens x. It consists of an encoder and a decoder, with a
normalized vector quantization (VQ) codebook. The model is jointly optimized using a reconstruction
loss and a codebook regularization term.

Given an input observation sequence Sy, ¢, we first divide it into patches. Each patch is encoded
by the encoder into a latent vector, and the nearest vector in the normalized codebook is selected
via Euclidean distance to produce the discrete latent code z,. These discrete codes are then passed
through the decoder to generate the reconstructed output sy, .

Behavior-Conditioning Model. The behavior-conditioning model consists of three core components:
a posterior encoder, a prior predictor, and an action decoder. These modules are jointly optimized
to maximize the behavior embedding objective (see Eq.[3). We also employ two-hot encoding to
represent the latent behavior embeddings, enabling differentiable discretization and improving both
the resolution and training stability of the learned representations [26].

Given an input trajectory 71.r, we first split each observation s; into patches. The posterior encoder
takes the full sequence of patches and corresponding actions {(s¢, a;) }fL, as input and encodes the
posterior behavior embedding 2,0s¢. In contrast, the prior predictor operates using only the history up
to time K (i.e., {(s¢, as)}P_; with h < H) to predict a behavior embedding Zprior- The action decoder
7, reconstructs the current action ay, using the visual patches from past observations {s; }! ,, the
corresponding past actions {a; }?:_11, and the prior behavior embedding zpior.

Dynamics Model. The dynamics model is designed to predict future visual observations in the
discrete latent space obtained from the video tokenizer. Given a history of encoded visual tokens
x1., and actions aq.p, the model predicts the subsequent latent token x4 1. At each timestep h,



the input to the dynamics model is constructed by combining embedded visual and action tokens:
Tp, = Eyis(zh) + Eae(ar), where Ey; and E, denote learnable embedding tables for visual tokens
and actions, respectively. To enable behavior-aware prediction, the model conditions on a high-
level behavior embedding zpior, generated by a behavior-conditioning model. This embedding is
incorporated into the dynamics model through cross-attention applied to the sequence {Z1, ..., Tx},
allowing the model to modulate its predictions based on the intended policy.

During training, the model is optimized to minimize the cross-entropy loss between predicted 2,41
and ground-truth future tokens x;1. At inference time, the model unrolls autoregressively in the
latent space: the predicted token 2,1 is fed back as input for the next step, enabling long-horizon
visual prediction conditioned on both actions and behavioral intent.

4.3 Training Pipeline

Overall Algorithm. Our world model is trained in three stages: (1) the video tokenizer learns to
compress observations into discrete tokens; (2) the behavior-conditioning model learns policy-aware
latent embeddings from trajectories; (3) the dynamics model predicts future tokens autoregressively.

Pre-training. We introduce WHALE-X, a 414M parameters world model pre-trained on 970K real-
world robot demonstrations from the Open X-Embodiment dataset. We list our used data mixture and
weights in Table[8] all of which are used to pre-train the video tokenizer and behavior-conditioning
model. To train a world model focused on tabletop tasks, we only use data related to tabletop tasks
from the dataset (the bolded tasks in Table[8) to train the dynamics model.

Fine-tuning. The fine-tuning training pipeline follows a similar three-stage structure as pre-training:
video tokenizer tuning, behavior-conditioning model tuning, and dynamics model training. The key
difference lies in the video tokenizer stage: we freeze the encoder while only updating the decoder.
This ensures that the pretrained discrete representation of states remains unchanged, preserving the
pretrained world model’s understanding of visual dynamics and enabling more stable and effective
adaptation to downstream tasks.

5 Experiment

We conduct experiments on both simulation tasks and real-world tasks, which are primarily designed
to answer the following key questions: (1) How does WHALE perform compared with other baselines
on simulated tasks and real-world tasks? (2) Does the behavior-conditioning technique effectively
improve the world model generalizability? (3) How is the scalability of WHALE? Does increasing
the model capacity or pre-training data improve performance?

5.1 Simulation Tasks Experiments

Data. We conduct our simulated task experiments on the Meta-World [16] benchmark. We construct
a training dataset with 60k trajectories collected from 20 tasks. For evaluation, we assess the learned
world models on 200 held-out trajectories collected by 5 unseen policies per task to test world model
generalizability to novel behavioral patterns. Detailed information about data collection can be found

in Appendix

Baselines. We compare Whale against several world model learning baselines, including
(1) FitVid [47], a variational-based world model that can fit large video datasets. (2) MCVD [48], a
diffusion-based world model that can perform video generation conditioning on different subsets of
video frames and actions. (3) DreamerV3 [26], a recurrent world model that outperforms specialized
methods across diverse control tasks. (4) iVideoGPT [12], a scalable transformer-based world model
that achieved state-of-the-art results in video generation and embodied control tasks. Complete
descriptions are provided in Appendix

Evaluation Metrics. We assess the performance of world models from two perspectives: (1) Value
estimation accuracy. Verifies whether the model can correctly estimate the value of a given action
sequence, in terms of Value Gap, Return Correlation, and Regret [S]. (2) Video fidelity. Measures the
quality of video trajectory generation, in terms of FVD [49], PSNR [50], LPIPS [51]], and SSIM [52].
More detailed information about evaluation metrics is provided in Appendix [B.5}

Task Results. As shown in Table [I, WHALE achieves state-of-the-art performance in both value
prediction accuracy and video fidelity under the from-scratch training setting, outperforming existing



world models across all metrics. Notably, WHALE achieves a value gap of 4.7 and regret@5 of
6.7 at 256 x 256, surpassing DreamerV3 and other strong baselines, while also attaining the lowest
FVD and best SSIM, indicating superior visual realism. These results validate the effectiveness of its
architecture design and behavior-conditioned dynamics modeling. When pre-training is introduced
(blue-dashed rows), WHALE-X further enhances performance, achieving the smallest value gap
(3.7) and the highest return correlation (0.86) among all models, while maintaining superior video
fidelity. This demonstrates that pre-training on large-scale interaction data significantly enhances
both predictive accuracy and generative quality, and underscores the importance of leveraging prior
experience and model scale for building precise, high-fidelity world models.

Ablation Study. To assess the impact of behavior-conditioning, we compare WHALE with its ablated
version (w/o bc) at 256 x 256 resolution. The results show that removing behavior-conditioning
leads to a noticeable degradation in value prediction (e.g., value gap increases from 4.7 to 6.8 in
the from-scratch setting) and a consistent drop in video fidelity (FVD rises from 25.0 to 27.6),
confirming that conditioning dynamics on policy actions improves both accuracy and visual quality,
further validating that modeling action-conditioned transitions is critical for capturing realistic and
policy-relevant dynamics. The consistent gains across settings affirm behavior-conditioning as a core
component of our framework.

Meta-World | #Params | Value Gap] Return Corr? Regret@5| | FVDJ] PSNRT SSIM{T  LPIPS|
64x64 resolution |  Scratch | Value accuracy Video fidelity

FitVid 143M 18.2 0.64 22.0 154.6 23.7 90.3 6.5
MCVD 53M 20.6 0.72 12.2 272.8 29.7 92.3 4.0
DreamerV3 44M 10.0 0.70 16.5 142.7 27.6 92.1 4.3
iVideoGPT 63M 15.9 0.62 7.2 115.7 28.5 92.8 4.5
WHALE 51IM 10.3 + 0.8 0.77+0.01 7.3+1.2 38.5+2.6 28.8+0.0 93.5+0.1 3.7+0.1
256256 resolution |  Scratch | Value accuracy Video fidelity

DreamerV3 61M 8.5 0.69 14.5 92.8 242 89.9 8.6
WHALE (w/o bc) 61M 6.8+0.2 0.8240.01 9.4+£1.5 27.64+24 269+0.1 92.6+0.1 4.7+0.1
WHALE (ours) 63M 4.7+0.1 0.8310.01 6.71+0.6 25.0+34 27.6+0.2 94.240.1 4.4+0.1
256256 resolution | Pre-trained | Value accuracy Video fidelity

iVideoGPT 443M 13.1 0.77 3.1 568.7 24.1 89.9 11.2
WHALE-X (w/o bc) 398M 3.9 0.84 6.4 25.2 27.4 94.1 4.4
WHALE-X (ours) 414M 34 0.87 1.8 23.8 27.7 94.4 4.2

Table 1: Value prediction accuracy and video fidelity comparison on Meta-World benchmark.

5.2 Real-world Task Experiments

Platform. We evaluate the real-world generalization capabilities of WHALE using the ARXS
mobile manipulator, a platform equipped with a 6-DoF robotic arm and integrated onboard sen-
sors. This setup introduces significant domain shifts compared to the simulation data used during
pre-training—spanning robot morphology, camera viewpoints, and environmental layout—thereby
presenting a rigorous test for sim-to-real transfer.

Tasks Design and Data Collection. Our experiments focus on three diverse manipulation tasks:
open trash bin, pick & place cup, and throw ball. For fine-tuning, we collect 50 trajectories per task,
consisting of 20 human teleoperation demonstrations and 30 self-collected trajectories generated by
diverse policies, including Action Chunking Transformer (ACT) [S3]], Diffusion Policy (DP) [54], and
7o [53)]. During evaluation, we assess each learned world model using three previously unseen policies
per task. For each policy, we perform 20 rollouts within the world model to generate long-horizon
trajectories (more than 200 interactions per trajectory). Detailed descriptions of the fine-tuning
procedure, policy implementations, and data collection protocols are provided in Appendix [B.2]

Appendix and Appendix [D] respectively.

Baselines. To ablate key components of our framework, we compare WHALE-X against three
carefully designed baselines: (1) iVideoGPT: a state-of-the-art autoregressive world model pretrained
on large-scale vision-language data; (2) WHALE-X w/o Behavior-Conditioning: an ablated variant
that removes policy-aware conditioning from the dynamics model; (3) WHALE-X from Scratch: a
version trained without pre-training.

Evaluation Metrics. We evaluate world models along two primary dimensions: policy evaluation
accuracy and video fidelity. Since pixel-level rewards are not available in the real world, direct value



prediction cannot be assessed. Instead, we estimate value accuracy by simulating 20 rollouts per
policy in the learned world model and computing the predicted success rates. We then measure
how well these predictions correlate with the actual performance of the same policies in the real
world, using two metrics: Mean Maximum Rank Violation (MMRV) and Rank Correlation [56].
Implementation details for these metrics are provided in Appendix [B:3] For video fidelity, we
compute standard perceptual and reconstruction metrics to assess the visual realism and temporal

coherence of generated videos.
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Figure 4: Comparison of World Model Variants on real-world policy evaluation tasks. The x-axis
represents real-world success rates, while the y-axis shows success rates in the world model.

Task Results. WHALE-X demonstrates strong real-world performance across diverse manipulation
tasks, achieving high fidelity in policy evaluation and robust generalization to unseen behaviors, as
shown in Figure ] The results highlight three key advantages:(1) Superiority over iVideoGPT.
WHALE-X significantly outperforms the strong pre-trained baseline iVideoGPT, reducing MMRV by
82% and improving rank correlation by 76%. This substantial gain underscores the effectiveness of the
framework design and implementation of WHALE-X. (2) Critical Role of Behavior Conditioning.
Ablating behavior-conditioning leads to a dramatic 80% increase in MMRYV, with WHALE-X w/o
Behavior-Conditioning failing to reliably rank unseen policies. (3) Necessity of Pre-training.
WHALE-X trained from scratch performs poorly, attaining less than half the rank correlation of its
pretrained counterpart. This highlights the indispensable role of large-scale pre-training.

As shown in Table WHALE-X also produces visually coherent and realistic video rollouts,
outperforming all baselines in video fidelity metrics. This combination of high visual quality and
accurate dynamics modeling enables reliable simulation within the learned world model.

Importantly, WHALE-X enables highly efficient policy evaluation: it simulates 20 rollouts in under 2
minutes on a single RTX-4090 GPU—achieving a 20x speedup over real-world execution. This
efficiency makes WHALE-X a practical tool for rapid policy screening and iterative development in
real-world robotic systems.

5.3 Scaling Experiments

In this section, we aim to investigate the scaling behavior of WHALE-X. Specifically, we freeze the
video tokenizer and behavior-conditioning model, adjusting only the model size and pre-training data
size of dynamics models.
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Figure 5: Scaling experiment results of WHALE-X. The leftmost plot shows the training loss curves
for models with varying parameter sizes during the pre-training phase. The second plot presents the
final training loss for all models after 300k pre-training steps. The third plot displays the PSNR after
fine-tuning. The legend in the figure indicates the parameter number of the dynamics model.

Pre-training Scaling Experiments. With a frozen video tokenizer and behavior-conditioning model,
we pretrain four dynamics models ranging in size from 39M to 456M parameters. The results,
presented in the first two plots of Figure[5] demonstrate that WHALE-X exhibits strong scalability.
Specifically, increasing either the amount of pretraining data or the model size consistently leads to a
reduction in training loss. Moreover, we observe that the training loss of WHALE-X approximately
follows a log-linear relationship with FLOPs.

Fine-tuning Scaling Experiments. To this end, we fine-tune a series of dynamics models and show
the PSNR results in the rightmost plot in Figure[5] The results indicate that after fine-tuning, the
larger model demonstrates a larger PSNR value on test data, highlighting the promising scalability of
WHALE-X for real-world tasks.

6 Discussions and Limitations

In this paper, we introduce WHALE, a framework of world model learning that incorporates the
behavior-conditioning technique to enhance OOD generalization. Building on this foundation, we
present a scalable ST-transformer-based implementation and pre-train a 414M parameters WHALE-X
on large-scale robot data to assist robot manipulation. WHALE enables high-fidelity imagination and
accurate policy evaluation, even in novel scenarios, thereby facilitating downstream control tasks.

Failure Case Analysis. Although WHALE-X exhibits strong generalizability, generative world
models inevitably encounter hallucinations and other types of failure cases. In this work, we
systematically categorize these failures into three distinct types: (1) Object Errors, which result in
missing objects, unrealistic deformations, inconsistent scene layouts, or disrupted temporal continuity;
(2) Dynamics Errors, where the model’s predicted transitions visibly violate physical constraints,
leading to implausible movements of robotic arms; (3) Visual Errors, involving the generation of
blurry, incorrect, or visually implausible images by the world model. The distribution of these failure
types is illustrated in Figure[6] Among them, Dynamics Errors constitute the largest proportion of
WHALE-Xs failure cases.

0% 25% 50% 75% 100%
Object Error Dynamics Error Hm Visual Error BN Success

Figure 6: Failure case analysis of WHALE-X.

Computation Resources. We conduct all experiments on RTX 4090 GPUs. Pre-training WHALE-X
takes around 2000 GPU hours, and fine-tuning WHALE-X requires an additional 24 GPU hours.
During inference, WHALE-X runs at a speed of approximately 20 steps per second on a single RTX
4090 GPU. Additional details on computational resources can be found in Appendix [F

Limitations and Future Works. One limitation is that we found that the quality of reward models
with visual input plays a crucial role in accurate value estimation, which remains an unsolved
challenge for future research. Moreover, we mention that although the generalizability of WHALE
has significantly improved compared with previous methods, it remains limited for zero-shot transfer
in the face of the diversity and complexity of unseen real-world tasks. Integrating existing prior



knowledge into the data-driven world model learning process could enable broader generalization,
presenting a valuable avenue for long-term research.
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A Analysis of behavior-conditioning

In this section, we provide some theoretical explanations about why behavior-conditioning mechanism
helps mitigate the generalization error caused by the policy divergence. The analysis is mainly adapted
from [13]].

First, we introduce an assumption on the smoothness of a well-trained dynamics model:
Assumption A.1. For the learned dynamics model 7', the point-wise total-variation model error
Dy [T*(|7), T(-|mn)] is L-Lipschitz with respect to the trajectory inputs, i.e.,

Dy [T (|7), T(|ma)] = Drv[T*(|7), T(|mid)]| < L - D(ry,737),

where D(+, ) is some kind of distance defined on the trajectory space.

Assumption[A.T|measures the local extrapolation ability of a world model. Based on this assumption,
the value gaps of common dynamics model 7" without a behavior-conditioning mechanism can be
controlled:

Proposition A.2. Under Assumption|A. 1] for any policy , the value gap of common dynamics model
T without behavior-conditioning has an upper bound:

VF = V| < 2Rt (V2 (T + L W@ d") ),

Train Error Policy Divergence Error

where Wy (d™, d') is the Wasserstein-1 distance between the T-induced trajectory distribution d™ (T)
and the behavior trajectory distribution d" (1) = E, i [d" (7).

Proposition[A.2]shows that the generalization of common dynamics model T" solely relies on its point-
level smoothness over the trajectory inputs, resulting in an inevitable extrapolation error of the policy
distribution. In contrast, a policy-conditioned dynamics model 7'(-), which yields adapted dynamics
model T'(7) for some policy 7, takes a further step to reduce the policy distribution extrapolation
error:

Proposition A.3. Under Assumption for any policy w, the value gap of policy-conditioned
dynamics model T'(-) has an upper bound:

‘V{J(ﬂ) — VE| < 2Rt (2l (T + L WA (d™,d") = C(r,T0) ),
Train Error Reduced Policy Divergence Error

where the adaptation gain C(m,11) := E,,iiE; g~ Doy [T, T(1)]|(T) — Erogr Doy [T, T (7)](T)
summarizes the policy adaptation effect.

Proposition [A.3]explains the benefit brought by behavior-conditioning: a positive adaptation gain
C(m,II), which quantifies the advantage of the policy adaptation effect. The key insight is that when
testing on an unseen policy 7 within some effective region, the model T'(r), customized for , should
exhibit a smaller model error under the target trajectory distribution d™ compared to models T'(11)
trained on behavior policies p € II, which mitigates the generalization error caused by the policy
extrapolation. Although it is challenging to rigorously analyze the adaptation gain C'(7r, IT) due to the
complexity of neural networks and the optimization process, qualitative discussions and empirical
evidence, as shown in [13], justify the underlying rationale.

B Implementation Details

B.1 Implementation Details of WHALE

Video Tokenizer. In this work, we adopt a tokenizer based on VQ-VAE [46] as the encoder to
discretize observations into tokens and train a dynamics model at the token level. The video tokenizer
eg is composed of an encoder Ey and a decoder Dy, where the encoder Ey compresses video input
into a sequence of tokens, while the decoder Dy is capable of reconstructing the original video
from these tokens. This tokenizer is trained with the standard VQ-VAE loss Lk () , which is a
combination of a L; reconstruction loss, a codebook loss, and a commitment loss. Here we show the
architecture and training hyperparameters of the video tokenizer as shown in Table[2] We train three
different video tokenizers in total.
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Table 2: Hyperparameter of video tokenizers.

Component ‘ Parameter WHALE(64><64) WHALE(256X256) WHALE-X(256X256)
num_layers 4 12 12
Encoder d_model 512 512 512
num_heads 8 8 8
num_layers 8 16 20
Decoder d_model 512 512 1024
num_heads 8 8 16
num_codes 1024 1024 2048
patch_size 4 16 16
Codebook latent_dim 32 32 32
beta 0.25 0.25 0.25
type AdamW AdamW AdamW
max_Ir 3e-4 3e-4 3e-4
min_Ir 3e-4 3e-4 3e-5
51 0.9 0.9 0.9
Optimizer Bo 0.9 0.9 0.9
weight_decay le-4 le-4 0
warmup_steps 10k 10k S5k
batch_size 32 32 64
training_steps 100k 150k 300k

Behavior-conditioning Model. The behavior-conditioning model comprises a CNN-based visual
encoder vy, ST-Transformer-based posterior model ¢y, prior model py,, and reconstruction model
m,. Given an input image sequence, vy first converts it into tokens by patchifying the images. These
tokens are then processed by gy, py, and 7, which produce the posterior representations zry, prior
representations 2, and reconstructed actions ay, respectively.

For behavior embeddings, we employ two-hot encoding due to its strong expressive capacity and
stable training process, as noted in [7]]. The model architecture and training hyperparameters of the
behavior-conditioning model are shown in Table[3] We also train three different behavior embedding
models for WHALE-X. Additionally, we also observe overfitting in the behavior-conditioning model
during pre-training, prompting the use of the early-stop technique. As a result, the checkpoint at 50k
is selected as the final model for WHALE-X.

Dynamics model The key distinction from standard dynamics model learning is that WHALE
additionally incorporates a behavior-conditioning 2y, inferred by the prior predictor p,;. In this phase,
for each input trajectory segment 7, the video tokenizer first converts it into a sequence of tokens
Ty = ((x(l) e :v(N)) (x(l) e x(N)) e (x(l) e x(N))) where 2\") represents the j-th
H 1 > y L] 9 2 y L9 9 9 H > s ) i Y J
token of the ¢-th frame. Consequently, the training objective of the dynamics model is to maximize
the log-likelihood of the tokens xj,1 for the next frame sj1, conditioned on the history tokens xg.,
history actions ag.;, and the behavior-conditioning z;, = py,(73,):

H

=Eryop|— > _10g Po(zni1|@1n, ar:n, 2n)], )
h=1

Edyn(e)

Tabled]and Table[5| present the hyperparameters of the dynamics model. We train a total of 6 different
dynamics models. The architecture design and training hyperparameters of our dynamics model are
also referred to [[11].

B.2 Fine-tuning Details of WHALE-X
For fine-tuning all pre-trained models, we first update the video tokenizer for 5000 gradient steps

while keeping the encoder network fixed. After that, we update the behavior-conditioning model for
1000 gradient steps, and finally, we update the dynamics model for 5000 gradient steps. For training
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Table 3: Hyperparameter of behavior-conditoning models.

Component ‘ Parameter WHALE(64><64) WHALE(256X256) WHALE-X(256X256)
num_layers 8 8 12
Posterior d_model 512 512 768
num_heads 8 8 12
patch_size 8 32 32
num_layers 4 4 8
Prior d_model 512 512 512
num_heads 4 4 8
patch_size 8 32 32
num_layers 8 8 12
Polic d_model 512 512 768
y num_heads 8 8 12
log_std [-2, 5] [-2, 5] [-2, 5]
patch_size 8 32 32
. category_size 16 16 16
Embedding class_size 16 16 16
type AdamW AdamW AdamW
max_Ir 3e-4 3e-4 3e-4
min_Ir 3e-5 3e-5 3e-5
51 0.9 0.9 0.9
- B2 0.9 09 0.9
Optimizer weight_decay le-4 le-4 le-4
warmup_steps Sk Sk 5k
batch_size 64 64 64
training_steps 100k 100k 50k
Table 4: Model hyperparameter of dynamics models.
Model \ #Parameters (dynamics only) num_layers num_heads d_model
WHALE (64) 26M 12 8 512
WHALE (256) 26M 12 8 512
WHALE-X-small 390M 18 8 512
WHALE-X-medium 7IM 16 16 768
WHALE-X-base 204M 24 16 1024
WHALE-X-large 456M 24 12 1536

Table 5: Trainig hyperparameter of dynamics models.

Parameter | Value
max_Ir 3e-5
min_Ir 3e-6

51 0.9

B 0.9
weight_decay 0
warmup_steps 5k

batch_size 64

training_steps | 300k

models from scratch, the video tokenizer, behavior-conditioning model, and dynamics model are all

updated for 10,000 gradient steps.
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B.3 Implementation Details of Baselines

Baselines for model evaluation We compare WHALE against several world model learning
baselines, including (1) FitVid [47], a variational-based world model that can fit large diverse
video datasets. (2) MCVD [48]], a diffusion-based world model that can perform video generation
conditioning on different subsets of video frames and actions. (3) DreamerV3 [26], a recurrent world
model that outperforms specialized methods across diverse control tasks. (4) iVideoGPT [12], a
scalable transformer-based world model that achieved state-of-the-art results in video generation and
embodied control tasks.

Specifically, we use the official implementation of VP2 [57] for both FitVid and MCVD. For
DreamerV3, we retain only the world model learning component. Additionally, we use the official
implementation of iVideoGPT as described in their original paper, but with a reduced number of
parameters. The detailed hyperparameters for DreamerV3 and iVideoGPT are provided in Table 6]
and Table[7] respectively.

Table 6: Hyperparameters for DreamerV3. Table 7: Hyperparameters for iVideoGPT.
Hyperparameters | Values Hyperparameters \ Values
# Parameters 44M # Parameters 63M
Dynamics hidden 1024 Down blocks 3
Dynamics deterministic | 1024 Down layers per block 2
Dynamics stochastic 32 Down channels [64, 128, 256]
Dynamics discrete 32 Up blocks 3
CNN depth 64 Up layers per block 3
CNN kernel size 4 Up channels [256, 128, 64]
MLP layers 5 Embedding dim 64
MLP units 1024 Codebook size 8192
Actionvation SiLU Actionvation SiLU
Train batch size 32 Transformer hidden dim 512
Train batch length 8 Transformer hidden layers 6
Attention Heads 8
Feedforward dim 1024

B.4 Implementation Details of Real-world Policies

Action Chunking with Transformer (ACT) [58]. ACT is a generative imitation learning model
designed to address the challenges of long-horizon, fine-grained manipulation tasks. We use the
official codebasem Our backbone consists of a 4-layer Transformer encoder and a 7-layer Transformer
decoder, each employing 8 attention heads and a feedforward dimension of 3,200. The model
processes action sequences in chunks of 30 timesteps and utilizes a latent space dimension of 32
for variational inference. We train the model using the AdamW optimizer with a learning rate of
4 x 1075, weight decay of 1 x 10~%, and a batch size of 32. The training procedure runs for 500
epochs to ensure convergence.

Diffusion Policy (DP) [59]. DP is a generative imitation learning approach that formulates action
prediction as a conditional denoising diffusion process. We use the official code release employing
a U-Net backbone with downsampling dimensions [256, 512, 1024] and diffusion step embedding
dimension of 128. The model is trained for 100 diffusion steps and uses 16 DDIM sampling steps
during inference. We train the model using the AdamW optimizer with a learning rate of 1 x 1074, a
cosine learning rate scheduler, and a batch size of 128 for 300 epochs.

OpenPI (7p) [60]. 7 is the state-of-the-art Vision-Language-Action (VLA) model that enables
direct policy learning from visual observations and natural language commands, eliminating the need
for explicit state estimation while maintaining strong generalization across diverse tasks. We use
the official code release[ﬂ processing action sequences in 30-step chunks and maintaining all other

"https://github.com/tonyzhaozh/act
“https://github.com/real-stanford/diffusion_policy
Shttps://github.com/Physical-Intelligence/openpi
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hyperparameters from the original implementation while applying LoRA fine-tuning to adapt the
model to our specific dataset.

B.5 Implementation Details of Evaluation Metrics

B.5.1 Evaluation metrics for model evaluation.

The metrics we use for model evaluation are defined as follows:

Absolute Error is defined as the difference between the value and the estimated value of a policy:
AbsErr = |[V™ — V™, (6)

where V'™ is the true value of the policy and V™ is the estimated value of the policy.

Rank correlation measures the correlation between the ordinal rankings of the value estimates and
the true values, which can be written as:

RankCorr = w .

oc(Viin)o(ViTy)
where 1 : N denotes the indices of the evaluated policies.

Regret @k is the difference between the value of the best policy in the entire set, and the value of the
best policy in the top-k set (where estimated values choose the top-k set). It can be defined as:

Regret @k = max V" —  max V[, )
i€l:N j€topk(1:N)

where topk(1 : V) denotes the indices of the top K policies as measured by estimated values V.

Mean Maximum Rank Violation (MMRYV) is a metric that quantifies the worst-case ranking
inconsistency between real-world and simulated policy evaluations by averaging the maximum
performance-weighted ranking errors across all policies.

RankViolation(i, j) = |R; — R;| - ¥ [(Rs.; < Rs ) # (R; < R;)] ®
N
1 o
MMRV (R, Rs) = N 2 max, RankViolation(, j) (10)

C Data Preparation

C.1 Simulated Data

We select a total of 20 tasks from the MetaWorld benchmark. Each task includes a training set of
3,000 trajectories and a test set of 1,500 trajectories. Specifically, for each task, we use six different
policies to collect the training set: expert policy, random policy, two suboptimal policies with different
levels of Gaussian noise, and two cross-environment policies. Additionally, three unseen policies are
used to gather the testing data. The world models are trained on the full training dataset, followed by
a thorough evaluation using the testing data.

C.2 Pre-training Data

Follow [61]], our pre-training dataset collection includes 27 datasets, with a total scale of 970k
demonstrations, as shown in Table

D Real-world Task Design

D.1 Hardware Setup

Our hardware setup is shown in Figure[/| For the embodiment, we use the ARXS5 robotic platform,
which is similar to Aloha [S3]] and includes two master arms and two puppet arms. We only use the
right arm in our experiment. For the vision sensor, a Realsense D435i camera is mounted above the
desk to capture RGB image observations.
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Table 8: WHALE-X Pre-training Dataset Mixture.
WHALE-X Pre-training Dataset Mixture Percentage

Fractal [62] 12.7%
Kuka [63]] 12.7%
Bridge[64, 13.3%
Taco Play [66} [67]] 3.0%
Jaco Play [68]] 0.4%
Berkeley Cable Routing [69] 0.2%
Roboturk [70] 2.3%
Viola 0.9%
Berkeley Autolab URS5 [[72] 1.2%
Toto 2.0%
Language Table [[74]] 4.4%
Stanford Hydra Dataset 4.4%
Austin Buds Dataset [[76]] 0.2%
NYU Franka Play Dataset [77]] 0.8%
Furniture Bench Dataset [78]] 2.4%
UCSD Kitchen Dataset [[79]] <0.1%
Austin Sailor Dataset [80]] 2.2%
Austin Sirius Dataset [81]] 1.7%
DLR EDAN Shared Control [82] <0.1%
TAMLab CMU Pickup Insert [83] 0.9%
UTAustin Mutex 2.2%
Berkeley Fanuc Manipulation [85]] 0.7%
CMU Stretch 0.2%
BC-Z [87] 7.5%
FMB Dataset 7.1%
DobbE 1.4%
DROTD 190] 1009

third-person
perspective
camera

2x puppet arm
(only use right
one)

Figure 7: The illustration of our robotics platform used for physical robot evaluation.

D.2 Details of Tasks

The training dataset for policy learning comprises three tasks: Open Trash Bin, Pick & Place Cup,
and Throw Ball.

Open Trash Bin: In this task, the robot arm needs to reach the trash bin and press a specific spot on
the lid to open it. The robot must accurately reach and press the lid from its initial pose.

21



Pick & Place Cup: The robot must first reach and pick up a cup placed at a randomly sampled
location within a predefined region, and then place it at a specified target location. Both the initial
and target positions are sampled from multiple predefined candidate positions, introducing variability
in both motion planning and execution.

Throw Ball: This task requires the robot to execute a two-step motion. First, it reaches a randomly
placed ball, picks it up, and then moves to a predefined throw zone to release it. This setup evaluates
both manipulation precision and dynamic coordination.

To evaluate generalization, we introduce three types of unseen task variations, each designed to
challenge the model along a different axis:

Open Trash Bin Pick & Place Cup

Figure 8: The illustration of initial train state

(Unseen background) (Unseen objects) (Unseen positions)

Visual Genelaalization

Figure 9: The illustration of initial test state

Visual Generalization: This setting introduces unseen visual distractors, including changes in
background and illumination, to evaluate the robustness of the model’s visual perception. The visual
generalization experiment is conducted based on the Open Trash Bin task. As illustrated in the left
figure of Figure[8|and Figure [} distractor plates may have different colors, and the lighting conditions
differ from those seen during training.

Object Generalization: In this variant, we replace objects with alternatives that are visually and
physically different from those used during training, while preserving the task semantics. The
experiment is conducted based on the Pick & Place Cup task. As showing in the mid figure of Figure
[8land Figure ] the cup is replaced with one of a different type, color, or shape to test the model’s
ability to generalize across object instances.

Spatial Generalization: This setting involves perturbing the spatial configuration of the initial and
goal object locations. Objects are placed in positions not encountered during training, challenging
the policy to generalize to new spatial layouts and reachability conditions. The spatial generalization
experiment is conducted based on the Throw Ball task, where the initial position of the ball is
significantly different from the training scenarios as illustrated in the right figure of Figure [8]and

Figure[9]
D.3 Data Overview

The overall composition of data used in real-world experiments is summarized in Table[9] For each
task, we collected 20 teleoperated demonstration trajectories and an additional 30 policy rollout
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Table 9: The meta Information of data used in physical robot evaluation.

Entry \ Value
# Episodes 330(150 for fine-tuning, 180 for testing)
Average horizon 200
Data Collection Method | Human teleoperation using the master arm
Scene Type Table top
Robot Morphology Single arm
Camera resolution 640x480
# Cameras 1
Action dimension 7
Action space Joint angle (qpos)
Action semantics (ql, 92, g3, g4, g5, q6, the gripper state)
Control frequency 15Hz
Has suboptimal? Yes(some failure data for fine-tuning)
Has camera calibration? No

trajectories, which include both successful and failed attempts. 10 rollouts were collected using each
of the three policies: ACT, DP, and my. This results in a total of 150 training trajectories across
all tasks. Importantly, the training data does not include any trajectories from the testing policy
checkpoint or from task configurations involving visual, object, or spatial generalization. During
evaluation, we used policy checkpoints that were not seen during training to assess WHALE-X’s
generalization performance under these unseen conditions.

E Additional Experimental Results

E.1 Video Fidelity Results in Real-world Tasks
The results are shown in Table [[0] WHALE-X achieves the best image quality with the highest

average PSNR (21.95 dB), outperforming all baselines across three tasks (19.36, 20.92, and 21.13
dB), highlighting the benefits of its enhanced architecture and behavior-conditioning.

Table 10: Peak Signal-to-Noise Ratio (PSNR) comparison across different tasks and models.

Model Open Trash Bin Pick & Place Cup Throw Ball Average
From Scratch 18.38 19.90 19.80 19.36
wo Behavior-Conditioning 21.89 21.11 20.39 21.13
iVideoGPT 16.59 16.33 16.68 16.53
WHALE-X (ours) 23.02 21.66 21.17 21.95

E.2 Qualitative Evaluation

Qualitative Evaluation on Simulated Task. Figure[I0[shows the results of WHALE and baselines
after rolling out 64 steps in two different tasks. Notably, this qualitative evaluation is highly challeng-
ing and presents significant complexities. First, the evaluation rollout horizon is set to 64, exceeding
that used in prior works, which imposes substantial demands on the generalizability and robustness
of world models. Moreover, the variations between adjacent frames are subtle in the Meta-World
environment, requiring world models to learn the semantics of actions from these minimal changes. In
each image, the first row represents the real trajectory, while the others show the generated trajectories.
It can be observed that WHALE not only generates high-fidelity videos but also accurately restores
the robot arm’s pose. DreamerV3 is the baseline closest to WHALE, but its generated trajectory still
loses key information, such as the blue marker representing the target point. The other baselines fail
to accurately model the robot arm’s pose changes from the subtle variations between adjacent frames.
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Qualitative Evaluation on Open X-Embodiment Dataset. Figure[IT|shows the qualitative evalu-
ation results of WHALE-X on Open X-Embodiment dataset. WHALE-X demonstrates a remarkable
ability to generate high-fidelity, action-conditioned trajectories.

Qualitative Evaluation on Real-world Task Figure[12} [[7]show the qualitative evaluation results
of WHALE-X on Real-world Tasks. WHALE-X demonstrates strong generalizability in terms of
motion, visualization, and task combination.

Meta-World

t=0

Ground

(context) '4',“',".“1',&':"v<’7"."..'7 ) { ‘ ’ > 2 ‘ 7

Whale (ours)

Fitvid

e SO S e B Bl Bl o o e Bl B BB S S §
~ - > = > > > > > > > > > > >y
‘Whale (ours)

> < > J < > ! < 3 4 < ‘,’ < ‘)»‘ < ;,‘ < ‘)‘ < ‘»,‘ < )| ¥ > - N - > - ,,|V - prs

.r’ ,,_." ,,." ,_." .II I‘\‘ ',' 'v‘ ' < ' : : § : :

0 4 o b b 4 45 6 S B o o fo to )

FitVid

Figure 10: Additional qualitative evaluation on the Meta-World dataset.

E.3 Behavior Embedding Visualization

To verify whether the learned behavior embedding has captured policy modes, we perform t-SNE [91]]
to visualize the representations corresponding to different tasks and policies. Figure[I9a shows that
different policies for the same task can be distinguished by the learned behavior embedding. Notably,
the embedding of the noisy expert policy appears to be a linear interpolation between the expert
policy and the noisy policy, indicating that the behavior-conditioning models the policies reasonably.
Figure [T9b] shows that the expert policies for different tasks can also be distinguished, while Figure
shows the random policies for different tasks cannot. This distinction indicates that our learned
embedding is more inclined toward policy representation rather than task representation.

F Computational Resources

Pre-training. All experiments are conducted on RTX 4090 GPUs for both training and inference.
For simulation tasks, approximately 80 GPU hours are required: 48 GPU hours for tokenizer training,
8 GPU hours for behavior-conditioning model training, and 24 GPU hours for dynamics model
training. Pre-training the WHALE-X model demands substantially higher computational resources,
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Figure 11: Additional qualitative evaluation on the Open X-Embodiment dataset.
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Training Dataset

Ground
truth

Whale-X

Ground
truth

Whale-X

Ground
truth

Whale-X

Figure 12: Additional qualitative evaluation on the Real-world tasks. The images show the rollout
results of the ACT across three tasks from top to bottom: open trash bin, pick&place cup, and throw
ball. For each task, we compare the rollout result in WHALE-X with the corresponding real trajectory.
The rollout lengths vary across tasks, with the shortest around 100 timesteps and the longest up to
300.
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Figure 13: Additional qualitative evaluation on the Real-world tasks. The images illustrate the
WHALE-X’s evaluation capabilities across three unseen settings. From top to bottom, they correspond
to visual generalization, object generalization, and spatial generalization. For each setting, we
compare the rollout results of ACT in WHALE-X with ground truth. The rollout lengths range from
approximately 100 to 300 timesteps.
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Figure 14: Additional qualitative evaluation on the Real-world tasks. The images show the rollout
results of the Diffusion Policy across three tasks from top to bottom: open trash bin, pick&place cup,
and throw ball. For each task, we compare the rollout result in WHALE-X with the corresponding
real trajectory. The rollout lengths vary across tasks, with the shortest around 100 timesteps and the
longest up to 300.
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Figure 15: Additional qualitative evaluation on the Real-world tasks. The images illustrate the
WHALE-X’s evaluation capabilities across three unseen settings. From top to bottom, they correspond
to visual generalization, object generalization, and spatial generalization. For each setting, we
compare the rollout results of Diffusion Policy in WHALE-X with ground truth. The rollout lengths
range from approximately 100 to 300 timesteps.
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Figure 16: Additional qualitative evaluation on the Real-world tasks. The images show the rollout
results of the 7 across three tasks from top to bottom: open trash bin, pick&place cup, and throw
ball. For each task, we compare the rollout result in WHALE-X with the corresponding real trajectory.
The rollout lengths vary across tasks, with the shortest around 100 timesteps and the longest up to
300.
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Figure 17: Additional qualitative evaluation on the Real-world tasks. The images illustrate the
WHALE-X’s evaluation capabilities across three unseen settings. From top to bottom, they correspond
to visual generalization, object generalization, and spatial generalization. For each setting, we
compare the rollout results of 7y in WHALE-X with ground truth. The rollout lengths range from
approximately 100 to 300 timesteps.
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Figure 18: Failure cases on the Real-world tasks. The figure illustrates generalization errors in
WHALE-Xs rollout, showing three distinct failure cases from top to bottom: visual error, dynamics
error and object error, with each case presented alongside ground truth for comparison.

(a) Same task different policies (b) Different tasks expert policies (c) Different tasks random policies

Figure 19: The behavior embedding visualization via t-SNE [91]]. The different colors denote different
policies in the same task (I9a) and expert policies in different tasks (I9b) or random policies in

different tasks .

totaling around 2000 GPU hours: 1152 GPU hours for tokenizer training, 192 GPU hours for
behavior-conditioning model training, and 576 GPU hours for dynamics model training.

Fine-tuning. Fine-tuning WHALE-X involves 20,000 gradient steps within our environment, requir-
ing approximately 16 GPU hours in total. This includes 8 GPU hours for fine-tuning the tokenizer, 1
GPU hour for the behavior-conditioning model, and 8 GPU hours for the dynamics model.

Inference. WHALE-X achieves efficient inference performance, benefiting from the parallel decoding
structure of the ST-Transformer architecture, reaching an inference speed of 19.8 steps per second.

We further summarize and compare the computational requirements for fine-tuning and inference of
the WHALE-X dynamics model across different model scales in Table[TT]

Table 11: Computational resources for WHALE-X with different model sizes.

Model Size 3OM 77M  203M  456M
GPU hours (20000 steps) ~3 ~4 ~8 ~16
Inference Speed (frames/sec) 31.7 27.5 19.8 134
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G Broader Impacts

This work advances the development of scalable and generalizable world models for embodied
decision-making, with potential benefits across a range of applications of robotics applications. By
addressing core challenges in generalization, our proposed WHALE framework may enable efficient
and more reliable deployment of decision-making agents in real-world settings. Moreover, our
large-scale pre-trained model, WHALE-X, highlights the promise of scaling embodied world models
through cross-domain datasets, contributing toward more generalizable world models for robotics.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We clearly state the contribution and scope of this paper in the abstract and
introduction.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: The limitations of this work are discussed in Section
Guidelines:
* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
Justification: We provide the full set of assumptions and proof in Appendix
Guidelines:

* The answer NA means that the paper does not include theoretical results.

¢ All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We present all implementation details for reproducing the main experimental
results of this paper in Appendix

Guidelines:
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The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We submit the code for reproducing the main experimental results in the
supplemental material.

Guidelines:

The answer NA means that paper does not include experiments requiring code.

Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: All experimental details are described in Section [#.2]and Appendix [B]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the standard deviation over 3 random seeds for all experiments in
this paper.

Guidelines:

¢ The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We describe the information on the computer resources for running the
experiments in Appendix [F}

Guidelines:
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* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: This paper aims to build a more generalizable world model learning for
embodied decision-making and conforms with the NeurIPS Code of Ethics in every respect.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss both potential positive societal impacts and negative societal
impacts of this work in Appendix [G]

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pre-trained language models,
image generators, or scraped datasets)?
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Answer: [NA]

Justification: The models proposed in this paper are only oriented to the domain of embodied
decision-making and have no risk for misuse.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should descriviorzbe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the original paper that produced the codebase and dataset, and provide
the corresponding URLs.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

» At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
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Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: LLM is used only for writing and editing, and does not impact the core
methodology.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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