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Abstract

Generating realistic brain connectivity matrices is key to analyzing population
heterogeneity in brain organization, understanding disease, and augmenting data
in challenging classification problems. Functional connectivity matrices lie in
constrained spaces—such as the set of symmetric positive definite or correlation
matrices—that can be modeled as Riemannian manifolds. However, using Rie-
mannian tools typically requires redefining core operations (geodesics, norms,
integration), making generative modeling computationally inefficient. In this work,
we propose DIFFEOCFM, an approach that enables conditional flow matching
(CFM) on matrix manifolds by exploiting pullback metrics induced by global
diffeomorphisms on Euclidean spaces. We show that Riemannian CFM with such
metrics is equivalent to applying standard CFM after data transformation. This
equivalence allows efficient vector field learning, and fast sampling with standard
ODE solvers. We instantiate DIFFEOCFM with two different settings: the matrix
logarithm for covariance matrices and the normalized Cholesky decomposition
for correlation matrices. We evaluate DIFFEOCFM on three large-scale fMRI
datasets with more than 4600 scans from 2800 subjects (ADNI, ABIDE, OASIS-3)
and two EEG motor imagery datasets with over 30000 trials from 26 subjects
(BNCI2014-002 and BNCI2015-001). It enables fast training and achieves state-
of-the-art performance, all while preserving manifold constraints.
Code:  https://github.com/antoinecollas/DiffeoCFM 

1 Introduction

Brain imaging connectivity and Riemannian geometry Modern neuroimaging analyses map
brain functional signals toward connectivity matrices—covariance or correlation estimates between
regions of interest or sensor channels [ 37 ]. These structured representations are used in many
applications, such as motor imagery classification [ 4 ,  51 ,  41 ,  44 ], brain age prediction [ 16 ,  22 ,  54 ,  55 ],
or disease diagnosis [ 15 ]. They are central to the analysis of signals from many neuroimaging
modalities, such as functional magnetic resonance imaging (fMRI), electroencephalography (EEG),
and magnetoencephalography (MEG). Brain connectivity matrices are symmetric positive definite
(SPD) or lie in the open elliptope of full-rank correlation matrices, and thus belong to smooth matrix
manifolds—S++

d and its submanifold Corrd—defined respectively by

S++
d =

{
Σ ∈ Rd×d

∣∣Σ⊤ = Σ,Σ ≻ 0
}

and Corrd =
{
Σ ∈ S++

d

∣∣ diag(Σ) = 1
}
. (1)

Several Riemannian metrics have been proposed to analyse these data such as the affine-invariant
metric [ 65 ,  7 ], the log-Euclidean metric [ 3 ], or the Euclidean-Cholesky metric [ 68 ]. They enable
the definition of Riemannian operations such as geodesics, exponential maps, and parallel transport,
which extend standard Euclidean operations to the manifold. Building on these manifolds, a wide
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range of machine learning algorithms have been designed for classification [ 4 ], regression [ 16 ,  22 ,  55 ],
or dimension reduction [ 27 ].

Deep generative models on manifolds Deep generative modeling has rapidly advanced with
the success of generative adversarial networks (GANs)[ 28 ], variational autoencoders (VAEs)[ 39 ],
autoregressive models such as PixelRNN [ 70 ], normalizing flows [ 21 ,  40 ], large-scale autoregressive
models [ 9 ], and more recently, diffusion models [ 31 ,  66 ] and flow matching [  49 ,  47 ,  2 ,  48 ]. These
last two methods learn to synthesize data by estimating continuous-time stochastic (diffusion) or
deterministic (flow) dynamics that interpolate between a source and a target distribution. Diffusion
models do so by reversing a noise injection process, while flow matching aligns a learned time-
dependent vector field to the velocity field of a straight-line path. Both paradigms offer good
scalability and state-of-the-art results on diverse domains, from natural images [ 23 ], to speech [  43 ],
and protein structure generation [ 32 ]. More recent efforts have extended generative modeling to
Riemannian manifolds. Riemannian score-based generative modeling [ 17 ] and Riemannian flow
matching [ 12 ] provide general formulations for sampling on manifolds. The latter learns time-
dependent vector fields on the tangent bundle that match the velocity of geodesic paths between
source and target distributions. These approaches offer principled tools for generating data with
geometric constraints, by treating the data domain as a manifold. These novel frameworks have
already been applied to several applications such as materials discovery [ 56 ], robotics [ 20 ], or climate
science [ 12 ].

Contributions In this work, we address a novel and challenging issue in neuroimaging: generating
realistic brain connectivity data from actual human neuroimaging data. This challenge stems from
the unique structure of brain connectivity data, which is represented by SPDs or correlation matrices
that lie on non-Euclidean manifolds. Moreover, neuroimaging datasets typically have limited sample
sizes, making realistic data generation particularly valuable. We propose a novel Riemannian flow
matching method, DIFFEOCFM, based on pullback geometry, defined by a global diffeomorphism
ϕ : M → E, where E is Euclidean space. This method is an efficient framework that guarantees
manifold-constrained outputs by construction while avoiding computationally expensive operations
specific to SPD or correlation manifolds. We instantiate DIFFEOCFM with two diffeomorphisms
tailored to different neuroimaging data: the matrix logarithm for SPD matrices and the normalized
Cholesky decomposition for correlation matrices. Finally, we evaluate DIFFEOCFM on three large-
scale fMRI datasets (ADNI, ABIDE, and OASIS-3; over 4600 scans from 2800 subjects) and two
EEG motor imagery datasets (BNCI2014-002 and BNCI2015-001; 30000 trials from 26 subjects),
demonstrating that DIFFEOCFM is capable of generating realistic, neurophysiologically meaningful
samples, as validated by multiple statistical metrics.

Notations M is a smooth manifold with tangent space TxM and Riemannian norm ∥·∥x. We write
γ for geodesics, and γ̇(t) ≜ d

dtγ(t) for curve’s speed. Let ϕ : M → E be a global diffeomorphism to
Euclidean space E, with differential Dϕ(x) : TxM 7→ E and inverse (Dϕ(x))−1. The pushforward
of a distribution p on M is ϕ#p, defined via

∫
f d(ϕ#p) =

∫
(f ◦ ϕ) dp for any f continuous on

E. We denote x | y ∼ p(· | y) for conditional sampling with label y ∈ Y . Let Sd be the space of
symmetric d × d matrices, S++

d the SPD cone, and Corrd the set of correlation matrices. Let LT1
d

be the set of lower-triangular matrices with unit diagonal. We define vecsl : Sd 7→ Rd(d−1)/2 as
the operator extracting strictly lower-triangular entries, and veclt for the full lower-triangular part
(diagonal included), with

√
2 scaling off-diagonal terms.

2 Background

Pullback Manifolds with Euclidean Spaces Let M be a smooth manifold, E a Euclidean space,
and ϕ : M → E a global diffeomorphism (a smooth bijection with a smooth inverse). The
diffeomorphism ϕ induces a Riemannian metric on M by pulling back the Euclidean metric gE on E

(ϕ∗gE)x(ξ, η) ≜ gE (Dϕ(x)[ξ],Dϕ(x)[η]) , ξ, η ∈ TxM . (2)

This metric induces a Riemannian norm on the tangent space TxM at each point x ∈ M: ∥ξ∥x =√
(ϕ∗gE)x(ξ, ξ). The pair (M, ϕ∗gE) is then called a pullback manifold, and ϕ∗gE is the pullback

metric of gE by ϕ. The pullback manifold is geodesically complete and admits globally unique
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Figure 1: Overview of DIFFEOCFM. DIFFEOCFM is a principled framework for deep generative
modeling on matrix manifolds. It reformulates Riemannian conditional flow matching (CFM) on a
pullback manifold (M, ϕ∗gE) as conventional CFM in Euclidean space E, via a global diffeomor-
phism ϕ : M → E. The reformulation preserves geometry in two ways: (i) the learned Euclidean
vector field uE

θ satisfies ( 7 ), ensuring that training uE
θ is equivalent to training uM

θ ; (ii) the flow
trajectories obey ϕ(x(t)) = z(t), so that integrating in E and pulling back via ϕ−1 yields the same
samples as integrating directly on M. This allows both training and sampling to be carried out
efficiently in E, while remaining equivalent to operating on M. On the left, fMRI correlation and
EEG spatial covariance matrices lie on M = Corrd and M = S++

d , respectively. These matrices
are mapped to E through ϕ, a time-dependent vector field uE

θ is trained in E, and integration is
performed in E before mapping back via ϕ−1 to yield connectivity manifold constrained matrices.

geodesics [ 68 , Chap. 7]. Moreover, many Riemannian operations reduce to simple computations in E.
Given two points x0, x1 ∈ M, the geodesic γ : [0, 1] → M connecting x0 to x1 and its associated
riemannian distance are given by

γ(t) = ϕ−1 ((1− t)ϕ(x0) + tϕ(x1)) and dM(x0, x1) = ∥ϕ(x0)− ϕ(x1)∥E (3)

i.e., the pullbacks of the Euclidean straight line and distance in E joining ϕ(x0) and ϕ(x1). The
Fréchet mean [ 29 ] of a set of points {x(n)}Nn=1 ⊂ M with respect to the Riemannian distance is

x̄ ≜ argmin
x∈M

N∑
n=1

dM(x, x(n))2 = ϕ−1

(
1

N

N∑
n=1

ϕ(x(n))

)
. (4)

Riemannian CFM CFM [ 49 ,  47 ,  2 ,  48 ] was recently extended to Riemannian manifolds [  12 ],
providing a principled framework for learning time-dependent vector fields that transport samples
between probability distributions defined on such spaces. Given a manifold M, a vector field
uM
θ : [0, 1]×M×Y → TM is trained to match the velocity of geodesics connecting samples from

source and target distributions. The Riemannian CFM loss is defined as

L(θ) ≜ Et, y, x0|y, x1|y
∥∥uM

θ (t, γ(t), y)− γ̇(t)
∥∥2
γ(t)

, (5)

where y ∈ Y is a condition variable (such as a disease status), and x0|y ∼ p(·|y), x1|y ∼ q(·|y)
and t ∼ U([0, 1]). Hence, this loss is computationally intensive, as it requires evaluating geodesics
γ(t) between x0 and x1, their derivatives γ̇(t), and Riemannian norms ∥ · ∥γ(t). Once trained, new
samples on M are generated by solving the Riemannian ODE

ẋ(t) = uM
θ (t, x(t), y), x(0) = x0 ∼ p(· | y) (6)

and returning x(1) as a sample from the learned approximation of q(· | y).

3 DIFFEOCFM: Conditional Flow Matching on Pullback Manifolds

Pullback manifolds provide a natural setting for using Riemannian CFM [ 12 ] in practical generative
modeling tasks. Indeed, when M is equipped with a pullback metric ϕ∗gE induced by a global
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diffeomorphism ϕ : M → E, both training and sampling can be performed entirely in the Euclidean
space E. We prove that this equivalence is exact: the learned vector field in E corresponds to one on
M, and the ODE solutions in E map to those on M via ϕ. This result motivates DIFFEOCFM, a
conditional flow matching framework that performs all computations in E, avoiding costly geometric
operations—such as computing geodesics, Riemannian norms, or manifold integration—while
guaranteeing manifold-constrained outputs. An overview of the method is shown in  Figure 1 .

3.1 Training and sampling with a diffeomorphism

Training Rather than learning a vector field uM
θ directly on the manifold M, DIFFEOCFM trains

its Euclidean counterpart uE
θ via the pullback:

uE
θ (t, z, y) ≜ Dϕ(ϕ−1(z))

(
uM
θ (t, ϕ−1(z), y)

)
. (7)

Indeed, in this case, the loss function ( 5 ) can be expressed in terms of the Euclidean vector field uE
θ

as shown in the following proposition.
Proposition 1 (Riemannian CFM loss function on pullback manifolds). The Riemannian CFM
loss ( 5 ) can be re-expressed in terms of the Euclidean vector field uE

θ ( 7 ) as

L(θ) = Et, y, z0|y, z1|y
∥∥uE

θ (t, (1− t)z0 + tz1, y)− (z1 − z0)
∥∥2
E

,

where z0|y ∼ ϕ#p(·|y) and z1|y ∼ ϕ#q(·|y).

It should be noted that this new loss function is much simpler to compute than the original Riemannian
CFM one, as it does not require computing geodesics, their derivatives, or Riemannian norms.

Sampling DIFFEOCFM generates new samples by solving the ODE

ż(t) = uE
θ (t, z(t), y) , z(0) = z0 ∼ ϕ#p(· | y) . (8)

Despite this simple form, the procedure is fully Riemannian: the generated trajectory corresponds
exactly to a manifold-valued solution under ϕ−1. Indeed, the following proposition states the
equivalence of the solutions of the ODEs ( 6 ) and ( 8 ).
Proposition 2 (Equivalence of ODE solutions). The solution x(t) to ( 6 ) satisfies

x(t) = ϕ−1(z(t)) for all t ∈ [0, 1] ,

where z(t) is the solution of the ODE ( 8 ) with initial condition z0 = ϕ(x0).

The previous result establishes that the Riemannian and ODEs define equivalent flows through the
diffeomorphism ϕ. In practice, these ODEs are solved numerically using explicit Runge–Kutta
integrators. The next proposition shows that the equivalence also holds at the discrete level: applying
the same Runge–Kutta scheme in E or on M yields iterates related by ϕ.
Proposition 3 (Equivalence of Runge–Kutta iterates). Let {xℓ} be the iterates produced on M by an
explicit Riemannian Runge–Kutta scheme applied to the ODE ( 6 ). Then, the iterates are

xℓ = ϕ−1 (zℓ) for all ℓ ∈ N ,

where {zℓ} are the iterates obtained by applying the same scheme (same coefficients and step size) to
the ODE ( 8 ) with initial condition z0 = ϕ(x0).

Overall, the training and sampling algorithms for DIFFEOCFM are summarized in  Algorithm 1 and
 2 , respectively.

Algorithm 1: DIFFEOCFM: Training
Input: step size h; samplers πY , ϕ#p, ϕ#q
Output: Trained parameters θ⋆

Initialize θ;
while not converged do

Sample y ∼ πY , t ∼ U([0, 1]);
Sample z0 ∼ ϕ#p(· | y), z1 ∼ ϕ#q(· | y);
L ← ∥uE

θ (t, (1− t)z0+ tz1, y)− (z1−z0)∥2E ;
θ ← optimizer-step(L);

end

Algorithm 2: DIFFEOCFM: Sampling
Input: label y; steps L; step size h; trained θ⋆

Output: Generated sample x
Sample z0 ∼ ϕ#p(· | y);
for ℓ = 0 to L− 1 do

zℓ+1 ← Runge-Kutta-step(uE
θ⋆ , zℓ, y, h);

end
x← ϕ−1(zL);
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3.2 Diffeomorphic Embeddings for Generative Modeling of Brain Connectivity Matrices

To generate brain connectivity matrices, we map S++
d and Corrd to Euclidean spaces via global

diffeomorphisms: the matrix logarithm for SPD matrices and the normalized Cholesky map for
correlation matrices. These maps define pullback metrics on the tangent spaces TΣS++

d = Sd and
TΣCorrd = {ξ ∈ Sd | diag(ξ) = 0}, of respective dimensions d(d + 1)/2 and d(d − 1)/2. This
allows DIFFEOCFM to perform efficient, geometry-aware generation for both matrix types. Note that
we selected these two diffeomorphisms for their simplicity and ease of implementation. However,
other choices are possible. For correlation matrices, alternative parameterizations are discussed
in [ 68 , Chapter 7]. For SPD matrices, one can use the Cholesky factor with a logarithm applied to the
diagonal, leading to the log-Cholesky metric [ 46 ], which also defines a global diffeomorphism.

Covariance matrices: Log–Euclidean metric On S++
d , we define the global diffeomorphism

ϕS++
d

: S++
d 7→ Rd(d+1)/2 by composing the matrix logarithm with the vectorization map veclt:

ϕS++
d

(Σ) = veclt(log(Σ)) and ϕ−1

S++
d

(η) = exp(vec−1
lt (η)), (9)

where log and exp denote the matrix logarithm and exponential, respectively. This mapping induces
the Log–Euclidean metric on S++

d by pulling back the standard Euclidean inner product from
Rd(d+1)/2: gΣ,S++

d
(ξ,η) = tr(D log(Σ)[ξ] D log(Σ)[η]), as introduced in Arsigny et al. [ 3 ].

Correlation matrices: Euclidean–Cholesky metric On Corrd, the matrix logarithm is no longer a
diffeomorphism. More generally, defining a log-based diffeomorphism is nontrivial—for example,
the Riemannian logarithm associated with the affine-invariant metric does not admit a closed-form
expression in this setting (see  Appendix F  ). Instead, we use the normalized Cholesky map, a global
diffeomorphism onto LT1

d, the space of lower-triangular matrices with unit diagonal:

nchol(Σ) = diag(chol(Σ))−1 chol(Σ), (10)

where chol(Σ) is the unique Cholesky factor with positive diagonal. Its inverse is

nchol−1(L) = D−1/2LL⊤D−1/2, withD = diag(LL⊤) . (11)

Then, we define the diffeomorphism ϕCorrd : Corrd 7→ Rd(d−1)/2 and its inverse as

ϕCorrd(Σ) = vecsl(nchol(Σ)) and ϕ−1
Corrd(η) = nchol−1(vec−1

sl (η)) . (12)

This map induces the Euclidean–Cholesky metric, a Riemannian metric obtained by pulling back the
Euclidean metric from the vector space Rd(d−1)/2 [ 68 ]: gΣ,Corrd(ξ,η) = Dϕ(Σ)[ξ]⊤ Dϕ(Σ)[η].

Label, source, and target distributions To train DIFFEOCFM on labeled brain connectivity data,
we define class-conditional source and target distributions in the Euclidean space E induced by the
diffeomorphism ϕ. Given a dataset {(x(n), y(n))}Nn=1 of manifold-valued matrices, we map each
sample to E via z(n) = ϕ(x(n)). For each class y, we fit a Gaussian distribution to the embedded
samples {z(n) : y(n) = y} to define the class-conditional source distribution ϕ#p(· | y). The target
distribution ϕ#q(· | y) is defined as the empirical distribution over the same class-y samples.

3.3 Related work

Denoising Diffusion Probabilistic Models (DDPMs) [ 31 ] and CFM [ 47 ,  2 ] have emerged as robust,
state-of-the-art generative models in Euclidean spaces. Several extensions have been proposed to
handle data that lie on Riemannian manifolds. These include Riemannian Score-Based Generative
Modeling [ 17 ], SPD-DDPM [ 45 ], and Riemannian CFM [ 12 ]. These methods tailor the loss function
and ODE/SDE solvers to the geometry of a specific manifold. However, this geometric fidelity
comes at a cost: manifold-specific operations such as Riemannian gradients, exponential/logarithm
maps, or parallel transport must be implemented to compute the loss function and the integration
on the manifold. For instance, SPD-DDPM requires a specialized neural architecture, an SPDNet,
which is computationally expensive and significantly slower to train than Euclidean counterparts;
see  Figure 4  in Appendix for a comparison. References [  35 ] and [ 38 ] explore more general settings
by learning bridge matches on arbitrary manifolds or data-driven Riemannian metrics, whereas our
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approach focuses on Riemannian geometries defined via known pullback diffeomorphisms. In [ 26 ],
the authors leverage reparameterisation with normalising flows to learn probability densities on Lie
groups (non-Euclidean spaces), and thus can be seen as an early precursor to our approach.

In contrast, CorrGAN [ 52 ] offers a pragmatic approach to generating correlation matrices by training
and sampling entirely in Euclidean space using a GAN. Geometric constraints, such as positive
definiteness and unit diagonal, are enforced via post-processing. While the method is simple and fast,
the post-processing step can change the generated data in unwanted ways and reduce their quality.

The proposed method combines the simplicity of Euclidean training with the rigor of Riemannian
geometry by using a diffeomorphism ϕ to embed structured matrices, apply standard CFM, and map
samples back. To the best of our knowledge, it is the only method that enables generation of both
SPD and correlation matrices within a unified framework. A detailed comparison of baseline meth-
ods—highlighting their assumptions, strengths, and limitations—is provided in Appendix  Section H  .

4 Empirical benchmarks

These benchmarks were designed to evaluate whether the generated data (i.) match the test distribution
and (ii.) enable classifiers trained on them to generalize to real data. This evaluation uses two human
brain imaging modalities: three fMRI datasets and two EEG datasets.

4.1 Metrics

The metrics used are method-agnostic; that is, they are computed solely from the generated samples.
They fall into two categories: (i) quality metrics, which assess how well the generated data approxi-
mate the real data distribution; and (ii) classification accuracy score (CAS) metrics, which evaluate
the usefulness of generated data for training classifiers.

Quality Metrics We assess how closely the generated samples align with the real data distribution
using the α-precision and β-recall metrics introduced by [ 1 ]. We compute these metrics using the
EvaGeM library 

1
 . In contrast to [ 1 ], which uses a Deep neural network, EvaGeM employs a One-Class

SVM, providing a more stable and hyperparameter-robust estimator across datasets. These metrics
quantify the fidelity (how realistic the generated samples are) and the diversity (how well they span
the true data distribution). We also report the harmonic mean of the two, denoted α, β-F1.

Classification accuracy score metrics We follow the CAS protocol [ 64 ], training a classifier on
generated samples and evaluating it on real test data. Specifically, we assess classification utility using
a logistic regression with liblinear solver, balances class weights and a 5-fold cross-validation
to select the inverse regularization strength C from the grid {10−4, 10−3, . . . , 104}. High scores
indicate that the generated data preserves task-relevant information. On fMRI datasets, the task is
disease classification (control vs. patient), while for EEG, it is a two-class motor imagery problem in
a brain–computer interface setting. We report ROC-AUC and F1 scores.

4.2 Datasets

The experiments include both fMRI and EEG datasets; additional details are provided in  Appendix G .

fMRI datasets We use three publicly available resting-state fMRI datasets. The ABIDE dataset [ 53 ]
consists of 900 subjects (one scan each), including both neurotypical and autistic individuals with
a mean age of 17 years, collected across 19 international sites. The ADNI dataset [ 73 ] comprises
1,900 scans from 900 older adults (mean age 74), covering normal ageing, mild cognitive impairment,
and Alzheimer’s disease. The OASIS-3 dataset [ 42 ] includes 1,000 subjects and 1,800 longitudinal
sessions collected over 10 years, targeting healthy ageing and neurodegenerative conditions, with a
mean participant age of 71 years. We z-score the time series and then compute correlation matrices
(Corrd) using the OAS estimator [ 15 ]. We report mean and standard deviations computed across 10
random train-test splits with subject-level grouping, ensuring that scans from the same subject do not
appear in both training and test sets.

1
 https://github.com/nicolassalvy/EvaGeM 
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EEG datasets We use two publicly available EEG motor imagery datasets from the BCI competition.
The BNCI2014-002 dataset [ 67 ] includes 13 subjects performing right-hand and feet imagery,
recorded with 15 channels over 1 session, with 80 trials per class. The BNCI2015-001 dataset [ 25 ]
comprises 12 subjects, 13 channels over 2 or 3 sessions, and 100 trials per class for the same motor
imagery tasks. To process the raw data, we compute covariance matrices (S++

d ) using the OAS
estimator [  13 ], following standard practices [ 51 ]. We report performance on a leave-one-session-out
protocol on BNCI2014-002 and on cross-session experiments on BNCI2015-001. The reported
standard deviations are computed over 5 inner splits and averaged over sessions.

4.3 Baselines

We present the baselines used for comparison with DIFFEOCFM, including an oracle baseline (REAL
DATA) that treats test data as if it were generated samples.

REAL DATA This oracle baseline treats the test set as if it were generated data when computing
metrics. It provides an upper bound on the achievable performance, both for quality and CAS metrics,
showing the best any generative model could hope to match.

DIFFEOGAUSS Given a diffeomorphic embedding ϕ : M 7→ E, we model each class-conditional
distribution q(· | y) as the push-forward of a Gaussian N (µy,Σy) fitted to the embedded training
data z(n) = ϕ(x(n)). Samples are drawn in E and mapped back to M via ϕ−1, yielding a wrapped
Gaussian distribution on the manifold [ 62 ,  18 ].

TRIANGDDPM and TRIANGCFM These baselines apply generative models to the lower-
triangular part of SPD or correlation matrices, a common heuristic in manifold modeling [  52 ].
For fMRI, they use the strictly lower-triangular entries (ϕ : Corrd 7→ Rd(d−1)/2); for EEG, all lower-
triangular entries (ϕ : S++

d 7→ Rd(d+1)/2). TRIANGDDPM uses a DDPM [ 2 ], while TRIANGCFM
trains a vector field using the standard CFM loss. Since ϕ is not a diffeomorphism, generated matrices
that do not lie on the manifold are projected back onto it. In particular, generated matrices are not
necessarily positive definite, so we apply a projection to ensure all eigenvalues are at least ϵ > 0 with
Σproj = (1− α)Σ+ αI; see  Appendix M for more details. These methods trade geometric fidelity
for simplicity, relying on post hoc projections to enforce constraints.

RIEMCFM This method applies Riemannian CFM [ 12 ] directly on the SPD manifold using the
affine-invariant metric [ 65 ]. The target conditional vector field is computed analytically from the
Riemannian logarithm and exponential maps. Unlike TRIANGDDPM/TRIANGCFM, RIEMCFM
preserves the intrinsic geometry of S++

d throughout training and sampling, yielding valid SPD
matrices at every time step without post-hoc corrections. However, it requires computing geodesics,
their derivatives and Riemannian norms under the affine-invariant metric, making it substantially
more computationally expensive than all other presented methods. The reference implementation  

2
 

focuses exclusively on the SPD manifold under the affine-invariant metric, and does not provide a
corresponding construction for correlation matrices.

DIFFEOCFM (proposed) We apply the log–Euclidean map ϕS++
d

( 9 ) for EEG and the normalized
Cholesky map ϕCorrd ( 12 ) for fMRI in  Algorithm 1 and  2 . These diffeomorphisms allow Euclidean
training with CFM while ensuring manifold-valid samples without post-processing.

Deep learning and training/sampling setups TRIANGDDPM, TRIANGCFM and DIFFEOCFM
employ a two-layer MLP with 512 hidden units, trained using AdamW [ 50 ] with a learning rate
of 10−3 and batch size 64. Training runs for 200 epochs on fMRI and 2000 epochs on EEG.
RIEMCFM has a 6-layer MLP with 512 hidden units trained with AdamW (learning rate of 10−4),
as recommended in [  12 ]. These four methods use the dopri5 method from the torchdiffeq [ 11 ]
library for time integration.
All experiments were run within 10 hours on a single Nvidia A40 GPU with a 32-cores cpu.

2
 https://github.com/facebookresearch/riemannian-fm 
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5 Results

We report both quantitative results and a neurophysiological plausibility study. Quantitative compar-
isons are summarized in  Table 1  , with additional analysis of projection effects in  Table 2  . Neurophys-
iological relevance is assessed in  Figure 2 , which shows class-conditional fMRI connectomes via
Fréchet means and topographic maps of EEG Common Spatial Patterns (CSP) filters. To complement

 Table 1 , we provide a visual summary of our findings in  Figure 3 (  Appendix I ). Together, these
results show that DIFFEOCFM produces realistic, class-conditional samples that preserve key features
of brain connectivity. For a more detailed discussion of the baselines, please refer to  Appendix H .

Table 1: Performance of generative models on 3 fMRI and 2 EEG datasets, evaluated with
quality and Classification Accuracy Score (CAS) metrics. Quality metrics (α-precision, β-recall,
and α, β-F1) assess alignment with the real distribution. CAS metrics (ROC-AUC and F1) evaluate
downstream performance: a classifier is trained on generated data to predict disease status (fMRI) or
motor imagery class (EEG), and tested on held-out real samples. Real Data rows use real samples to
compare training and test distributions, serving as empirical upper bounds. The proposed method is
denoted DIFFEOCFM . mean ± std are reported. Bold values denote the best method and any methods
that are not significantly worse than it (one-sided paired Wilcoxon signed-rank test, α = 0.05).

Quality Metrics CAS Metrics Time (s.)

α-Precision ↑β-Recall ↑α,β-F1 ↑ROC-AUC ↑ F1 ↑ Training ↓ Sampling ↓
Dataset Method

A
B

ID
E

Real Data 0.80 ± 0.08 0.79 ± 0.08 0.79 ± 0.03 0.67 ± 0.06 0.59 ± 0.07 N/A N/A
DIFFEOGAUSS 0.56 ± 0.06 0.29 ± 0.06 0.38 ± 0.06 0.66 ± 0.04 0.53 ± 0.06 0.07 ± 0.03 0.06 ± 0.00

TRIANGDDPM 0.04 ± 0.02 0.00 ± 0.00 0.00 ± 0.00 0.53 ± 0.06 0.47 ± 0.12 33.80 ± 1.19 0.37 ± 0.05

TRIANGCFM 0.04 ± 0.02 0.00 ± 0.00 0.00 ± 0.00 0.52 ± 0.05 0.40 ± 0.18 48.78 ± 1.27 0.79 ± 0.78

DIFFEOCFM 0.77 ± 0.09 0.48 ± 0.07 0.59 ± 0.08 0.64 ± 0.06 0.58 ± 0.07 32.78 ± 0.96 0.40 ± 0.04

A
D

N
I

Real Data 0.91 ± 0.03 0.85 ± 0.06 0.88 ± 0.03 0.62 ± 0.05 0.62 ± 0.05 N/A N/A
DIFFEOGAUSS 0.02 ± 0.01 0.51 ± 0.08 0.04 ± 0.02 0.60 ± 0.05 0.29 ± 0.13 0.14 ± 0.01 0.18 ± 0.01

TRIANGDDPM 0.02 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.53 ± 0.05 0.18 ± 0.11 90.03 ± 2.01 0.62 ± 0.08

TRIANGCFM 0.02 ± 0.00 0.00 ± 0.01 0.01 ± 0.01 0.56 ± 0.04 0.34 ± 0.13 87.37 ± 2.13 0.63 ± 0.09

DIFFEOCFM 0.62 ± 0.11 0.77 ± 0.02 0.68 ± 0.06 0.63 ± 0.04 0.47 ± 0.10 88.01 ± 2.90 0.69 ± 0.11

O
A

S
IS

-3

Real Data 0.88 ± 0.04 0.87 ± 0.03 0.88 ± 0.02 0.73 ± 0.05 0.63 ± 0.06 N/A N/A
DIFFEOGAUSS 0.51 ± 0.04 0.30 ± 0.04 0.38 ± 0.04 0.70 ± 0.05 0.41 ± 0.07 0.10 ± 0.01 0.13 ± 0.00

TRIANGDDPM 0.03 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.54 ± 0.06 0.41 ± 0.14 70.39 ± 1.99 0.50 ± 0.06

TRIANGCFM 0.06 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.52 ± 0.06 0.41 ± 0.14 67.92 ± 2.31 0.52 ± 0.07

DIFFEOCFM 0.60 ± 0.05 0.35 ± 0.04 0.44 ± 0.04 0.67 ± 0.06 0.53 ± 0.07 67.83 ± 1.83 0.57 ± 0.05

B
N

C
I

20
14

-0
02

Real Data 0.70 ± 0.05 0.60 ± 0.05 0.64 ± 0.03 0.83 ± 0.01 0.75 ± 0.02 N/A N/A
DIFFEOGAUSS 0.46 ± 0.04 0.77 ± 0.02 0.57 ± 0.03 0.80 ± 0.02 0.73 ± 0.02 0.06 ± 0.01 0.08 ± 0.01

TRIANGDDPM 0.43 ± 0.04 0.10 ± 0.02 0.16 ± 0.03 0.52 ± 0.03 0.20 ± 0.15 257.88 ± 0.14 0.30 ± 0.05

TRIANGCFM 0.48 ± 0.05 0.22 ± 0.03 0.30 ± 0.03 0.55 ± 0.03 0.24 ± 0.11 251.78 ± 0.85 0.35 ± 0.09

RIEMCFM 0.67 ± 0.07 0.62 ± 0.06 0.63 ± 0.03 0.81 ± 0.02 0.72 ± 0.02 1983.58 ± 0.97 5.28 ± 0.58

DIFFEOCFM 0.62 ± 0.04 0.63 ± 0.04 0.62 ± 0.02 0.81 ± 0.02 0.74 ± 0.02 253.04 ± 0.33 0.59 ± 0.08

B
N

C
I

20
15

-0
01

Real Data 0.89 ± 0.01 0.89 ± 0.01 0.89 ± 0.00 0.73 ± 0.01 0.67 ± 0.01 N/A N/A
DIFFEOGAUSS 0.84 ± 0.01 0.90 ± 0.01 0.86 ± 0.01 0.73 ± 0.01 0.68 ± 0.01 0.07 ± 0.01 0.16 ± 0.01

TRIANGDDPM 0.73 ± 0.03 0.55 ± 0.03 0.63 ± 0.02 0.60 ± 0.02 0.59 ± 0.13 319.94 ± 5.88 0.37 ± 0.07

TRIANGCFM 0.79 ± 0.03 0.73 ± 0.03 0.76 ± 0.02 0.61 ± 0.02 0.59 ± 0.07 313.22 ± 2.16 0.38 ± 0.08

RIEMCFM 0.93 ± 0.04 0.84 ± 0.05 0.88 ± 0.01 0.73 ± 0.01 0.66 ± 0.02 2753.93 ± 0.31 11.02 ± 0.59

DIFFEOCFM 0.92 ± 0.01 0.86 ± 0.02 0.89 ± 0.01 0.73 ± 0.01 0.65 ± 0.01 319.83 ± 0.33 1.02 ± 0.08

5.1 Quantitative Study

Quality Metrics As shown in  Table 1 , DIFFEOCFM consistently matches or outperforms all
baseline generative models across datasets in terms of α, β-F1, establishing itself as the most
robust method for aligning with the true data distribution. It also achieves the highest α-precision
and β-recall across the three fMRI datasets. On EEG datasets, DIFFEOGAUSS achieves higher
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β-recall but at the cost of much lower α-precision, leading to weaker overall α, β-F1 scores. In
contrast, TRIANGDDPM and TRIANGCFM perform poorly on all quality metrics after projection,
due to a substantial degradation in sample quality. As detailed in  Table 2 , projecting onto the
manifold—Corrd for fMRI and S++

d for EEG—introduces a significant performance drop. This
is because TRIANGDDPM and TRIANGCFM generate matrices that visually resemble realistic
connectivity patterns but contain negative eigenvalues, making them invalid. The projection step
corrects these matrices but distorts their structure, leading to sharp decreases in α, β-F1—up to −0.74
on ADNI and −0.76 on OASIS-3—rendering TRIANGCFM impractical for use. This degradation
is also visible in  Figure 5  , where post-projection alter the structure of fMRI connectomes (see

 Appendix M ). Compared to RIEMCFM, DIFFEOCFM delivers similar performance on the two EEG
datasets, while training 8× faster and sampling 10× faster. Finally, on EEG datasets, DIFFEOCFM
nearly matches the performance of REAL DATA in terms of α, β-F1, suggesting high sample realism.

Table 2: Impact of projection onto the man-
ifolds S++

d and Corrd: performance differ-
ence δ = TRIANGCFM − TRIANGCFM
without projections. Negative ∆ indi-
cate degraded sample quality after projection
onto the manifold. It enforces geometric con-
straints but severely reduces sample fidelity.

Dataset α-precision β-recall α,β-F1

ABIDE -0.34 -0.69 -0.50
ADNI -0.63 -0.74 -0.69

OASIS-3 -0.52 -0.76 -0.64
BNCI2014-002 +0.13 -0.56 -0.19
BNCI2015-001 +0.00 -0.19 -0.09

CAS Metrics For the CAS metrics, which evaluate
downstream predictive performance using ROC-AUC
and F1 scores, DIFFEOCFM consistently achieves
strong results, often approaching the performance of
REAL DATA. It obtains the highest ROC-AUC and
F1 scores across all fMRI and EEG datasets. While
DIFFEOGAUSS remains competitive in terms of ROC-
AUC, DIFFEOCFM substantially outperforms it on
F1 scores, with absolute gains of +0.05, +0.18, and
+0.12 on ABIDE, ADNI, and OASIS-3, respec-
tively. TRIANGDDPM and TRIANGCFM perform
poorly across both CAS metrics on all datasets. This
underperformance reflects the effect of the projection
step, which alters generated matrices in ways detri-
mental to downstream classification. It is important
to note that the classification pipeline requires inputs to be valid SPD matrices (i.e., elements of
S++
d ). As a result, CAS metrics cannot be computed for TRIANGDDPM and TRIANGCFM without

projection. For this reason, their performance without projection is not reported in  Table 2 .

Plotting of Generated Samples in Real Data Neighborhoods To qualitatively assess fidelity, we
show  Figure 10 – 15 (fMRI) and  Figure 16 – 19 (EEG) in  Appendix P the generated samples closest to
real ones in Frobenius distance. fMRI results are grouped by control (CN) and patient (non-CN); EEG
by motor imagery class. DIFFEOCFM reliably populates the neighborhood of real data, capturing
class-conditional structure. We also show TRIANGCFM samples before projection, which appear
realistic but are not SPD.

5.2 Neurophysiological Plausibility Study

fMRI Connectome Plotting  Figure 2a shows group-level functional connectomes from the ADNI
dataset, computed as the Fréchet mean ( 4 ) of correlation matrices conditioned on disease status. For
comparison,  Figure 9 in  Appendix O presents the corresponding group-level connectomes derived
from the ABIDE and OASIS3 datasets. The Fréchet mean is defined with respect to ϕCorrd ( 12 ),
the diffeomorphism used for the generation. For each class (CN and non-CN), we compare real
connectomes (from held-out test subjects) to those generated by DIFFEOCFM. In both cases, non-
CN subjects exhibit reduced connectivity across hemispheres and between frontal and posterior
regions—patterns commonly associated with mild cognitive impairment and Alzheimer’s disease [ 19 ].

EEG Topographic Map  Figure 2b presents the group-level topographies of the first CSP filter
across all subjects, derived from EEG generated by DIFFEOCFM, alongside those from real EEG
recordings in the BNCI2015-001 dataset. Subject-level topographies of the first CSP filter from
the same dataset are further detailed in  Figure 7 (Subjects 1–6) and  Figure 8 (Subjects 7–12) in

 Appendix N , providing a detailed comparison across individuals. We visualize CSP spatial filters in
the α (8–12 Hz) and β (13–30 Hz) bands that distinguish imagined right-hand from feet movements.
The filters trained on real and on generated data concentrate on the same contralateral sensorimotor
regions, mirroring the close CAS scores between REAL DATA and DIFFEOCFM in Table 1. This
confirms that the generative model preserves the physiologically relevant information.
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(a) Class-conditional fMRI functional connectome plotting using the Fréchet mean (ADNI). Each panel
displays class-conditional fMRI functional connectomes using the Fréchet mean ( 4 ) of correlation matrices
computed with respect to the generation diffeomorphism ϕCorrd ( 12 ). Left: real data from held-out test subjects;
right: samples generated by DIFFEOCFM. The comparison illustrates both the fidelity of generated connectomes
and the disease-specific connectivity structure preserved by the model.
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(b) Group-level topographic map using the first CSP’s spatial filter derived from real EEGs (BNCI2015-
001) and generated data by DIFFEOCFM Each map shows the first CSP’s spatial filter across 12 subjects
in the α (8− 12Hz) and β (13− 30Hz) frequency bands during the first 2 seconds following stimulus onset.
Filters from DIFFEOCFM at the group-level closely resemble real EEGs, preserving discriminative patterns of
motor imagery classification.

Figure 2: Neurophysiological Plausibility Study of DIFFEOCFM.

6 Conclusions, Limitations, and Future Works

We introduced DIFFEOCFM, an efficient framework for generating brain connectivity matrices. By
reformulating Riemannian flow matching through global diffeomorphisms, DIFFEOCFM enabled
fast training and sampling while ensuring manifold-constrained outputs by construction. Applied to
fMRI and EEG data, it outperformed existing baselines with neurophysiologically plausible samples.

Nonetheless, several limitations remain. First, DIFFEOCFM relies on a global diffeomorphism to
Euclidean space, which exists for SPD and correlation matrices but not for all manifolds (e.g., Stiefel).
Second, higher parcellation granularity makes the problem intrinsically hard: manifold dimension
grows quadratically with region count, and the sample complexity grows exponentially [ 57 ]. Third,
how alternative connectivity definitions (e.g., partial correlation or graphical-Lasso precision) affect
generation quality remains an open question, since the choice of estimator directly defines the ground
truth. Fourth, common evaluation metrics like α-precision and β-recall are geometry-agnostic and
may miss neurophysiological structure.

Despite these challenges, generative modeling remains a promising direction for neuroimaging and
BCI research. For instance, sharing trained generative models, rather than raw data, can facilitate
multi-site collaboration with privacy guarantees [ 10 ].
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A Pullback Manifolds with Euclidean Spaces

 Section 2 briefly introduced pullback manifolds with Euclidean spaces. We here go more into details
to then prove the different propositions of the paper. Let M be a smooth manifold, E a Euclidean
space, and ϕ : M → E a global diffeomorphism (a smooth bijection with a smooth inverse). The
diffeomorphism ϕ induces a Riemannian metric on M by pulling back the Euclidean metric gE on E

(ϕ∗gE)x(ξ, η) ≜ gE (Dϕ(x)[ξ],Dϕ(x)[η]) , ξ, η ∈ TxM . (13)

This metric induces a Riemannian norm on the tangent space TxM at each point x ∈ M: ∥ξ∥x =√
(ϕ∗gE)x(ξ, ξ). The pair (M, ϕ∗gE) is then called a pullback manifold, and ϕ∗gE is the pullback

metric of gE by ϕ. The pullback manifold is geodesically complete and admits globally unique
geodesics [ 68 , Chap. 7]. Moreover, many Riemannian operations—distances, geodesics, exponential
and logarithmic maps, parallel transport, Fréchet means—reduce to simple computations in E. Given
two points x, y ∈ M, the geodesic γ : [0, 1] → M connecting x to y and its associated Riemannian
distance are given by

γ(t) = ϕ−1 ((1− t)ϕ(x) + tϕ(y)) and dM(x, y) = ∥ϕ(x)− ϕ(y)∥E (14)

i.e., the pullbacks of the Euclidean straight line and distance in E joining ϕ(x) and ϕ(y). This
structure also defines expressions for the exponential and logarithmic maps at any point x ∈ M. The
exponential map expx : TxM → M and the logarithmic map logx : M → TxM are

expx(ξ) = ϕ−1 (ϕ(x) + Dϕ(x)[ξ]) and logx(y) = (Dϕ(x))
−1

(ϕ(y)− ϕ(x)) . (15)

When Dϕ(x) is not available in closed form, it can be computed via automatic differentiation
using libraries such as JAX [ 8 ] or PyTorch [ 60 ]. Its inverse, (Dϕ(x))

−1, can be obtained from the
differential of ϕ−1 using the identity (Dϕ(x))−1 ◦ Dϕ−1(ϕ(x)) = Id. The parallel transport of a
tangent vector ξ ∈ TxM along the geodesic γ is the pullback of the Euclidean parallel transport from
ϕ(x) to ϕ(y), which is given by

PTx→y(ξ) = (Dϕ(y))
−1

(Dϕ(x)(ξ)) . (16)

The Fréchet mean [  29 ] of a set of points {x(n)}Nn=1 ⊂ M with respect to the Riemannian distance is

x̄ ≜ argmin
x∈M

N∑
n=1

dM(x, x(n))2 = ϕ−1

(
1

N

N∑
n=1

ϕ(x(n))

)
. (17)

B Riemannian Conditional Flow Matching

This section provides a concise overview of Flow Matching, Conditional Flow Matching, and their
extension to Riemannian manifolds, complementing  Section 2 . For clarity, we omit conditioning on
variables y such as disease status, age, or sex; the derivations extend naturally to the conditional case.

B.1 Flow Matching (Intractable Objective)

Flow Matching (FM) [ 49 ,  47 ,  2 ,  48 ] aims to learn a time-dependent vector field uθ(t, x) that transports
samples from a simple source (prior) distribution p(x) (e.g., a standard Gaussian N (0, I)) at t = 0 to
a target data distribution q(x) at t = 1. This transformation is governed by an ordinary differential
equation (ODE):

ẋ(t) = u(t, x(t)), x(0) ∼ p0(x) (18)

Training Flow Matching trains a neural network uθ(t, x) to approximate a true time-dependent
vector field u(t, x) that transports a source distribution p(x) to a target q(x) along an evolving density
path (pt)t∈[0,1]. The objective is:

LFM(θ) ≜ Et∼U([0,1]), x∼pt(x)∥uθ(t, x)− u(t, x)∥22 . (19)

This formulation is generally intractable, as both pt(x) and u(t, x) are unknown. Indeed, the time
evolution of pt(x) is governed by the continuity equation:

∂pt(x)

∂t
+ div (pt(x)u(t, x)) = 0 , (20)
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which expresses conservation of mass along the flow.

Sampling To generate a sample x1 from a learned model uθ(t, x), one draws an initial sample
x0 ∼ p0(x) and then solves the learned ODE from t = 0 to t = 1 using a numerical solver such as a
Euler or a Runge-Kutta scheme:

ẋ(t) = uθ(t, x(t)) ⇒ x1 = x0 +

∫ 1

0

uθ(t, x(t))dt . (21)

B.2 Conditional Flow Matching (CFM)

Training Conditional Flow Matching (CFM) makes the training of flow models tractable by
defining explicit conditional paths and vector fields. We still consider a source distribution p and a
target data distribution q. A common choice for the path connecting x0 to x1 is a linear interpolation:

xt(x0, x1) = (1− t)x0 + tx1

The corresponding target conditional vector field is u(t, xt|x0, x1) = x1 − x0. The CFM training
loss for a neural network uθ(t, x) is:

LCFM(θ) ≜ Et∼U([0,1]),x0∼p(x0),x1∼q(x1)∥uθ(t, (1− t)x0 + tx1)− (x1 − x0)∥22 . (22)

Here, p(x0) is typically a simple noise distribution (e.g., N (0, I)) and q(x1) is the empirical data
distribution. Minimizing this CFM loss has been shown to be equivalent to minimizing the original
intractable FM loss under certain conditions [ 48 ]. Other conditional path definitions can also be
employed.

Sampling Sampling is performed by drawing x0 ∼ p(x0) and integrating the learned vector field
uθ(t, x(t)) from t = 0 to t = 1:

ẋ(t) = uθ(t, x(t))

The solution x(1) is then a sample from the learned approximation of q(x1).

B.3 Riemannian Conditional Flow Matching (RCFM)

CFM was recently extended to Riemannian manifolds [  12 ], providing a principled framework for
learning time-dependent vector fields that transport samples between probability distributions defined
on such spaces.

Training Given a manifold M, a vector field uM
θ : [0, 1]×M → TM (where TM denotes the

tangent bundle of M) is trained to match the velocity of geodesics γ(t) connecting samples from a
source distribution p(x0) on M and a target distribution q(x1) on M. The Riemannian CFM loss is
defined as

L(θ) ≜ Et∼U([0,1]), x0∼p(x0), x1∼q(x1)

∥∥uM
θ (t, γ(t))− γ̇(t)

∥∥2
γ(t)

, (23)

where γ(t) is the geodesic connecting x0 to x1 such that γ(0) = x0 and γ(1) = x1, and γ̇(t) is its
time derivative (velocity vector) which lies in Tγ(t)M. It should be noted that this loss extends LCFM.
Indeed, for M = Rd, then we get L = LCFM.

Sampling Once trained, new samples on M are generated by solving the Riemannian ODE

ẋ(t) = uM
θ (t, x(t)), x(0) = x0 ∼ p(x0) (24)

and returning x(1) as a sample from the learned approximation of q(x1). Numerical solution of this
ODE typically involves manifold operations like the exponential map.

C Proof of  Proposition 1 : Riemannian CFM loss function on pullback
manifolds

Proposition 1 (Riemannian CFM loss function on pullback manifolds). The Riemannian CFM
loss ( 5 ) can be re-expressed in terms of the Euclidean vector field uE

θ ( 7 ) as

L(θ) = Et, y, z0|y, z1|y
∥∥uE

θ (t, (1− t)z0 + tz1, y)− (z1 − z0)
∥∥2
E

,

where z0|y ∼ ϕ#p(·|y) and z1|y ∼ ϕ#q(·|y).
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Proof. Fix a label y, draw x0 ∼ p(· | y) and x1 ∼ q(· | y), and set z0 = ϕ(x0), z1 = ϕ(x1). For any
t ∈ [0, 1] let zt ≜ (1− t)z0 + tz1 and γ(t) = ϕ−1(zt).

Geodesic velocity Since zt is a straight line in E, the chain rule gives

γ̇(t) = Dϕ−1(zt)(z1 − z0) .

Pull-back of the vector field By definition of uE
θ in ( 7 ),

uE
θ (t, zt, y) = Dϕ(γ(t))

(
uM
θ (t, γ(t), y)

)
.

Norm preservation Because the metric on M is the pull-back of gE , we have ∥ξ∥γ(t) =

∥ Dϕ(γ(t)) (ξ)∥E for every ξ ∈ Tγ(t)M. Applying Dϕ(γ(t)) to the difference uM
θ (t, γ(t), y)−γ̇(t)

yields

Dϕ(γ(t))
(
uM
θ (t, γ(t), y)− γ̇(t)

)
= Dϕ(γ(t))

(
uM
θ (t, γ(t), y)

)
−Dϕ(γ(t))(γ̇(t))

= uE
θ (t, zt, y)−Dϕ(ϕ−1(zt))

(
Dϕ−1(zt)(z1 − z0)

)
.

Furthermore, since (ϕ ◦ ϕ−1)(z) = z, we have Dϕ(ϕ−1(z)) ◦Dϕ−1(z) = IdE . qHence, we get

Dϕ(γ(t))
(
uM
θ (t, γ(t), y)− γ̇(t)

)
= uE

θ (t, zt, y)− (z1 − z0) .

Taking squared Euclidean norms on both sides gives∥∥uM
θ (t, γ(t), y)− γ̇(t)

∥∥2
γ(t)

=
∥∥uE

θ (t, zt, y)− (z1 − z0)
∥∥2
E
.

Expectation Finally, averaging over t ∼ U [0, 1], y ∼ πY , x0 ∼ p(· | y), and x1 ∼ q(· | y) gives the
desired equality of loss functions, proving  Proposition 1 .

D Proof of  Proposition 2 : Equivalence of ODE Solutions

Proposition 2 (Equivalence of ODE solutions). The solution x(t) to ( 6 ) satisfies

x(t) = ϕ−1(z(t)) for all t ∈ [0, 1] ,

where z(t) is the solution of the ODE with uE
θ ( 7 ) and initial condition z0 = ϕ(x0).

Proof. Let y ∈ Y , x0 ∈ M and z0 ≜ ϕ (x0). Let the Euclidean trajectory z : [0, 1] → E be a
solution of

ż(t) = uE
θ (t, z(t), y) , z(0) = z0.

Then, we define the candidate solution

x(t) ≜ ϕ−1 (z(t)) (0 ≤ t ≤ 1).

By the chain rule,

ẋ(t) = Dϕ−1 (z(t)) (ż(t)) = Dϕ−1 (z(t))
(
uE
θ (t, z(t), y)

)
.

For every z = ϕ (x), we have ( 7 )

uE
θ (t, z, y) = Dϕ (x)

(
uM
θ (t, x, y)

)
.

Applying this with x = x(t) and z = z(t),

ẋ(t) = Dϕ−1 (ϕ (x(t)))
(
Dϕ (x(t))

(
uM
θ (t, x(t), y)

))
.

Using the identity, Dϕ−1 (ϕ(x)) ◦Dϕ(x) = IdTxM, we get

ẋ(t) = uM
θ (t, x(t), y) .

Finally, we check the initial condition,

x(0) = ϕ−1 (z0) = ϕ−1 (ϕ (x0)) = x0.

Consequently x(t) = ϕ−1 (z(t)) is a solution on M of ( 6 ).
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E Proof of  Proposition 3 : Equivalence of Runge–Kutta iterates

Proposition 3 (Equivalence of Runge–Kutta iterates). Let {xℓ} be the iterates produced on M by an
explicit Riemannian Runge–Kutta scheme applied to the ODE ( 6 ). Then, the iterates are

xℓ = ϕ−1 (zℓ) for all ℓ ∈ N ,

where {zℓ} are the iterates obtained by applying the same scheme (same coefficients and step size) to
the ODE with vector field uE

θ ( 7 ) and initial condition z0 = ϕ(x0).

Proof. We prove this for the fourth-order Runge-Kutta method (RK4). Similar proofs can be done
for the Euler (RK1) and midpoint (RK2) schemes. The ODEs are:

ż(t) = uE
θ (t, z(t), y) in Euclidean space E

ẋ(t) = uM
θ (t, x(t), y) on manifold M

The key relationships are:

• Vector field relationship: uE
θ (t, z, y) = Dϕ(ϕ−1(z))(uM

θ (t, ϕ−1(z), y)).

• Exponential map on M: expx(ξ) = ϕ−1(ϕ(x) + Dϕ(x)(ξ)) for x ∈ M, ξ ∈ TxM.

• Parallel transport on M from y ∈ M to x ∈ M: PTy→x(η) = (Dϕ(x))−1(Dϕ(y)(η))
for η ∈ TyM.

We use induction. Assume xℓ = ϕ−1(zℓ) for some ℓ. We show xℓ+1 = ϕ−1(zℓ+1).

RK4 scheme in E: Given zℓ at time tℓ, and step size h:

kE1 = uE
θ (tℓ, zℓ, y)

kE2 = uE
θ (tℓ +

h

2
, zℓ +

h

2
kE1 , y)

kE3 = uE
θ (tℓ +

h

2
, zℓ +

h

2
kE2 , y)

kE4 = uE
θ (tℓ + h, zℓ + hkE3 , y)

zℓ+1 = zℓ +
h

6
(kE1 + 2kE2 + 2kE3 + kE4 )

RK4 scheme on M: A Riemannian RK4 method involves evaluating uM
θ at intermediate points,

transporting the resulting tangent vectors to Txℓ
M, combining them, and then using the exponential

map. By hypothesis, ϕ(xℓ) = zℓ.

1. First stage (kM1 ): We have

kM1 = uM
θ (tℓ, xℓ, y) ∈ Txℓ

M.

So,
kM1 = (Dϕ(xℓ))

−1(uE
θ (tℓ, ϕ(xℓ), y)) = (Dϕ(xℓ))

−1(kE1 ).

The intermediate point is

xA = expxℓ

(
h

2
kM1

)
.

Substituting the expressions, we get

xA = ϕ−1

(
ϕ(xℓ) + Dϕ(xℓ)

(
h

2
kM1

))
= ϕ−1

(
zℓ +Dϕ(xℓ)

(
h

2
(Dϕ(xℓ))

−1(kE1 )

))
= ϕ−1

(
zℓ +

h

2
kE1

)
.

Thus,

ϕ(xA) = zℓ +
h

2
kE1 .
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2. Second stage (kM2 ):

kM2 = uM
θ (tℓ +

h

2
, xA, y) ∈ TxA

M

kM2 = (Dϕ(xA))
−1(uE

θ (tℓ +
h

2
, ϕ(xA), y)) = (Dϕ(xA))

−1(kE2 )

Transport kM2 to Txℓ
M:

kM2,tp = PTxA→xℓ
(kM2 ) = (Dϕ(xℓ))

−1(Dϕ(xA)(k
M
2 )) = (Dϕ(xℓ))

−1(kE2 )

The intermediate point

xB = expxℓ
(
h

2
kM2,tp)

xB = ϕ−1

(
ϕ(xℓ) + Dϕ(xℓ)(

h

2
kM2,tp)

)
= ϕ−1

(
zℓ +Dϕ(xℓ)(

h

2
(Dϕ(xℓ))

−1(kE2 ))

)
= ϕ−1

(
zℓ +

h

2
kE2

)
Thus,

ϕ(xB) = zℓ +
h

2
kE2

3. Third stage (kM3 ):

kM3 = uM
θ (tℓ +

h

2
, xB , y) ∈ TxB

M

kM3 = (Dϕ(xB))
−1(uE

θ (tℓ +
h

2
, ϕ(xB), y)) = (Dϕ(xB))

−1(kE3 )

Transport kM3 to Txℓ
M:

kM3,tp = PTxB→xℓ
(kM3 ) = (Dϕ(xℓ))

−1(Dϕ(xB)(k
M
3 )) = (Dϕ(xℓ))

−1(kE3 )

The intermediate point
xC = expxℓ

(hkM3,tp)

xC = ϕ−1
(
ϕ(xℓ) + Dϕ(xℓ)(hk

M
3,tp)

)
= ϕ−1

(
zℓ +Dϕ(xℓ)(h(Dϕ(xℓ))

−1(kE3 ))
)

= ϕ−1
(
zℓ + hkE3

)
Thus,

ϕ(xC) = zℓ + hkE3

4. Fourth stage (kM4 ):
kM4 = uM

θ (tℓ + h, xC , y) ∈ TxC
M

kM4 = (Dϕ(xC))
−1(uE

θ (tℓ + h, ϕ(xC), y)) = (Dϕ(xC))
−1(kE4 )

Transport kM4 to Txℓ
M:

kM4,tp = PTxC→xℓ
(kM4 ) = (Dϕ(xℓ))

−1(Dϕ(xC)(k
M
4 )) = (Dϕ(xℓ))

−1(kE4 )

5. Final update on M: The combined tangent vector in Txℓ
M is:

∆xtangent =
h

6
(kM1 + 2kM2,tp + 2kM3,tp + kM4,tp)

=
h

6

(
(Dϕ(xℓ))

−1(kE1 ) + 2(Dϕ(xℓ))
−1(kE2 ) + 2(Dϕ(xℓ))

−1(kE3 ) + (Dϕ(xℓ))
−1(kE4 )

)
= (Dϕ(xℓ))

−1

(
h

6
(kE1 + 2kE2 + 2kE3 + kE4 )

)
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Then, xℓ+1 = expxℓ
(∆xtangent).

xℓ+1 = ϕ−1 (ϕ(xℓ) + Dϕ(xℓ)(∆xtangent))

= ϕ−1

(
ϕ(xℓ) + Dϕ(xℓ)

(
(Dϕ(xℓ))

−1

(
h

6
(kE1 + 2kE2 + 2kE3 + kE4 )

)))
= ϕ−1

(
zℓ +

h

6
(kE1 + 2kE2 + 2kE3 + kE4 )

)
= ϕ−1(zℓ+1)

The base case x0 = ϕ−1(z0) is given by the problem setup (z0 = ϕ(x0)). Therefore, by induction,
xℓ = ϕ−1(zℓ) for all ℓ ∈ N when the RK4 scheme is applied as described.

F The affine-invariant metric for correlation matrices

The set of correlation matrices Corrd can be viewed as a quotient manifold of symmetric positive
definite matrices S++

d by the action of positive diagonal matrices D++
d [ 16 ,  68 ]:

Corrd = S++
d /D++

d , (25)

where two matrices Σ,Σ′ ∈ S++
d are equivalent if there exists D ∈ D++

d such that Σ′ = DΣD.

This quotient structure naturally induces a Riemannian metric on Corrd from the affine-invariant
metric on S++

d , defined by

⟨ξ,η⟩S
++
d

Σ = tr(Σ−1ξΣ−1η). (26)

The canonical projection (submersion) π : S++
d → Corrd is given by diagonal normalization:

π(Σ) = diag(Σ)−1/2Σdiag(Σ)−1/2. (27)

The resulting geometry on Corrd requires solving an optimization problem to compute the Riemannian
logarithm:

logCorrd
A (B) = Dπ(A)

(
log

S++
d

A (DBD)
)
, (28)

where
D = argmin

D∈D++
d

dS++
d

(A,DBD) . (29)

Since no closed-form solution for D is known, the logarithmic map on (Corrd, ⟨·, ·⟩Corrd) cannot be

expressed analytically (contrary to log
S++
d

A ).
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G Datasets and Preprocessing

Resting-state fMRI datasets and preprocessing We used three publicly available resting-state
fMRI datasets—ABIDE [ 53 ], ADNI [ 73 ], and OASIS-3 [ 42 ]—spanning a wide age range and neuro-
logical conditions. ABIDE includes 900 subjects (one scan each; mean age 17), both neurotypical
and autistic, from 19 international sites. ADNI comprises 1900 scans from 900 older adults (mean
age 74), covering normal ageing, mild cognitive impairment, and Alzheimer’s disease. OASIS-3
includes 1000 participants and 1800 longitudinal sessions collected over 10 years (mean age 71),
targeting healthy and pathological ageing.

Preprocessing was performed with fMRIPrep [ 24 ], which applies bias-field correction, skull strip-
ping, tissue segmentation, nonlinear normalization to MNI space, motion correction, and confound
estimation. Regional time series were extracted with Nilearn [ 14 ] using the MSDL atlas [ 71 ],
followed by nuisance regression (including motion, CSF/WM signals, and global signal). Time series
were z-scored and screened for minimum length, numerical anomalies (e.g., zeros or extreme values),
and the conditioning of their covariance matrices.

EEG datasets Sessions with missing or non-standard protocol (e.g., 2C in BNCI2015-001) were
discarded. We further filtered time series whose covariance matrices have high values (max entry
> 104) or statistical outliers based on Mahalanobis distance from the group mean. This retained the
top 90% most consistent trials for downstream modeling.

BNCI2014-002: The BNCI2014-002 

3
 dataset, provided through the BNCI Horizon 2020 initiative,

includes recordings from 13 subjects engaged in motor imagery tasks. Participants were instructed
to imagine movements of either their right hand or both feet for a sustained duration of 5 seconds,
guided by visual cues. EEG signals were captured using an amplifier and active Ag/AgCl electrodes
at a sampling rate of 512 Hz, with a total of 15 electrode channel applied to each subject. The
experimental protocol comprised eight sessions per participant, each including 80 trials for hand and
foot imagery, summing to 160 trials. EEG epochs were extracted from 3.0 to 8.0 seconds relative to
cue onset, aligning with the motor imagery window.

BNCI2015-001: The BNCI2015-001 

4
 dataset, released as part of the BNCI Horizon 2020 project,

contains EEG recordings from 12 individuals who performed motor imagery tasks involving either
the right hand or both feet. EEG data were acquired at a 512 Hz sampling rate, preprocessed with
a 0.5–100 Hz bandpass filter and a 50 Hz notch filter. Each trial spanned 5 seconds, beginning at
3.0 seconds after cue onset and ending at 8.0 seconds, corresponding to the motor imagery phase.
The dataset provides EEG data from 13 electrode channels arranged in the following order: FC3,
FCz, FC4, C5, C3, C1, Cz, C2, C4, C6, CP3, CPz, and CP4. For most participants (Subjects
1–8), recordings were conducted over two sessions on consecutive days. In contrast, Subjects 9–12
completed three sessions. Each session consisted of 100 trials per class, resulting in 200 trials per
session per subject.

3https://neurotechx.github.io/moabb/generated/moabb.datasets.BNCI2014_002.html
4https://neurotechx.github.io/moabb/generated/moabb.datasets.BNCI2015_001.html
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H Comparison of Baseline Methods: Assumptions, Strengths, and
Limitations

In this section, we summarize the key assumptions, strengths, and limitations of the baseline methods
discussed throughout the paper, based on our experimental findings.

• DIFFEOGAUSS: This is a simple yet practical generative approach that operates directly
on SPD or correlation manifolds. While it yields competitive results in terms of the CAS
metrics, it generally underperforms compared to deep generative models in terms of sample
quality, see  Table 1 .

• TRIANGDDPM or TRIANGCFM: They are deep generative models that achieve strong
performance across both CAS and quality-based metrics. However, their outputs are limited
to triangular entities, requiring a post-processing projection step to obtain valid positive
definite matrices. Unfortunately, this step alters the eigenvalue spectrum significantly, which
degrades the quality and structure of the generated matrices (see  Table 2 and  Appendix M ).

• SPD-DDPM: This work extends DDPM to the space of SPD manifolds under the affine-
invariant Riemannian metric. However, in our experiments, we found that its implementation
repeatedly relies on sampling from Gaussian distributions on SPD manifolds, as well as
backpropagating through matrix operations in SPDNet. Both components are computation-
ally intensive in theory and practice, making the method prohibitively slow. In fact, for a
number of training samples above 64, we were unable to obtain results within a reasonable
time frame (see  Figure 4 ). However, in the fMRI experiments, the data have at least 1000
samples.

• RIEMANNIAN CFM: This is a foundational contribution in the family of flow matching
methods, providing a general theoretical framework for generative modeling on Riemannian
manifolds. However, its construction is geometry-specific and requires a dedicated imple-
mentation for each manifold. Furthermore, on SPD matrices, we observe that it is roughly
8× slower to train and 10× slower to sample from than DIFFEOCFM (see  Table 1 ), due to
the repeated computation of affine-invariant geodesics, their derivatives and Riemannian
norms.

• DIFFEOCFM: The proposed approach introduces a novel Riemannian CFM framework using
the pullback geometry, enabling direct data generation on SPD and correlation manifolds,
particularly helpful in neuroscience and neuroengineering tasks. It trains and sampels
efficiently (see  Figure 4 and  Table 1 ), achieves strong performance on both quality and CAS
metrics (see  Table 1 ), and consistently demonstrates neurophysiological plausibility across
two distinct evaluation protocols in both fMRI and EEG (see  Section 5.2 ).
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I Summary Figure

While  Table 1 provides a comprehensive numerical evaluation of all methods, a visual representation
can offer clearer insights into the practical trade-offs between model performance and computational
efficiency. To this end,  Figure 3 plots a unified performance metric,the Average F1 Score, against
both training and sampling times. This allows for a direct comparison of the performance-cost profile
of each method for both fMRI and EEG data.
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Figure 3: Trade-off between generative performance and computational cost for fMRI (top)
and EEG (bottom) data. The figure plots the Average F1 Score against Training Time (left) and
Sampling Time (right). The Average F1 Score is the mean of the quality metric (α, β-F1) and the
CAS F1-score from  Table 1 . Each point marks the mean performance across all splits and datasets for
a given modality, with error bars and shaded regions indicating the standard deviation. The dashed
gray line represents the Real Data baseline, which serves as an empirical upper bound. Time is shown
on a logarithmic scale.
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J Scalability and Computational cost of SPD–DDPM [ 45 ] vs DIFFEOCFM
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Figure 4: Training efficiency on S++
d (simulated data). Log-scale training time over 1000 epochs

for generating SPD matrices. We vary either the number of samples n or the matrix dimension d,
keeping the other fixed. DIFFEOCFM leverages the diffeomorphism ϕS++

d
( 9 ) and is at least 1000×

faster than SPD-DDPM [ 45 ]. Importantly, DIFFEOCFM can also generate natively correlation
matrices (Corrd), and it performs with same training time as on S++

d .

K Ablation Study

We conduct an ablation study to analyze the sensitivity of our proposed DIFFEOCFM model to
its neural network architecture. The experiments are performed on the ABIDE dataset using the
Cholesky diffeomorphism. We investigate two key architectural hyperparameters: the width (size of
hidden layers) and the depth (number of hidden layers).

First, we fix the network depth to a single hidden layer and vary its width from 8 to 1024, as detailed
in  Table 3 . Second, we fix the layer width to 512 neurons and vary the depth from one to four hidden
layers, with results presented in  Table 4  . For both experiments, performance is evaluated using the
α, β-F1 score, which is the harmonic mean of α-precision and β-recall. We also report the average
training and sampling times over 10 splits.

The results from  Table 3 indicate that performance generally improves with network width, peaking
at 256 and 512 hidden units. A wider network of 1024 units shows a drop in performance. Regarding
network depth,  Table 4 clearly shows that a single hidden layer achieves the best results. Deeper
models exhibit a consistent decline in performance. Based on these findings, a single hidden layer
with a width of 512 was chosen for our main experiments, as it offers the best performance without
unnecessary complexity.

Table 3: Ablation study on the width of the hidden layer for the DIFFEOCFM model on the ABIDE
dataset. The network depth is fixed to one hidden layer. We report the mean and standard deviation
of the α, β-F1 score, training time, and sampling time across 10 splits. Best values are in bold.

Hidden dim. α, β-F1 Training time (s.) Sampling time (s.)

8 0.47 ± 0.06 29.07 ± 1.07 0.35 ± 0.01
16 0.47 ± 0.09 27.46 ± 1.24 0.29 ± 0.03
32 0.54 ± 0.05 28.36 ± 1.26 0.26 ± 0.02
64 0.57 ± 0.07 29.69 ± 1.31 0.30 ± 0.03
128 0.60 ± 0.05 31.01 ± 1.32 0.35 ± 0.04
256 0.63 ± 0.07 31.39 ± 0.96 0.32 ± 0.04
512 0.63 ± 0.06 31.36 ± 1.14 0.31 ± 0.02
1024 0.49 ± 0.12 32.34 ± 1.17 0.36 ± 0.05
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Table 4: Ablation study on the depth of the neural network for the DIFFEOCFM model on the
ABIDE dataset. The width of all hidden layers is fixed to 512. We report the mean and standard
deviation of the α, β-F1 score, training time, and sampling time across 10 splits. Best values are in
bold.

Depth α, β-F1 Training time (s.) Sampling time (s.)

1 0.62 ± 0.05 33.06 ± 1.05 0.38 ± 0.03
2 0.52 ± 0.09 32.93 ± 1.00 0.36 ± 0.02
3 0.46 ± 0.05 34.36 ± 1.00 0.46 ± 0.04
4 0.50 ± 0.08 35.68 ± 1.01 0.48 ± 0.08

L Constraint Satisfaction (S++
d and Corrd)

 Table 5 reports the fraction of generated samples that satisfy structural matrix constraints across
datasets. Both DIFFEOGAUSS and DIFFEOCFM systematically generate matrices that are symmetric,
positive definite, and (for correlation matrices) have unit diagonal, achieving a perfect 1.00 score on
all datasets. In contrast, TRIANGCFM without projection produces matrices that are symmetric and
have unit diagonal by construction but fail to ensure positive definiteness. This issue is particularly
evident in fMRI datasets, where none of the generated samples satisfy the SPD constraint, and persists
to a lesser extent on EEG datasets (e.g., 29% validity on BNCI2015-001). These results highlight the
importance of geometry-aware methods like DIFFEOCFM, which inherently respect the manifold
structure of connectivity matrices without relying on post hoc projections.

Table 5: Fraction of generated samples satisfying matrix constraints. We report the fraction of
samples satisfying symmetry, positive definiteness, and unit diagonal constraints across datasets.

Sym. Pos. def. Unit diag.
Dataset Method

A
B

ID
E DIFFEOGAUSS 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

TRIANGCFM (no proj.) 1.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00
DiffeoCFM 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

A
D

N
I DIFFEOGAUSS 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

TRIANGCFM (no proj.) 1.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00
DiffeoCFM 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

O
A

SI
S-

3 DIFFEOGAUSS 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
TRIANGCFM (no proj.) 1.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00

DiffeoCFM 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

B
N

C
I

20
14

-0
02 DIFFEOGAUSS 1.00 ± 0.00 1.00 ± 0.00

TRIANGCFM (no proj.) 1.00 ± 0.00 0.00 ± 0.00
DiffeoCFM 1.00 ± 0.00 1.00 ± 0.00

B
N

C
I

20
15

-0
01 DIFFEOGAUSS 1.00 ± 0.00 1.00 ± 0.00

TRIANGCFM (no proj.) 1.00 ± 0.00 0.29 ± 0.02
DiffeoCFM 1.00 ± 0.00 1.00 ± 0.00

M Projection

Since TRIANGDDPM and TRIANGCFM operate in Euclidean spaces, the generated matrices are not
guaranteed to be positive definite. To address this, we apply a projection to ensure all eigenvalues
are at least ϵ > 0. Let λmin(Σ) denote the smallest eigenvalue of Σ. If λmin(Σ) < ϵ, the matrix is
projected using an affine transformation:

Σproj = (1− α)Σ+ αI (30)

where I is the identity matrix. The parameter α is chosen such that the smallest eigenvalue of Σproj
becomes exactly ϵ. Given that the eigenvalues of Σproj are λi(Σproj) = (1− α)λi(Σ) + α, setting
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the new minimum eigenvalue to ϵ yields ϵ = (1− α)λmin(Σ) + α. Solving for α, we get:

α =
ϵ− λmin(Σ)

1− λmin(Σ)
. (31)

This formulation guarantees that if λmin(Σ) < ϵ, the new minimum eigenvalue is ϵ. Typically, ϵ is a
small positive value (e.g., 10−8), ensuring ϵ ≤ 1. In this regime, and given λmin(Σ) < ϵ, it follows
that 0 < α ≤ 1, making the projection an interpolation. An important property of this projection is
that if the original matrix Σ has ones on its diagonal (diag(Σ) = 1), this property is preserved in
Σproj, as diag(Σproj) = (1− α)1+ α1 = 1.

We randomly select 5 sample images from each generated dataset produced by the TRIANGCFM
method across the 5 datasets. These images are not positive definite matrices, as they contain negative
eigenvalues. We apply a projection algorithm to convert these matrices into valid correlation matrices,
and both the original and projected versions are shown in  Figure 5 and  Figure 6 . In each image,
we annotate the maximum and minimum eigenvalues of the corresponding matrix. As can be seen,
after the projection algorithm, all negative eigenvalues are eliminated, and the matrices become valid
positive definite matrices. Unfortunately, although this step is necessary for TRIANGDDPM and
TRIANGCFM, it alters the spectrum of the matrices, which is usually crucial in the downstream
classification tasks. The advantage of the proposed DIFFEOCFM lies in the fact that it does not
require this step, and thus naturally preserves the matrix spectrum.

N DIFFEOCFM on EEGs

N.1 Filter’s Topographic Map

Common Spatial Pattern

The Common Spatial Pattern (CSP) filter is a supervised spatial filtering technique widely used
in EEG-based signal analysis, particularly for motor imagery classification. It enhances class-
discriminative information by projecting multi-channel EEG data onto a low-dimensional space
that maximizes variance differences between two classes [ 6 ]. Formally, for a signal x(t) ∈ RNC ,
the CSP algorithm seeks a projection matrix W ∈ RNC×NC such that the transformed signal
xCSP (t) = WTx(t) yields maximally discriminative variance patterns across classes, where NC is
the number of electrode channels. Each column vector wj ∈ RNC (j = 1, · · · , NC) of matrix W is
called the filter of CSP.

Generally, CSP is a spatial filtering method that effectively enhances the discrimination of men-
tal states characterized by event-related de-synchronization/synchronization (ERD/ERS), which
commonly occurs in the alpha (8–12 Hz) and beta (13–30 Hz) bands during motor imagery tasks [ 63 ].

Experimental Settings

In this experiment, we aim to demonstrate whether the proposed model, DIFFEOCFM, can learn
similar spatial filter patterns {wj}NC

j=1 in the alpha and beta frequency bands during motor imagery,
as reflected in their corresponding topographies.

Specifically, we conduct this analysis only on the BNCI2015-001 dataset, as it provides the predefined
order of 13 EEG channels, allowing us to correctly map each channel to its corresponding position
in the topographic montage. In contrast, the BNCI2014-002 dataset does not offer such channel
ordering information.

All filters were computed using data from session 1 of each subject individually, in order to remain
consistent with the cross-session experimental setting. The filters for real data were computed directly
using the CSP algorithm on session 1 data from each subject, focusing on the 8-12 Hz (alpha) and
13-30 Hz (beta) frequency bands during the first 2 seconds following the cue. For the generated
data, filters were obtained by applying the same CSP procedure on generated datasets produced
by DIFFEOCFM, with the same number of samples as in session 1. In both cases, only the spatial
filter corresponding to the largest eigenvalue from CSP’s generalized eigenvalue decomposition was
retained for analysis.
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Figure 5: Comparison of fMRI matrices before and after projection
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Figure 6: Comparison of EEG matrices before and after projection

N.2 Results and Analysis

 Figure 7 shows the topographic map using the first CSP filter for each subject in the BNCI2015-001
dataset (Subjects 1-6), while  Figure 8 displays the topographic map using the first CSP’s filter for
each subject in the same dataset (Subjects 7-12). We can observe that, except for Subjects 5, 6, 10,
and 12, the topographies for the remaining subjects appear highly similar, with a noticeable increase
in signal amplitude in the C3 region. Moreover, the average topographic map of these subjects, shown
in  Figure 2b , also reveals a very similar filter pattern.

This results show that the model, DIFFEOCFM, used for generating the generated data has successfully
captured the key characteristics and patterns of the real EEGs. This similarity in CSP’s filters indicates
that the generated data closely resembles the real data in terms of spatial patterns of brain
activity, which is crucial for validating the effectiveness of the model in simulating realistic neural
processes, particularly for motor imagery tasks. Additionally, it may imply that the model has
learned to preserve the underlying structure and discriminative features that are typically seen
in real EEG data during motor imagery.
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Figure 7: Subject-level topographic map using the first CSP’s filter derived from real EEGs
(BNCI2015-001, Sub 1-6) and generated data by DIFFEOCFM
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Figure 8: Subject-level topographic map using the first CSP’s filter derived from real EEGs
(BNCI2015-001, Sub 7-12) and generated data by DIFFEOCFM
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O DIFFEOCFM on fMRI

O.1 fMRI Connectome Plotting

Experimental Settings

We use Nilearn [ 14 ] for neuroimaging analysis and visualization based on the MSDL brain atlas.
The atlas is retrieved using the fetch_atlas_msdl function, which provides probabilistic maps of
functional brain networks in the form of a 4D NIfTI image. The maps attribute extracts this image,
while find_probabilistic_atlas_cut_coords computes representative 3D coordinates for each network,
typically corresponding to the spatial center of the activation, to support anatomical localization. In
addition, predefined region labels are extracted to annotate the corresponding brain areas. These
components together enable the visualization of brain networks, including plotting the regions with
spatial coordinates and labels.

The connectome plots are grouped into two categories: "CN" and "non-CN". The adjacency_matrix
used in nilearn.plotting.plot_connectome is computed as the Fréchet mean of the corresponding group
of connectivity matrices in all the 5-fold experiments, and all edge thresholds in the plots are set to
90%.

Results and Analysis

 Figure 9a and  Figure 9b visualize group-averaged functional connectomes derived from two distinct
neuroimaging datasets using the Fréchet mean. By thresholding edges to retain only the strongest
10% of connections (90% edge threshold), these plots emphasize dominant, statistically reliable
interactions between brain regions while filtering out noise. The use of the Fréchet mean ensures
that the group-level adjacency matrices respect the intrinsic geometric structure of covariance data,
avoiding distortions caused by arithmetic averaging. This comparison highlights both the fidelity
of data generation methods by aligning generated and real data connectomes using the Fréchet
mean and potential differences in functional network organization between the two cohorts.
The workflow underscores the utility of geometric statistics and stringent thresholds for interpreting
brain connectivity in heterogeneous populations.

32



L R

-0.8

-0.2

0

0.2

0.8

L R

Real fMRI (CN)

L R

-0.8

-0.21

0

0.21

0.8

L R

DiffeoCFM (CN)

L R

-0.8

-0.2

0

0.2

0.8

L R

Real fMRI (non-CN)

L R

-0.8

-0.19

0

0.19

0.8

L R

DiffeoCFM (non-CN)

(a) Class-conditional fMRI functional connectomes using the Fréchet mean (ABIDE).
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(b) Class-conditional fMRI functional connectomes using the Fréchet mean (OASIS3).

Figure 9: Group-level functional connectomes, computed as Fréchet means from two separate
neuroimaging datasets, are visualized after applying a 90% edge threshold to retain only the top 10%
of strongest connections. This thresholding highlights dominant and statistically robust interactions
between brain regions, effectively reducing noise. Leveraging the Fréchet mean preserves the
underlying geometric structure of the covariance matrices, avoiding potential distortions introduced
by conventional Euclidean averaging.
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P Plotting of Generated Samples in Real Data Neighborhoods

 Figure 10 - 15 present the selected generated fMRI samples that are nearest to real data points in terms
of Frobenius distance, categorized by "CN" and "non-CN" from the ADNI, ABIDE, and OASIS3
datasets..  Figure 16 - 19 show the selected generated EEG samples that are nearest to real samples in
Frobenius distance, separately for hand and feet motor imagery tasks from the BNCI2014-002 and
BNCI2015-001 datasets. Each real sample is annotated with its index in the original dataset. The
first, second, and third columns correspond to samples generated by DIFFEOGAUSS, TRIANGCFM,
and DIFFEOCFM, respectively. The numeric values on the generated samples indicate the Frobenius
distance to the corresponding real sample. Each generated sample shown is the nearest one (in
Frobenius distance) to the real sample within its class. Due to its consistently highest recall across
multiple datasets, DIFFEOCFM is more likely to produce generated samples that are closer to real
samples, i.e., with the smallest Frobenius distance, compared to those generated by other methods.
The matrices generated by TRIANGCFM shown in the figures are presented without applying the
projection step. Before applying the projection, the outputs of TRIANGCFM already exhibit strong
recall scores.

34



Real fMRI 286
DiffeoGauss
Dist. 10.24

TriangCFM
Dist. 9.03

DiffeoCFM
Dist. 8.38

Real fMRI 744
DiffeoGauss
Dist. 9.15

TriangCFM
Dist. 8.01

DiffeoCFM
Dist. 7.49

Real fMRI 410
DiffeoGauss
Dist. 9.19

TriangCFM
Dist. 8.43

DiffeoCFM
Dist. 7.74

Real fMRI 101
DiffeoGauss
Dist. 8.47

TriangCFM
Dist. 7.83

DiffeoCFM
Dist. 7.04

Real fMRI 444
DiffeoGauss
Dist. 9.65

TriangCFM
Dist. 9.03

DiffeoCFM
Dist. 8.49

Figure 10: Nearest Generated Samples in Real Data Neighborhoods: ADNI-CN Cohort. The matrices
generated by TRIANGCFM shown in the figures are presented without applying the projection step.
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Figure 11: Nearest Generated Samples in Real Data Neighborhoods: ADNI-nonCN Cohort. The ma-
trices generated by TRIANGCFM shown in the figures are presented without applying the projection
step.
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Figure 12: Nearest Generated Samples in Real Data Neighborhoods: ABIDE-CN Cohort. The matri-
ces generated by TRIANGCFM shown in the figures are presented without applying the projection
step.
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Figure 13: Nearest Generated Samples in Real Data Neighborhoods: ABIDE-nonCN Cohort. The
matrices generated by TRIANGCFM shown in the figures are presented without applying the projec-
tion step.
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Figure 14: Nearest Generated Samples in Real Data Neighborhoods: OASIS3-CN Cohort. The matri-
ces generated by TRIANGCFM shown in the figures are presented without applying the projection
step.
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Figure 15: Nearest Generated Samples in Real Data Neighborhoods: OASIS3-nonCN Cohort.
The matrices generated by TRIANGCFM shown in the figures are presented without applying the
projection step.
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Figure 16: Nearest Generated Samples in Real Data Neighborhoods: BNCI2014-002-Right Hand.
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Figure 17: Nearest Generated Samples in Real Data Neighborhoods: BNCI2014-002-Feet.
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Figure 18: Nearest Generated Samples in Real Data Neighborhoods: BNCI2015-001-Right Hand.
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Figure 19: Nearest Generated Samples in Real Data Neighborhoods: BNCI2015-001-Feet.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and  Section 1 clearly state the core contributions—namely,
conditional flow matching on pullback manifolds, its instantiation for SPD and correlation
matrices, and a large-scale neuroimaging benchmark. These claims are substantiated
theoretically in  Section 3 and empirically in  Section 4 and  Section 5 .
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: A discussion of limitations is included in  Section 6 .
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: All propositions (i.e., Propositions  1 ,  2 ,  3 ) are clearly stated in  Section 3 .
Each is accompanied by assumptions, and full proofs are deferred to the Appendix as
recommended.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The datasets, preprocessing, model architecture, training procedure, and
evaluation metrics are all detailed in  Section 4 , with full implementation and evaluation
protocols described in the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: All datasets used in this study (ADNI, ABIDE, OASIS-3, BNCI2014-002,
BNCI2015-001) are publicly available but fMRI ones (ADNI, ABIDE, OASIS-3) require
registration or data use agreements. We do not redistribute these datasets, but we provide
detailed instructions and references in the supplementary material to guide users on how to
access and preprocess them using standard libraries (e.g., fMRIPrep, Nilearn). Anonymized
code, including scripts for training, evaluation, and reproducing experimental results, is
included in the supplementary material under a permissive open-source license.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines ( https://nips.cc/
public/guides/CodeSubmissionPolicy ) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines ( https:
//nips.cc/public/guides/CodeSubmissionPolicy ) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All dataset splits, classifier architectures, hyperparameters, and evaluation
protocols are specified in  Section 4.2 and  Section 4.1  , with further detail provided in the
Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Results in  Table 1  are reported as mean ± std over multiple seeds/splits. The
experimental setting in  Section 4.2  explains variability factors, and significance trends are
analyzed in  Section 5 .
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Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The Appendix details the compute setup used (cpu, gpu and time of execution).
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics  https://neurips.cc/public/EthicsGuidelines ?
Answer: [Yes]
Justification: All datasets used are publicly available and widely used in the neuroscience
community. No personally identifiable information is used. Anonymity and licensing are
respected.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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Answer: [Yes]

Justification: We include a discussion of broader impacts of this study in  Section 6 .

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The models and data used in this work pose no identifiable risks for misuse.
The generative models are restricted to structured brain connectivity matrices derived from
neuroimaging datasets and are intended solely for research use. They do not produce
personally identifiable data, and the underlying datasets (ADNI, ABIDE, OASIS-3, BNCI)
are publicly released under controlled access and ethical review.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All datasets and baselines used are cited with appropriate references and
comply with their respective licenses.

49



Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets,  paperswithcode.com/datasets 

has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No new datasets or pretrained models are introduced in the paper.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No research with human subjects or crowdsourcing was conducted by the
authors. All data come from existing, publicly released studies.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]
Justification: No new human subject data were collected. All datasets used had IRB
approvals from their respective institutions.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: No LLMs were used in the development or core methods of this paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy ( https://neurips.cc/Conferences/2025/LLM )
for what should or should not be described.
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