
Rethinking Kernel Program Repair: Benchmarking
and Enhancing LLMs with RGym

Anonymous Author(s)
Affiliation
Address
email

Abstract

Large Language Models (LLMs) have revolutionized automated program repair1

(APR) but current benchmarks like SWE-Bench predominantly focus on userspace2

applications and overlook the complexities of kernel-space debugging and repair.3

The Linux kernel poses unique challenges due to its monolithic structure, con-4

currency, and low-level hardware interactions. Prior efforts such as KGym and5

CrashFixer have highlighted the difficulty of APR in this domain, reporting low6

success rates or relying on costly and complex pipelines and pricey cloud infras-7

tructure. In this work, we introduce RGym, a lightweight, platform-agnostic APR8

evaluation framework for the Linux kernel designed to operate on local commodity9

hardware. Built on RGym, we propose a simple yet effective APR pipeline lever-10

aging specialized localization techniques (e.g., call stacks and blamed commits)11

to overcome the unrealistic usage of oracles in KGym. We test on a filtered and12

verified dataset of 143 bugs. Our method achieves up to a 43.36% pass rate with13

GPT-5 Thinking while maintaining a cost of under $0.20 per bug. We further14

conduct an ablation study to analyze contributions from our proposed localization15

strategy, prompt structure, and model choice, and demonstrate that feedback-based16

retries can significantly enhance success rates.17

1 Introduction18

Large language models (LLMs) are rapidly reshaping software development workflows, from code19

generation, simple debugging, to fully automated program repair (APR) [19, 14, 8, 18, 17, 2, 16, 12, 9].20

While existing benchmarks, such as SWE-Bench [7], have driven steady progress on developing21

prototypes for LLM-based APR, their settings and samples focus on the user-space applications and22

underrepresent challenges common in more complicated and security-critical operating system kernel23

space: the kernel could potentially concentrate the hardest failure modes of systems programming24

with its massive scale, deep dependency, and pervasive concurrency and low-level interactions with25

hardware. These characteristics make the kernel an ideal stress test for evaluating LLM-based APR,26

from localization to patch generation, validation, and cost/latency consideration.27

Syzkaller [6], a coverage-guided kernel fuzzer, together with Syzbot [5], an automated online28

crash reporting system developed by Google, provides a valuable ecosystem that makes kernel-bug29

collection possible (more background in Appendix 5.5), and based on which, kGym [11] introduced30

a platform and dataset to benchmark LLMs on Linux kernel crash resolution. Unfortunately, however,31

kGym’s kernel gym has a hard dependency on GCP (Google Cloud Platform) and cannot be run32

elsewhere, restricting budget and flexibility. Furthermore, kGym uses whatever dependencies and33

compiler version are provided by the distribution package manager. This can easily cause build34

failures and can subtly change the behavior of the produced binary. To address these limitations,35

we introduce RGym, a lightweight, platform-agnostic solution built for local commodity hardware.36

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

RGym solves the compiler and dependency problem by smartly switching build dependencies using37

docker images depending on the kernel version or compiler string provided in the kernel configuration.38

Besides the gym framework, [11] also provided a basic APR solution. With the state-of-the-art LLMs,39

such as GPT-4, kGym’s APR approach achieved a success rate of only 0.72% and 5.38% in unassisted40

and oracle-assisted modes, respectively. Recently, CrashFixer [10] followed up with a more complex41

design of APR, using a debug tree to generate hypotheses of root causes and iteratively refining them42

into patches, which led to an oracle-assisted pass rate of 65.6% at a high cost of $21.62 per bug.43

Contrary to the difficulties suggested by prior work, we find that simpler APR designs can achieve44

results comparable to CrashFixer while relying on more realistic assumptions and incurring signif-45

icantly lower costs. Our main findings are as follows. First, both kGym and CrashFixer assume46

access to oracles for identifying the relevant files to patch, which is unrealistic in practice; in contrast,47

we demonstrate that practical localization strategies can achieve strong results, such as providing a48

bug inducing commit [15] that hints the root cause, which is obtainable using recent advances in49

bug bisection solutions targeting Syzbot bugs [20]. Second, with relatively straightforward designs50

combining realistic localization with other known techniques, we achieve pass rates of 37.76% and51

43.36% using GPT-4o and GPT-5 (Thinking model), respectively, at costs of only less than $0.252

per bug. Third, we conduct a detailed ablation study that isolates the contributions of different53

components in our pipeline, including the localization strategy, prompt structure, and choice of54

LLM models. Lastly, we find that different design choices/configurations of the solution can often55

complement each other, highlighting the benefits of diversification.56

• We introduce a patch testing system called RGym. RGym automatically handles build and test57

dependencies to streamline testing and reduce the domain knowledge required to adequately test58

APR tools. RGym is designed to be easy to set up locally.59

• We organize a dataset of 143 kernel bugs from Syzbot into an easily consumable format and60

verified the reproducibility of the bug on the patch parent. These kernel bugs have developer-61

curated bug-inducing commits, facilitating the ground truth for localization.62

• We develop a simple yet more effective APR than kGym and propose a different method of63

localization using bug-inducing commits and call stack. The results achieve pass rates of 37.76%64

to 43.36% using different LLM models — the combined pass rates reach 68.53%. We conducted65

an ablation study to measure the impact and cost of different components, such as parts of the66

prompt and the LLM model used.67

2 Methodology68

Our system, as shown in Figure 1, is composed of two main components: RGym, a testing framework,69

and an APR tool. The APR generates a patch via the Simple Agent or Function Exploration Agent70

and tests it with RGym. On failure, a feedback module can be leveraged to summarize the issue and71

retry. We evaluate on a dataset of 143 verified bugs.72

Dataset: From 6,088 Syzbot bugs, we retain those with fix commits, reproducers, crash reports, and73

kernel configs, filtering to KASAN bugs [13], which represent the most severe types of bugs (memory74

corruption) [21, 3]. Using RGym, we also verify reproducibility at the parent of the fix commit. This75

leads to 143 reproducible KASAN bugs, including out-of-bounds memory access, use-after-free, and76

null-pointer-dereference bugs.77

RGym: RGym overall compiles patched kernels, runs PoCs, and reports results. Unlike kGym’s78

cloud-based setup, RGym runs locally using docker to bundle job dependencies and QEMU for VMs.79

It exposes a web API and Python library for managing jobs, results, and logs.80

Build job: It compiles the patched kernel from inputs (patch, commit, source, config, compiler, cores,81

timeout, metadata). The prebuilt Debian images mitigate dependency and compiler version issues82

encountered when building the kernel. Outputs are a kernel image or the type of failure.83

Reproducer job: It boots a VM with the patched kernel and Debian rootfs to run syz/C reproducers.84

Inputs include kernel image, reproducer, timeout, cores, and metadata. Returns success on timeout,85

or the type of failure.86

APR tool: Our APR is composed of two agents: The Simple Agent that provides example patches87

(via in-context learning) for OOB, UAF, and NPD bugs. The Function Exploration Agent can88

2

KGym
APR +

Functionwise Patching

Better Localization

Feedback

Function Exploration

Compiler Selection

Platform Agnostic

Simplified

Bug Inducing Commit

KGym +

kBenchSyz +

Figure 1: RGym’s improvements and additions over kGym’s APR, gym, and dataset.

perform on-demand code viewing to develop its own view of the bug root cause, and therefore the89

corresponding patch strategy may differ. Both agents use the BIC-based localization (together with90

callstack). Both use GPT-4o as the baseline for cost efficiency.91

Function-wise patching: The LLM lists candidate functions, receives their definitions, and returns92

their patched definitions. All changes are encompassed into a single diff, ensuring applicability93

without concerns about diff syntax.94

Realistic localization: Unlike assuming the knowledge of which files to patch (oracles), our local-95

ization depends on BICs, which have been demonstrated as achievable. Specifically, SymBisect [1]96

provided an automated approach to identify BICs in Syzbot bugs, achieving 75% accuracy.97

Retries and error summary: On failure (e.g., build error, sanitizer trigger) the APR asks LLM to98

summarize the issue, then restarts the agent with the summary appended.99

Function Exploration: This design allows LLMs to freely request additional function definitions,100

enabling them to build a localized view of the potential root cause instead of being limited to101

specialized prompts (and bug types).102

3 Evaluation103

In this section, we evaluate our approach to automated program repair (APR). All patches, once built,104

are tested with 26 VMs running the reproducer(s) (either 13 Syz, 13 C; or 26 Syz) in a loop for 10105

minutes. We do this evaluation with respect to three key research questions (RQs):106

• RQ1: How do our included APR components improve patch pass rates?107

• RQ2: What are the costs of each APR configuration and how do the costs compare to their108

effectiveness?109

• RQ3: How do SOTA LLM models perform using our APR and are they cost-effective?110

3.1 RQ1: Effect of APR components on repair success111

kGym and function-wise patching. We summarize the key results in Table 1. We first revisit kGym’s112

reported pass rates. kGym evaluates each candidate patch by rerunning the reproducer in a single113

VM continuously for 10 minutes. However, in practice, many bugs are stateful and many reproducers114

are non-deterministic: In Table 4 we observe that roughly one-third of bugs have non-deterministic115

reproducers, leading to unreliable triggering. Using the oracle (knowing which file should be patched),116

kGym’s reported 5.38% pass rate shrinks to 1.4% because of this. For kGym, bad patches (those that117

fail to apply) account for most failed attempts and build errors, as LLMs often struggle to generate118

precise diffs (e.g., correct line numbers). When we introduce function-wise patching to kGym’s APR,119

we see a significant mitigation of the problem. Bad patches are reduced by 76%, in turn increasing120

overall success from 2.8% to 10.49%, underlining the necessity of dedicated patching components to121

complement raw LLM outputs.122

Localization, function exploration, and feedback. We then transition to our Simple Agent APR123

using bug-type specific instructions and call stack localization (without feeding the BIC), neither124

of which requires oracle guidance as they’re sourced from the sanitizer report. This configuration125

achieves 17.48% pass rate, a 6.99% improvement over kGym’s oracle-guided solution with function-126

wise patching. Adding the BIC to complement call stack localization pushes the pass rate to 21.67%,127

3

Table 1: Overall Results

Setup LLM Pass Rate Bad Patch Avg $/Bug

kGym-oracle GPT-4-turbo 1.4% 59.43% 0.21
kGym-oracle GPT-4o 2.8% 51.88% 0.05
kGym-oracle+functionwise GPT-4o 10.49% 12.14% 0.06
SimpleAgent-nobic GPT-4o 17.48% 1.39% 0.05
SimpleAgent GPT-4o 21.67% 4.89% 0.08
SimpleAgent+Feedback GPT-4o 37.76% 4.89% 0.17
ExplorationAgent GPT-4o 15.38% 5.59% 0.12
SimpleAgent Claude Opus 4.1 32.16% 5.59% 0.73
SimpleAgent GPT-5 Thinking 43.36% 4.19% 0.18

a 4.19% improvement. While the BIC is generally not available for unpatched bugs, tools like128

SymBisect [20] can obtain the BIC with 75% accuracy. Our non-bug type-specific agent, Function129

Exploration Agent, achieves a 15.38% pass rate, but provides a decent complement to Simple Agent.130

Of the 22 bugs patched, 12 are uniquely solved by our Function Exploration Agent, giving a combined131

pass rate of 30%. Our Simple Agent with feedback enabled and up to 3 retries achieves a 37.76% pass132

rate. We see that 34 bugs (23.77%) are solved in the first attempt, 8 (5.59%) in the second attempt,133

and 12 (8.39%) in the third attempt. These results show there is value in retrying even beyond three134

attempts; however, the benefit is diminishing.135

3.2 RQ2: Costs of each APR configuration compared to effectiveness136

As shown in Table 1, kGym with GPT-4o costs only $0.05 per bug in oracle mode. Our subsequent137

improvements only mildly increase the costs. Our Simple Agent with BIC costs $0.08 per bug. Our138

Function-Exploration Agent costs $0.12 per bug, which is somewhat expensive for its lower pass rate.139

However, it is still useful given its complementary nature. The average cost per bug of Simple Agent140

with feedback (3 tries) is $0.17, 2.13x the cost of running Simple Agent once, while achieving 1.74x141

the pass rate.142

3.3 RQ3: SOTA LLM models and their effectiveness143

As shown in Table 1, our Simple Agent using Claude Opus 4.1 reaches a 32.16% pass rate, while144

costing $0.73 per bug. Our Simple Agent using GPT-5 Thinking achieves an impressive 43.36% pass145

rate at $0.18 per bug. This is a 5.6% improvement over Simple Agent using feedback/retry, while146

costing only 1 cent more per bug. GPT-5 Thinking clearly outperforms Claude Opus 4.1 in this test,147

costing 4.05x less while performing 11.2% better. CrashFixer achieves 65.6% pass rate at a cost of148

$21.62 per bug using Gemini 2.5 Pro on kGym’s kBenchSyz dataset, which is similar enough to149

our dataset to make some analysis. CrashFixer is 120.11x more expensive than SimpleAgent using150

GPT-5 Thinking, while performing only 22.24% better despite using oracle-guided localization. If151

we consider the combined pass rates (union of solved bugs) of our configurations, we see a 68.53%152

pass rate at an average cost of $1.33 per bug. This leaves the question as to whether CrashFixer’s153

complex and expensive strategy is truly necessary, but we do not perform further evaluation with154

CrashFixer as it is currently closed source.155

4 Conclusion156

This work introduces RGym, a lightweight, platform-agnostic evaluation framework for LLM-based157

automated program repair (APR) in the Linux kernel space. Alongside RGym, we present an effective158

suite of APR strategies grounded in practical localization techniques – notably using bug-inducing159

commits (BICs), call stacks, and function-wise patching – that do not rely on unrealistic oracle160

assumptions. Our evaluation showed that our solution can significantly improve the pass rates of161

generated patches, with a fairly modest cost.162

4

References163

[1] SymBisect Source Code. https://github.com/zhangzhenghsy/SymBisect.164

[2] Islem Bouzenia, Premkumar Devanbu, and Michael Pradel. RepairAgent: An Autonomous,165

LLM-Based Agent for Program Repair . In 2025 IEEE/ACM 47th International Conference on166

Software Engineering (ICSE), pages 2188–2200, Los Alamitos, CA, USA, May 2025. IEEE167

Computer Society.168

[3] Weiteng Chen, Xiaochen Zou, Guoren Li, and Zhiyun Qian. Koobe: Towards facilitating exploit169

generation of kernel out-of-bounds write vulnerabilities. USENIX Security, 2020.170

[4] Compute engine: All pricing. https://cloud.google.com/compute/all-pricing, 2025.171

Accessed: 2025-09-03.172

[5] Google. Google syzbot. https://syzkaller.appspot.com/upstream/.173

[6] Google. Google syzkaller. https://github.com/google/syzkaller.174

[7] Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and175

Karthik R Narasimhan. SWE-bench: Can language models resolve real-world github issues? In176

The Twelfth International Conference on Learning Representations, 2024.177

[8] Matthew Jin, Syed Shahriar, Michele Tufano, Xin Shi, Shuai Lu, Neel Sundaresan, and Alexey178

Svyatkovskiy. Inferfix: End-to-end program repair with llms. In Proceedings of the 31st179

ACM Joint European Software Engineering Conference and Symposium on the Foundations180

of Software Engineering, ESEC/FSE 2023, page 1646–1656, New York, NY, USA, 2023.181

Association for Computing Machinery.182

[9] Ummay Kulsum, Haotian Zhu, Bowen Xu, and Marcelo d’Amorim. A case study of llm for183

automated vulnerability repair: Assessing impact of reasoning and patch validation feedback.184

In Proceedings of the 1st ACM International Conference on AI-Powered Software, AIware 2024,185

page 103–111, New York, NY, USA, 2024. Association for Computing Machinery.186

[10] Alex Mathai, Chenxi Huang, Suwei Ma, Jihwan Kim, Hailie Mitchell, Aleksandr Nogikh, Petros187

Maniatis, Franjo Ivančić, Junfeng Yang, and Baishakhi Ray. Crashfixer: A crash resolution188

agent for the linux kernel, 2025.189

[11] Alex Mathai, Chenxi Huang, Petros Maniatis, Aleksandr Nogikh, Franjo Ivancic, Junfeng Yang,190

and Baishakhi Ray. Kgym: A platform and dataset to benchmark large language models on191

linux kernel crash resolution. CoRR, abs/2407.02680, 2024.192

[12] Yu Nong, Haoran Yang, Long Cheng, Hongxin Hu, and Haipeng Cai. Appatch: Automated193

adaptive prompting large language models for real-world software vulnerability patching, 2025.194

[13] The Linux Kernel development community. Kernel Address Sanitizer (KASAN). https:195

//docs.kernel.org/dev-tools/kasan.html, 2025. Linux Kernel documentation (version196

6.17.0-rc4).197

[14] Xingyao Wang, Boxuan Li, Yufan Song, Frank F. Xu, Xiangru Tang, Mingchen Zhuge, Jiayi198

Pan, Yueqi Song, Bowen Li, Jaskirat Singh, Hoang H. Tran, Fuqiang Li, Ren Ma, Mingzhang199

Zheng, Bill Qian, Yanjun Shao, Niklas Muennighoff, Yizhe Zhang, Binyuan Hui, Junyang Lin,200

Robert Brennan, Hao Peng, Heng Ji, and Graham Neubig. Openhands: An open platform for201

AI software developers as generalist agents. In The Thirteenth International Conference on202

Learning Representations, 2025.203

[15] Ming Wen, Yepang Liu, and Shing-Chi Cheung. Boosting automated program repair with204

bug-inducing commits. In Proceedings of the ACM/IEEE 42nd International Conference on205

Software Engineering: New Ideas and Emerging Results, ICSE-NIER ’20, page 77–80, New206

York, NY, USA, 2020. Association for Computing Machinery.207

[16] Chunqiu Steven Xia and Lingming Zhang. Automated program repair via conversation: Fixing208

162 out of 337 bugs for $0.42 each using chatgpt. In Proceedings of the 33rd ACM SIGSOFT209

International Symposium on Software Testing and Analysis, ISSTA 2024, page 819–831, New210

York, NY, USA, 2024. Association for Computing Machinery.211

5

https://github.com/zhangzhenghsy/SymBisect
https://cloud.google.com/compute/all-pricing
https://syzkaller.appspot.com/upstream/
https://github.com/google/syzkaller
https://docs.kernel.org/dev-tools/kasan.html
https://docs.kernel.org/dev-tools/kasan.html
https://docs.kernel.org/dev-tools/kasan.html

[17] Jiahong Xiang, Xiaoyang Xu, Fanchu Kong, Mingyuan Wu, Zizheng Zhang, Haotian Zhang,212

and Yuqun Zhang. How far can we go with practical function-level program repair?, 2024.213

[18] Junjielong Xu, Ying Fu, Shin Hwei Tan, and Pinjia He. Aligning the Objective of LLM-Based214

Program Repair . In 2025 IEEE/ACM 47th International Conference on Software Engineering215

(ICSE), pages 2548–2560, Los Alamitos, CA, USA, May 2025. IEEE Computer Society.216

[19] John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik R217

Narasimhan, and Ofir Press. SWE-agent: Agent-computer interfaces enable automated soft-218

ware engineering. In The Thirty-eighth Annual Conference on Neural Information Processing219

Systems, 2024.220

[20] Zheng Zhang, Yu Hao, Weiteng Chen, Xiaochen Zou, Xingyu Li, Haonan Li, Yizhuo Zhai, and221

Billy Lau. SymBisect: Accurate bisection for Fuzzer-Exposed vulnerabilities. In 33rd USENIX222

Security Symposium (USENIX Security 24), pages 2493–2510, Philadelphia, PA, August 2024.223

USENIX Association.224

[21] Xiaochen Zou, Guoren Li, Weiteng Chen, Hang Zhang, and Zhiyun Qian. {SyzScope}:225

Revealing {High-Risk} security impacts of {Fuzzer-Exposed} bugs in linux kernel. In 31st226

USENIX Security Symposium (USENIX Security 22), pages 3201–3217, 2022.227

5 Appendix228

Table 2: Patch Correctness

Setup LLM Plausible Helpful Wrong

SimpleAgent GPT-4o 8 5 13
Function-Exploration GPT-4o 2 2 1

5.1 Patch correctness229

We manually verify the plausible correctness or helpfulness 31 random patches produced by our APR230

using GPT-4o, as shown in Table 2. As we performed manual verification, we could not determine231

if a patch is fully correct. We consider a patch plausibly correct if it follows the same semantics as232

the ground truth patch and prevents a crash, helpful if it does not properly address the root cause but233

targets the correct functions and prevents a crash, and wrong if it only prevents a crash but shares234

little to no similarity. We find that of the 31, 10 are plausibly correct, 7 are helpful, and 14 are wrong.235

This indicates that it is insufficient to simply rely on observing the absence of crashes to verify the236

correctness of patches. Interestingly, this result is consistent with what CrashFixer reported. Our237

rates of plausibly correct, helpful and wrong patches are 32.23%, 22.58%, and 45.16%, respectively,238

whereas the rates for CrashFixer are 32.91%, 15.18%, and 51.89%, respectively. This small study239

further suggests our simpler design achieved comparable performance to the much more complex240

solution.241

5.2 Compute used for experiments242

We use two machines for all tests. They are identical 56 core @ 2.3GHz, 160GB RAM, 1TB SSD.243

We run tests sequentially, such that a build uses all 56 cores, then 26 reproducer VMs use 52 cores244

and 52GB of RAM (2 cores, 2GB RAM each). The APR is very IO bound (to LLM APIs) and can245

be run on nearly anything. When reproducing kGym, it took 4 hours using a RTX 3060 and 400GB246

of space to generate BM25 indices. Table 3 shows compute times. Lower testing time for kGym247

tests can be attributed build failures ending the test early. Long test times for GPT-5 Thinking and248

Claude Opus 4.1 are likely due to their APIs being overloaded and forcing request retries as they had249

recently released, unfortunately we do not have a way of cutting that time out. They also take time to250

think and respond slower than GPT-4o. Preliminary testing and testing during development was also251

done on the same machines. We did not record time.252

6

Table 3: Compute

Setup LLM Clock Hours

kgym-bm25 GPT-4-turbo 11.89
kgym-oracle GPT-4-turbo 13.55
kgym-bm25 GPT-4o 13.71
kgym-oracle GPT-4o 16.14
kgym-oracle+functionwise GPT-4o 26.07
SimpleAgent-nobic GPT-4o 45.59
SimpleAgent GPT-4o 46.47
SimpleAgent+Feedback GPT-4o 113.79
Function-Exploration GPT-4o 45.99
SimpleAgent Claude Opus 4.1 154.60
SimpleAgent GPT-5 Thinking 121.24

5.3 Cost of KGym and GCP253

KGym requires at least three GCP instances (scheduler, builder, reproducer), in varying shapes (2x254

c2-standard-16, 1x c2-standard-30) at a minimum hourly cost of $3.23 [4]. Running the minimum255

amount of GCP instances allows only one build job and one reproducer job to be run simultaneously,256

with a biweekly cost of at least $1087.47. This cost is unsustainable for many researchers (such as257

ourselves) and for intensive testing that may last multiple weeks, the money is much better spent on258

hardware.259

SA-GPT5 SA-FB SA-CLAUDE SA FuncExpl
Configuration

0

2

4

6

8

10

12

14

So
lv

es

Figure 2: Unique solves per APR configuration

5.4 More evaluation260

Unique Solves: Unique solves is an interesting metric that may be helpful to show versatility. In Figure261

2 we see the most unique solves is achieved by SimpleAgent using GPT-5, which demonstrates the262

unique repair capability of the model not captured by other setups using other models. SimpleAgent263

using GPT-4o with feedback-driven retries also proves to be capable, solving 10 bugs neither GPT-5264

nor Claude Opus 4.1 solved. SimpleAgent with Claude Opus 4.1 solves only 3 unique bugs, similar265

to our SimpleAgent using GPT-4o, although Claude performed much better overall. Our Function-266

7

Table 4: Reproducer Job Output

Setup LLM Pass Trigger Racey Boot Fail Other

kgym-bm25 GPT-4-turbo 0 41 22 0 0
kgym-oracle GPT-4-turbo 2 36 18 1 0
kgym-bm25 GPT-4o 2 58 35 0 0
kgym-oracle GPT-4o 4 44 27 0 1
kgym-oracle+functionwise GPT-4o 15 61 32 1 1
SimpleAgent-nobic GPT-4o 25 85 57 5 0
SimpleAgent GPT-4o 31 77 60 4 0
SimpleAgent+Feedback GPT-4o 54 78 64 9 0
Function-Exploration GPT-4o 22 87 65 2 0
SimpleAgent Claude Opus 4.1 46 73 64 1 0
SimpleAgent GPT-5 Thinking 62 60 60 0 0

Table 5: Build Job Output

Setup LLM Compilation Fails Bad Patch

kgym-bm25 GPT-4-turbo 7 92
kgym-oracle GPT-4-turbo 4 63
kgym-bm25 GPT-4o 2 78
kgym-oracle GPT-4o 2 55
kgym-oracle+functionwise GPT-4o 16 13
SimpleAgent-nobic GPT-4o 26 2
SimpleAgent GPT-4o 24 7
SimpleAgent+Feedback GPT-4o 41 7
Function-Exploration GPT-4o 24 8
SimpleAgent Claude Opus 4.1 15 8
SimpleAgent GPT-5 Thinking 15 6

Exploration Agent collected no unique solves, although this is expected due to its low pass rate,267

SimpleAgents specialization, and GPT-5’s performance.268

Compilation Failures: In Table 5 compilation failures remain consistent for our agents using GPT-4o,269

but we see a sharp drop when using SOTA LLMs. Even Claude Opus 4.1 substantially reduces270

compilation failures to match GPT-5 despite not meeting the same pass rate. The reduction in compi-271

lation errors indicates both LLMs have improved capabilities to maintain internal syntactic/semantic272

invariants when compared to GPT-4o, even if they do not match in other aspects such as reasoning.273

This suggests compilation failures can be used as a proxy metric for model reliability, or at least code274

generation consistency.275

5.5 Background276

5.5.1 Syzkaller277

Syzkaller is an open-source coverage-guided kernel fuzzer developed by Google. It is designed278

to automatically discover security vulnerabilities, crashes, and unexpected behaviors in operating279

system kernels, with a primary focus on the Linux kernel, but it has also been adapted to other kernels280

like FreeBSD, NetBSD, Fuchsia, Darwin, and Windows. When a bug is found, Syzkaller is capable281

of outputting a reproducer program as a syz program and converting that syz program to a C program.282

These reproducers ideally can trigger the bug, although the reliability of the reproducer tends to vary,283

especially in the case of race conditions. Syzkaller has led to the discovery and reporting of thousands284

of Linux kernel bugs on a platform called Syzbot.285

5.5.2 Syzbot286

Syzbot is an automated bug reporting system built on top of Syzkaller and is also built by Google.287

Syzbot takes care of automatically triaging, reporting, and tracking bugs. It was created to reduce the288

8

manual effort needed in handling the large volume of crashes Syzkaller uncovers. Each bug entry in289

Syzbot has a unique ID, life cycle status (open, fixed, invalid), reproducers produced (if any), config290

for building, git commit, and sanitizer reports for each crash that occurs. Additionally, when the291

bug is fixed, the bug entry also contains the patch commit and occasionally the blamed bug inducing292

commit. Syzbot contains over 6500 fixed bugs and over 1500 open bugs for just the Linux kernel.293

This makes Syzbot an ideal source of bugs to create a benchmark.294

5.5.3 kGym295

kGym is similar RGym. The project introduces a gym, a dataset, and a basic APR. kGym itself is a296

kernel gym for automatically testing patches. It can orchestrate compiling kernels, applying patches,297

and running reproducers. kGym is highly dependent on GCP (Google Cloud Platform) as tests are298

run on GCP virtual machines. kGym’s reliance on GCP makes it easily scalable, but impossible to299

run locally where compute is magnitudes cheaper. kGym’s baseline APR operates in two modes.300

Assisted (or oracle) which uses the files from the accepted patch and unassisted which uses BM25 to301

retrieve files relevant to the bug. Unassisted and assisted modes achieve 0.72% and 5.38% pass rates302

on their benchmark dataset respectively.303

9

	Introduction
	Methodology
	Evaluation
	RQ1: Effect of APR components on repair success
	RQ2: Costs of each APR configuration compared to effectiveness
	RQ3: SOTA LLM models and their effectiveness

	Conclusion
	Appendix
	Patch correctness
	Compute used for experiments
	Cost of KGym and GCP
	More evaluation
	Background
	Syzkaller
	Syzbot
	kGym

