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Abstract

While Vision-language Models (VLMs) have demonstrated strong semantic ca-
pabilities, their ability to interpret the underlying geometric structure of visual
information is less explored. Pictographic characters, which combine visual form
with symbolic structure, provide an ideal test case for this capability. We formulate
this visual recognition challenge in the mathematical domain, where each character
is represented by an executable program of geometric primitives. This is framed as
a program synthesis task, training a VLM to decompile raster images into programs
composed of Bézier curves. Our model, acting as a “visual decompiler”, demon-
strates performance superior to strong zero-shot baselines, including GPT-4o. The
most significant finding is that when trained solely on modern Chinese characters,
the model is able to reconstruct ancient Oracle Bone Script in a zero-shot context.
This generalization provides strong evidence that the model acquires an abstract
and transferable geometric grammar, moving beyond pixel-level pattern recognition
to a more structured form of visual understanding.

Figure 1: Mathematics bridging vision and language. A pictographic character can be represented
using Bézier curves, each of which can then be written as a list of control points in text form.

1 Introduction

Vision-language Models (VLMs) have demonstrated strong capabilities in mapping images to high-
level semantic descriptions [Bai et al., 2025, Team, 2024]. However, a more fundamental aspect
of visual understanding — the ability to interpret and reconstruct the underlying structure of visual
forms — has been less explored [Thrush et al., 2022]. Pictographic characters, which combine
pictorial representation with a structured symbolic system, present an ideal test case for this capability,
motivating our core question: can VLMs’ understanding generalize from semantic recognition to
programmatic reconstruction? We find that current models, including GPT-4o, are limited in this
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capacity (Figure 2). This difficulty suggests that current VLMs rely on surface-level correlations
between pixel patterns and linguistic tokens, rather than parsing visual forms into geometric programs.

To address these limitations, we frame character reconstruction as a program synthesis problem, with
the target output being a sequence of mathematical primitives — Bézier curves. This representation
compels the model to move beyond pixel-level statistics and learn the geometric properties that define
a character’s form. Unlike localization methods such as bounding boxes [Girshick et al., 2014, Ren
et al., 2015], a Bézier sequence provides a fine-grained, executable representation of an object’s
continuous vector shape. We train a VLM to act as a “visual decompiler”, inferring the underlying
generative program from its rendered, pixel-based output (Figure 1). This allows for substantial
generalization: a model trained only on modern Chinese characters can reconstruct Oracle Bone
Script in a zero-shot setting, suggesting an internalized “geometric grammar” — the compositional
rules governing the arrangement, orientation, and form of the geometric primitives that constitute a
character’s structure.

Our contributions are as follows:
• We introduce and formalize the task of programmatic character reconstruction, where a model

decompiles a raster image into an executable program of Bézier curves. To our knowledge, this
is the first work to define character understanding as one of direct geometric program synthesis.

• We propose a framework that trains a VLM as a “visual decompiler”, directly translating raster
images into Bézier curve sequences with the spatial aid of an explicit visual coordinate system.

• We provide evidence that our model substantially outperforms strong zero-shot baselines such
as GPT-4o. Crucially, it achieves zero-shot cross-script generalization from modern to an-
cient characters (Table 1), verifying its ability to learn an abstract and transferable geometric
representation.

2 Methodology

In this section, we introduce how we construct paired “image-Bézier curve” training data and train
VLM. We first introduce the data construction process of deriving Bézier curves from images of
pictographic characters in Section 2.1, then introduce our training paradigm in Section 2.2.

2.1 Bézier Curves Extraction

To the best of our knowledge, few previous works have attempted to automatically construct math-
ematical representations, such as Bézier curves, from images of pictographic characters. Manual
annotations, on the other hand, are costly and limited in scale, posing challenges for models to learn
such representations and limiting their abilities to perform programmatic reconstruction. Thus, we
develop an automated rule-based pipeline that converts character images to Bézier curve sequences.
This approach allows us to create a large-scale “image-Bézier curve” dataset from any font file
efficiently without requiring manual annotations. The pipeline operates in four steps:

1. Preprocessing: Input images are binarized to isolate the glyph.
2. Skeletonization: The glyph is skeletonized to a one-pixel-wide centerline, which preserves its

topology.
3. Graph Segmentation: An 8-connected pixel graph [Noris et al., 2013] is built from the skeleton

and segmented into paths at junctions and endpoints.
4. Curve Fitting: Each path is simplified using the Ramer-Douglas-Peucker algorithm [Douglas

and Peucker, 1973], and adjacent segments are iteratively merged based on proximity and
alignment to form smooth strokes.

This process yields a clean list of Bézier curves that faithfully represents the character’s strokes.
Further details are provided in Appendix B.

2.2 Training Paradigm

A primary challenge for a VLM to generate geometric programs is bridging the its textual output with
the visual and spatial nature of target shapes. To address this, we first serialize the geometric informa-
tion. We represent each glyph as a sequence of strokes encapsulated within “<bezierseq>” tags. Each
stroke is defined by its control points inside “<bezier>” tags, e.g., <bezier>(x1 y1)...</bezier>.
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Table 1: Main results comparing our trained model against zero-shot baselines. We report on three
sub-metrics (D: Distance, A: Angle, L: Length) and the final geometric reconstruction score (G). Our
model demonstrates superior performance and remarkable cross-script generalization.

Model / Method
Chinese STD (STD-zh) Chinese Stylistic (Stylistic-zh) OBS

D↑ A↑ L↑ G↑ D↑ A↑ L↑ G↑ D↑ A↑ L↑ G↑

Qwen2.5-VL-7B (Zero-Shot) 0.019 0.012 0.029 0.157 0.023 0.019 0.037 0.177 0.033 0.024 0.049 0.182
GPT-4o (Zero-Shot) 0.139 0.119 0.212 0.431 0.201 0.149 0.288 0.467 0.163 0.105 0.232 0.409

Ours (Qwen2.5-VL-7B + Warmup + RL) 0.508 0.454 0.654 0.678 0.561 0.463 0.687 0.663 0.359 0.292 0.478 0.548
Ours (Qwen2.5-VL-7B + SFT) 0.770 0.686 0.854 0.821 0.603 0.509 0.696 0.723 0.362 0.293 0.463 0.568

All coordinate values are normalized to a [0, 1] range. This serialization transforms the visual recon-
struction task into a program synthesis problem, compelling the model to learn a structured, symbolic
representation of geometry rather than relying solely on pixel-level correlations.

However, serialization alone proves insufficient, as our analysis confirms that VLMs struggle to
ground abstract coordinates to absolute positions within an image (see Table 2). To overcome this
critical spatial reasoning deficit, we augment the input image by overlaying a normalized Cartesian
coordinate system on the glyph. This visual aid, consisting of labeled x- and y-axes, provides explicit
spatial context. This visual framework provides an explicit spatial anchor, enabling the model to
directly map visual features to their precise numerical locations.

3 Experiments and Results

3.1 Experimental Settings

Models and Frameworks We use the Qwen2.5-VL-7B model [Bai et al., 2025] as our backbone,
leveraging its strong vision-language capabilities. All experiments are conducted using the MS-
Swift [Zhao et al., 2024] training framework. We compare our method against strong zero-shot
baselines such as GPT-4o [Team, 2024] and the base Qwen2.5-VL-7B. More details on our baseline
configurations are provided in Appendix C.

Training Data Our primary training dataset consists of 2,000 common Chinese characters. We
use six font variations to create a dataset of approximately 12,000 samples for our main Supervised
Fine-tuning (SFT) experiments. 1

Evaluation Data We evaluate our models on three challenging, unseen datasets:
• Chinese STD: 1,000 unseen Chinese characters in a standard font (Source Han Sans SC Normal).
• Chinese Stylistic: 1,000 unseen Chinese characters in a stylistic, calligraphy-like font (JinNi-

anYeYaoJiaYouYa) 2, which resembles handwritten style and helps assess the model’s ability to
capture expressive and diverse stroke patterns.

• OBS: 1,000 unseen Oracle Bone Script characters from the HWOBC [Li et al., 2020] dataset.
This serves as our primary test set for cross-script generalization.

Experimental Details Our primary training method is Supervised Fine-Tuning (SFT) [Ouyang
et al., 2022], where the main objective is to teach the VLM to function as a “visual decompiler” that
translates character images into their corresponding Bézier curve programs. The model is trained on
the axis-enhanced images and their ground-truth programs using a standard next-token prediction
objective. For comparison, we also experiment with Reinforcement Learning (RL). This involves
initializing a model from an SFT-warmed-up checkpoint and continuing training with a geometric
reward signal using the GRPO algorithm [Shao et al., 2024]. This setup enables a direct comparison
between purely supervised learning and reward-driven exploration. Further training details are
available in Appendix C.

Evaluation Metrics We evaluate reconstruction quality using a comprehensive Geometric Score
(G) as our primary metric, which also serves as the reward signal in our RL experiments. To provide

1Six fonts variations (Microsoft YaHei, SimHei, SimKai, SimLi, SimYou, SimSun), are standard system fonts included with Microsoft
Windows.

2The modern Chinese fonts used for evaluation, Source Han Sans SC and JinNianYeYaoJiaYouYa, were sourced from the public font
website https://www.fonts.net.cn/.
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Figure 2: Qualitative comparison of reconstructions across models. a, b, c show reconstruction
cases of Chinese standard font, Chinese stylistic font, and Oracle Bone Script, respectively.

a more granular analysis, we additionally report three sub-scores derived from the same matching
framework: Distance, Angle, and Length. The primary Geometric Score calculation holistically
compares the generated and ground-truth Bézier curve sequences by finding an optimal one-to-one
stroke matching based on a composite similarity function. All final scores are normalized into the
range [0, 1], where 1 signifies a perfect match. A detailed breakdown is provided in Appendix D.

3.2 Main Results

Our findings, detailed in Table 1, confirm the effectiveness of our method across the overall recon-
struction score and all three sub-metrics. Our model achieves the best results across all investigated
datasets, demonstrating robust generalization to unseen standard and stylistic fonts.
Most strikingly, the model exhibits remarkable cross-script generalization. On the zero-shot Oracle
Bone Script (OBS) evaluation, our SFT model scores 0.568, a 15.9% increment over the powerful
GPT-4o baseline. This result strongly supports our hypothesis that by learning programmatic con-
struction, the model acquires a transferable geometric grammar rather than memorizing pixel patterns.
To validate our Geometric Score’s effectiveness, we conducted a human evaluation comparing our
SFT model against GPT-4o on 150 samples in Appendix E. The results, showing a 91.6% average win
rate for our model, confirm that our quantitative metric aligns well with human qualitative judgment.

4 Analysis

4.1 Case Study: Visualizing Reconstruction
In Figure 2, we present a qualitative comparison. We observe that our model successfully captures the
core strokes and structure of the unseen characters, including Oracle Bone Script examples. In contrast,
baseline models often produce visually plausible but structurally incorrect shapes, highlighting the
limitations of purely pixel-based understanding.

4.2 Ablation Studies Table 2: Ablation results on the coordinate
axis. The metric is the G↑.
Model / Method STD-zh Stylistic-zh OBS

Zero-shot Baselines
Qwen2.5-VL-7B (w/o Axis) 0.106 0.146 0.184
Qwen2.5-VL-7B (w/ Axis) 0.157 0.177 0.182
GPT-4o (w/o Axis) 0.347 0.361 0.381
GPT-4o (w/ Axis) 0.431 0.467 0.409

Our Fine-tuned Model
Ours (SFT w/o Axis) 0.808 0.711 0.556
Ours (SFT w/ Axis) 0.821 0.723 0.568

To dissect our framework, we perform two key abla-
tion studies in this section.

The Critical Role of the Coordinate Axis. An
ablation study (Table 2) shows that the coordinate
system is a crucial component. Removing the axes
degrades performance not only for our fine-tuned
model but also for the zero-shot baselines (Qwen2.5-
VL and GPT-4o). This consistently positive effect
suggests that the axes serve as a fundamental anchor for spacial grounding, enhancing the innate
geometric understanding capabilities of VLMs even without task-specific training.
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Table 3: Ablation results comparing different
methods training out model. Qwen2.5-VL-
7B is employed for this study. The metric is
the G↑.

Model / Method STD-zh Stylistic-zh OBS
Ours (RL) 0.539 0.497 0.432
Ours (Warmup + RL) 0.678 0.663 0.548
Ours (SFT) 0.821 0.723 0.568

A Deeper Look into Reinforcement Learning.
We hypothesized that Reinforcement Learning (RL)
would refine the SFT model’s precision, but our re-
sults (Table 3) are more nuanced. While RL with
an SFT warm-up improves over RL-only, it fails to
surpass the performance of full SFT. This finding
suggests a fundamental challenge in applying conven-
tional RL algorithms to tasks involving fine-grained,
continuous parameter generation. The action space
for Bézier curve synthesis is vast, and the corresponding reward landscape is non-convex and sparse,
where perturbations in a control point can cause discontinuous changes in the geometric score. This
makes the credit assignment problem difficult for the exploration. In contrast, supervised learning
provides a dense and globally coherent signal from ground-truth programs, which appears to be more
effective in learning the complex structural dependencies required for this task. This highlights a key
challenge for applying RL to structured visual generation and suggests that future investigations could
benefit from exploring offline RL methodologies or developing more reward-shaping techniques
tailored to geometric fidelity.

5 Conclusion
This paper demonstrates a Vision-Language Model’s capacity to perform “visual decompilation” by
translating raster images into a precise mathematical representation as executable geometric programs.
The model’s ability to reconstruct Oracle Bone Script, despite being trained solely on modern Chinese
characters, provides evidence that it acquires an abstract and transferable geometric grammar rather
than memorizing pixel configurations. This study validates a mathematically grounded programmatic
approach to visual understanding, highlighting two key findings: the critical role of an explicit
coordinate system for spatial grounding and the efficacy of supervised learning to generate structured
outputs. Ultimately, this work contributes to the development of advanced AI systems with a structural
and generalizable capability for visual interpretation.

While our approach demonstrates strong generalization across scripts and styles, several challenges
remain for future work. First, a deeper mathematical analysis of the Bézier representation and its
parameter sensitivity is needed to better understand the underlying geometry encoding. Second,
current geometric reasoning still lacks rigorous theoretical justification, which could further strengthen
the interpretability of the model. Finally, the inference latency and tokenization bottleneck introduced
by long Bézier sequences highlight an efficiency limitation that calls for more compact and adaptive
vector representations.
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A Bézier Curve Fundamentals

A Bézier curve is a parametric curve fundamental to computer graphics, using Bernstein Polynomials
as its basis. The curve, denoted as c(t), is mathematically defined as a weighted sum of n+ 1 control
points bi:

c(t) =

n∑
i=0

biBi,n(t), 0 ≤ t ≤ 1, (1)

where n is the degree of the curve and Bi,n(t) are the Bernstein basis polynomials. Unlike raster
images composed of a static pixel grid, a Bézier curve provides a continuous, mathematical definition
of a shape, determined entirely by its set of control points.

In our work, we leverage Bézier curves to model the individual strokes of a character. This approach
is advantageous because it provides a compact, flexible, and scalable vector representation. These
properties have made Bézier curves a powerful tool in various deep learning applications. For instance,
BézierSketch utilize sequences of curves to produce scalable vector sketches, shifting the modeling
paradigm from dense pixel grids to sparse control points [Das et al., 2020]. More commonly, Bézier
curves are used to parameterize and fit the external contours of objects. This is seen in domains such
as real-time text spotting, where they define the boundaries of arbitrarily shaped text [Liu et al., 2020],
and medical image analysis, where they ensure smooth and continuous segmentation masks [Chen
et al., 2023]. In contrast to these approaches that focus on external boundaries, our work uses Bézier
curves to reconstruct the internal topological structure of a character. By describing a character as
a sequence of strokes, we transform the visual recognition problem into one of geometric program
synthesis.
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B Bézier Curve Extraction Details

Our pipeline uses OpenCV [Bradski, 2000] to load a grayscale raster and binarize it so strokes
become foreground pixels. scikit-image’s [Van der Walt et al., 2014] skeletonize function collapses
thick strokes to one-pixel centerlines while preserving topology. NetworkX [Hagberg et al., 2008]
builds an 8-connected pixel graph (nodes are skeleton pixels, edges are neighborhood adjacencies).
svgwrite exports each simplified segment as SVG paths. svgpathtools parses the resulting SVG and
exposes Line, QuadraticBezier, and CubicBezier primitives so the pipeline can collect control points,
merge aligned segments, and normalize coordinates.

C Experimental Details

Baselines We compare our trained model against two powerful, zero-shot baselines: the base
Qwen2.5-VL-7B model [Bai et al., 2025] and GPT-4o [Team, 2024]. For a robust and fair compar-
ison, all baseline evaluations reported in our main results table are conducted using their stronger
configuration, where the input image is enhanced with the same coordinate axis overlay provided to
our models.

Implementation Details All models are trained on 8 NVIDIA A800 GPUs using DeepSpeed ZeRO
Stage 3 and BF16 precision. For our main SFT model, we train for 5 epochs using a learning rate
of 1 × 10−6 with a cosine scheduler and a warmup ratio of 0.01. We use a total batch size of 16.
The vision transformer (ViT) backbone is kept frozen throughout training. For our comparative RL
experiments, we initialize the model from a 5-epoch SFT warmup on 1

6 of the data, followed by 1
epoch of training with the GRPO algorithm on the remaining 5

6 of the data. The RL stage employs a
distinct set of hyperparameters, including a global batch size of 48, a mini batch size of 24, rollout
number per prompt of 6, and a generation temperature of 0.9, to explore the policy space.

D Detailed Evaluation Metrics

Our comprehensive scoring function, Geometric Score, is designed to quantitatively evaluate the
quality of a reconstruction by reflecting its geometric fidelity. The calculation involves a three-
step process: calculating pairwise similarity matrices between strokes, finding the optimal global
assignment for each metric, and normalizing the results.

Pairwise Stroke Similarity Given a generated sequence of Bézier curves and a ground truth
sequence, we compute similarity matrices where each element (i, j) represents a geometric similarity
between the i-th ground truth stroke and the j-th generated stroke. For our analysis, we compute four
distinct matrices: one for each sub-metric (Distance, Angle, Length), and a fourth composite matrix
for the final Geometric Score. The core components are calculated as follows:

1. Sampling: We uniformly sample 10 points and their corresponding tangent vectors from both
Bézier curves.

2. Reward Calculation: We compute three distinct geometric rewards, all normalized to [0, 1],
which serve as the values in the sub-metric similarity matrices:

• Distance Reward: Calculated as 1/(1+ d̄), where d̄ is the mean Euclidean distance between
corresponding sampled points.

• Length Reward: Calculated as min(L1, L2)/max(L1, L2), rewarding similarity in the total
arc length of the curves.

• Angle Reward: The mean cosine similarity between corresponding tangent vectors, mapped
from [−1, 1] to [0, 1]. This measures directional alignment.

3. Weighted Combination for Geometric Score: For the composite similarity matrix used to
calculate the final Geometric Score, the three rewards are combined using predefined weights:
0.6 × Distance + 0.2 × Length + 0.2 × Angle. We also account for stroke directionality by
calculating this composite score for both the original and reversed generated stroke, taking the
maximum of the two.
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Optimal Stroke Matching With the pairwise similarity matrices constructed, we treat the problem
as a maximum weight bipartite matching task. This step is applied to each of the four matrices
independently. We use the Hungarian algorithm [Kuhn, 1955] to find the optimal one-to-one assign-
ment of generated strokes to ground truth strokes that maximizes the total similarity for that specific
metric. This approach ensures that each reported score (Geometric Score, Distance, Angle, Length)
is based on a globally optimal matching for that specific criterion. It is important to note that the final
Geometric Score is derived from the matching on the composite matrix and is therefore not a simple
weighted average of the three final sub-scores.

Final Score Normalization The sum of similarities from the optimal matching for each metric is
normalized by the maximum number of strokes between the ground truth and the generated sequence.
This yields a base score in the range [0, 1]. To enhance the signal for reinforcement learning, the
score is then passed through a normalized sigmoid function centered at a threshold of 0.8, which
amplifies differences in high-quality reconstructions.

E Human Evaluation Details

To validate that our proposed Geometric Score aligns with human perception of reconstruction quality,
we conducted a formal human evaluation. This evaluation was designed to compare the qualitative
performance of our best SFT model against the strong GPT-4o baseline.

Evaluation Setup We randomly sampled a total of 150 test cases, comprising 50 cases from each of
our three distinct evaluation datasets: Chinese STD, Chinese Stylistic, and OBS. The evaluation was
performed by five human experts, defined as individuals with proficiency in both Chinese calligraphy
and digital vector graphics. The detailed breakdown of choices from each expert is shown in Table 4.

Table 4: Detailed breakdown of scores from the five human evaluators. “W” denotes cases where our
model was preferred, “T” for ties, and “L” where the baseline was preferred.

Evaluator W T L Win Rate
Annotator 1 142 7 1 97.00%
Annotator 2 139 8 3 95.33%
Annotator 3 128 21 1 92.33%
Annotator 4 113 32 5 86.00%
Annotator 5 114 34 2 87.33%

Evaluation Protocol The evaluation followed a blind, side-by-side comparison protocol. For each
of the 150 cases, the experts were presented with the ground-truth character image. Alongside it, the
reconstructions from our SFT model and GPT-4o were displayed in a randomized order to prevent
positional bias. The experts were not informed which model generated which image.

Following a standard methodology for evaluating generative models [Zheng et al., 2023], experts
were asked to make a three-way choice for each pair of reconstructions:

• Model A is Better: If one reconstruction was clearly superior.

• Model B is Better: If the other reconstruction was clearly superior.

• Tied: If both reconstructions were of comparable quality (either equally good or equally bad).

The judgment criteria provided to the experts focused on (1) preservation of the character’s topological
structure, and (2) overall visual similarity to the source image.

Win Rate Calculation To aggregate the results, we calculated the overall win rate for our model
against the baseline. The win rate is computed using a standard formula that gives partial credit for
ties, providing a more nuanced performance measure than a simple win-loss metric. The formula is
as follows:

Win Rate =
#(Our Model Wins) + 0.5×#(Ties)

Total Number of Comparisons
(2)
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The final win rate, aggregated across all 150 samples and 6 experts, is reported in the main body of
the paper.

F Related Work

Visual Program Synthesis. This field aims to translate visual inputs into executable programs, with
diverse approaches tackling the challenge. Ellis et al. [2018] established the idea of factorizing the
problem into a neural perception stage to identify drawing primitives and a symbolic synthesis stage
to assemble them into a coherent program. More recent methods include reinforced self-training to
overcome the need for expert-annotated datasets [Khan et al., 2024], while other novel paradigms
explore neuro-symbolic languages [Barnaby et al., 2023] or diffusion models that operate directly on
program syntax trees [Kapur et al., 2024]. In contrast, our work introduces a fine-grained “visual
decompiler” task, training a model to translate images directly into a low-level geometric program of
Bézier curves, emphasizing direct, structured generation over interpretative reasoning.

Generative Models for Vector Graphics. Generating vector graphics is a significant challenge,
with key approaches including dual-modality learning [Wang and Lian, 2021] and cascaded diffusion
models like VecFusion [Thamizharasan et al., 2024], which often rely on an intermediate raster stage
to guide the final vector output. Other models like StrokeNUWA generate Scalable Vector Graphics
(SVG) code directly, using “stroke tokens” that are inherently compatible with Large Language
Models (LLMs) and mimic the sequential process of a human artist [Tang et al., 2024]. Hybrid
frameworks such as Chat2SVG combine the semantic reasoning of LLMs to generate a basic template
with the refinement power of image diffusion models to add geometric detail [Wu et al., 2025a]. Our
framework differs by focusing on direct, end-to-end programmatic reconstruction from an image,
bypassing creative generation and intermediate pixel-based stages to learn a canonical geometric
grammar for a given character.

Vision-language Models for Text in Images. Historically, understanding text in images for tasks
like Visual Question Answering (VQA) relied on multi-stage pipelines that sequentially performed
detection, Optical Character Recognition (OCR), and reasoning. Modern Vision-language Models
(VLMs) aim to replace this complex, error-prone process with a single end-to-end model [Lamm and
Keuper, 2024]. However, this unified approach often struggles with fine-grained or dense text, where
performance can be unreliable for tasks beyond simple transcription [Chen et al., 2025, Lamm and
Keuper, 2024]. This has led to explorations into integrating specialized OCR encoders to improve
detail preservation [Nacson et al., 2025]. A deeper level of understanding moves beyond mere
transcription to parse the internal structure of characters; for complex logograms like Chinese, for
instance, this involves recognizing constituent radicals and stroke arrangements [Wu et al., 2025b].
Our work advances this trajectory with a fundamentally different paradigm. Instead of asking the
model to recognize or classify visual text, we frame the task as one of programmatic reconstruction,
compelling the model to generate an executable geometric program. This shifts the goal from
semantic identification to learning an underlying, generative grammar of form.

Historical Script Understanding and Generalization. Recognizing or understanding historical
scripts is a difficult task due to data scarcity, degradation, and stylistic variation. This is particularly
true for logographic systems like Oracle Bone Script (OBS), which have vast and complex character
sets [Diao et al., 2025]. Traditional approaches often rely on script-specific, multi-stage pipelines
for classification [Zhang et al., 2020] or general zero-shot recognizers like CLIP [Radford et al.,
2021]. More recently, advanced frameworks have begun to leverage Vision-Language Models for
this challenge. For instance, V-Oracle frames the task as a visual question-answering problem to
interpret scripts through a multi-step reasoning chain [Qiao et al., 2025], while OracleFusion generates
“semantically enriched vector fonts” for OBS, extending from analysis to creation [Li et al., 2025].
We build upon this direction but propose a novel paradigm of generalization through generation. By
training on modern characters, our model learns a transferable, “universal geometric grammar.” This
allows it to demonstrate a deep, structural understanding by programmatically reconstructing an
unseen script, rather than merely classifying or interpreting it, pushing the boundaries of cross-script
generalization.
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