
Less-Energy-Usage Network with Batch Power Iteration

Hao Huang 1 Tapan Shah 1 Scott Evans 1 Shinjae Yoo 2

Abstract
Large scale neural networks are among the main-
stream tools of modern big data analytic. But their
training and inference phase are accompanied by
huge energy consumption and carbon footprint.
The energy efficiency, running time complexity
and model storage size are three major consider-
ations of using deep neural networks in modern
applications. Here we introduce Less-Energy-
Usage Network, or LEAN. Different from regular
network compression (e.g. pruning and knowl-
edge distillation) that transform a pre-trained huge
network to a smaller network, our method is to
build a lean and effective network during train-
ing phase. It is based on spectral theory and
batch power iteration learning. This technique
can be applied to almost any type of neural net-
works to reduce their sizes. Preliminary experi-
ment results show that our LEAN consumes 30%
less energy, achieving 95% of the baseline accu-
racy with 1.5× speed-up and 90% less parameters
compared against the baseline CNN model.

1. Introduction
Large-scale deep neural networks have shown impressive
performance in many domains e.g. computer vision and
natural language processing (Neill, 2020). However, train-
ing and using deep neural networks often require immense
amount of carbon footprint, as well as increasing running
time and storage. In this work, we propose a Less-Energy-
Usage Network, or LEAN that can be used to learn a lean
and effective network in the training phase. It is a dimen-
sional reduction technique that can be generally applied
to any network architecture. We show that the LEAN ver-
sion of neural network maintains high accuracy but at the
meanwhile takes much less energy, model storage and com-
putational time in both training and inference phase.

1General Electric Research, Niskayuna, NY, USA 2Brookhaven
National Laboratory, Upton, NY, USA. Correspondence to: Hao
Huang <hao.huang1@ge.com>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

2. Related Work
Recent years there has been a resurgence in model com-
pression techniques, such as parameter pruning (Frankle &
Carbin, 2018), low rank factorization (Swaminathan et al.,
2020) and knowledge distillation (He et al., 2022). However,
many of these methods are performed on a huge pre-trained
network that already consumed large amount of energy dur-
ing training. Quantization (Yang et al., 2019) reduces a
neural network model’s size by using fewer bits to repre-
sent its parameters. Many research focused on increasing
computational efficiency in convolution operator, such as
depth separable convolution (Chollet, 2017; Zhang et al.,
2019; Kriman et al., 2020) and spatial separable convolution
(Szegedy et al., 2016; Zhang et al., 2022). Some researchers
applied Fast Fourier Transform (FFT) (Highlander & Ro-
driguez, 2016; Li et al., 2020) to implement convolution
and they gain great speed up for large convolutional kernels.
Scaling/balancing techniques were proposed on convolution
network (Iandola et al., 2016; Tan & Le, 2019) to reduce
the model size. Weight clustering-based model compression
(Cho et al., 2021) try to reduce parameters by performing
K-means on weights. However, these methods are either 1)
not generally applicable to any type of neural network, 2)
not for reducing energy consumption, or 3) with complexity
that proportional to number of input channels Cin. Recently,
energy efficient convolutional neural networks have been
discussed in (Khatwani et al., 2018; Faraji et al., 2019), but
they are either only applicable to the first layer of network
or rely on specific hardware implementation.

3. Problem Setting and Methodology
As shown in Figure 1, our proposed LEAN is a dimensional
reduction technique that can be generally applicable to al-
most any type of neural networks.

Simply, we explain it in the context of Convolutional Neu-
ral Network (CNN). The convolution operation is usually
applied to two dimensional input data with multiple in-
put channels [N,Hin,Win, Cin], and the size of output is
[N,Hout,Wout, Cout] where N is the number of samples,
H andW are height and width, andC is the number of chan-
nels. The conventional computation of such convolution op-
erator can be very heavy if bothCin andCout are large, as its
computational complexity is up to O(CinCoutK

2HinWin)

Less-Energy-Usage Network with Batch Power Iteration

where K is the kernel size.

(a) (b)

Figure 1: Original layer (1(a)) and its LEAN version (1(b)).

To reduce the computational cost, one way is to reduce the
value of Cin. Here we propose a new technique to reduce
Cin to a much smaller dimensions C ′ without introducing
any new projection layer. Our idea is to extract lean embed-
dings from original dimension space with power iteration
techniques (Lin & Cohen, 2010; Huang et al., 2014; 2015).

3.1. Power Iteration Embedding

To address the computational complexity of traditional spec-
tral embedding construction (Ng et al., 2001), Lin et.al (Lin
& Cohen, 2010) proposed power iteration clustering, which
finds compact embedding (Power Iteration Embedding, or
PIE) using truncated power iteration on a normalized affinity
matrix that built upon input data.

Given an input data matrix X ∈ Rn×m, PIE is to reduce X
to V ∈ Rn×1 by Algorithm 1. The theoretical foundation

Algorithm 1 Power Iteration Embedding (PIE)

Input: X ∈ Rn×m, an initial embedding vector V ∈ Rn×1

Output: embedding vector V ∈ Rn×1

1: Construct the affinity matrix A ∈ Rn×n by XXT

2: Perform random walk normalization on A so that each
row of A is ℓ1-normalized, denoted by Ã.

3: repeat
4: V ← ÃV

∥ÃV ∥1

5: until V converges.

of PIE is rooted in spectral theory (Ng et al., 2001). We
denote the eigenvectors of Ã (refer to line 2 in Algorithm 1)
as Ψ = {ψ1, ..., ψn} that forms a basis in Rn×n. Therefore
the initial vector V in Algorithm 1 can be represented by a
linear summation of Ψ:

V (0) = a1ψ1 + a2ψ2 + ...+ anψn, (1)

where ai is the coefficient/weight of the i-th eigenvector.
The power iteration effect can be represented by:

V (t) = ÃtV (0) = a1λ
t
1ψ1 + a2λ

t
2ψ2 + ...+ anλ

t
nψn

= a1λ
t
1ψ1 + λt2

(n∑
i=2

ai(
λi
λ2

)tψi

)
, (2)

where λ are the eigenvalues of Ã that have the order below:

1 = λ1 > λ2 > ... > λc ≫ λc+1 > ... > λn. (3)

Here we assume the biggest eigengap exists between c and
c + 1. Without early stopping, V (t) will finally converge
to a1ψ1 (since λ1 = 1) which is simply a constant vector.
However, with a controlled early stopping, V (t) is a linear
combination of the top c informative eigenvectors, while all
the other eigenvectors are decaying away due to eigengap.
It has been proved that such embeddings have sufficient
information that can be used in many tasks (Lin & Cohen,
2010; Huang et al., 2014; 2015).

3.2. Our proposed LEAN

Here we leverage the idea of PIE and propose LEAN that
can be used in almost any type of neural network. As an
example, we describe the usage of our LEAN on a CNN in-
termediate layer input with size [N,Hin,Win, Cin]. In this
case, the objective of LEAN is to reduce input channels Cin

to a much less number C ′. The whole process is described
in Algorithm 2. Specifically, we explain our LEAN in the
following aspects:

1. In short, Algorithm 2 can be treated as a batch version
of PIE. In line 1 of Algorithm 2, the original chan-
nels Cin are split into preserved dimensions C ′ and
reducible dimensions C ′′ where Cin = C ′C ′′. Similar
to PIE that reduces dimension m to 1, here our LEAN
projects the original channels Cin to C ′ by reducing
C ′′ to 1. In our implementation we use the function
view in pytorch to split Cin. But any way of splitting,
as long as it remains unchanged during training and
inference phase, can be used. Our preliminary experi-
ments show that the value of C ′ can be set to Cin/10
or even

√
Cin scale.

2. Different from 1×1 conv in inception module (Szegedy
et al., 2015) or linear layer to project high dimensions
to lower dimensions, our LEAN doesn’t introduce
additional projection layers. Instead, it is a self-
dimensional-reduction technique.

3. Algorithm 2 can be understood as learning the corre-
sponding Krylov subspace (Liesen & Strakos, 2013)
of each pixel in each input sample based on its corre-
sponding information in Ã. It is equivalent to finding
the span of the Gramians but requires much less com-
putations (Liesen & Strakos, 2013).

4. In practise, we simplify the repeat loop by setting the
number of iteration as one and making the initial vector
V as learnable parameters that can be updated by back-
propagation training. Specifically, setting number of
iteration to be one has already been shown effective

Less-Energy-Usage Network with Batch Power Iteration

and efficient in many power-iteration-based works such
as (Yang et al., 2018). Setting the initial seed vector
as learnable parameters is similar as setting the initial
state trainable in Recurrent Neural Networks (RNN),
that helps the model to start from a good default state.

5. Last but not least, our LEAN is generally applicable
to almost any type of networks. For example, it can
reduce any intermediate input in RNN [N,Lin, Cin]
to [N,Lout, C

′] where Lin and Lout are the input and
output sequence length. It can also be applied to simple
fully connected network and reduce any intermediate
input [N,Cin] to [N,C ′], where C ′ ≪ Cin.

Algorithm 2 Our proposed LEAN (on image data)

Input: X ∈ RN×Hin×Win×Cin , an initial embedding vec-
tor V ∈ RC′×1 where C ′ ≪ Cin

Output: embedding vectors V ∈ RN×Hin×Win×C′

1: Split Cin into two dimensions [C ′, C ′′] (where
Cin = C ′C ′′), so the size of X becomes
[N,Hin,Win, C

′, C ′′]
2: Construct the affinity matrix batch A by batch ma-

trix multiplication XXT where XT is transpose of
X between the last two dimensions. The size of A is
[N,Hin,Win, C

′, C ′]
3: Perform random walk normalization on A so that its

second last dimension is ℓ1-normalized, denoted by Ã.
4: Expand the initial vector V with dummy dimen-

sions at the front, so the size of V becomes
[N,Hin,Win, C

′, 1].
5: repeat
6: V ← ÃV

∥ÃV ∥1

7: until V converges (in practice the #iteration = 1).
8: return V with the last dimension squeezed.

4. Experiments
To discuss the trade-off between efficiency and accuracy
from a Green AI (Schwartz et al., 2020) perspective, we
consider prediction accuracy, energy-consumption, CO2-
emission, running time and model size. Due to page limita-
tion we focus on the comparison between our LEAN and a
regular CNN model on STL-10 dataset (Coates et al., 2011).

4.1. Network Structure and Model Size Comparison

Figure 2(a) illustrates the CNN baseline structure. It consists
of three conv2D layers and one fully connected layer. The
numbers of channels in the three conv2D layers are 50,
100, and 150, so the total number of parameters is about
400k. In Figure 2(b), we apply our LEAN after each conv2D
to reduce the Cin in the subsequent layers. We set the
preserved dimensions C ′ to be 10, and our total number of

parameters is about 40k that reduces 90% parameters of
the baseline CNN structure.

(a) CNN Structure

(b) our LEAN on CNN

Figure 2: A CNN structure and its LEAN version.

4.2. Convergence and Prediction Accuracy Comparison

In Figure 3(a) and 3(b) we show the error convergence and
prediction accuracy plot of CNN baseline and our LEAN
along the first 50 training epochs. From error plots, we can
see that both the training and validation loss decrease to a
point of stability that indicate the two models converge well.
The validation and testing accuracy by our LEAN achieve
95% of the accuracy by the baseline CNN model. The error
and accuracy difference between training and validation are
much smaller in our LEAN compared against baseline CNN.
It suggests that our LEAN may suffer less from overfitting
than baseline. More experiment and exploration will be
conducted in our coming work to explore this direction.

4.3. Energy Consumption and CO2 Emission

We use CodeCarbon1 to measure energy consumption and
CO2 emission. CodeCarbon is an open-source Python li-
brary that estimates the produced CO2 and consumed energy
while running the code. The experiments were performed
on a local machine with 32GB Memory and 2.9 GHz Intel
Core i9 without any GPU support, so the estimation is done
by measuring the power consumption of CPUs and RAM.

The training and testing energy-consumption and CO2-
emission (by one epoch) are shown in Figure 3(c) and 3(d).
We can see that by using our proposed LEAN, we can re-
duce 30% energy consumption and CO2 emission. This
is equivalent to 125 km travelled by a regular car if we train

1https://github.com/mlco2/codecarbon

Less-Energy-Usage Network with Batch Power Iteration

(a) Baseline CNN performance (b) LEAN performance

(c) Training energy/CO2 comparison (d) Testing energy/CO2 comparison

(e) Running time comparison (f) Complexity and no.parameter comparison

Figure 3: Overall comparison between the baseline CNN and our proposed LEAN on STL-10.

1000 models with 1000 epochs.

4.4. Running Time and Complexity Comparison

The running time and computational complexity comparison
results are shown in Figure 3(e) and 3(f). Our LEAN is
1.5 times faster than baseline CNN in both training and
testing phase. We also measure the Multiply-Accumulate
Computations (MACs). Our LEAN is about one-sixth of the
baseline CNN model.

5. Conclusion
We introduce Less-Energy-Usage Network, or LEAN that
can reduce immediate network input. Different from regu-

lar network compression that transform a pre-trained huge
network to a smaller network, our method is to build a lean
and effective network in the training phase. Preliminary
result showed that our LEAN preserves 95% accuracy of the
baseline model, but at the meanwhile reduces 30% of energy
consumption and CO2 emission. Future work will focus
on 1) testing the energy consumption and CO2 emission
using GPUs on server environment; 2) exploring the effect
of our LEAN on more complicated network structures (e.g.
AlexNet, VGG16, Resnet-152, etc.). Another interesting
aspect is that from computational complexity comparison
in Figure 3(f), we can see that our LEAN has potential to
be be more efficient in terms of running time and energy
consumption. We will further optimize our implementation
and improve efficiency in saving energy.

Less-Energy-Usage Network with Batch Power Iteration

References
Cho, M., Vahid, K. A., Adya, S., and Rastegari, M. Dkm:

Differentiable k-means clustering layer for neural net-
work compression. arXiv preprint arXiv:2108.12659,
2021.

Chollet, F. Xception: Deep learning with depthwise separa-
ble convolutions. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 1251–
1258, 2017.

Coates, A., Ng, A., and Lee, H. An analysis of single-
layer networks in unsupervised feature learning. In Pro-
ceedings of the fourteenth international conference on
artificial intelligence and statistics, pp. 215–223. JMLR
Workshop and Conference Proceedings, 2011.

Faraji, S. R., Najafi, M. H., Li, B., Lilja, D. J., and Bazargan,
K. Energy-efficient convolutional neural networks with
deterministic bit-stream processing. In 2019 Design,
Automation & Test in Europe Conference & Exhibition
(DATE), pp. 1757–1762. IEEE, 2019.

Frankle, J. and Carbin, M. The lottery ticket hypothesis:
Finding sparse, trainable neural networks. arXiv preprint
arXiv:1803.03635, 2018.

He, H., Wang, J., Zhang, Z., and Wu, F. Compressing
deep graph neural networks via adversarial knowledge
distillation. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining,
pp. 534–544, 2022.

Highlander, T. and Rodriguez, A. Very efficient
training of convolutional neural networks using fast
fourier transform and overlap-and-add. arXiv preprint
arXiv:1601.06815, 2016.

Huang, H., Yoo, S., Yu, D., and Qin, H. Diverse power
iteration embeddings and its applications. In 2014 IEEE
International Conference on Data Mining, pp. 200–209.
IEEE, 2014.

Huang, H., Yoo, S., Yu, D., and Qin, H. Diverse power
iteration embeddings: Theory and practice. IEEE Trans-
actions on Knowledge and Data Engineering, 28(10):
2606–2620, 2015.

Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K.,
Dally, W. J., and Keutzer, K. Squeezenet: Alexnet-level
accuracy with 50x fewer parameters and¡ 0.5 mb model
size. arXiv preprint arXiv:1602.07360, 2016.

Khatwani, M., Hosseini, M., Paneliya, H., Mohsenin, T.,
Hairston, W. D., and Waytowich, N. Energy efficient con-
volutional neural networks for eeg artifact detection. In
2018 IEEE Biomedical Circuits and Systems Conference
(BioCAS), pp. 1–4. IEEE, 2018.

Kriman, S., Beliaev, S., Ginsburg, B., Huang, J., Kuchaiev,
O., Lavrukhin, V., Leary, R., Li, J., and Zhang, Y.
Quartznet: Deep automatic speech recognition with
1d time-channel separable convolutions. In ICASSP
2020-2020 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 6124–6128.
IEEE, 2020.

Li, S., Xue, K., Zhu, B., Ding, C., Gao, X., Wei, D., and
Wan, T. Falcon: A fourier transform based approach for
fast and secure convolutional neural network predictions.
In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 8705–8714,
2020.

Liesen, J. and Strakos, Z. Krylov subspace methods: princi-
ples and analysis. Oxford University Press, 2013.

Lin, F. and Cohen, W. W. Power iteration clustering. 2010.

Neill, J. O. An overview of neural network compression.
arXiv preprint arXiv:2006.03669, 2020.

Ng, A., Jordan, M., and Weiss, Y. On spectral clustering:
Analysis and an algorithm. Advances in neural informa-
tion processing systems, 14, 2001.

Schwartz, R., Dodge, J., Smith, N. A., and Etzioni, O. Green
ai. Communications of the ACM, 63(12):54–63, 2020.

Swaminathan, S., Garg, D., Kannan, R., and Andres, F.
Sparse low rank factorization for deep neural network
compression. Neurocomputing, 398:185–196, 2020.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,
Anguelov, D., Erhan, D., Vanhoucke, V., and Rabinovich,
A. Going deeper with convolutions. In Proceedings
of the IEEE conference on computer vision and pattern
recognition, pp. 1–9, 2015.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna,
Z. Rethinking the inception architecture for computer vi-
sion. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2818–2826, 2016.

Tan, M. and Le, Q. Efficientnet: Rethinking model scal-
ing for convolutional neural networks. In International
conference on machine learning, pp. 6105–6114. PMLR,
2019.

Yang, J., Shen, X., Xing, J., Tian, X., Li, H., Deng, B.,
Huang, J., and Hua, X.-s. Quantization networks. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 7308–7316, 2019.

Yang, P., Hsieh, C.-J., and Wang, J.-L. History pca:
A new algorithm for streaming pca. arXiv preprint
arXiv:1802.05447, 2018.

Less-Energy-Usage Network with Batch Power Iteration

Zhang, R., Zhu, F., Liu, J., and Liu, G. Depth-wise separa-
ble convolutions and multi-level pooling for an efficient
spatial cnn-based steganalysis. IEEE Transactions on In-
formation Forensics and Security, 15:1138–1150, 2019.

Zhang, S., Zhang, X., Li, H., He, H., Song, D., and Wang,
L. Hierarchical pyramid attentive network with spatial
separable convolution for crowd counting. Engineering
Applications of Artificial Intelligence, 108:104563, 2022.

