
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MTIR-SQL: MULTI-TURN TOOL-INTEGRATED REA-
SONING REINFORCEMENT LEARNING FOR TEXT-TO-
SQL

Anonymous authors
Paper under double-blind review

ABSTRACT

As large language models (LLMs) are increasingly used in Text-to-SQL tasks,
Reinforcement Learning (RL) has become a common method for improving per-
formance. Existing methods primarily rely on static execution feedback, which
restricts real-time error correction. However, integrating multi-turn tool invoca-
tion along with dynamic feedback could significantly improve adaptability and
robustness, ultimately enhancing model performance. To address these issues,
we propose MTIR-SQL, an innovative Multi-turn Tool-Integrated Reasoning
reinforcement learning framework for Text-to-SQL. Our approach introduces
an execution-aware multi-turn reasoning paradigm that seamlessly incorporates
database execution feedback at each reasoning step, enabling context-sensitive
query generation and progressive refinement throughout the reasoning process.
The framework extends the GRPO algorithm to accommodate complex multi-turn
interaction scenarios. Considering the training instability characteristics of MTIR
and the potential for significant Deviation of model distribution from the initial
model, we enhance the GRPO algorithm by adding a trajectory filtering mech-
anism and removing KL loss constraints. Experimental results demonstrate that
MTIR-SQL, with 4B parameters, achieves 64.4% accuracy in the BIRD Dev and
84.6% execution accuracy in the SPIDER Dev, significantly outperforming exist-
ing approaches.

1 INTRODUCTION

Text-to-SQL, the task of automatically translating natural language questions into executable SQL
queries, is a key technique for lowering the barrier to database access (Liu et al., 2025). By enabling
non-technical users to query structured data in natural language, it has found wide applications in
business intelligence, data analytics, and interactive question answering (Hong et al., 2025).

Existing approaches to Text-to-SQL generally fall into three paradigms: (i) supervised fine-tuning
(SFT) of domain-specific open-source models (Li et al., 2025b; 2024b); (ii) prompting closed-source
large language models (LLMs) with advanced reasoning strategies such as chain-of-thought (Li
et al., 2025a; Zhai et al., 2025; Pourreza et al., 2024); and (iii) reinforcement learning (RL)-based
methods that optimize model reasoning with algorithms such as PPO and GRPO (Pourreza et al.,
2025; Ma et al., 2025; Yao et al., 2025; Dai et al., 2025). In particular, RL methods leverage final
SQL execution results as reward signals for policy optimization. However, current practices treat
execution feedback merely as scalar rewards, wasting rich tool information and leaving static LLMs
unable to adapt their reasoning dynamically.

Recently, Multi-turn Tool-Integrated Reasoning (MTIR) has emerged as a promising paradigm for
enhancing the reasoning capabilities of LLMs. By interleaving model reasoning with external
tools—such as search engines, Python interpreters, and SQL executors—MTIR enables LLMs to
overcome intrinsic limitations in computation, retrieval, and structured manipulation. Several stud-
ies have demonstrated the benefits of RL-based optimization in tool use: Search-R1 (Jin et al., 2025)
explores dynamic tool invocation for question answering, while ToRL (Li et al., 2025c) and Effec-
tive CIR (Bai et al., 2025) design tailored RL recipes for mathematical reasoning. More recently,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

LLM
User

Schema

GRPO-Filter

Tool Call

Update

Reward

Powerful
MTIR LLM

Rollout:

LLM generation

CoT
Tool
use

Tool
response

Appended feedback

Turn 1 →

CoT
Tool
use

Tool
response

Turn 2 →

CoT
Tool
use

Tool
response

Turn T →
... Final

answer

LLM generation

An example of a reasoning trajectory:

Turn1:
assistant<think>Okay, let's tackle this problem. The user wants the top five schools with the highest enrollment ages 5-17...That should get the top five schools based on
enrollment ages 5-17, and select their NCES school numbers.</think><tool_call>{"name": "sql-execute_sql_query", "arguments": {"db_name": "california_schools", "sql":
"SELECT schools.NCESSchool FROM schools JOIN frpm ON schools.CDSCode = frpm.CDSCode ORDER BY frpm.\"Enrollment (Ages 5-17\") DESC LIMIT 5;"}}</tool_call>
user<tool_response>... - The result is:Error executing tool execute_sql_query: near ")": syntax error</tool_response>

Turn2:
assistant<think>Okay, let me check the SQL query again. The user mentioned that there was a syntax error. ...Therefore, I need to adjust the SQL query to fix the syntax
error.</think><tool_call>{"name": "sql-execute_sql_query", "arguments": {"db_name": "california_schools", "sql": "SELECT schools.NCESSchool FROM schools JOIN frpm
ON schools.CDSCode = frpm.CDSCode ORDER BY frpm.\"Enrollment (Ages 5-17)\" DESC LIMIT 5;"}}</tool_call>
user<tool_response>...... The result is:{"columns": ["NCESSchool"],"data": [{"NCESSchool": "11707"},{"NCESSchool": "04653"},{"NCESSchool": "08283"},{"NCESSchool":
"02751"},{"NCESSchool": "03050"}]}</tool_response>

Turn3:
assistant<think>Okay, let me check the user's question again. They want the top five schools by the highest enrollment (Ages 5-17)... </think>
<answer>```sqlSELECT schools.NCESSchoolFROM schoolsJOIN frpm ON schools.CDSCode = frpm.CDSCodeORDER BY frpm."Enrollment (Ages 5-17)" DESCLIMIT
5;```</answer>

Tool Response

Data Base

"db_name": "california_schools",
"sql": "SELECT `Percent (%) Eligible
Free (K-12)` FROM frpm WHERE
`County Name` = 'Alameda' ORDER
BY `Percent (%) Eligible Free (K-
12)` DESC LIMIT 1

{
 "columns": [
 "Percent (%) Eligible Free (K-12)"
],
 "data": [
 {
 "Percent (%) Eligible Free (K-12)": 1.0
 }
}

MCP Format

Figure 1: Overview of the MTIR-SQL framework. The framework integrates multi-turn reasoning
with execution feedback and extends GRPO with trajectory filtering to enable dynamic correction
and stable training, thereby enhancing SQL generation accuracy in complex scenarios.

the ReEx-SQL (Dai et al., 2025) framework extends TIR to Text-to-SQL, providing early evidence
of its potential in structured query tasks.

Despite this progress, three fundamental challenges remain. On the tool side, SQL-oriented MTIR
remains underexplored; existing efforts often rely on ad-hoc token mechanisms for tool invocation,
limiting interoperability, extensibility, and compatibility with diverse database operations (Jin et al.,
2025; Dai et al., 2025). On the RL side, dominant methods such as GRPO suffer from reward
collapse and difficulty in modeling long-horizon dependencies, leading to instability in multi-turn
tool interaction. On the framework side, current Text-to-SQL studies adopt heterogeneous, non-
standardized implementations that lack modularity and generality (Dai et al., 2025; Ma et al., 2025;
Yao et al., 2025; Gajjar et al., 2025).

To address these issues, we propose MTIR-SQL, a reinforcement learning framework for Multi-turn
Tool-Integrated Reasoning in Text-to-SQL (Figure 1). MTIR-SQL extends GRPO to handle com-
plex multi-turn interactions and introduces two key modifications: (i) a trajectory filtering mecha-
nism to discard invalid rollouts and (ii) the removal of KL regularization to mitigate distributional
collapse during training. Built on top of RL-Factory (Chai et al., 2025) with standardized MCP-
compatible tool invocation, our framework ensures extensibility and interoperability.

Our contributions are summarized as follows:

• MTIR-SQL Framework. We introduce a novel RL framework for Text-to-SQL that en-
ables LLMs to reason interactively and directly optimize via SQL execution feedback. It
incorporates retrieval-based token masking for stable training and supports multi-turn iter-
ative reasoning and execution verification.

• GRPO Extensions. We extend GRPO with SQL execution rollout expansion and trajectory
filtering to stabilize training in multi-turn tool-use scenarios, effectively mitigating reward
collapse.

• Strong Empirical Results. On the BIRD dataset, MTIR-SQL trained on Qwen-3-4B
achieves a 16% absolute improvement over baselines, matching the performance of recent
7B-coder models. It attains competitive execution accuracy, demonstrating its robustness
and effectiveness.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

2.1 RL FOR TOOL-INTEGRATED REASONING

Tool-Integrated Reasoning (TIR) has emerged as a key paradigm for augmenting large language
models by enabling interaction with external tools and APIs (Zhang et al., 2025). Early work fo-
cused on single-turn tool invocation through supervised fine-tuning approaches, demonstrating ef-
fectiveness across domains, including mathematical reasoning, code generation (Mai et al., 2025),
and search integration (Jin et al., 2025). Multi-turn TIR enables iterative reasoning through sequen-
tial tool interactions, where models repeatedly generate tool calls, execute it, and refine based on
results (Mai et al., 2025; Shang et al., 2025; Wang et al., 2025; Zeng et al., 2025; Zhao et al., 2025).
However, training stability remains a critical challenge due to distribution drift from external tool
outputs and error accumulation across reasoning rounds, often leading to training instability and
entropy collapse. Recent work like SimpleTIR (Xue et al., 2025) addresses these issues by filtering
empty rounds in multi-turn reasoning, achieving state-of-the-art performance on mathematical tasks.
Despite these advances, optimizing Multi-turn TIR for complex tasks remains challenging (Lin &
Xu, 2025; Dong et al., 2025a;b; Yu et al., 2025). We apply recent MTIR advancements, includ-
ing filtering and handling invalid turns, to the Text-to-SQL domain, improving execution feedback
management, multi-table relationship handling, and ensuring SQL semantic correctness across iter-
ations.

2.2 TEXT-TO-SQL

Text-to-SQL aims to automatically convert natural language questions into executable SQL query
statements, enabling natural language interfaces for databases. The field has evolved through three
main paradigms: supervised fine-tuning methods that train specialized models on domain-specific
datasets (Li et al., 2024b; 2025b; Yang et al., 2024; Qin et al., 2025), using closed-source large mod-
els with prompt engineering and chain-of-thought reasoning to handle complex multi-table joins and
nested queries (Li et al., 2025a; Zhai et al., 2025; Pourreza et al., 2024; 2025; Lyu et al., 2025; Pour-
reza & Rafiei, 2023; Xie et al., 2024; Cao et al., 2024), and reinforcement learning approaches using
algorithms such as GRPO to enhance reasoning capabilities and generalization (Dai et al., 2025).
Despite recent advancements, current RL-based methods exhibit significant limitations. They rely
on static context during generation and lack mechanisms for validating or correcting intermedi-
ate reasoning steps, resulting in errors that cannot be self-corrected (Ma et al., 2025; Yao et al.,
2025; Gajjar et al., 2025). Execution feedback is treated as a reward signal rather than dynamically
integrated, hindering the model’s ability to adapt to complex scenarios. The challenge persists in
incorporating execution feedback while managing database results, multi-table relationships, and en-
suring SQL semantic correctness. To address these issues, we introduce Multi-turn Tool-Integrated
Reasoning in the Text-to-SQL domain, enabling the model to improve performance through iterative
use of external tools.

3 METHODOLOGY

We propose an SQL-integrated reinforcement learning framework with GRPO-Filter, which com-
bines unconstrained optimization, selective rollout filtering, and multi-turn reasoning to improve
decision-making. The model dynamically interacts with SQL execution, refining its output through
iterative feedback. A reward mechanism focused on format, execution, and result correctness guides
the generation of high-quality SQL queries.

3.1 SQL-INTEGRATED RL WITH GRPO-FILTER

We formulate the reinforcement learning framework with SQL execution tool E as follows:

max
πθ

Ex∼D,y∼πθ(·|x;E)[rϕ(x, y)], (1)

where πθ is the LLM policy and rϕ is the reward function. Unlike prior reinforcement learning
methods that primarily rely on the policy LLM πθ(·|x) to generate rollout sequences, our framework
explicitly incorporates SQL execution-guided reasoning via πθ(·|x; E), which can be formulated as

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Vanilla GRPO Query

MTIR-SQL ···
···

······

···
···

···
··· Advantage

Policy
Optimization

QA

···
···

Group Filter

Advantage

Policy
Optimization

······

Rollout Filter

Step 1

Group A

Group N
Discard rollouts

with low variance
within group

QN

Step 3

······

Step M

···
···

Discard rollouts that
exceed max tries with

no correct answer

Thinking process

Generated SQL

Execution Result

Reflection

Invoke SQL execution

Step 2

Step 1 Step 2

Step 1 Step 2

Step 1 Step 3Step 2

Discard rollouts
with Inaccurate
tool call format

Step 1 Step 3Step 2

Step 1 Step 3Step 2

···
···

Discard rollouts

Figure 2: Compared to vanilla GRPO, our framework removes the KL constraint, introduces quality-
aware rollout filtering, and extends to multi-turn reasoning with SQL execution feedback for more
stable and accurate policy optimization.

πθ(·|x)⊗E , where ⊗ denotes the interleaved SQL generation and execution feedback. This enables
more effective decision-making in SQL generation tasks by leveraging real-time execution results
to guide the model’s reasoning process.

Our approach introduces GRPO-Filter, an enhanced variant of Group Relative Policy Optimization
(GRPO) specifically designed for complex multi-turn interactive scenarios. GRPO-Filter incorpo-
rates three key innovations:

Unconstrained Optimization: Unlike standard GRPO, we remove the KL divergence constraint
between the policy and reference model, allowing for more flexible policy updates:

LGRPO-Filter = −E(x,y)∼D

[
πθ(y|x;R)

πref(y|x;R)
·A(x, y)

]
, (2)

where A(x, y) represents the advantage function, eliminating the traditional KL penalty term β ·
KL(πθ||πref).

Selective Rollout Filtering: We implement a quality-aware filtering mechanism during rollout gen-
eration, where only high-quality trajectories satisfying predefined criteria are retained for training:

Tfiltered = {(x, y) ∈ Trollout : F(x, y) > τ}, (3)

where F(·) is the filtering function and τ is the quality threshold.

Multi-turn Extension: GRPO-Filter extends the original framework to handle complex multi-turn
interactions by maintaining conversation context and enabling iterative reasoning across multiple
dialogue turns:

πθ(yt|x, h<t;R) = πθ(yt|concat(x, h<t);R), (4)

where h<t represents the conversation history up to turn t, and yt is the response at turn t.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

This multifaceted approach allows GRPO-Filter to effectively optimize policies for reasoning-
intensive tasks while maintaining training stability and improving sample efficiency through se-
lective learning from high-quality experiences.

3.2 INTERACTION WITH SQL EXECUTION ENVIRONMENT

The integration of SQL and its execution interface with large language models (LLMs), which are
capable of comprehending and generating query intentions, can significantly enhance the automa-
tion of complex database operations. In an LLM-based SQL tool invocation environment, the system
should exhibit human-like interactive and reasoning behaviors. These behaviors include generating
syntactically correct and logically sound SQL queries from natural language questions, invoking
database execution interfaces at appropriate moments, and executing queries safely. Additionally,
the system should carefully interpret query results, verify their correctness, and refine subsequent
problem decomposition or query generation strategies based on feedback. This capability is cul-
tivated through guiding the model via multi-turn interaction and reflective learning with the SQL
execution environment. Detailed prompt of sql Execution can be found in Appendix C.1.

With the support of SQL tools, the model dynamically incorporates database query results into
the reasoning process through multi-turn execution, as illustrated in Figure 1. Unlike conventional
methods that generate a complete SQL query until an end-of-sequence (EOS) token is produced,
our approach constructs the full reasoning trajectory through continuous interaction with the SQL
execution environment. The first interaction begins with a system prompt followed by the user’s
question, with detailed content available in Appendix C.1. The model, acting as the assistant, gen-
erates an initial response until it outputs an EOS token. If no SQL tool call is detected, the process
terminates. When an SQL query is identified, the environment service extracts and safely executes
it, then appends the execution result to the dialogue context in the user role. The model subsequently
continues its reasoning as the assistant based on the updated context, producing the next turn of re-
sponse. This multi-turn process iterates until the model returns a final answer or a maximum number
of turns, denoted as T , is reached. Detailed content can be found in Appendix B.

3.3 REWARD DESIGN

To optimize policy effectively, we introduce a streamlined reward mechanism that focuses on critical
elements of SQL query quality. This framework incorporates three key factors—syntax validity,
execution feasibility, and semantic precision—each providing distinct guidance to ensure the model
generates SQL queries that are syntactically correct, executable, and semantically meaningful.

Format Reward. We guide the model to maintain a specific sequence of tags, ensur-
ing a structured response. The response should follow a strict order: starting with
<think>...</think>, followed optionally by <tool call>...</tool response>,
and concluding with the <answer>...</answer> tag. Additionally, all tools must be used
within <tool call>...</tool call> and <tool response>...</tool response>
tags to maintain a standardized flow.

Rf =

{
0.1, if the format is correct,
−0.1, if the format is incorrect.

(5)

Execution Reward. This reward evaluates the syntactic correctness and executability of the gen-
erated SQL. It prevents the model from producing invalid or overly complex queries. If the SQL
statement fails to execute, the model will not receive subsequent rewards. Furthermore, the execu-
tion time is constrained to discourage the generation of unnecessarily complex queries:

Re =


0.1, if the SQL query is executable,
0, if the format is incorrect,
−0.1, if the SQL query is not executable.

(6)

Result Reward. The correctness of query results is a crucial measure of semantic fidelity. To
encourage faithful reasoning, we design the result reward to strongly differentiate between correct

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Comparison between MTIR-SQL and other models (Under 10B parameters)

Model Size BIRD Dev (EX%)
Granite-8B-Code-Instruct Mishra et al. (2024) 8B 27.6
Granite-31.8B-InstructMishra et al. (2024) 8B 36.0
OpenCoder-8B-Instruct Huang et al. (2025) 8B 37.5
Meta-Llama-3.1B-Instruct Team (2024) 8B 42.0
DPSK-Coder-6.7B-Instruct Guo et al. (2024) 6.7B 43.1
Qwen2.5-Coder-3B-Instruct Hui et al. (2024) 3B 48.1
Qwen2.5-Coder-7B-Instruct Hui et al. (2024) 7B 50.9
SFT Code5-7B Li et al. (2024b) 7B 57.17
Think2SQL-7B Papicchio et al. (2025) 7B 56.1
SQL-R1 + Qwen2.5-Coder-3B Ma et al. (2025) 3B 54.6
SQL-R1 + Qwen2.5-Coder-7B Ma et al. (2025) 7B 63.1
CogniSQL-R1-Zero + Qwen2.5-Coder-7BGajjar et al. (2025) 7B 59.17

MTIR-SQL + Qwen3-4B(Ours) 4B 64.4

and incorrect outputs:

Rr =


1, if the query result is correct,
0, if the format is incorrect or the SQL is not executable,
−1, if the query result is incorrect.

(7)

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We train and evaluate our model on two Text-to-SQL benchmarks, SPIDER (Yu et al.,
2019) and BIRD (Li et al., 2023), which assess different aspects of the task. SPIDER is a large-scale,
cross-domain benchmark focused on SQL complexity, with 10,181 questions and 5,693 unique
queries across 200 databases. BIRD addresses real-world scenarios, featuring 12,751 question-SQL
pairs on 95 large-scale databases with ”dirty” data and evaluating both accuracy and efficiency.To
ensure both training efficiency and SQL generation accuracy, this study follows the principles of
”high quality, executable, and low redundancy” for data filtering and optimization. For the training
of the BIRD and SPIDER benchmarks, we prioritize execution validity checks. Batch execution of
reference SQL queries revealed that some samples returned empty results, which, if used for RL
training, would fail to provide valid reward signals and could lead to learning biases or ”reward
hacking.”

Baselines. We compare our MTIR-SQL framework against two primary categories of baseline meth-
ods. For supervised fine-tuning, we evaluate Qwen2.5-Coder-7B-Instruct (Hui et al., 2024) , a state-
of-the-art code generation model fine-tuned on Text-to-SQL datasets using standard cross-entropy
loss. For reinforcement learning without tool integration, we implement GRPO on the Qwen3-4B
model, using execution accuracy as the reward signal to optimize SQL generation through policy
gradient methods. Both baselines use identical training procedures and computational budgets as
our proposed framework but lack access to intermediate execution feedback during generation, al-
lowing us to isolate the contribution of Multi-turn Tool-Integrated Reasoning.

Experimental Details. We conduct experiments using the Qwen3-Instruct model. During training
and inference, we adopt database prompts from CodeS (Li et al., 2024b) and SQL-R1 (Ma et al.,
2025), which provide curated schema components, values, and metadata, and have demonstrated
competitive performance on the BIRD benchmark. We employ algorithms such as PPO and GRPO
within the RL-Factory framework (Chai et al., 2025).The training configuration uses a batch size
of 64 and a learning rate of 1e-6. During the rollout phase, we sample 5 outputs for each input
at temperature T = 0.6, set the maximum sequence length to 8192, and the maximum number of
interactions to N = 6. During inference, we apply greedy decoding (T = 0.0). We use SQLite as the

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Comparison between MTIR-SQL and other models (10B–30B parameters)

Model Size BIRD Dev (EX%)
Granite-20B-Code-Instruct (Mishra et al., 2024) 20B 34.0
Starcoder-15B-Instruct (Lozhkov et al., 2024) 15B 38.5
DPSK-Coder-V2-Instruct (MoE) (DeepSeek-AI et al., 2024) 16B 44.6
Codestral-22B (team, 2024) 22B 52.7
Qwen2.5-14B-Instruct (Hui et al., 2024) 14B 56.7
SFT Code5-15B (Li et al., 2024b) 15B 58.47

MTIR-SQL + Qwen3-4B (Ours) 4B 64.4

Table 3: Comparison between MTIR-SQL and large-scale models

Model Size BIRD Dev (EX%)
Open-source Models
Granite-34B-Code-Instruct (Mishra et al., 2024) 34B 33.8
Codestral Base (Li et al., 2023) 175B 34.35
Mixtral-8x7B-Instruct (MoE) (Jiang et al., 2024) 47B 35.3

Proprietary Models
ChatGPT Baseline (Li et al., 2023) – 37.22
Claude-3 (Li et al., 2023) – 42.70
GPT-4 Baseline (Li et al., 2023) – 46.35
ChatGPT-4 Baseline (DeepSeek-AI et al., 2024) – 49.2
Mistral Baseline (Li et al., 2023) 123B 53.52
DeepSeek Baseline (Li et al., 2023) 236B 56.13
SuperSQL (NLSQL-1360) (Li et al., 2024a) – 58.50
ChatGPT + CoT (Li et al., 2023) – 64.64
MTIR-SQL + Qwen3-4B (Ours) 4B 64.4

SQL executor to obtain execution feedback. The feedback includes column headers and cell values
for up to 10 rows. All experiments are conducted on a system equipped with 8 NVIDIA A100 GPUs.

4.2 MAIN RESULT

Performance on Main Benchmarks. In the first set of comparisons (Tables 1, 2, and 3), we evaluate
MTIR-SQL against models with different parameter sizes, ranging from under 10B to large-scale
models. As shown in Table 1, our MTIR-SQL model (4B) achieves 64.4% on the BIRD Dev set,
which is significantly higher than the other models under 10B parameters. The next best-performing
model, SFT Code5-7B, achieves 57.17%, marking a clear advantage for our model despite its smaller
size.

In Table 2, MTIR-SQL (4B) continues to outperform all models in the 10B-30B parameter range,
where the best result from SFT Code5-15B is 58.47%. This demonstrates the efficiency of MTIR-
SQL in achieving competitive performance even with a smaller model size. Similarly, in Table 3,
we compare MTIR-SQL to large-scale models, including both open-source and proprietary mod-
els. Despite the large model sizes (up to 236B parameters), MTIR-SQL (4B) achieves comparable
performance to models such as ChatGPT + CoT (64.64%) and SuperSQL (58.50%), showing the
robustness and scalability of our approach in handling complex Text-to-SQL tasks.

Performance on Reasoning Paradigms. In Table 4, we evaluate the performance of different
reasoning paradigms on Text-to-SQL benchmarks, specifically focusing on Pass@1 performance
across the SPIDER and BIRD datasets. The results highlight the effectiveness of multiturn tool-
integrated reasoning. Among the reasoning paradigms, multi-turn TIR with GRPO-Filter leads to
the highest performance on both the BIRD and SPIDER benchmarks. The BIRD Dev score of
63.1% represents a significant improvement over standard reasoning and tool-integrated reasoning

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 4: Performance comparison of reasoning paradigms on benchmarks with pass@1.

Reasoning Paradigm Training Type BIRD Dev SPIDER Dev SPIDER Test
EX (%) EX (%) EX (%)

Direct Output – 46.9 69.2 70.8
Standard Reasoning – 48.1 72.5 72.9
Tool-Integrated Reasoning – 47.6 71.1 73.6

Standard Reasoning GRPO 58.9 78.2 79.1
Multi-turn TIR PPO 58.2 77.2 79.2
Multi-turn TIR GRPO 60.3 80.1 81.4
Multi-turn TIR GRPO-Filter 63.1 82.4 83.4

paradigms, which score 48.1% and 47.6%, respectively. In SPIDER Dev and Test, multi-turn TIR
with GRPO filter also excels, achieving 82.4% and 83.4%, respectively, marking a clear advantage
over other paradigms.

This reinforces the importance of incorporating execution feedback through multi-turn reasoning for
enhancing performance in real-world Text-to-SQL tasks, particularly when dealing with complex
databases like SPIDER and BIRD.

4.3 ABLATION STUDY

Ablation Study of RL Methods. To assess the effectiveness of MTIR-SQL, we conducted com-
parisons against PPO, GRPO, and our improved GRPO-Filter using the Qwen3-4B model. As il-
lustrated in Figure 3 and summarized in Table 4, GRPO converges more rapidly than PPO due to
the absence of a critic warm-up phase, but it often suffers from reward collapse in later training
stages. PPO, in contrast, provides greater stability but at the cost of slower convergence. Crucially,
GRPO-Filter addresses these limitations by selectively filtering low-quality rollouts and removing
the KL constraint, thereby stabilizing multi-turn training while achieving substantial performance
gains. This demonstrates that our modifications are not merely incremental but essential for enabling
robust reinforcement learning in execution-aware Text-to-SQL tasks.

Figure 3: Comparing the impact of different RL Methods on training and performance.

Figure 4: Comparing the impact of different max turns on training and performance.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Ablation Study on Max Turns. We further analyzed the impact of maximum tool calling turns by
conducting experiments with settings of 1, 3, and 6. The training curves are shown in Figure 4, and
the quantitative results are summarized in Table 4. The main findings are as follows: (1) Larger Max
Turns generally lead to higher final rewards and stronger overall performance. More turns provide
the model with additional opportunities to explore, optimize responses, and execute complex tasks;
(2) However, excessive turns (such as 6) may also result in training instability, occasionally causing
reward saturation or collapse phenomena; (3) Although Max Turns = 1 demonstrates faster conver-
gence, due to severely limited interaction flexibility, there exists a gap between the final performance
and optimal values.

Table 5: Ablation of Reward Components for
MTIR-SQL on BIRD Dev.

Reward Components BIRD Dev (EX %)
MTIR-SQL 63.1
w/o Rformat 62.3 ↓ (0.8)
w/o Rexec 59.4 ↓ (3.9)
w/o Rresult 58.8 ↓ (4.3)

Figure 5: Ablation of Reward Components
for MTIR-SQL on BIRD Dev Reward.

Ablation Study on Reward Design. This ablation study evaluates the impact of removing each
reward component on the model’s performance using the BIRD Development set:

• Rf (Exploration Reward): Removing the exploration reward shows that a moderate in-
crease in its value (from 0 to 0.1) improves performance from 62.3% to 63.1%, a 0.8%
increase. However, further increases (to 0.2) cause a significant drop in performance, from
63.1% to 60.5% (a 4.1% decline), indicating that excessive exploration rewards can nega-
tively impact performance. A slight recovery is observed at 0.3 (60.5% to 61.2%, a 1.2%
increase), suggesting that a balanced exploration reward is beneficial, but it should not be
overemphasized.

• Re (Execution Reward): Removing the execution reward results in the largest perfor-
mance drop, from 63.1% to 59.4% (a 3.9% decrease), highlighting its crucial role in the nat-
ural language-to-SQL conversion process. Without execution-based feedback, the model
struggles to make accurate predictions.

• Rr (Result Reward): Excluding the result reward leads to a smaller decline in perfor-
mance, from 63.1% to 58.8% (a 4.3% drop), underlining its importance in ensuring the
functional correctness of the model’s SQL queries.

In conclusion, removing any reward—particularly Re—significantly hampers the model’s perfor-
mance. This underscores the necessity of a balanced reward system that integrates execution feed-
back, exploration, and result accuracy for optimal performance.

5 CONCLUSION

We propose MTIR-SQL, a novel reinforcement learning framework for complex multi-turn SQL
generation tasks. MTIR-SQL’s central innovation resides in its feedback-driven reasoning approach,
where execution results inform subsequent reasoning iterations, creating a self-correcting mecha-
nism that substantially improves generation stability and query accuracy. We extend GRPO with
trajectory filtering to mitigate distribution drift and remove KL divergence constraints to enhance
learning efficiency. Experimental results demonstrate MTIR-SQL’s effectiveness: achieving 64.4%
accuracy on BIRD-SQL and 84.6% execution accuracy on SPIDER with a 4B-parameter model,
significantly outperforming baseline methods and advancing state-of-the-art in Text-to-SQL gener-
ation.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

6 ETHICS STATEMENT

This study uses publicly available datasets (BIRD and SPIDER) and does not involve private or
confidential data. No human participants are included, and we ensure fairness and transparency in
our model’s design and deployment.

7 REPRODUCIBILITY STATEMENT

The model code, datasets, and experimental setup are available upon request. Detailed instructions
for reproducing our experiments are provided to ensure transparency and facilitate further research
in the Text-to-SQL domain.

REFERENCES

Fei Bai, Yingqian Min, Beichen Zhang, Zhipeng Chen, Wayne Xin Zhao, Lei Fang, Zheng Liu,
Zhongyuan Wang, and Ji-Rong Wen. Towards effective code-integrated reasoning, 2025. URL
https://arxiv.org/abs/2505.24480.

Zhenbiao Cao, Yuanlei Zheng, Zhihao Fan, Xiaojin Zhang, Wei Chen, and Xiang Bai. RSL-SQL:
Robust Schema Linking in Text-to-SQL Generation, 2024. URL https://arxiv.org/abs/
2411.00073.

Jiajun Chai, Guojun Yin, Zekun Xu, Chuhuai Yue, Yi Jia, Siyu Xia, Xiaohan Wang, Jiwen Jiang,
Xiaoguang Li, Chengqi Dong, Hang He, and Wei Lin. Rlfactory: A plug-and-play reinforcement
learning post-training framework for llm multi-turn tool-use, 2025. URL https://arxiv.
org/abs/2509.06980.

Yaxun Dai, Wenxuan Xie, Xialie Zhuang, Tianyu Yang, Yiying Yang, Haiqin Yang, Yuhang Zhao,
Pingfu Chao, and Wenhao Jiang. Reex-sql: Reasoning with execution-aware reinforcement learn-
ing for text-to-sql, 2025. URL https://arxiv.org/abs/2505.12768.

DeepSeek-AI, Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang, Peiyi Wang, Runxin Xu, Y. Wu,
Yukun Li, Huazuo Gao, Shirong Ma, Wangding Zeng, Xiao Bi, Zihui Gu, Hanwei Xu, Damai
Dai, Kai Dong, Liyue Zhang, Yishi Piao, Zhibin Gou, Zhenda Xie, Zhewen Hao, Bingxuan Wang,
Junxiao Song, Deli Chen, Xin Xie, Kang Guan, Yuxiang You, Aixin Liu, Qiushi Du, Wenjun Gao,
Xuan Lu, Qinyu Chen, Yaohui Wang, Chengqi Deng, Jiashi Li, Chenggang Zhao, Chong Ruan,
Fuli Luo, and Wenfeng Liang. Deepseek-coder-v2: Breaking the barrier of closed-source models
in code intelligence, 2024. URL https://arxiv.org/abs/2406.11931.

Guanting Dong, Yifei Chen, Xiaoxi Li, Jiajie Jin, Hongjin Qian, Yutao Zhu, Hangyu Mao, Guorui
Zhou, Zhicheng Dou, and Ji-Rong Wen. Tool-star: Empowering llm-brained multi-tool reasoner
via reinforcement learning, 2025a. URL https://arxiv.org/abs/2505.16410.

Guanting Dong, Hangyu Mao, Kai Ma, Licheng Bao, Yifei Chen, Zhongyuan Wang, Zhongxia
Chen, Jiazhen Du, Huiyang Wang, Fuzheng Zhang, Guorui Zhou, Yutao Zhu, Ji-Rong Wen, and
Zhicheng Dou. Agentic reinforced policy optimization, 2025b. URL https://arxiv.org/
abs/2507.19849.

Kushal Gajjar, Harshit Sikchi, Arpit Singh Gautam, Marc Hammons, and Saurabh Jha. Cognisql-
r1-zero: Lightweight reinforced reasoning for efficient sql generation, 2025. URL https://
arxiv.org/abs/2507.06013.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wenfeng Liang. Deepseek-coder: When the
large language model meets programming – the rise of code intelligence, 2024. URL https:
//arxiv.org/abs/2401.14196.

Zijin Hong, Zheng Yuan, Qinggang Zhang, Hao Chen, Junnan Dong, Feiran Huang, and Xiao
Huang. Next-generation database interfaces: A survey of llm-based text-to-sql, 2025. URL
https://arxiv.org/abs/2406.08426.

10

https://arxiv.org/abs/2505.24480
https://arxiv.org/abs/2411.00073
https://arxiv.org/abs/2411.00073
https://arxiv.org/abs/2509.06980
https://arxiv.org/abs/2509.06980
https://arxiv.org/abs/2505.12768
https://arxiv.org/abs/2406.11931
https://arxiv.org/abs/2505.16410
https://arxiv.org/abs/2507.19849
https://arxiv.org/abs/2507.19849
https://arxiv.org/abs/2507.06013
https://arxiv.org/abs/2507.06013
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2406.08426

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Siming Huang, Tianhao Cheng, J. K. Liu, Jiaran Hao, Liuyihan Song, Yang Xu, J. Yang, Jiaheng Liu,
Chenchen Zhang, Linzheng Chai, Ruifeng Yuan, Zhaoxiang Zhang, Jie Fu, Qian Liu, Ge Zhang,
Zili Wang, Yuan Qi, Yinghui Xu, and Wei Chu. Opencoder: The open cookbook for top-tier code
large language models, 2025. URL https://arxiv.org/abs/2411.04905.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun
Zhang, Bowen Yu, Keming Lu, Kai Dang, Yang Fan, Yichang Zhang, An Yang, Rui Men,
Fei Huang, Bo Zheng, Yibo Miao, Shanghaoran Quan, Yunlong Feng, Xingzhang Ren, Xu-
ancheng Ren, Jingren Zhou, and Junyang Lin. Qwen2.5-coder technical report, 2024. URL
https://arxiv.org/abs/2409.12186.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, Gi-
anna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-
Anne Lachaux, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le
Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed.
Mixtral of experts, 2024. URL https://arxiv.org/abs/2401.04088.

Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, Sercan Arik, Dong Wang, Hamed Zamani, and
Jiawei Han. Search-r1: Training llms to reason and leverage search engines with reinforcement
learning, 2025. URL https://arxiv.org/abs/2503.09516.

Boyan Li, Yuyu Luo, Chengliang Chai, Guoliang Li, and Nan Tang. The dawn of natural language
to sql: Are we fully ready? Proceedings of the VLDB Endowment, 17(11):3318–3331, July
2024a. ISSN 2150-8097. doi: 10.14778/3681954.3682003. URL http://dx.doi.org/10.
14778/3681954.3682003.

Boyan Li, Jiayi Zhang, Ju Fan, Yanwei Xu, Chong Chen, Nan Tang, and Yuyu Luo. Alpha-sql:
Zero-shot text-to-sql using monte carlo tree search, 2025a. URL https://arxiv.org/abs/
2502.17248.

Haoyang Li, Jing Zhang, Hanbing Liu, Ju Fan, Xiaokang Zhang, Jun Zhu, Renjie Wei, Hongyan
Pan, Cuiping Li, and Hong Chen. Codes: Towards building open-source language models for
text-to-sql, 2024b. URL https://arxiv.org/abs/2402.16347.

Haoyang Li, Shang Wu, Xiaokang Zhang, Xinmei Huang, Jing Zhang, Fuxin Jiang, Shuai Wang,
Tieying Zhang, Jianjun Chen, Rui Shi, Hong Chen, and Cuiping Li. Omnisql: Synthesizing high-
quality text-to-sql data at scale, 2025b. URL https://arxiv.org/abs/2503.02240.

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, Bowen Li, Bailin Wang, Bowen Qin,
Rongyu Cao, Ruiying Geng, Nan Huo, Xuanhe Zhou, Chenhao Ma, Guoliang Li, Kevin C. C.
Chang, Fei Huang, Reynold Cheng, and Yongbin Li. Can llm already serve as a database
interface? a big bench for large-scale database grounded text-to-sqls, 2023. URL https:
//arxiv.org/abs/2305.03111.

Xuefeng Li, Haoyang Zou, and Pengfei Liu. Torl: Scaling tool-integrated rl, 2025c. URL https:
//arxiv.org/abs/2503.23383.

Heng Lin and Zhongwen Xu. Understanding tool-integrated reasoning, 2025. URL https://
arxiv.org/abs/2508.19201.

Xinyu Liu, Shuyu Shen, Boyan Li, Peixian Ma, Runzhi Jiang, Yuxin Zhang, Ju Fan, Guoliang Li,
Nan Tang, and Yuyu Luo. A survey of text-to-sql in the era of llms: Where are we, and where are
we going?, 2025. URL https://arxiv.org/abs/2408.05109.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Noua-
mane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang Liu, Max Tian, De-
nis Kocetkov, Arthur Zucker, Younes Belkada, Zijian Wang, Qian Liu, Dmitry Abulkhanov,
Indraneil Paul, Zhuang Li, Wen-Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue Zhuo,
Evgenii Zheltonozhskii, Nii Osae Osae Dade, Wenhao Yu, Lucas Krauß, Naman Jain, Yix-
uan Su, Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai, Niklas Muennighoff, Xian-
gru Tang, Muhtasham Oblokulov, Christopher Akiki, Marc Marone, Chenghao Mou, Mayank

11

https://arxiv.org/abs/2411.04905
https://arxiv.org/abs/2409.12186
https://arxiv.org/abs/2401.04088
https://arxiv.org/abs/2503.09516
http://dx.doi.org/10.14778/3681954.3682003
http://dx.doi.org/10.14778/3681954.3682003
https://arxiv.org/abs/2502.17248
https://arxiv.org/abs/2502.17248
https://arxiv.org/abs/2402.16347
https://arxiv.org/abs/2503.02240
https://arxiv.org/abs/2305.03111
https://arxiv.org/abs/2305.03111
https://arxiv.org/abs/2503.23383
https://arxiv.org/abs/2503.23383
https://arxiv.org/abs/2508.19201
https://arxiv.org/abs/2508.19201
https://arxiv.org/abs/2408.05109

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Mishra, Alex Gu, Binyuan Hui, Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas Patry, Can-
wen Xu, Julian McAuley, Han Hu, Torsten Scholak, Sebastien Paquet, Jennifer Robinson, Car-
olyn Jane Anderson, Nicolas Chapados, Mostofa Patwary, Nima Tajbakhsh, Yacine Jernite, Car-
los Muñoz Ferrandis, Lingming Zhang, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro von
Werra, and Harm de Vries. Starcoder 2 and the stack v2: The next generation, 2024. URL
https://arxiv.org/abs/2402.19173.

Shuai Lyu, Haoran Luo, Ripeng Li, Zhonghong Ou, Jiangfeng Sun, Yang Qin, Xiaoran Shang,
Meina Song, and Yifan Zhu. Sql-o1: A self-reward heuristic dynamic search method for text-to-
sql, 2025. URL https://arxiv.org/abs/2502.11741.

Peixian Ma, Xialie Zhuang, Chengjin Xu, Xuhui Jiang, Ran Chen, and Jian Guo. Sql-r1: Training
natural language to sql reasoning model by reinforcement learning, 2025. URL https://
arxiv.org/abs/2504.08600.

Xinji Mai, Haotian Xu, Zhong-Zhi Li, Xing W, Weinong Wang, Jian Hu, Yingying Zhang, and Wen-
qiang Zhang. Agent rl scaling law: Agent rl with spontaneous code execution for mathematical
problem solving, 2025. URL https://arxiv.org/abs/2505.07773.

Mayank Mishra, Matt Stallone, Gaoyuan Zhang, Yikang Shen, Aditya Prasad, Adriana Meza So-
ria, Michele Merler, Parameswaran Selvam, Saptha Surendran, Shivdeep Singh, Manish Sethi,
Xuan-Hong Dang, Pengyuan Li, Kun-Lung Wu, Syed Zawad, Andrew Coleman, Matthew White,
Mark Lewis, Raju Pavuluri, Yan Koyfman, Boris Lublinsky, Maximilien de Bayser, Ibrahim
Abdelaziz, Kinjal Basu, Mayank Agarwal, Yi Zhou, Chris Johnson, Aanchal Goyal, Hima Pa-
tel, Yousaf Shah, Petros Zerfos, Heiko Ludwig, Asim Munawar, Maxwell Crouse, Pavan Ka-
panipathi, Shweta Salaria, Bob Calio, Sophia Wen, Seetharami Seelam, Brian Belgodere, Car-
los Fonseca, Amith Singhee, Nirmit Desai, David D. Cox, Ruchir Puri, and Rameswar Panda.
Granite code models: A family of open foundation models for code intelligence, 2024. URL
https://arxiv.org/abs/2405.04324.

Simone Papicchio, Simone Rossi, Luca Cagliero, and Paolo Papotti. Think2sql: Reinforce llm
reasoning capabilities for text2sql, 2025. URL https://arxiv.org/abs/2504.15077.

Mohammadreza Pourreza and Davood Rafiei. Din-sql: Decomposed in-context learning of text-to-
sql with self-correction, 2023. URL https://arxiv.org/abs/2304.11015.

Mohammadreza Pourreza, Hailong Li, Ruoxi Sun, Yeounoh Chung, Shayan Talaei, Gaurav Tar-
lok Kakkar, Yu Gan, Amin Saberi, Fatma Ozcan, and Sercan O. Arik. Chase-sql: Multi-path
reasoning and preference optimized candidate selection in text-to-sql, 2024. URL https:
//arxiv.org/abs/2410.01943.

Mohammadreza Pourreza, Shayan Talaei, Ruoxi Sun, Xingchen Wan, Hailong Li, Azalia Mirho-
seini, Amin Saberi, and Sercan ”O. Arik. Reasoning-sql: Reinforcement learning with sql tailored
partial rewards for reasoning-enhanced text-to-sql, 2025. URL https://arxiv.org/abs/
2503.23157.

Yang Qin, Chao Chen, Zhihang Fu, Ze Chen, Dezhong Peng, Peng Hu, and Jieping Ye. Route:
Robust multitask tuning and collaboration for text-to-sql, 2025. URL https://arxiv.org/
abs/2412.10138.

Ning Shang, Yifei Liu, Yi Zhu, Li Lyna Zhang, Weijiang Xu, Xinyu Guan, Buze Zhang, Bingcheng
Dong, Xudong Zhou, Bowen Zhang, Ying Xin, Ziming Miao, Scarlett Li, Fan Yang, and Mao
Yang. rstar2-agent: Agentic reasoning technical report, 2025. URL https://arxiv.org/
abs/2508.20722.

Llama Team. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.
21783.

Mistral AI team. Codestral — mistral ai, May 2024. URL https://mistral.ai/news/
codestral.

Renxi Wang, Rifo Ahmad Genadi, Bilal El Bouardi, Yongxin Wang, Fajri Koto, Zhengzhong Liu,
Timothy Baldwin, and Haonan Li. Agentfly: Extensible and scalable reinforcement learning for
lm agents, 2025. URL https://arxiv.org/abs/2507.14897.

12

https://arxiv.org/abs/2402.19173
https://arxiv.org/abs/2502.11741
https://arxiv.org/abs/2504.08600
https://arxiv.org/abs/2504.08600
https://arxiv.org/abs/2505.07773
https://arxiv.org/abs/2405.04324
https://arxiv.org/abs/2504.15077
https://arxiv.org/abs/2304.11015
https://arxiv.org/abs/2410.01943
https://arxiv.org/abs/2410.01943
https://arxiv.org/abs/2503.23157
https://arxiv.org/abs/2503.23157
https://arxiv.org/abs/2412.10138
https://arxiv.org/abs/2412.10138
https://arxiv.org/abs/2508.20722
https://arxiv.org/abs/2508.20722
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://mistral.ai/news/codestral
https://mistral.ai/news/codestral
https://arxiv.org/abs/2507.14897

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Wenxuan Xie, Gaochen Wu, and Bowen Zhou. Mag-sql: Multi-agent generative approach with soft
schema linking and iterative sub-sql refinement for text-to-sql, 2024. URL https://arxiv.
org/abs/2408.07930.

Zhenghai Xue, Longtao Zheng, Qian Liu, Yingru Li, Xiaosen Zheng, Zejun Ma, and Bo An. Sim-
pletir: End-to-end reinforcement learning for multi-turn tool-integrated reasoning, 2025. URL
https://arxiv.org/abs/2509.02479.

Jiaxi Yang, Binyuan Hui, Min Yang, Jian Yang, Junyang Lin, and Chang Zhou. Synthesizing text-to-
sql data from weak and strong llms, 2024. URL https://arxiv.org/abs/2408.03256.

Zhewei Yao, Guoheng Sun, Lukasz Borchmann, Zheyu Shen, Minghang Deng, Bohan Zhai, Hao
Zhang, Ang Li, and Yuxiong He. Arctic-text2sql-r1: Simple rewards, strong reasoning in text-to-
sql, 2025. URL https://arxiv.org/abs/2505.20315.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai,
Tiantian Fan, Gaohong Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guang-
ming Sheng, Yuxuan Tong, Chi Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu,
Jiaze Chen, Jiangjie Chen, Chengyi Wang, Hongli Yu, Yuxuan Song, Xiangpeng Wei, Hao
Zhou, Jingjing Liu, Wei-Ying Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingx-
uan Wang. Dapo: An open-source llm reinforcement learning system at scale, 2025. URL
https://arxiv.org/abs/2503.14476.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene Li,
Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir Radev. Spider: A large-scale human-
labeled dataset for complex and cross-domain semantic parsing and text-to-sql task, 2019. URL
https://arxiv.org/abs/1809.08887.

Siliang Zeng, Quan Wei, William Brown, Oana Frunza, Yuriy Nevmyvaka, and Mingyi Hong.
Reinforcing multi-turn reasoning in llm agents via turn-level credit assignment, 2025. URL
https://arxiv.org/abs/2505.11821.

Bohan Zhai, Canwen Xu, Yuxiong He, and Zhewei Yao. Excot: Optimizing reasoning for text-to-sql
with execution feedback, 2025. URL https://arxiv.org/abs/2503.19988.

Guibin Zhang, Hejia Geng, Xiaohang Yu, Zhenfei Yin, Zaibin Zhang, Zelin Tan, Heng Zhou,
Zhongzhi Li, Xiangyuan Xue, Yijiang Li, Yifan Zhou, Yang Chen, Chen Zhang, Yutao Fan, Zihu
Wang, Songtao Huang, Yue Liao, Hongru Wang, Mengyue Yang, Heng Ji, Michael Littman, Jun
Wang, Shuicheng Yan, Philip Torr, and Lei Bai. The landscape of agentic reinforcement learning
for llms: A survey, 2025. URL https://arxiv.org/abs/2509.02547.

Weikang Zhao, Xili Wang, Chengdi Ma, Lingbin Kong, Zhaohua Yang, Mingxiang Tuo, Xiaowei
Shi, Yitao Zhai, and Xunliang Cai. Mua-rl: Multi-turn user-interacting agent reinforcement learn-
ing for agentic tool use, 2025. URL https://arxiv.org/abs/2508.18669.

13

https://arxiv.org/abs/2408.07930
https://arxiv.org/abs/2408.07930
https://arxiv.org/abs/2509.02479
https://arxiv.org/abs/2408.03256
https://arxiv.org/abs/2505.20315
https://arxiv.org/abs/2503.14476
https://arxiv.org/abs/1809.08887
https://arxiv.org/abs/2505.11821
https://arxiv.org/abs/2503.19988
https://arxiv.org/abs/2509.02547
https://arxiv.org/abs/2508.18669

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A USE OF LLMS

In this work, we use Large Language Models (LLMs) for text refinement and grammar checking.
LLMs help improve the clarity, coherence, and grammatical accuracy of the generated content,
ensuring the final text meets academic standards. Their use is limited to enhancing written content,
without influencing the research methodology or decision-making process.

B LLM RESPONSE ROLLOUT WITH MULTI-TURN SQL EXCURSIONS CALLS

The algorithm describes the response generation process of a generative model (e.g., LLM) based
on multi-turn interactions. The core idea of the algorithm is to progressively generate a response
sequence based on the user’s input and previous responses. In each generation step, the model
evaluates the current output and interacts with external tools for validation (e.g., executing SQL
queries). The results returned by the tool are then integrated into the generated response. The entire
process is conducted within a maximum action budget to ensure that the final output meets the
problem’s requirements and is validated for accuracy. After each round, the model adjusts its output
based on the results, continuing until a complete response is achieved or the budget limit is reached.

Algorithm 1 LLM Response Rollout with Multi-Turn SQL Execution Tool Calls
Require: Input query x, policy model πθ, SQL execution tool T , maximum action budget B.
Ensure: Final response y.

1: Initialize rollout sequence y ← ∅
2: Initialize action count b← 0
3: while b < B do
4: Initialize current action LLM rollout sequence yb ← ∅
5: while True do
6: Generate response token yt ∼ πθ(·|x, y, yb)
7: Append yt to rollout sequence yb ← yb + yt
8: if yt ∈ ⟨tool call⟩, ⟨tool response⟩, ⟨eos⟩ then
9: break

10: end if
11: end while
12: y ← y + yb
13: if ⟨tool call⟩ detected in yb then
14: Extract SQL query q ← Parse(yb, ⟨tool call⟩, ⟨tool call⟩)
15: Retrieve SQL query results d← T (q)
16: Insert d into rollout y ← y + ⟨tool response⟩d⟨tool response⟩
17: else if ⟨tool response⟩ detected in yb then
18: return final generated response y
19: else
20: Ask for rethink y ← y + ⟨My action is not correct. Let me rethink.⟩
21: end if
22: Increment action count b← b+ 1
23: end while
24: return final generated response y

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

C PROMPT AND CASE STUDY

Prompts used while training and several cases are presented as follows.

C.1 SYSTEM PROMPT

System Prompt of Tool

##Tools

You may call one or more functions to assist with the user query.

You are provided with function signatures within <tools></tools> XML tags:

<tools>
{"name": "sql-execute sql query", "description": "

Execute SQL query and return partial results
containing column names (maximum 10 records).

Args:db name (str): The name of the database.
sql (str): The SQL query to execute.

Returns:Dict[str, Union[List[Dict], Dict, None]]: A
dictionary containing ’columns’ and ’data’ of the
query (maximum of 10 records).

Raises: TimeoutError: If the query execution exceeds
the timeout.

sqlite3.Error: If an error occurs during the query
execution.

",
"parameters": {
"type": "object",
"properties": {
"db name": {"title": "Db Name", "type": "string"},
"sql": {"title": "Sql", "type": "string"}

},
"required": ["db name", "sql"]

}
}
</tools>

For each function call, return a JSON object with function name and arguments within
<tool call></tool call> XML tags:

<tool call>
{"name": <function-name>, "arguments": <args-json-object

>}
</tool call}

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

C.2 USER PROMPT

Prompts used while training and evaluating

You are a helpful SQL expert assistant. You should first think about how to write the SQL
query by analyzing the question, database schema, and external knowledge, then validate
your SQL with the tool until it is correct. Finally, you provide the final SQL query in
<answer> </answer>.
Task Configuration
Database Engine: SQLite
Database: {db id}
Database Schema: {schema}
User Question: {external knowledge} + {question}?
Requirements

1. Precision: Make sure you only output the information that is asked in the question.
If the question asks for a specific column, make sure to only include that column in
the SELECT clause, nothing more.

2. Completeness: The generated query should return all of the information asked in
the question without any missing or extra information.

3. Correctness: Before generating the final SQL query, please think through the steps
of how to write the query. Validate your SQL through tool testing.

Output Format:
Important: Use EITHER thinking + tool calls OR thinking + final answer. Do not mix the
structures.
Option A (when validation needed):
<think> Your analysis... </think>
[Tool calls for validation]

Option B (final answer):
<think> Your final analysis... </think>
<answer>
‘‘‘sql
YOUR SQL QUERY
</answer>

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

C.3 CASE STUDY

Case1 Single Turn

USER QUESTION

Exclusively virtual refers to Virtual = ’F’. How many schools with an average score in Math
greater than 400 in the SAT test are exclusively virtual?

MODEL RESPONSE

<think>
Okay, let’s tackle this problem. The user is asking for the number of schools that are ex-
clusively virtual (Virtual = ’F’) and have an average math score greater than 400 in the SAT
test.... So the query should be correct.
</think>
<tool call>

{
"name": "sql-execute sql query",
"arguments": {
"db name": "california schools",
"sql": "SELECT COUNT(*) FROM satscores JOIN schools ON satscores

.cds = schools.CDSCode WHERE schools.Virtual = ’F’ AND
satscores.AvgScrMath > 400;"

}
}

</tool call>
<tool response>

The result is:{
"columns": [
"COUNT(*)"

],
"data": [
{
"COUNT(*)": 4

}
]

}

</tool response>
<think>
Okay, let me check the user’s question again. They want the number of schools that are
exclusively virtual (Virtual = ’F’) and have an average math score greater than 400 in the
SAT.....The result from the tool is 4, so that’s the answer.
</think>
<answer>
“‘sql

SELECT COUNT(*) FROM satscores JOIN schools ON satscores.cds =
schools.CDSCode WHERE schools.Virtual = ’F’ AND satscores.
AvgScrMath > 400;

“‘
</answer>

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Case2 Multi-Turn

USER QUESTION

calcium refers to element = ’ca’; label = ’+’ mean molecules are carcinogenic; label = ’-
’ means molecules are non-carcinogenic; MAX(label).Among the molecules with element
Calcium, are they mostly carcinogenic or non carcinogenic?

MODEL RESPONSE

Turn 1
<think>
Alright, let’s solve this problem. The user wants to know whether molecules containing cal-
cium element (element ’Ca’) are mostly carcinogenic or not. Label ’+’ means carcinogenic,
’-’ means non-carcinogenic. So, we need to find the maximum label value for molecules
containing calcium... So the final SQL query will be to select the maximum label from
molecules that contain calcium atoms.
</think>
<tool call>
{

"name": "sql-execute sql query",
"arguments": {
"db name": "toxicology",
"sql": "SELECT MAX(m.label) AS max label FROM molecule m JOIN

atom a ON m.molecule id = a.molecule id WHERE a.element = ’
Ca’;"

}
}

</tool call>
<tool response>
The result is:: {

"columns": [
"max label"

],
"data": [
{
"max label": null

}
]

}

</tool response>
Turn 2
<think>
Hmm, the SQL query result returns max label as null. This is unexpected. Let me check the
query again. Maybe the label in the molecule table is stored as a string, but perhaps the query
didn’t correctly select the label... Let me try the corrected query.
</think>
<tool call>
{

"name": "sql-execute sql query",
"arguments": {
"db name": "toxicology",
"sql": "SELECT MAX(m.label) AS max label FROM molecule m JOIN

atom a ON m.molecule id = a.molecule id WHERE a.element = ’
CA’;"

}
}

</tool call>
<tool response>

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

The result is: {
"columns": [
"max label"

],
"data": [
{
"max label": null

}
]

}

</tool response>
Turn 3
<think>
Wait, the result is still null. Let me think again. Maybe the label is stored as a string in the
molecule table, but the query didn’t select it correctly. Let me try the corrected query.
</think>
<tool call>

{
"name": "sql-execute sql query",
"arguments": {
"db name": "toxicology",
"sql": "SELECT MAX(m.label) AS max label FROM molecule m JOIN

atom a ON m.molecule id = a.molecule id WHERE a.element = ’
ca’;"

}
}

</tool call>
<tool response>

The result is: {
"columns": [
"max label"

],
"data": [
{
"max label": "-"

}
]

}

</tool response>
Turn 4
<think>
Okay, so after adjusting the query to use ‘ca’ as the element, the result is that the max label
is ‘-’. That means among the molecules with calcium atoms, the maximum label is ‘-’, which
indicates they are non-carcinogenic. Therefore, the answer should be that they are mostly
non-carcinogenic.
</think>
<answer>
“‘sql

SELECT MAX(m.label) AS max label FROM molecule m JOIN atom a ON m.
molecule id = a.molecule id WHERE a.element = ’ca’;

“‘
</answer>

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Case3 Multi-Turn

USER QUESTION

What is the number of SAT test takers of the schools with the highest FRPM count for K-12
students?

MODEL RESPONSE

Turn 1
<think>
Alright, let me solve this problem. The user is asking about the number of SAT test takers
at schools with the highest FRPM count for K-12 students. First, I need to determine which
tables are involved.... Let me verify using the tool.
</think>
<tool call>

{
"name": "sql-execute sql query",
"arguments": {
"db name": "california schools",
"sql": "SELECT SUM(s.NumTstTakr) FROM satscores s JOIN frpm f ON

s.cds = f.CDSCode WHERE f.\"FRPM Count (K-12)\" = (SELECT
MAX(\"FRPM Count (K-12)\") FROM frpm);"

}
}

</tool call>
<tool response>

{
"columns": [
"SUM(s.NumTstTakr)"

],
"data": [
{
"SUM(s.NumTstTakr)": null

}
]

}

</tool response>
Turn 2
<think>
Hmm, the SQL query returned a sum result of null. This is not right. Let me check the query
again. Maybe there’s an error in the column names or table names... Let me test again.
</think>
<tool call>

{
"name": "sql-execute sql query",
"arguments": {
"db name": "california schools",
"sql": "SELECT SUM(s.NumTstTakr) FROM satscores s JOIN frpm f ON

s.cds = f.CDSCode WHERE f.\"FRPM Count (K-12)\" = (SELECT
MAX(\"FRPM Count (K-12)\") FROM frpm);"

}
}

</tool call>
<tool response>

{
"columns": [
"SUM(s.NumTstTakr)"

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

],
"data": [
{
"SUM(s.NumTstTakr)": null

}
]

}

</tool response>
Turn 3
<think>
Hmm, the result is still null. This is strange. Maybe there’s an issue with the query structure.
I need to check if the column name in the frpm table is really named ”FRPM Count (K-12)”
or if there’s a spelling error. Let me try again.
</think>
<tool call>

{
"name": "sql-execute sql query",
"arguments": {
"db name": "california schools",
"sql": "SELECT SUM(s.NumTstTakr) FROM satscores s JOIN frpm f ON

s.cds = f.CDSCode WHERE f.\"FRPM Count (K-12)\" = (SELECT
MAX(\"FRPM Count (K-12)\") FROM frpm);"

}
}

</tool call>
<tool response>

{
"columns": [
"SUM(s.NumTstTakr)"

],
"data": [
{
"SUM(s.NumTstTakr)": null

}
]

}

</tool response>
Turn 4
<think>
Maybe I should first check what the maximum value of FRPM Count (K-12) in the frpm
table is. Let me write a query to get that value.
</think>
<tool call>

{
"name": "sql-execute sql query",
"arguments": {
"db name": "california schools",
"sql": "SELECT SUM(s.NumTstTakr) FROM satscores s JOIN frpm f ON

s.cds = f.CDSCode WHERE f.\"FRPM Count (K-12)\" = (SELECT
MAX(\"FRPM Count (K-12)\") FROM frpm);"

}
}

</tool call>
<tool response>

{
"columns": [
"SUM(s.NumTstTakr)"

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

],
"data": [
{
"SUM(s.NumTstTakr)": null

}
]

}

</tool response>
<think>
Maybe there’s an issue with the column names or the tables not joining correctly. Let me
think again. Maybe I should check if the satscores table has data for schools in the frpm
table.... I think this should work. Let me use this as the final query.
</think>
<tool call>

{
"name": "sql-execute sql query",
"arguments": {
"db name": "california schools",
"sql": "SELECT SUM(s.NumTstTakr) FROM satscores s JOIN (SELECT

CDSCode FROM frpm WHERE \"FRPM Count (K-12)\" = (SELECT MAX
(\"FRPM Count (K-12)\") FROM frpm)) AS top frpm ON s.cds =
top frpm.CDSCode;"

}
}

</tool call>
<tool response>

{
"columns": [
"SUM(s.NumTstTakr)"

],
"data": [
{
"SUM(s.NumTstTakr)": 217547

}
]

}

</tool response>
Turn 5
<think>
The tool response shows a result of 217547, which seems to be a valid number.
</think>
<answer>
“‘sql

SELECT SUM(s.NumTstTakr) FROM satscores s JOIN (SELECT CDSCode FROM
frpm WHERE "FRPM Count (K-12)" = (SELECT MAX("FRPM Count (K-12)"
) FROM frpm)) AS top frpm ON s.cds = top frpm.CDSCode;

“‘
</answer>

22

	Introduction
	Related Work
	RL for Tool-Integrated Reasoning
	Text-to-SQL

	Methodology
	SQL-Integrated RL with GRPO-Filter
	Interaction with SQL Execution Environment
	Reward Design

	Experiments
	Experimental Setup
	Main Result
	Ablation Study

	conclusion
	Ethics Statement
	Reproducibility Statement
	Use of LLMs
	LLM Response Rollout with Multi-Turn Sql Excursions Calls
	Prompt and Case Study
	System Prompt
	User Prompt
	Case study

