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ABSTRACT

This work studies intragroup sparsity, a fine-grained structural constraint on net-
work weight parameters. It eliminates the computational inefficiency of fine-
grained sparsity due to irregular dataflow, while at the same time achieving high
inference accuracy. We present theoretical analysis on how weight group sizes
affect sparsification error, and on how the performance of pruned networks changes
with sparsity level. Further, we analyze inference-time I/O cost of two different
strategies for achieving intragroup sparsity and how the choice of strategies af-
fect I/O cost under mild assumptions on accelerator architecture. Moreover, we
present a novel training algorithm that yield models of improved accuracies over
the standard training approach under the intragroup sparsity constraint.

1 INTRODUCTION

State-of-the-art performance of deep neural networks in many application domains has set off the
trend in real-world deployment of these models. Models of superior performance are often of high
computing complexity due to large network widths and depths. The resulting high cost and high
latency are often prohibitive for resource-limited devices.

Various methods have been proposed to produce lightweight networks to improve computational
efficiency while maintaining satisfactory model performance (Han et al., 2015; Howard et al., 2017).
A widely used technique, network pruning removes unimportant weights to yield sparse models of
potentially lower computational complexity. Pruning can be either fine-grained, i.e. individual weights
are independently subject to removal (Han et al., 2015), or structured (coarse-grained), i.e. weights
are removed in groups, such as entire channels or blocks of weights inside a convolutional filter (Mao
et al., 2017). Fine-grained pruning typically yields models with higher parameter efficiency, but
often does not improve computational efficiency at inference time due to the irregularity in data flow
resulting from haphazard sparsity patterns. Structured pruning, however, can improve computational
efficiency, but seldom reach comparable levels of parameter efficiency (Mao et al., 2017).

To push beyond the frontier set by this tradeoff and achieve both high accuracy and high computational
efficiency, this work studies intragroup sparsity (Fig. 1a). In contrast to unconstrained fine-grained
sparse network, intragroup-sparse weight tensors are subdivided into small groups such that active
weight pruning yields a fixed number of nonzero weights in each group. The groups are arranged to
be contiguous along the dimension of either output or input channels. As such, the intragroup-sparse
structural constraint eliminates the data inflow irregularity associated with unconstrained fine-grained
sparse networks, which, with proper hardware acceleration as recently revealed by Pool (2020), can
realize speedup of fine-grained sparse network inference that scales linearly with the model sparsity
level. Using a novel pruning-during-training algorithm, we show that the weight group size can be
made small (such as 8 and 16) without significantly degrading the accuracy of a model.

Contributions:

• We present theoretical analysis on how weight group size and sparsity level affect intragroup
fine-grained weight sparsification error and the resulting generalization performance of the model.

• We propose a training solution that overcomes the difficulty of optimizing intragroup sparse
networks (Yao et al., 2019) with small weight group sizes. Our method produces models that
outperform state-of-the-art lightweight architectures and pruned models with structured sparsity.
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• We analyze inference I/O cost of cross-channel (CC) sparsity and bank-balanced (BB) sparsity (Yao
et al., 2019), two different approaches for achieving intragroup sparsity, and demonstrate the
advantage of CC sparsity for hardware acceleration under mild assumptions.

The rest of this article is organized as follows. Sec. 2 summarizes relevant literature. Sec. 3 defines
the intragroup sparsity structure and explains the resulting efficiency for inference. Sec. 4 gives a
theoretical analysis on how the intragroup sparsity constraint affects model performance. Sec. 5
describes the pruning algorithm designed to optimize performance under the intragroup sparse
constraint, with a demonstration of the advantage of our pruning algorithm over the iterative pruning
method employed by Yao et al. (2019). Sec. 6 summarizes empirical experimental results of training
networks of intragroup sparsity versus other structured sparse and lightweight architectures. Sec. 7
concludes the article.
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Figure 1: The CC sparsity constraint and the associated accelerator datapath for general matrix
multiplication (GEMM), in comparison with BB sparsity. (a) An illustration of CC sparsity imposed
on an 8× 8 weight matrix with G = 4, s = 1. See main text for details. (b) GEMM with a CC-sparse
weight matrix, illustrated for the same pattern as in (a). (c) CC-sparse GEMM dataflow for the case in
(b). Illustrated is a single operation involving elements highlighted with red rectangles in (b). Partial
sum H is persistent in PE’s register (output-stationary). (d, e) Similar to (b, c), for BB sparsity. See
main text for details.

2 RELATED WORK

Lightweight convolutional neural network (CNN) architectures: Recent lightweight architec-
tures such as MobileNet (Howard et al., 2017) and MobileNetV2 (Sandler et al., 2018), decompose
convolutional layers into filters along different spatial dimensions. Specifically, they employ depth-
wise separable convolutions, reducing the computation complexity. Group convolution (Gao et al.,
2018; Huang et al., 2018; Ma et al., 2018; Zhang et al., 2017) goes one step further by separating
convolution operations into groups, removing the connections across filter groups. The proposed
intragroup sparsity structure has the advantage over group convolution in that it reduces input
dimensionality without suffering from the strong constraint of separating input into groups.
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Sparse CNNs: Reducing network redundancy through pruning (or sparsification) of a large network
is an alternative of creating compact networks. Unstructured pruning removes individual network
weights that meet certain criteria (Han et al., 2015) and generates networks of fine-grained sparsity, a
technique shown effective in considerable reduction of model sizes. But fine-grained sparse models
are often hardware-inefficient at inference time. Structured pruning removes network connections
under constraints that allow efficient model inference (Li et al., 2016; Mao et al., 2017; Narang et al.,
2017; Wen et al., 2016). However, structured pruning procedures do not offer the same level of
parameter efficiency as unstructured pruning (Mao et al., 2017; Yao et al., 2019).

Intragroup sparsity: Intragroup sparsity (Zhou et al., 2010) is originally proposed as a form
of model regularization, where the `1,2-norm is used to induce sparsity within a group of model
parameters for feature selection. Wu et al. (2018) adopts intragroup sparsity structure to overcome
the irregularity associated with their dendritic neural networks; their weight group is constructed
across dendritic subkernels with fixed connection maps. In this study, the cross-channel (CC) weight
groups are constructed across network channels with learned connection maps.

Bank-balanced sparsity: A different approach to the same end is bank-balanced (BB) sparsity (Yao
et al., 2019), also employed by recently unveiled Nvidia Ampere GPU architecture (Pool, 2020). In
contrast to CC sparsity, BB-sparse weight groups are contiguous blocks from different input channels
instead of output channels (i.e., weights from the same rows instead of columns in Fig. 1d). Compared
to ours, the group sizes chosen in Yao et al. (2019) are much larger, a much weaker constraint less
suited for high accelerator speedup. Further, here we describe a training algorithm that significantly
outperforms the iterative pruning technique employed by Yao et al. (2019), yielding more efficient
models with small group sizes (see Sec. 3.3). Moreover, here we show that CC sparsity, under mild
architectural assumptions, is more conducive for specialized hardware acceleration.

3 INTRAGROUP SPARSITY

3.1 THE INTRAGROUP SPARSITY STRUCTURE

Pruned networks with unstructured, fine-grained sparsity patterns often lead to model inference
inefficiency on popular hardware accelerators (Cao et al., 2019; Han et al., 2016; Mao et al., 2017;
Parashar et al., 2017; Zhang et al., 2016; Zhou et al., 2018). To address the computing inefficiency
associated with fine-grained sparse networks, we study the intragroup sparse structural constraint, a
sparsity pattern applicable to both convolutional and dense layer parameters.

For clarity, let us use a fully-connected network layer with CC sparsity as an example to explain the
concept. We represent its input by column vector x ∈ RN , its weights by a matrix W ∈ RM×N

and its output column vector h ∈ RM , s.t. h = W × x is satisfied. For example, for the weight
matrix W illustrated in Fig. 1a, we have M = 8, N = 8, and each row of W contains weights for
one output channel in h. To impose intragroup sparsity constraint on W , it is first partitioned into
groups. For each weight group, a fixed number of weights are set to zero by sparsification; see Fig. 1a
for an example of pruning with a weight group size of G = 4 and s = 1 nonzero weights per group.
This means the weights for each group are from 4 channels (rows in W ) among which there is 1
nonzero component. As such, we can compress every G = 4 rows in sparsified W into exactly s = 1

rows of compressed weights, yielding Ŵ . Each new row in Ŵ has the same number of columns as
the original weight matrix. To identify the original row within which a weight in Ŵ is located in
W , a row index accompanies each weight in the compressed matrix (this index specifies to which
row in h we add the multiplication result). For this example of G = 4, we require a 2-bit index for
each weight (shown as the red matrix at the bottom of Fig. 1a). In general, one needs s log2 G index
bits for each weight group–even though the theoretical number of index bits is slightly smaller, it
is practical to use the plain index to avoid extra decoding overhead. Small group sizes incur lower
overhead in the extra storage and the I/O requirements associated with weight indices, while at the
same time place stronger constraints on the model, yielding lower accuracy (see Sec. 5).

3.2 EFFICIENT INFERENCE WITH INTRAGROUP SPARSE NETWORKS

To demonstrate that intragroup sparsity can eliminate irregular data access so as to enable efficient
neural network inference, let us consider the standard general matrix-matrix multiplication (GEMM),
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the core computation routine heavily used in neural network inference for both convolutional and
fully-connected network architectures (Chetlur et al., 2014; Dukhan, 2019). Specifically, compute
H = W ×X with weight matrix W , input X , and multiplication result H . First, we consider
W ,X,H ∈ RN×N in their dense forms, as shown in Fig. 1b. We present a naive form of the
GEMM as in Alg. 1. The number of computational steps of the naive procedure for this case is N3.

Algorithm 1: Dense matrix-matrix multiplica-
tion. Access to H,W , andX is sequential, with
H,W stored in row major, X in column major.

Require: W ,X ∈ RN×N , H = 0 .
Ensure: H = W ×X

for i← 0 to N − 1 by 1
for j ← 0 to N − 1 by 1

for k ← 0 to N − 1 by 1
Hi,j ← Hi,j +Wi,kXk,j

Algorithm 2: Intragroup-sparse matrix-matrix
multiplication. Access to Ŵ ,X is sequential, with
H, Ŵ stored in row major, X in column major.

Require: Ŵ ,X ∈ RN×N , H = 0 .
Ensure: H = Ŵ ×X

for i← 0 to N/G− 1 by 1
for j ← 0 to N − 1 by 1

for k ← 0 to N − 1 by 1

(I, V )← (Ŵi,k[index], Ŵi,k[value])
HGi+I,j ← HGi+I,j + V Xk,j

Next, let us compress the weight matrix W into a CC intragroup-sparse format Ŵ . In this case, if
we assume a group size of G = 4 with s = 1, we reduce the size of the weight matrix by a factor
of G/s = 4 times. Each element in Ŵ now has two components: a weight value and an index. We
denote them by Ŵi,k[value] and Ŵi,k[index], respectively. The GEMM computation is then Alg. 2
(for clarity, we assume s = 1 here). With intragroup sparsity, we reduce the number of computational
steps by a factor of G to N3/G. At the same time, the dataflow of reading Ŵ and X remains
continuous and regular, as in the dense case. The dataflow of matrix H is also continuous at the
group level. Irregularity only remains inside each step when the index I associated with each weight
is used to access the corresponding element inside the output group. This can be overcome through
making a whole group of elements of H persistent in on-chip registers, thereby circumventing the
latency and inefficiency caused by irregular off-chip memory access Cao et al. (2019).

Thus, intragroup sparsity constraint improves the dataflow of unstructured fine-grained sparse net-
works. Furthermore, thanks to the introduction of the weight group structure, intragroup sparsity
enables splitting execution along the boundaries of weight groups, enabling parallel processing and
matrix-tilling-based data reuse for further improvement of inference efficiency.

3.3 CROSS-CHANNEL SPARSITY vs. BANK-BALANCED SPARSITY

The intragroup-sparse structure we introduced above build weight groups across different network
output channel, we refer to it as cross-channel (CC) sparsity. Similarly, in Cao et al. (2019); Yao et al.
(2019), the authors propose and demonstrate the performance of the complementary, bank-balanced
(BB) sparsity structure. CC sparsity is similar to BB sparsity in that both introduce uniformly sized
weight groups in network parameters, and both associate an index with each compressed weight. The
central difference between the two structures is illustrated in Fig. 1: CC-sparse weight groups span
different output channels (G = 4 contiguous weights of the same color, as in Fig. 1b. For example,
W0,0,W1,0,W2,0, andW3,0 form a weight group, and they are compressed into a single weight in
Ŵ as Ŵ0,0. Assume W2,0 is the weight that survives the pruning process; that is, a weight index of 2
is associated with Ŵ0,0. Then, the weight value of Ŵ0,0 is multiplied with the X0,j , and accumulated
to the corresponding H2,j . This computational procedure is illustrated in Fig. 1c.

In contrast, for BB sparsity (Yao et al., 2019), weight groups are formed by weights that correspond
to different inputs (G = 4 contiguous weights of the same color, as illustrated in Fig. 1d). Thus, the
index associated with the compressed weights is used to allocate the corresponding input elements
inside a group, as illustrated in Fig. 1e.

A number of recent studies on specialized neural network accelerators show that data I/O, namely
reading/writing data from/to off-chip memory, dominates the total energy budget (Zhou et al., 2018).
Dataflow designs differ drastically among existing accelerators so as to optimize system efficiency
for specific use cases (Deng et al., 2020). Though a thorough I/O complexity analysis (Jia-Wei &
Kung, 1981) for either CC or BB sparsity on all accelerator designs is beyond the scope of this study,
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we analyze an important case with mild assumptions on accelerator architecture to demonstrate a
clear advantage of CC over BB sparsity.

In this analysis, we assume that each processing element (PE) contains an adequate number of
registers necessary for the implementation of GEMM involving either a CC- or a BB-sparse weight
matrix. No matrix tiling or other data parallelism is considered here. For the CC-sparse case, we
use the output stationary dataflow; that is, for each stride, we set up G registers for the output
accumulation results of a group (contiguous blocks of the same color, as in matrix H of Fig. 1c). We
keep those G registers persistent for maximum reuse. Inside a stride, for each calculation step, we
read one element from Ŵ and one element from X . There are N steps inside each stride. At the end
of a stride, we write G elements of H into host memory. The number of groups inside H is N2/G.
Thus, the total memory I/O count for the multiplication is (2N +G)×N2/G = 2N3/G+N2.

In the case of BB sparsity, for each stride (Fig. 1e), we first read G elements from X and store them
in PE registers for maximum reuse. Then, for each computational step, we read one element from
Ŵ , and one from H . We not only need to read one element but also to write it, because it contains
a partial summation result, only except for the first step when every element in H is zero. Finally,
we have the same number of strides to that in the CC case. Therefore, for the BB-sparse case, the
memory I/O count is (3N + G) × N2/G − N2 = 3N3/G. The difference of I/O requirements
between these two cases is N3/G−N2. Since N is typically much larger than G, CC sparsity can
significantly reduce the I/O complexity in this case.

4 IMPACT OF INTRAGROUP SPARSITY CONSTRAINTS

Because intragroup sparsity imposes a structural constraint on the network model, it limits model
capacity. In this section we present both theoretical and empirical analyses to assess this impact.

Consider a pre-trained network layer subject to the intragroup-sparse constraint. Here we use a fully
connected network layer for the sake of clarity. We denote by W the weight matrix in dense form,
where each row of W corresponds to one output channel. Assume that each weight element in
W ∈ RM×N independently has the same probability Ps (sparsity level) of being zero. Partition the
N weights of each row into g = N

G groups, each group of size G. Denote by s = G(1 − Ps) the
number of slots available for the storage of the nonzero weight values in each group. For simplicity,
assume g,G, s ∈ N+. Given each weight in W has the same probability of being nonzero, the
number of nonzero weights i falling in each weight group is(

G

i

)
(1− Ps)

iPG−i
s . (1)

If i > s for a weight group, then i− s nonzero weights must be discarded. Thus,

Pd =

∑G
i=1 1(i > s)(i− s)B(i, G, 1− Ps)

s
(2)

is the probability of any weight failing to be assigned to an encoding slot; here 1(·) is the indicator
function. By Eqn. 2, we plot the relationship among Pd, the group size G and the sparsity ratio
Ps in Fig. 2a. For the same sparsity Ps, Pd steadily increases as the group size G decreases. In
addition, for the same group size G, Pd is significantly larger at a higher sparsity level Ps.

To gain insight into how the group size affects model accuracy, we apply the intragroup sparsity
structure on a pre-trained MobileNetV2 with a sparsity ratio of 75% (sparse pointwise layers only, as
most of compute is in the pointwise operations). As illustrated in Fig. 2b, while we aim at enforcing
the same sparsity ratio of 75% on models, a smaller group size causes more severe performance
degradation, correlated with the rising allocation error rate when we decrease the group size.

5 TRAINING INTRAGROUP-SPARSE MODELS

The abovementioned results (Fig. 2b) are obtained by post-training imposition of intragroup sparsity
on pre-trained models, models optimized without the intragroup sparsity constraint during training.
In this section, we present an algorithm that trains intragroup-sparse networks from scratch.

5



Under review as a conference paper at ICLR 2021

10

0.3

0.2

0.1

0.0

Group size

100 1000

(a)

CIFAR-100

ImageNet

4

70

60

50

40

Group size

A
cc

u
ra

cy
 (

%
)

8 Original16

(b)

TD

PT

4

70.0

69.6

69.2

68.8

Group size

A
cc

u
ra

cy
 (

%
)

8 No-group16

(c)

3Dense

72

70

68

66

64

62

Target rate (/16)

A
cc

u
ra

cy
 (

%
)

6 15129

No-group

CCI-sparse

(d)

Figure 2: Impact of the intragroup sparsity constraint. (a) Probabilities of a nonzero weight failing
to be allocated an encoding slot, for various group sizes and sparsity levels Ps of 1

2 ,
3
4 ,

7
8 , and 15

16 .
The group sizes G plotted are 2, 4, · · · , 1024. (b) The effect of group size (G = 4, 8, and 16, s =
1, 2, and 4, respectively) on accuracy (for CIFAR-100 and ImageNet) of a pre-trained MobileNetV2
intragroup-sparsified to 75% sparsity ratio. Original: model not subject to the intragroup sparsity
structure. We re-calibrate the batch-normalization statistics after model pruning, but no model fine-
tuning is conducted. (c) A comparison between TD and PT pruning in generating intragroup-sparse
networks. No-group: no intragroup sparsity imposed. (d) The effect of sparsity level on model
accuracy and a comparison between models with and without intragroup sparsity constraint. Group
size G = 16. Dense: the original dense model.

There are two classes of approaches to training a sparse neural network. One is to prune a pre-trained
dense network, followed by post-training (PT) fine-tuning (Han et al., 2015; Zhu & Gupta, 2017;
Yao et al., 2019); this approach is used by Yao et al. (2019) for training BB-sparse networks. The
other is to learn the sparse structure directly; e.g. targeted dropout (TD) (Gomez et al., 2018) and
dynamic sparse reparameterization (Mocanu et al., 2018; Mostafa & Wang, 2019) belong to this
category. Both approaches are known to yield sparse neural network models of similar performance.

As analyzed above, the strength of the intragroup sparsity constraint is negatively correlated with the
group size G. A small group size (ideal for hardware acceleration), e.g. G = 8, imposes a strong
constraint on model capacity (see Fig. 2). Since the probability of any important weights being
pruned away is high with small group sizes, we hypothesize that models would have higher accuracy
if they were given opportunities to recover pruned weights and to fine-tune to the intragroup-sparse
constraint. In contrast, during iterative PT pruning, a pruned weight does not have the chance of
being recovered. Our hypothesis predicts that PT pruning would yield models of inferior performance
than TD. We test the hypothesis with experiments described in the following.
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Figure 3: (a) The weight distributions in the original (red) and proposed (blue) dropout ramping
model training. Solid lines: weights from the pruning pool. Dashed lines: weights protected from
pruning. The dropout ratio ramping causes more weights in the pruning pool to shrink toward 0. (b)
Efficiency-accuracy tradeoff for the ImageNet classification task compared among various lightweight
and pruned network architectures. The horizontal axis corresponds to the total operation counts
(in FLoPs). For MobileNetV1, MobileNetV2, and ShuffleNetV1, we also include the results from
models with the width multiplied by various scales. MobileNetV2 with intragroup sparsity: Yellow
triangles: G = 8, s = 2, with width scales of 1.0, 1.4 and 2.0, trained for 120 epochs; Red inverted
triangles: G = 8 with s = 1, 2, 3 and 4, trained for 400 epochs.
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5.1 IMPROVED TARGETED DROPOUT

We propose an improved version of TD for training intragroup-sparse models. TD training begins
with a dense network structure. During the course of training, a set of candidate network connections
are selected based on a specific policy (in our case, we target weights of low absolute magnitude
for pruning). Then, candidate connections are dropped with a specified probability similar to
dropout (Srivastava et al., 2014).

In the original TD paper (Gomez et al., 2018), the authors increase the size of the dropout candidate
pool during training and use a fixed 50% dropout ratio. While their approach is successful on small
datasets reported, we find that this strategy does not yield models of competitive accuracy when
applied to training on the ImageNet dataset Russakovsky et al. (2015). Gomez et al. (2018) suggest
that TD causes the unimportant connections in the pruning pool to shrink toward zero due to `2
regularization. This property is important, as the weights in the pruning pool participate in the model
training with a fixed probability, and if those weights are of significant magnitude, they would affect
the running mean and variance statistics of the batch-normalization layers in the network, leading to
inferior model performance (Li et al., 2018).

As shown in Fig. 3a, the pruned weights are actually of significant magnitudes in our model. Ideally,
those pruned weights should stay at the value of exact zero such that they would not affect batch-
normalization. A possible mitigation is to use a higher dropout rate for the TD, giving weights in the
pruning pool a higher chance to shrink toward zero. However, this also lowers the chance of recovery
of a pruning candidate weight. To solve this problem, we schedule the candidate dropout rate from an
initial 50% toward 100% to make the candidate weights eventually shrink towards 0 while allowing
the weights a higher chance of recovery at the early stage of model training. As shown in Fig. 3a, the
dropout rate ramping indeed causes more pruned weights to shrink toward zero. This improvement
leads to significantly higher model test accuracy. In a typical case with G = 8 and s = 2, a 75%
sparsity ratio, a MobileNetV2 model trained on the ImageNet dataset reaches a top-1 accuracy of
69.8% (ramping dropout) vs. 64.8% (fixed 50% dropout rate).

Appropriate model regularization can often lead to improved generalization performance (Li et al.,
2016; Wen et al., 2016). For the main part of this study, we use a simple `2 regularizer and rely on TD
to induce intragroup sparsity. Our preliminary investigation (Appendix A.2) suggests that exclusive
Lasso regularization can improve model training and yield higher test accuracy. Further investigation
is necessary to understand the interaction between exclusive Lasso regularization and TD training.

5.2 CHOICES OF GROUP SIZE FOR TARGETED DROPOUT vs. ITERATIVE PRUNING

For intragroup sparsity, small group sizes require less weight index storage, as well as smaller register
file sizes, improving data locality that leads to smaller area and less wiring in hardware design and
a lower energy cost for register file accessing Yang et al. (2018). However, as explained in Sec. 3,
small group sizes impose a strong constraint on models and lead to inferior performances–a tradeoff.
How do TD and PT training compare with each other in terms of tolerating small group sizes?

To address this question, we experiment with MobileNetV2 models with all pointwise layer sparsity
ratio at 75% for various group sizes, trained with TD and with PT. As longer training typically leads
to higher model accuracy, we set the number of training epochs such that model in the no-group
setting has very similar accuracies under TD and PT, to make a fair comparison. For TD, all models
are trained for 120 epochs. For PT, the models are first trained for 120 epochs and then iteratively
pruned for additional 60 epochs. As shown in Fig. 2c, smaller weight group sizes indeed cause more
accuracy loss than a large group size (similar behavior is observed with BB sparsity, results not
shown). More importantly, though PT yields similar accuracy to TD when no intragroup sparsity
is imposed (no-group), accuracy of models trained with TD degrade much more gracefully with
increasing sparsity than those trained with PT, even though PT involves additional epochs of iterative
pruning.

5.3 EFFECT OF SPARSITY LEVELS

As revealed in Fig. 2a, the probability of a model to allocate an encoding space successfully for
a certain nonzero weight decreases with increasing sparsity level. Here we verify this theoretical
conjecture empirically. As shown in Fig. 2d, we observe diminished accuracies when models are
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pruned to higher sparsity levels. Models trained with vs. without the intragroup sparsity constraint
at medium and low sparsity levels did not differ significantly in accuracy. Perhaps, the structural
constraint also biases models toward better generalization performance under mild sparsity level
as suggested in Zhou et al. (2010). A substantial accuracy drop happens at sparsity level of 15

16 ,
consistent with our theoretical prediction.

6 EXPERIMENTAL RESULTS

In this section, we employ a combination of the abovementioned techniques, in attempt to produce
intragroup-sparse networks with as low computing complexity as possible at given accuracies. Exper-
iments are conducted on the ImageNet Russakovsky et al. (2015) and CIFAR-10 datasets Krizhevsky
& Hinton (2009). To demonstrate the applicability of intragroup sparsity to various network archi-
tectures, we prune both heavyweight models, such as VGG and ResNet, and also a more parameter
efficient model, MobileNetV2. For details of the experimental setting see Appendix A.1.

Results on the CIFAR-10 dataset: The results of ResNet-32 and VGG-16 models trained on the
CIFAR-10 dataset are presented in Tabs. A.1 ,A.2 (see Appendix). We further compare our result
of VGG-16 with a structured sparse model as described in Li et al. (2016), where entire filters are
targeted for pruning. intragroup-sparse models also show a clear advantage in this case.

Results on the ImageNet dataset: For ImageNet, we first compare the test accuracy of intragroup-
sparse MobileNetV2 (pruned pointwise layer only) with that of lightweight architectures from the
latest literature (Huang et al., 2018; Sun et al., 2018; Ma et al., 2018; Howard et al., 2017) in Fig. 3b.
The results of different model sizes from these reports are shown here. For a fair comparison, we
scale up the model size (yellow triangles), and train for 120 epochs as in standard setting. We
also show results (red inverted triangles) from models of different sparsity levels (trained for 400
epochs for better performance). Evidently, intragroup-sparse models trained with improved TD
(ours) outperform those lightweight architectures by a significant margin (see Tab. A.4 in Appendix
for details). Finally, we compare intragroup sparsity with coarse-grained sparsity using ResNet-
18 (Dong et al., 2017; He et al., 2018) trained on ImageNet, as shown in Tab. A.3 in Appendix. Again,
intragroup-sparse models considerably outperform structured pruning.

7 CONCLUSIONS

This work analyzes the intragroup sparsity structure, a hardware accelerator-friendly parameter
constraint, as well as an effective algorithm to train models under such constraints. Our method
retains the performance advantage of fine-grained sparsity over coarse-grained structured pruning,
while at same time, avoids the inference inefficiency of fine-grained sparsity due to irregularity in the
computing dataflow. Additionally, intragroup sparsity is compatible with matrix-tiling often used in
accelerator designs, enabling higher inference efficiency than fine-grained sparsity through data reuse
and parallelism.

Through theoretical and empirical analyses, we demonstrate the tradeoff between computational
efficiency and the granularity of the structural constraint, controlled by the group size G. While a
smaller group size incurs lower computing overhead, it has a stronger impact on model performance.
Our findings suggest that a weight group size of 16 does not typically cause significant performance
loss. Our theoretical analysis shows that models with a higher sparsity level are more strongly affected
by the group structure. Experimental results show that it is better to train compact models with a
proper sparsity level rather than very wide networks with very high sparsity.

Trained with the same algorithm and hyperparameters, both CC- and BB-sparse models achieve
comparable accuracies. However, we present a commonplace scenario in hardware acceleration
where CC sparsity requires lower I/O access than BB sparsity for model inference.

Our proposed model training method outperforms iterative pruning (as used by Yao et al. (2019)) in
training intragroup-sparse models. Finally, compared with several lightweight network architectures
and structural pruning, sparse networks produced by our method outperforms the state-of-the-art in
terms of best inference accuracy under a given computational budget.
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A APPENDIX

A.1 EMPIRICAL EXPERIMENT RESULT

For ImageNet experiments, we use the ILSVRC-2012 subset. The models are trained with the
augmented standard training set and evaluated with the center crop of images from the validation set,
as described in MobileNetV2 Sandler et al. (2018). Unless explicitly specified, the models are trained
with the SGD optimizer with momentum of 0.9 and an initial learning rate of 0.18, on 4 GPUs with
a batch size of 64 per GPU for a total of 120 epochs with the cosine decay schedule Loshchilov &
Hutter (2016). For standard models, the weight decay is set to 0.00004. For fair comparison, we do
not tune any of the hyperparameters that are described above throughout our experiments. For TD
training, we ramp up the targeted rate while keeping the candidate dropout rate at 50% during the first
half of training epochs, and then ramp up the candidate dropout rate from 50% to 100% during the
second half. We compress convolutional layers in a network with the same group size G and s setting.
For MobileNetV2, we only compress the pointwise convolutional layer. For VGG, we compress the
fully connected layers in addition to convolutions.

For the experiments on the CIFAR-10 dataset, we perform model training as described in He et al. He
et al. (2016). We train all models for a total of 400 epochs at a batch size of 64, an initial learning
rate of 0.1 with a cosine decay schedule Loshchilov & Hutter (2016). The weight decay is set to
0.0001. We run each experiment 5 times and report the median test accuracy. In first 200 epochs, the
target rate of model increase from 0 to the target value which is related to the sparsity level we want
to reach and the group size we have chosen. During this process, the dropout rate remained at 50%.
In the remained epochs, the dropout rate ramping from 50% to 100% gradually.

Table A.1: Test accuracy of the ResNet-32 model on the CIFAR-10 dataset. Top rows: results from
various sparse structures. (Baseline: baseline non-sparse model; G = 16 / s = 1: CC-Sparse model
with group size G = 16, and s = 1; without group 1: sparse model with same sparse density as
G = 16 / s = 1 but without the group structure; G = 64 / s = 1: CC-Sparse model with group size
G = 64, and s = 1; without group 2: sparse model with same sparse density as G = 64 / s = 1 but
without the group structure.) Bottom rows: results from the original TD study Gomez et al. (2018).

Model Param
Pruned (%)

Flops
Pruned (%)

Top1
Accuracy (%)

Baseline 0.00 0.00 92.98
G = 16 / s = 1 93.51 93.15 90.56
Without Group 1 93.51 93.15 91.21
G = 64 / s = 1 97.40 95.50 88.39
Without Group 2 97.40 95.50 89.42

Original TDGomez et al. (2018) 94.00 94.00 88.80
Original TD 97.00 97.00 88.67
Original TD 98.00 98.00 88.70

A.2 EXCLUSIVE LASSO REGULARIZATION

Exclusive Lasso regularization encourages competition between components inside a group Zhou
et al. (2010) through applying the following regularizer:

`(W ) =

d∑
j=1

(
G∑

k=1

∣∣∣W j
k

∣∣∣)2

(A.1)

By using the `1 norm to combine the weights from the same group, which tends to give sparse
solution, and `2 norm to combine different groups together, which tends to minimize the regularizer
loss, the exclusive Lasso regularizer essentially encourages the weights inside a group to compete
for non-zero weights positions Zhou et al. (2010). Such a property is desirable for models with
CC-Sparsity. We performed experiments on combining the exclusive Lasso regularization with
CC-Sparsity. When we use the exclusive Lasso regularizer alone for CC-Sparsity models training, we
find that models generally perform poor. However, when we combine exclusive Lasso regularizer
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Table A.2: Test accuracy of the VGG-16 model on the CIFAR-10 dataset. Top rows: results from
various sparse structures. (Baseline: baseline non-sparse model; G = 16 / s = 1: CC-Sparse model
with group size G = 16, and s = 1; without group 1: sparse model with the same sparse density
as G = 16 / s = 1 but without the group structure; G = 64 / s = 1: CC-Sparse model with group
size G = 64, and s = 1; and without group 2: sparse model with the same sparse density as
G = 64 / s = 1 but without the group structure.) Bottom rows: comparison between CC-Sparsity
and structured sparsity Li et al. (2016).

Model Params
Pruned (%)

Flops
Pruned (%)

Top1
Accuracy (%)

Baseline 0.00 0.00 93.55
G = 16 / s = 1 93.68 93.21 92.55
Without Group 1 93.68 93.21 92.90
G = 64 / s = 1 98.36 97.87 90.48
Without Group 2 98.36 97.87 91.46

G = 16 / s = 4 74.93 74.58 93.43
VGG-16 Li et al. (2016)) 64.00 34.20 93.40

Table A.3: Performance comparison between two sparsity configurations on the ResNet-18 model.
CC-Sparsity (G=16 / s=2) outperforms structured sparsity by a large margin.

Method Baseline Top1
Accuracy(%)

Flops
Pruned (%)

Top1
Accuracy (%)

Accuracy
Drop(%)

Ours 71.12 70.55 70.31 0.81
Dong et al. Dong et al. (2017) 69.98 34.6 66.33 3.65
He et al. He et al. (2018) 70.28 41.8 67.10 3.18

with the TD training, we observe a much smoother transition in the validation accuracy curve when
training ramp reaches the last step, as shown in Fig. A.1, indicating better model convergence. We
also observe that a better final model validation accuracy than a model trained with TD ( with `2
norm regularizer) can be achieved through tuning exclusive Lasso regularization strength. As this
paper is more about the testing of concept instead of achieving state of the art results, the exclusive
Lasso regularizer is not included in the main text.
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Figure A.1: The exclusive Lasso regularizer improves the TD model training.

Table A.4: Benchmark results on lightweight architectures

Model Params Flops Top1
Accuracy%

MobileNet V1 4.2M 569M 70.60
MobileNet V1 (0.75) 2.6M 325M 68.30
MobileNet V1 (0.5) 1.3M 149M 63.70

MobileNet V2 3.4M 300M 72.00
MobileNet V2 (0.75) 2.61M 209M 69.80
MobileNet V2 (0.5) 1.95M 97M 65.40

IGCV3-D 3.5M 318M 72.20
IGCV3-D (0.7) 2.8M 210M 68.45

Condense (G=C=8) 2.9M 274M 71.00

ShuffleNet 1.5* (g = 3) 3.4M 292M 71.50
ShuffleNet 1* (g = 8) 140M 67.60
ShuffleNet 0.5* (shallow, g = 3) 40M 57.20

CI-Sparsity on MobilenetV2 (width=1, epoch=120, G=8, S=2) 2.2M 120M 69.46
CI-Sparsity on MobilenetV2 (width=1.4, epoch=120, G=8, S=2) 3.5M 222M 72.78
CI-Sparsity on MobilenetV2 (width=2.0, epoch=120, G=8, S=2) 5.2M 292M 73.65

CI-Sparsity on MobilenetV2 (width=1, epoch=400, G=8, S=4) 2.61M 180M 72.25
CI-Sparsity on MobilenetV2 (width=1, epoch=400, G=8, S=2) 2.19M 120M 71.21
CI-Sparsity on MobilenetV2 (width=1, epoch=400, G=8, S=1) 1.97M 90M 69.15

13


	Introduction
	Related work
	Intragroup sparsity
	The intragroup sparsity structure
	Efficient inference with intragroup sparse networks
	Cross-channel sparsity vs. bank-balanced sparsity

	Impact of intragroup sparsity constraints
	Training intragroup-sparse models
	Improved targeted dropout
	Choices of group size for targeted dropout vs. iterative pruning
	Effect of sparsity levels

	Experimental results
	Conclusions
	Appendix
	Empirical Experiment Result
	Exclusive Lasso regularization


