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ABSTRACT

We study matrix completion via deep matrix factorization (a.k.a. deep linear neural
networks) as a simplified testbed to examine how network depth influences training
dynamics. Despite the simplicity and importance of the problem, prior theory
largely focuses on shallow (depth-2) models and does not fully explain the implicit
low-rank bias observed in deeper networks. We identify coupled dynamics as a
key mechanism behind this bias and show that it intensifies with increasing depth.
Focusing on gradient flow under diagonal observations, we prove: (a) networks of
depth ≥ 3 exhibit coupling unless initialized diagonally, and (b) convergence to
rank-1 occurs if and only if the dynamics is coupled—resolving an open question
by Menon (2024) for a family of initializations. We also revisit the loss of plasticity
phenomenon in matrix completion (Kleinman et al., 2024), where pre-training
on few observations and resuming with more degrades performance. We show
that deep models avoid plasticity loss due to their low-rank bias, whereas depth-2
networks pre-trained under decoupled dynamics fail to converge to low-rank, even
when resumed training (with additional data) satisfies the coupling condition—
shedding light on the mechanism behind this phenomenon.

1 INTRODUCTION

Overparameterized neural networks have the capacity to perfectly memorize the training data, even
when they are given random labels (Zhang et al., 2017). Despite their large capacity, neural networks
often generalize well to unseen data without any explicit regularization techniques, which challenges
conventional statistical wisdom. Recent studies attribute this phenomenon to the implicit bias of
neural networks, arguing that among the many possible global minima, first-order algorithms such as
(stochastic) gradient descent favor solutions that generalize well (Neyshabur et al., 2014; 2017; Huh
et al., 2021; Timor et al., 2023; Frei et al., 2023; Kou et al., 2023; Galanti et al., 2024; Jacot, 2022).

Matrix completion, a task with practical applications in areas like recommender systems and image
restoration, provides a key framework for investigating these implicit biases, particularly the tendency
towards low-rank solutions. While matrix completion can be viewed as a special case of the broader
matrix sensing framework (Jin et al., 2023; Soltanolkotabi et al., 2023; Ma & Fattahi, 2023; Stöger &
Soltanolkotabi, 2021; Li et al., 2018), which offers general tools for understanding recovery from
limited data, specific challenges can emerge when applying these general theories directly. Notably,
common theoretical assumptions prevalent in matrix sensing analyses, such as the Restricted Isometry
Property (RIP) (Candes & Tao, 2005), often prove too stringent or may not adequately capture the
nuances of many practical matrix completion tasks. For instance, even when completing the 2× 2
matrix MC (introduced in Figure 1a), which can successfully converge to a low-rank solution, the
RIP condition cannot be satisfied. Therefore, researchers have investigated implicit bias phenomena
specifically within matrix completion, without assuming the RIP condition (Menon, 2024; Bai et al.,
2024; Razin & Cohen, 2020; Ma & Fattahi, 2024; Kim & Chung, 2023).

The goal of the matrix completion task is to recover a low-rank ground truth matrix W ∗ using only a
subset of its entries. A common strategy for matrix completion involves matrix factorization, which
can also be viewed as linear neural networks. These networks reparameterize the target matrix X as
a product of factors, X = WL WL−1 · · ·W1, and train these factors Wi by minimizing the mean
squared error on the observed entries via gradient descent. The observed entries constitute the training
set, while the unobserved entries act as the test set.
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(a) Bipartite graph of MD & MC
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(b) Effective rank trained w/ MD
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(c) Effective rank trained w/ MC

Figure 1: (a) Examples of bipartite graphs corresponding to observation patterns of MD (discon-
nected) and MC (connected). (b-c) Training results showing effective rank (cf. Roy & Vetterli
(2007)) for completing rank-1 matrices MD and MC, respectively. The rank-1 ground truth matrices
were generated via uv⊤, where u,v ∈ R2 with entries sampled i.i.d. from a standard normal dis-
tribution. We initialized each layer’s entries by sampling from a Gaussian distribution with mean
zero and standard deviation α, chosen to ensure the initial scale of the product matrix WL:1(0) is
approximately invariant to depth L. Each result shows an average of 300 independent random trials.

The problem of predicting W ∗ is underdetermined, as infinitely many completions are possible.
Nevertheless, both theory and experiments indicate that training even a simple two-layer factorization
(L = 2) with gradient descent, without explicit rank constraints, typically yields a low-rank solution
under reasonable assumptions (Razin & Cohen, 2020; Bai et al., 2024; Ma & Fattahi, 2024).

A recent work by Bai et al. (2024) formalizes this phenomenon using the concept of data connectivity.
They demonstrate that if the observed entries form a connected bipartite graph (meaning any observed
entry can be reached from any other via shared rows or columns), a depth-2 factorization initialized
at an infinitesimally small scale converges to a low-rank solution. Conversely, the network may
converge to a higher-rank matrix if the observations are disconnected (see Definition 1 and Figure 1a).

However, the situation changes significantly for deeper (L ≥ 3) networks, as empirically demonstrated
in Figure 1. Consider the task of completing the 2× 2 matrix

MD =

(
w∗

11 ?
? w∗

22

)
(1)

where only the diagonal entries are observed. This observation pattern forms a disconnected graph as
illustrated in Figure 1a. Consistent with the theory for disconnected graphs, L = 2 models fail to find
a low-rank solution, empirically converging to rank-2 regardless of initialization scale. In contrast,
deeper models (L ≥ 3) with small initialization tend to converge to a rank-1 solution, as shown in
Figure 1b. This specific example highlights that the implicit low-rank bias appears to be strengthened
by depth, in a way that cannot be explained solely by the data connectivity framework developed for
L = 2 models. Furthermore, considering connected cases as well, Figure 1c demonstrates that this
strong low-rank bias is generally robust, tending to strengthen further as depth increases.

However, a theoretical understanding of this depth-induced bias remains elusive, largely due to the
complex, coupled dynamics during training. While Arora et al. (2019) offer insights, their claim that
the gap between two arbitrary singular values widens with depth is not fully formal. It stems largely
from their analysis assuming stabilized singular vectors, which limits its scope. Indeed, Menon
(2024) notes that even for a simple case like (1) with w∗

11 = w∗
22 = 1, proving that gradient descent

with a deep factorization converges to a low-rank solution is still an open problem. Motivated by this
gap in understanding, we theoretically analyze such settings, including the example (1).

Investigating the implicit low-rank bias in matrix completion can also shed light on the phenomenon
of “loss of plasticity”, a challenge widely observed in general neural network training (Shin et al.,
2024; Ash & Adams, 2020; Achille et al., 2018; Berariu et al., 2021). The term loss of plasticity
describes the tendency of neural networks, particularly after initial training, to lose their adaptability
to new information, hindering their generalization capabilities. A recent work by Kleinman et al.
(2024) empirically reports this phenomenon even in matrix completion. They observe that models

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

trained with insufficient data often yield high-rank solutions. If these models then warm-start using
augmented data, they frequently struggle to achieve low-rank solutions. To provide a theoretical
explanation for why this loss of plasticity occurs, this paper elucidates the phenomenon.

To summarize, here are the main research questions that we address throughout the paper:

• What is the fundamental difference between deep (L ≥ 3) and shallow (L = 2) factorizations
regarding their implicit low-rank bias, particularly for disconnected observations?

• Can we theoretically establish that deeper models (i.e., with larger L ≥ 3) exhibit a stronger
implicit bias toward low-rank solutions?

• What is the underlying cause of the loss of plasticity phenomenon, and how does depth
interplay with it?

In Section 3.1, we begin by examining the depth-2 case to elucidate the key mechanism of connectivity.
We find that coupled training dynamics induces a low-rank bias, a phenomenon generalizable to
deeper networks. Section 3.2 further investigates this for all L ≥ 2 using the diagonal observation
case. Our analysis reveals that, for deep models, this bias distinctively promotes low-rank solutions
compared to depth-2 models, strengthening with depth. Finally, Section 4 explores the loss of
plasticity phenomenon in matrix completion. We observe that deep models typically avoid this
phenomenon due to their low-rank bias. In contrast, we empirically observe and prove that depth-2
networks pre-trained with limited observations (yielding decoupled dynamics) and subsequently
trained with augmented observations (yielding coupled dynamics) fail to find a low-rank solution.
Please refer to Appendix A for further discussion of related work.

2 PROBLEM SETTING

We consider the problem of estimating a ground truth matrix W ∗ ∈ Rd×d based on observations of
its entries {w∗

ij}(i,j)∈Ω, where Ω ⊆ [d]× [d] is the set of observed indices. We model the estimate as
a linear network WL:1 ≜ WLWL−1 · · ·W1, where Wl ∈ Rdl×dl−1 with d0 = dL = d. We denote
the (i, j)-th entry of the matrix WL:1 as wij . The factor matrices {Wl}Ll=1 are trained by minimizing
an objective function ϕ, defined as the mean squared error ℓ over the observed entries in Ω:

ϕ(W1, . . . ,WL; Ω) ≜ ℓ(WL:1; Ω) =
1

2

∑

(i,j)∈Ω

(
wij − w∗

ij

)2
. (2)

We study the overparameterized regime where the intermediate dimensions satisfy dl ≥ d for all
l ∈ [L− 1], imposing no explicit rank constraints on the product model WL:1. Consistent with prior
works, our analysis focuses on gradient flow dynamics (gradient descent with an infinitesimal step
size) for a given objective function ϕ. The dynamics for each layer Wl(t) evolve according to:

Ẇl(t) ≜
d

dt
Wl(t) = − ∂

∂Wl(t)
ϕ(W1(t),W2(t), . . . ,WL(t); Ω), l ∈ [L], t ≥ 0. (3)

For depth-2 networks (L = 2), the product of factor matrices A ∈ Rd×d1 (representing W2) and
B ∈ Rd1×d (representing W1), we denote WA,B ≜ AB. We denote the stable rank of a matrix by
srank(W ) ≜ ∥W ∥2F /∥W ∥22.

Bai et al. (2024) introduce the concept of data connectivity for an incomplete matrix M . Connectivity
is characterized by its set of observed indices Ω ⊆ [d]× [d] and the corresponding observation matrix
P (where Pij = 1 if (i, j) ∈ Ω, and 0 otherwise). The formal definition is as follows:
Definition 1 (Connectivity from Bai et al. (2024)). An incomplete matrix M is connected if the bi-

partite graph GM , constructed from its observation matrix P using the adjacency matrix
[
0 P⊤

P 0

]
,

is connected after removing isolated vertices. Otherwise, M is disconnected.

3 IMPLICIT BIAS OF DEPTH INDUCED BY COUPLED TRAINING DYNAMICS

In this section, we extend the connectivity argument of Bai et al. (2024) to general depth factorizations.
We first demonstrate how the coupling of training dynamics serves as the key mechanism explaining
data connectivity’s role in depth-2 models, through the completion of two previously introduced
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2× 2 matrices, MD and MC, as illustrative examples. Building on the insights derived from these
depth-2 model analyses, we hypothesize that deep networks exhibit an intrinsic low-rank bias because
they maintain a high degree of coupled training dynamics, irrespective of observation patterns. This
hypothesis is further corroborated by the diagonal observation results presented in Section 3.2.

3.1 WARM-UP: COUPLED DYNAMICS VS. DECOUPLED DYNAMICS IN DEPTH-2 NETWORKS

We focus on the simple 2× 2 matrix completion of MD and MC, using depth-2 models WA,B(t) =
A(t)B(t). For brevity, let ai(t) ∈ Rd1 be the transpose of the i-th row of A(t), and let bj(t) ∈ Rd1

be the j-th column of B(t). Our aim is to see how training dynamics affect the alignment of the rows
of A(t) or the columns of B(t), as such alignment leads to a rank-1 product matrix WA,B(t).

Decoupled Dynamics. In the MD case (disconnected observations w∗
11, w

∗
22), the gradient flow

using the objective defined in (2), results in independent dynamics for the pairs (a1, b1) and (a2, b2):

ȧi(t) =
(
w∗

ii − ai(t)
⊤bi(t)

)
bi(t), ḃi(t) =

(
w∗

ii − ai(t)
⊤bi(t)

)
ai(t) for i = 1, 2.

Note that while the dynamics couple a1(t) with b1(t) and a2(t) with b2(t) within each pair, the two
pairs (a1, b1) and (a2, b2) are decoupled. This decoupling means the overall system’s dynamics
separate into two independent systems. Consequently, there is no compelling reason to align vectors
from different pairs, typically leading to high-rank solutions with generic initializations (Figure 1b).
Indeed, we can obtain closed-form solutions solely dependent on initialization (see Proposition 4.1).
For instance, with A(0) = B(0) = αI2, we have WA,B(∞) = diag(w∗

11, w
∗
22), a rank-2 solution.

Coupled Dynamics. In contrast, for the MC case (connected observations w∗
11, w

∗
21), the gradient

flow on the objective (2) yields coupled dynamics that do not decompose into independent pairs:

ȧ1(t) =
(
w∗

11 − a1(t)
⊤b1(t)

)
b1(t), ȧ2(t) =

(
w∗

21 − a2(t)
⊤b1(t)

)
b1(t),

ḃ1(t) =
(
w∗

11 − a1(t)
⊤b1(t)

)
a1(t) +

(
w∗

21 − a2(t)
⊤b1(t)

)
a2(t).

(4)

An important observation from (4) is that A(0) = 0 ensures rank-1 WA,B(t) due to persistent
alignment of a1(t),a2(t) and b1(t). Although non-zero initialization leads to more complex behavior
arising from coupled training dynamics, the following theorem demonstrates that sufficiently small
initial norms in A(0) also result in the alignment of a1(t) and a2(t) with b1(t).

Theorem 3.1. For the product model WA,B(t) = A(t)B(t) ∈ R2×2, we consider the gradient
flow dynamics (4), where the observations are w∗

11( ̸= 0) and w∗
21( ̸= 0). We assume convergence

to the zero-loss solution (i.e., w11(∞) = w∗
11, w21(∞) = w∗

21). Defining u∗ = b1(∞)
∥b1(∞)∥2

and the
orthogonal component ai⊥(∞) = ai(∞)− (ai(∞)⊤u∗)u∗, we have:

∥ai⊥(∞)∥22
∥ai(∞)∥22

≤
∥A(0)∥2F

(√
∥b1(0)∥42 + 4w∗

11
2 + 4w∗

21
2 + ∥b1(0)∥22

)

2w∗
i1

2 , for i = 1, 2.

The theorem shows that small initial norms for A(0) lead to the alignment of a1(∞) and a2(∞) with
b1(∞), implying a near rank-1 product matrix WA,B(∞). This suggests that for depth-2 networks,
coupled training dynamics (resulting from connected observations) facilitate the emergence of low-
rank solutions under such small initialization, in contrast to the decoupled dynamics of disconnected
observations, where no such bias exists regardless of initialization scale. This connection between
observation connectivity and the coupling of training dynamics in depth-2 models motivates our
investigation into how coupled dynamics manifest and induce low-rank bias in deeper networks,
irrespective of connectivity patterns, as explored in the subsequent sections.

Remark. Analyzing these dynamics is challenging because the time evolutions of a1,a2, and b1
are mutually dependent. We note that Theorem 3.1 is not a direct corollary of Theorem 3 in Bai et al.
(2024). We explicitly characterize the degree of misalignment as a function of the initialization scale,
unlike their assumption of an infinitesimal initialization scale with additional conditions.

4
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3.2 COUPLED DYNAMICS IN DEEP NETWORKS INDUCE IMPLICIT BIAS TOWARDS LOW RANK

Section 3.1 illustrated the importance of coupled training dynamics, driven by data connectivity,
for achieving low-rank solutions in simple two-layer factorizations (L = 2). Building on this
understanding, we now extend our analysis to deep networks (L ≥ 3). For illustrative purposes,
consider a depth-3 network W3:1. An arbitrary observed entry wij from this matrix is given by:

wij =
∑d2

k=1

∑d1

l=1
(W3)ik(W2)kl(W1)lj . (5)

Crucially, because all elements of the intermediate matrix W2 contribute to the computation of wij

regardless of (i, j), gradients of different observed entries will propagate through and update these
shared elements in W2. This inherently couples their training dynamics, a structural feature distinct
from the depth-2 case, where coupling is primarily determined by the observation pattern. Such
inherent coupling, in turn, implies a potential intrinsic bias towards low-rank solutions for deep
models. To formalize this notion, we introduce the following definition of coupled dynamics.
Definition 2 (Coupled/Decoupled Dynamics). Consider the matrix completion setup with the model
WL:1(t) = WL(t) · · ·W1(t) ∈ Rd×d. Let θ(t) be the vector of all trainable parameters evolving
according to the gradient flow dynamics (defined in (3)). The gradient flow dynamics are decoupled
if there exists a partition of Ω into non-empty, disjoint subsets Ω1, . . . ,ΩK (K ≥ 2) such that⋃K

k=1 Ωk = Ω and the following condition holds for any (i, j) ∈ Ωk and (p, q) ∈ Ωl with k ̸= l:
⟨∇θwij(t),∇θwpq(t)⟩ = 0, ∀t ≥ 0. (6)

The gradient flow dynamics are coupled if they are not decoupled.

While Bai et al. (2024) introduce similar terminology in Definition A.5, their definition is restricted
to depth-2 networks. We extend this notion to networks of arbitrary depth. For depth-2 matrices, it is
straightforward to verify that coupled and decoupled dynamics typically correspond to connected
and disconnected graphs, respectively, based on Definitions 1 and 2. For depth ≥ 3 matrices, any
initialization with an absolutely continuous distribution (e.g., Gaussian, uniform) yields gradient flow
dynamics that are coupled with probability one (see Proposition B.1 in Appendix B), irrespective of
the observation pattern. However, special cases exist where training dynamics are decoupled even for
L ≥ 3. Refer to Appendix B for further discussion.

3.2.1 IMPLICIT BIAS OF DEPTH UNDER DIAGONAL OBSERVATIONS

To gain deeper theoretical insight into how coupled dynamics induce low-rank bias as depth increases,
we further investigate the diagonal observation setting. As highlighted in the 2 × 2 example (cf.
Figure 1b), this setting reveals a stark difference between shallow and deep networks despite being a
disconnected observation pattern. To investigate this further, we now turn to the general d× d case.

Specifically, we consider a d × d ground truth matrix W ∗ with positive and identical diagonal
observations w∗ ≜ w∗

11 = · · · = w∗
dd > 0 where Ω

(d)
diag ≜ {(i, i) | i ∈ [d]}. We factorize the model

with depth-L: WL:1(t) = WL(t)WL−1(t) · · ·W1(t) where Wl ∈ Rd×d for all l ∈ [L].

To investigate how dynamic coupling affects the low-rank bias, we consider a family of initializations
where, for parameters α > 0 and m > 1, each factor matrix Wl(0) is initialized as follows:

Wl(0) =




α α/m · · · α/m
α/m α · · · α/m

...
...

. . .
...

α/m α/m · · · α


 ∈ Rd×d, ∀l ∈ [L]. (7)

Remark. Random Gaussian initialization allows coupling but introduces Ld2 degrees of freedom,
making it impossible to track individual training trajectories. For this reason, prior work often adopts
deterministic initializations such as αId (Gunasekar et al., 2017; Arora et al., 2019; Razin & Cohen,
2020). We follow this approach but adopt a more general deterministic family that is adequate for
establishing our theoretical claims. Our initialization interpolates between α1d1

⊤
d (as m → 1) and

αId (as m → ∞), and the parameter m allows direct control over the initial numerical rank.

Using this initialization scheme with diagonal observations, the following proposition specifies how
parameters m and network depth L determine if training dynamics are coupled or decoupled:

5
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Figure 2: Singular values σi of WL:1(∞) (numerically obtained from Theorem 3.3) against initial-
ization scale αL, for the diagonal observation task. Solid lines represent the largest singular value
σ1; dashed lines denote the other (identical) singular values σr for r ≥ 2. For finite m, these results
illustrate that both greater depth L and a smaller initial scale α enhance the low-rank bias, in contrast
to the L = 2 case. Conversely, a very large m (e.g., m = 1010), approximating an αId (rank-d)
initialization, leads to decoupled dynamics and a full-rank solution, independent of both L and α.

Proposition 3.2. Consider a depth-L model, where each factor Wl(0) ∈ Rd×d is initialized with (7)
trained with diagonal observations, Ω(d)

diag. Then, according to Definition 2, the following hold:

• For depth L = 2, the training dynamics are decoupled for all m > 1.

• For depth L ≥ 3:

– The training dynamics are coupled if 1 < m < ∞.
– The training dynamics are decoupled if m = ∞ (i.e., initialization with αId).

By Proposition D.1 in Appendix D, the loss decays exponentially to zero under the gradient flow
dynamics (3). Building on this zero-loss convergence, our objective is to determine the rank of
solutions found by gradient flow depending on the coupling of dynamics. The theorem below presents
an equation of each singular value of the converged matrix WL:1(∞), for all L ≥ 2.
Theorem 3.3. Consider the product matrix WL:1, whose factor matrices Wl ∈ Rd×d are initialized
according to (7). Under the gradient flow dynamics (3), we have ℓ(WL:1(∞); Ω

(d)
diag) = 0 (Proposi-

tion D.1, Appendix D). Let σ1 ≥ · · · ≥ σd ≥ 0 denote the singular values of the converged matrix
WL:1(∞). Then, for all parameter values α > 0, m > 1, d ≥ 2, and L ≥ 2, the following holds:

- If L = 2 (decoupled dynamics): The singular values are explicitly given by

σ1 =
w∗(m+ d− 1)2

m2 + d− 1
, σr =

w∗(m− 1)2

m2 + d− 1
for r = 2, . . . , d.

- If L ≥ 3 and 1 < m < ∞ (coupled dynamics): The singular values satisfy the implicit equations:

(σ1)
2−L
L −

(
w∗d−σ1

d−1

) 2−L
L

= Cα,m,L,d, (8)

(w∗d− (d− 1)σr)
2−L
L − (σr)

2−L
L = Cα,m,L,d, for r = 2, . . . , d, (9)

where Cα,m,L,d ≜
(
α
m

)2−L (
(m+ d− 1)2−L − (m− 1)2−L

)
.

- If L ≥ 3 and m = ∞ (decoupled dynamics): The singular values converge to:
σi = w∗, for i = 1, 2, . . . d.

The proof of the theorem is provided in Appendix D.3. The theorem details the converged singular
values of WL:1(∞) for our initialization scheme (7). Crucially, it reveals distinct outcomes based
on the nature of the training dynamics. For decoupled dynamics—specifically, when L = 2 (for
sufficiently large m > 1), or when L ≥ 3 and m = ∞—all singular values approach w∗ and are
independent of the scale α. This implies convergence to a full-rank solution. In contrast, for coupled
dynamics (L ≥ 3 with finite m), the outcome becomes α-dependent. To illustrate the implications of
these implicit equations, we present the following corollary.
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Corollary 3.4. Let 1 < m < ∞, d ≥ 2, w∗ > 0, and L ≥ 3 be fixed. Then, as α → 0, the stable
rank of the limit product matrix WL:1(∞) converges to one; that is,

srank
(
WL:1(∞)

)
→ 1.

The proof of the corollary is provided in Appendix D.4. Note that, according to Theorem 3.3, the
stable rank of the depth-2 network satisfies srank

(
W2:1(∞)

)
= (m+d−1)4+(m−1)4(d−1)

(m+d−1)4 , which is
independent of the initialization scale α, and is approximately d when m is large. In contrast, for any
depth L ≥ 3 with finite m, Corollary 3.4 implies that as α → 0, then srank

(
WL:1(∞)

)
→ 1, so the

depth-L network converges to a nearly rank-one solution.

While the corollary characterizes the limiting rank behavior, fully understanding the dynamics
governed by the implicit equations requires a numerical study. To this end, we solve the implicit
equations (8) and (9), which determine the singular values σi for the coupled L ≥ 3, finite m
case. Before proceeding, we note that both equations admit unique solutions, as established in
Proposition D.2 in Appendix D.3.4. Setting w∗ = 1 and d = 10, we examine how network depth
(L) and initialization parameters (α,m) influence the singular value distribution. To ensure a fair
comparison across depths, we set the initialization scale so that the scale of the WL:1(0) is comparable
across depths; concretely, we match the scale of αL across different values of L. The results in
Figure 2 confirm that these coupled dynamics in models with L ≥ 3 and finite m indeed induce a
low-rank bias, contrasting with the full-rank outcomes of the decoupled cases. Moreover, this bias
becomes more pronounced as L increases, evidenced by a wider gap between σ1 and σr for r ≥ 2.

Additional numerical evidences are provided in Figures 5–7 (Appendix C.1). Moreover, Figure 8
in Appendix C.1 shows that these numerical results agree with the outcomes of a gradient descent
with a sufficiently small learning rate. We further train practical neural networks to examine whether
increased depth indeed leads to a low-rank bias. The results shown in Figures 17–20 (SGD with
momentum), 21–24 (Adam), and 25–28 (RMSProp) in Appendix C.1.1 indicate that as depth increases
(e.g., ResNet-18 to 101 and VGG-11 to 19), the average effective rank decreases, highlighting the
emergence of low-rank bias in practical neural networks across these optimizers.

Remark. Our analysis of low-rank bias for a specific family of deterministic initializations resolves
the challenging open problem (1) highlighted in Section 14.1 of Menon (2024). Figure 9 in Ap-
pendix C.1 further demonstrates that our proposed deterministic initialization exhibits qualitative
trends similar to Gaussian initialization. We therefore argue that our results provide foundational
insights into low-rank bias applicable to more general random initializations.

4 UNDERSTANDING LOSS OF PLASTICITY IN DEPTH-2 MATRIX COMPLETION

Studying the inherent tendency towards low-rank solutions in matrix completion can offer further
insights into the loss of plasticity phenomenon. Kleinman et al. (2024) report the emergence of this
phenomenon in matrix completion: models pre-trained on limited observations struggle to adapt
when training continues on augmented observations. Notably, they observe that loss of plasticity is
further intensified with increasing network depth, a conclusion they reached by measuring a “relative
reconstruction loss” when compared to models trained from scratch on the augmented dataset. In
their setup, training is run for a fixed number of iterations without waiting for convergence, whereas
in our experiments we terminate each training phase once the loss falls below a fixed threshold.

However, our findings (Figure 3) offer a more nuanced perspective. We observed that even when
pre-trained with a sparser set of observations, deeper models increasingly favor low-rank solutions
as their depth increases. This aligns with our argument (Section 3.2) that they inherently achieve
low-rank solutions even from limited, disconnected initial data. Consequently, for these deeper
models, further training on augmented data (the post-training stage) does not lead to noticeably higher
rank compared to training equivalent models from scratch on the augmented observations. Therefore,
while their performance might exhibit a relative degradation compared to models trained from scratch,
their absolute solution quality can still surpass that of shallower models. Based on our observations,
we conclude that the low-rank bias of deep models helps them mitigate the loss of plasticity, while
the phenomenon is more pronounced in depth-2 models. To theoretically understand the underlying
cause of this phenomenon itself, we henceforth focus our analysis on depth-2 models.
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Figure 3: Experiments use a 100 × 100 rank-5 ground-truth matrix. pre-training utilizes 2000
randomly sampled entries (Ωpre; |Ωpre| = 2000), while post-training adds 1000 more, forming Ωpost

(Ωpre ⊂ Ωpost; |Ωpost| = 3000). The top row of panels displays effective rank, and the bottom row
shows reconstruction error, both measured at convergence. The leftmost panels depict training on
Ωpre, and the rightmost on Ωpost, both starting from random Gaussian initialization. The middle
panels show warm-start training on Ωpost, initialized from converged pre-trained models with Ωpre.

In Section 4.1, we study pre-training on diagonal-only observations, i.e., the disconnected index
set Ω(d)

diag. We then consider post-training on 2× 2 (Section 4.2) and d× d (Section 4.3) matrices.

For the 2 × 2 case, we set Ω(2)
pre ≜ Ω

(2)
diag and obtain the post-training set Ω(2)

post by adding a single

off-diagonal entry to ensure connectivity. Likewise, for the d× d case, Ω(d)
pre ≜ Ω

(d)
diag, and Ω

(d)
post is

formed by adding additional (off-diagonal) observations; see Section 4.3 for details.

4.1 PRE-TRAINING WITH DIAGONAL OBSERVATIONS

To clearly observe loss of plasticity in a setting consistent with Section 3.2, we pre-train using
only diagonal entries, yielding a disconnected pattern. We consider decoupled-to-coupled scenarios,
where additional data is introduced to induce coupled training dynamics. For depth-2 models, they
correspond to a disconnected-to-connected observation pattern. For the pre-training, closed-form
solutions that depend solely on the network’s initialization can be found in the following proposition:

Proposition 4.1. Consider a ground truth matrix W ∗ ∈ Rd×d with diagonal observations Ω(d)
diag.

The model is factorized as WA,B(t) = A(t)B(t), where A(t),B(t) ∈ Rd×d. For each observation
(i, i) ∈ Ω

(d)
diag, define the constants Pi and Qi based on the initial values:

Pi ≜
d∑

k=1

aik(0)bki(0) and Qi ≜
d∑

k=1

(
aik(0)

2 + bki(0)
2
)
.

Furthermore, for each diagonal observation, let the parameter r̄i be determined from the ground truth

entry w∗
ii and the constants defined above, r̄i ≜ 1

2 log

(
Pi+

Qi
2

w∗
ii+

√
w∗

ii
2−P 2

i +(
Qi
2 )

2

)
. Then, assuming

convergence to a zero-loss solution of the loss ℓ(WA,B; Ω
(d)
diag), any entry apq(∞) of the converged

matrix A(∞) and any entry bpq(∞) of the converged matrix B(∞) (for any p, q ∈ [d]) are given by:

apq(∞) = apq(0) cosh (r̄p)− bqp(0) sinh (r̄p) ,

bpq(∞) = bpq(0) cosh (r̄q)− aqp(0) sinh (r̄q) .

Remark. The proposition covers arbitrary initializations with distinct w∗
ii, which goes beyond

Theorem 3.3 in the L = 2 setting. While the above analysis focuses on diagonal observation cases, it
can be generalized to any fully disconnected case (i.e., a single observation per row and column).
This yields distinct solutions for various types of observation sets, as detailed in Appendix E.1.
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We analyze the scenario where training resumes from a state obtained through pre-training. Let the
pre-training phase conclude at a sufficiently large timestep T1. For simplicity, we assume that the
solution WA,B(T1) has perfectly converged with respect to the pre-training objective, neglecting
any residual error due to the finite duration of this phase. Our subsequent analysis demonstrates that,
starting from WA,B(T1), the model WA,B(t) cannot converge to a low-rank solution.

4.2 POST-TRAINING: 2 BY 2 MATRIX EXAMPLE

We aim to analyze scenarios where training is resumed under coupled dynamics, building upon
solutions obtained from an initial decoupled pre-training phase (Proposition 4.1). To this end, we
first define the specific pre-training setup for an illustrative 2× 2 case: We observe diagonal entries
(Ω(2)

pre), which are identical and positive, i.e., w∗ ≜ w∗
11 = w∗

22 > 0. To make loss of plasticity
particularly pronounced during the pre-training, we initialize the model with αI2 (for α > 0), which
is the m = ∞ setting of our initialization scheme in (7). Then, from Proposition 4.1, it follows that:

A(T1) = B(T1) =

(√
w∗ 0
0

√
w∗

)
. (10)

For the subsequent post-training phase, an additional off-diagonal observation is introduced to
establish connectivity. Without loss of generality, we assume w∗

12 > 0 is revealed, while the
diagonal entries w∗

11 and w∗
22 from the pre-training phase remain observed. Thus, the updated set

of observed entries becomes Ω
(2)
post = {(1, 1), (1, 2), (2, 2)}. The ground-truth matrix is assumed

to be rank-1, ensuring the setting is non-trivial, and the task is thus to predict the remaining entry
w∗

21 = w∗2/w∗
12 > 0. The following theorem, however, reveals a contrasting outcome for this entry.

Theorem 4.2. Let A(T1),B(T1) be the factor matrices obtained from the pre-training phase, as
specified by (10). Then, running gradient flow during the subsequent post-training phase (for t ≥ T1),
starting from A(T1) and B(T1), results in exponential decay of the loss:

ℓ(WA,B(t); Ω
(2)
post) ≤

1

2
w∗

12
2e−2w∗(t−T1).

Consequently, a lower bound for the stable rank of the converged matrix WA,B(∞) is given by:

srank
(
WA,B(∞)

)
≥ 1 + exp

(
−8

w∗
12

w∗

)
.

Furthermore, for all t > T1, w21(t) of the evolving matrix WA,B(t) satisfies w21(t) < 0.

The theorem indicates that the loss decreases exponentially fast, particularly when starting from
large-norm solutions (at a rate governed by w∗). Therefore, since the model converged to high-rank
solutions during pre-training, its singular values remain largely unchanged from this initial state,
as long as w∗

12 has a small magnitude compared to w∗. Furthermore, the unobserved entry w21(t)
converges to a negative value, which contradicts the positive w∗

21 expected for the true rank-1 solution.

4.3 POST-TRAINING: D BY D MATRIX UNDER LAZY TRAINING REGIME

We attribute Theorem 4.2 primarily to the model’s “lazy training” (Chizat et al., 2019) as large-norm
initializations lead to faster loss decay, causing the model to converge to a nearby global minimum
that may not be a low-rank solution. Drawing on this concept, we extend the preceding analysis of
loss of plasticity to the more general case of d × d ground-truth matrices. The following theorem
states that when the model is initialized with a sufficiently small loss, resulting from warm-starting
that perfectly fits all previously observed data, the model exhibits lazy training. This, in turn, prevents
further learning that would reduce the rank and instead steers the model towards a nearby minimum.
Theorem 4.3. For factor matrices A,B ∈ Rd×d, suppose A and B are balanced at t = 0, i.e.,
A(0)⊤A(0) = B(0)B(0)⊤. Let f(A,B) be the function that maps (A,B) to the vector of model
predictions for a given set of observed entries Ω(d)

post. We then define σmax and σmin as the maximum
and minimum singular values, respectively, of the Jacobian of the function f evaluated at the pre-
trained state (at t = T1). If the loss at time T1 satisfies ℓ

(
WA,B(T1); Ω

(d)
post

)
≤ σ6

min

1152dσ2
max

, this
results in exponential decay of the loss:

ℓ
(
WA,B(t); Ω

(d)
post

)
≤ ℓ

(
WA,B(T1); Ω

(d)
post

)
exp

(
−1

2
σ2
min(t− T1)

)
.
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Consequently, the stable rank of A(t) (which is equal to that of B(t)) remains bounded below by

srank
(
A(t)

)
≥
(
∥A(T1)∥F − σmin

4
√
2d

∥A(T1)∥2 + σmin

4
√
2d

)2

.

The theorem states that if a model has little remaining to learn (achieved via pre-training), it undergoes
lazy training regime. In this regime, the loss converges rapidly, while its stable rank remains largely
unchanged from the initial state. Thus, once a model has converged to a high-rank state, it struggles
to recover a low-rank structure even when new observations are introduced to form connectivity. The
proof of Theorem 4.3 is provided in Appendix E.3.

Example. As an illustrative example, consider a rank-1 ground-truth matrix W ∗ ∈ Rd×d,

W ∗ =




w∗ cw∗ · · · cd−1w∗

c−1w∗ w∗ · · · cd−2w∗

...
...

. . .
...

c1−dw∗ c2−dw∗ · · · w∗


 , c = O

(
1

d

)
.

We pre-train only on the identical diagonal observations w∗ using Ω
(d)
pre, with initialization A(0) =

B(0) = αId up to time T1 (see Proposition 4.1 for the pre-training solution). We then reveal the full
upper-triangular set Ω(d)

post = {(i, j) : 1 ≤ i ≤ j ≤ d} to form connectivity and continue training. By
Theorem 4.3, for every t ≥ T1, the stable rank of A(t) is uniformly lower-bounded by Ω(d):

srank
(
A(t)

)
≥
(

4d− 1

4
√
d+ 1

)2

.

5 CONCLUSION

We demonstrate that in matrix completion, deeper networks (L ≥ 3) inherently exhibit a stronger
low-rank bias than shallow networks, primarily due to their coupled training dynamics, which operate
regardless of observation patterns. For tractable analysis, we consider gradient flow starting at a
family of deterministic initializations, showing in the diagonal observation setting that depth amplifies
the low-rank bias. Furthermore, our theoretical analysis of warm-starting scenarios details the loss of
plasticity phenomenon, revealing how large-norm, high-rank initial states can hinder convergence to
low-rank solutions. We believe the theoretical results from matrix completion provide broader insight
into how depth shapes implicit bias and explains the loss of plasticity in practical deep networks.

ETHICS STATEMENT

This work is purely theoretical and involves no human subjects, personal data, or new dataset
collection. We foresee no safety, fairness, or privacy risks and confirm that we are in accordance with
the ICLR Code of Ethics.

REPRODUCIBILITY STATEMENT

The proofs of all theorems and propositions in the main text appear in the corresponding appendices:
Theorem 3.1 in Appendix D.1, Proposition 3.2 in Appendix D.2, Theorem 3.3 in Appendix D.3,
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A FURTHER RELATED WORKS

A.1 IMPLICIT REGULARIZATION IN NEURAL NETWORKS

A substantial body of work investigates the implicit regularization of gradient-based training in
overparameterized models (Gunasekar et al., 2017; Woodworth et al., 2020; Yun et al., 2021; Ji &
Telgarsky, 2019a;b; Andriushchenko et al., 2023; Frei et al., 2023; Jung et al., 2025; Razin et al.,
2021; Hui et al., 2025). For linearly separable classification trained with (S)GD, Soudry et al. (2018)
show that gradient descent on the logistic loss converges in direction to the ℓ2 max-margin classifier.
Building on this result, Nacson et al. (2019b) establish analogous directional convergence guarantees
for SGD, and Nacson et al. (2019a) extend the theory to a broader family of loss functions. For
homogeneous neural networks, gradient descent likewise exhibits directional convergence, and the
limit direction coincides with a KKT point of an appropriate margin-maximization problem (Ji &
Telgarsky, 2020; Lyu & Li, 2020).

For adaptive methods in linearly separable classification, Wang et al. (2022) analyze (S)GD with
momentum and deterministic Adam and show that these methods also converge in direction to the
max-margin solution. This analysis is further extended to homogeneous models by Wang et al. (2021).
More recently, Zhang et al. (2024) demonstrate that when the stability constant is negligible, Adam
exhibits a qualitatively different implicit bias and converges to the maximum ℓ∞ margin rather than
the ℓ2 max-margin direction selected by (S)GD. Along a related line, Cattaneo et al. (2024) use
backward error analysis to study RMSProp and Adam and show that their implicit regularization
depends sensitively on hyperparameters and the training stage. Closely related to our setting, Zhao
(2022) examine matrix completion and show that Adam, when combined with an explicit spectral
ratio penalty, induces a strong low-rank bias even in depth-1 linear networks. However, their analysis
focuses on deriving the flow of Adam and does not characterize the limiting solution.

Several works investigate how depth promotes low-rank solutions (Gissin et al., 2020; Huh et al.,
2021; Timor et al., 2023; Arora et al., 2019; Li et al., 2021; Jacot, 2022). Huh et al. (2021) provide
empirical evidence that deeper networks (both linear and nonlinear) tend to find solutions with lower
effective-rank embeddings. Complementing this, Timor et al. (2023) show theoretically that ReLU
networks trained with squared loss exhibit a bias toward low-rank solutions under the assumption
that gradient flow converges to the solution minimizing the ℓ2 norm.

Turning to deep linear networks, Gissin et al. (2020) and Li et al. (2021) study depth-induced bias as
a function of initialization scale. They report that, as depth increases, the dependence on initialization
can become weaker, and incremental learning can emerge. However, their analyses consider a matrix
factorization task, which they frame as matrix completion with full observations. Therefore, in their
setting, convergence to a low-rank solution is guaranteed if the model converges to zero-loss, which
does not hold in our matrix completion task settings.

While Arora et al. (2019) investigate the matrix completion task in deep linear networks, offering
insights from derived singular value dynamics, they cannot fully track these dynamics to prove
low-rank convergence as network depth increases. Their analysis is primarily restricted to the regime
where t ≥ t0, after which singular vectors are assumed to have stabilized. For t ≥ t0, they find
that one singular value can be expressed as a function of another, involving a constant term that
emerges from the state at t0 (which can be the dominant component). Based on this derivation, they
demonstrate that the gap between these singular values widens with increasing depth. In contrast, our
Theorem 3.3, by precisely tracking the converged values of singular values, rigorously establishes
their ultimate behavior and the resulting low-rank bias.

Closely related to our setting, Razin & Cohen (2020) study a depth L ≥ 2 matrix completion problem
in a 2 × 2 example with three observations (one diagonal and two off diagonal entries). Their
Theorems 1 and 2 show that, as the loss converges, the effective rank converges to its infimum.
However, their analysis does not distinguish between the depth L = 2 and L ≥ 3 regimes, and
therefore does not identify a depth dependent low-rank bias or an underlying mechanism that explains
it. In addition, their guarantees are independent of the initialization scale, so they do not capture the
empirically observed phenomenon that low-rank bias becomes stronger as the initialization scale
decreases. In contrast, our results explicitly separate the L = 2 and L ≥ 3 cases, characterize the
limiting singular values, and show how depth and initialization scale jointly control the emergence of
low rank solutions in matrix completion.
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For depth-2 matrix completion tasks, Bai et al. (2024) introduce the connectivity argument. They
prove that if the observations construct a connected bipartite graph, the model can converge to a
low-rank solution when the initialization scale is infinitesimally small, subject to certain technical
assumptions. Conversely, if the observations form a disconnected graph, the model generally cannot
converge to a low-rank solution. However, a special case occurs if this disconnected graph is
composed of complete bipartite components: here, the model converges to the minimum nuclear
norm solution, again under specific technical assumptions. This characterization of implicit bias does
not readily generalize to matrices with deeper matrices, as depicted in Figure 1.

A.2 LOSS OF PLASTICITY

Loss of plasticity describes a widely observed phenomenon where a model’s ability to adapt to new
information diminishes over time (Shin et al., 2024; Ash & Adams, 2020; Nikishin et al., 2022;
Dohare et al., 2021; Achille et al., 2018; Lee et al., 2025; 2024; Lyle et al., 2025; Springer et al., 2025;
Kim et al., 2025). The phenomenon is frequently observed in scenarios with gradually changing
datasets, such as those encountered in reinforcement learning (Lyle et al., 2023; Nikishin et al., 2022;
Igl et al., 2020) or continual learning (Kumar et al., 2023; Chen et al., 2023; Dohare et al., 2021; Park
et al., 2025; Hernandez-Garcia et al., 2025; Rohani et al., 2025), where the model may struggle to
adapt to new environments.

Although loss of plasticity is typically studied in non-stationary settings, a similar effect arises in
stationary regimes where the dataset grows incrementally while the underlying distribution remains
fixed (Shin et al., 2024; Ash & Adams, 2020; Berariu et al., 2021). In such cases, a model is
first trained to convergence on an initial i.i.d. subset (e.g., a subset of CIFAR-10/100) and then
warm-started for continued training on an expanded sample from the same distribution (e.g., the
full CIFAR-10/100). Perhaps counterintuitively, these warm-started models often generalize worse,
yielding lower test accuracy than models trained from scratch on the combined dataset.

While this phenomenon is problematic in many real-world applications where new data is continuously
added, theoretical studies on it remain scarce. Shin et al. (2024), for instance, offer a theoretical
explanation using an artificial framework. Within this framework, they demonstrate that such behavior
occurs because warm-started models often complete training by memorizing data-dependent noise,
which is not useful for generalization. However, the analytical framework they employ is considered
artificial and limited in its ability to accurately characterize the optimization processes of typical deep
learning models.

Recently, Kleinman et al. (2024) observed loss of plasticity in deep linear networks, identifying
“critical learning periods”: an initial phase of effective learning followed by a significantly reduced
capacity to learn later (Achille et al., 2018; Vock & Meisel, 2025). They employ a matrix completion
framework to further observe this behavior. When observations from matrix completion tasks are
treated as training samples in neural network training, they observed that a model initially trained on
a sparse set of observations and subsequently retrained (i.e., warm-started) on an expanded dataset
typically exhibits a larger performance gap (in terms of reconstruction error) compared to a model
trained from scratch on the entire expanded dataset. However, their work does not offer theoretical
guarantees to account for these observations. Motivated by this, in Section 4, we attempt to explain
this behavior within the specific context of depth-2 matrix completion settings.
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B COUPLED AND DECOUPLED TRAINING DYNAMICS

This section introduces coupled and decoupled training dynamics (Definition 2) and illustrates them
with concrete examples. Before that, we present Proposition B.1, which shows that for deep models
(L ≥ 3), generic (absolutely continuous) initialization yields coupled dynamics almost surely.

Lemma B.1. Define Wb:a ≜ WbWb−1 · · ·Wa, and Wa:b ≜ Id where b ≥ a. For wij(t) ≜
e⊤i WL:1(t)ej ,

∇Wl
wij(t) =

(
WL:l+1(t)

⊤ei
)
(Wl−1:1(t)ej)

⊤ ∈ Rd×d.

Hence, for any (i, j) and (p, q),

⟨∇θwij(t),∇θwpq(t)⟩ =
L∑

l=1

(
e⊤i Tl(t)ep

) (
e⊤j Sl(t)eq

)
,

where Tl(t) ≜ WL:l+1(t)WL:l+1(t)
⊤ and Sl(t) ≜ Wl−1:1(t)

⊤Wl−1:1(t) are symmetric positive
semidefinite matrix.

Proof. Define a
(i)
l (t) ≜ WL:l+1(t)

⊤ei and b
(j)
l (t) ≜ Wl−1:1(t)ej . By

wij(t) = e⊤i WL:l+1(t)Wl(t)Wl−1:1(t)ej = a
(i)
l (t)

⊤
Wl(t)b

(j)
l (t),

we have ∇Wl
wij(t) = a

(i)
l (t)b

(j)
l (t)⊤. Furthermore,

⟨∇θwij(t),∇θwpq(t)⟩ =
L∑

l=1

⟨∇Wl
wij(t),∇Wl

wpq(t)⟩F

=

L∑

l=1

〈
a
(i)
l (t)b

(j)
l (t)⊤,a

(p)
l (t)b

(q)
l (t)⊤

〉
F

=

L∑

i=1

(
a
(i)
l (t)

⊤
a
(p)
l (t)

)(
b
(j)
l (t)

⊤
b
(q)
l (t)

)

=

L∑

i=1

(
e⊤i Tl(t)ep

) (
e⊤j Sl(t)eq

)
,

which concludes the proof.

Proposition B.1. Let L ≥ 3 and initialize {Wl(0)}Ll=1 with i.i.d. entries from any absolutely
continuous distribution. For any observation set Ω ⊆ [d]× [d] where |Ω| ≥ 2, with probability 1,

⟨∇θwij(0),∇θwpq(0)⟩ ≠ 0

holds for all distinct (i, j), (p, q) ∈ Ω. Consequently, no nontrivial partition Ω =
⋃K

k=1 Ωk with
K ≥ 2 can satisfy the decoupling condition (6) at t = 0. Hence, by Definition 2, the gradient flow
dynamics are coupled with probability 1 irrespective of the observation pattern.

Proof. By Lemma B.1, at t = 0 we have

φij,pq(W1, . . . ,WL) ≜ ⟨∇θwij , ∇θwpq⟩ =
L∑

l=1

(
e⊤i Tlep

) (
e⊤j Sleq

)
,

which is a polynomial in the entries of {Wl}Ll=1. For any (i, j) ̸= (p, q), we now show that φij,pq is
not the zero polynomial.

If i = p, the l = L term reduces to e⊤j SLeq. By choosing W1:L so that SL has a nonzero (j, q)
entry, this term evaluates to a nonzero value; hence φij,pq is not identically zero. By symmetry, the
same argument applies when j = q.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

If i ̸= p and j ̸= q, consider l = 2. Setting all other layers to Id, choose W3 so that (e⊤i T2ep) ̸= 0
and choose W1 so that (e⊤j S2eq) ̸= 0. Then φij,pq = (e⊤i T2ep)(e

⊤
j S2eq) ̸= 0. Consequently, in

all cases φij,pq is not identically zero.

Since φij,pq is a nonzero polynomial in the entries of {Wl}Ll=1, its zero set Zij,pq ≜
{(W1, . . . ,WL) : φij,pq(W1, . . . ,WL) = 0} is a proper algebraic set in RLd2

and hence has
Lebesgue measure zero.

Let the initialization distribution of (W1(0), . . . ,WL(0)) be absolutely continuous with respect to
Lebesgue measure. Then

Pr
[
(W1(0), . . . ,WL(0)) ∈ Zij,pq

]
= 0,

so for this fixed pair (i, j) ̸= (p, q) we have φij,pq

(
W1(0), . . . ,WL(0)

)
̸= 0 almost surely. There

are only finitely many distinct pairs in Ω. A finite union of measure-zero sets still has measure zero;
hence, with probability one,

φij,pq ̸= 0 for all distinct (i, j), (p, q) ∈ Ω. (11)

By Definition 2, a decomposition Ω =
⋃K

k=1 Ωk (K ≥ 2) yields decoupled dynamics only if
⟨∇θwij(t),∇θwpq(t)⟩ = 0

for all (i, j) ∈ Ωk, (p, q) ∈ Ωl with k ̸= l and for all t ≥ 0.

However, this already fails at t = 0, since every cross-pair inner product is nonzero by (11). Thus, no
such partition exists. Consequently, for L ≥ 3 and any observation set Ω, the gradient flow dynamics
are coupled almost surely under any absolutely continuous initialization.

B.1 COUPLED DYNAMICS EXAMPLE

B.1.1 DEPTH-2 MODEL

For shallow (L = 2) matrices, coupled dynamics typically correspond to connected observations under
generic initialization, in accordance with Definitions 1 and 2 (the specific case of initialization, such
as zero matrices, which leads to decoupled dynamics, will be further detailed in a later subsection).
We illustrate this principle with an example where the observed entries form the first column of a
2× 2 matrix.

Consider a 2×2 matrix, denoted MC, which is to be completed using its first column as observations:

MC ≜

[
w∗

11 ?
w∗

21 ?

]
.

The corresponding observation pattern matrix PC is:

PC =

[
1 0
1 0

]
.

The associated adjacency matrix AC for the bipartite graph is constructed as:

AC =

[
02,2 P⊤

C
PC 02,2

]
=



0 0 1 1
0 0 0 0
1 0 0 0
1 0 0 0


 ,

which forms a connected graph as illustrated in Figure 1a. This setup leads to coupled training
dynamics under non-zero initialization. The coupling arises because parameters used to construct
w11 and w21 overlap. Specifically, elements from the first column of matrix B (i.e., b11, b21) are
common to the computation of both w11 and w21. This shared dependency links the dynamics. The
below illustration highlights these shared (teal) and distinct (red/blue) parameters involved in forming
the observed entries w11 and w21:[

w11 w12

w21 w22

]
=

[
a11 a12
a21 a22

] [
b11 b12
b21 b22

]

w11 = a11b11 + a12b21

w21 = a21b11 + a22b21
The shared use of b11 and b21 in reconstructing both observed entries is what couples their learning
dynamics.
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B.1.2 DEPTH≥ 3 MODEL

For deeper matrices (L ≥ 3), training dynamics are typically coupled, irrespective of the observation
pattern (See Proposition B.1). Consider, for instance, predicting entries from the disconnected matrix
MD where only diagonal elements are observed:

MD ≜

[
w∗

11 ?
? w∗

22

]
.

Even with such observations, for L ≥ 3, coupling arises because parameters in intermediate layers
are involved in computing multiple observed entries. This is illustrated in the following depth-3
example (W3:1 = W1W2W3). Elements of the intermediate matrix W2 (colored teal) contribute to
both the computation of w11 and w22:

[
w11 w12

w21 w22

]
=

[
(w1)11 (w1)12
(w1)21 (w1)22

] [
(w2)11 (w2)12
(w2)21 (w2)22

] [
(w3)11 (w3)12
(w3)21 (w3)22

]
.

Specifically, the observed entries are formed as:

w11 =
(
(w1)11(w2)11 + (w1)12(w2)21

)
(w3)11

+
(
(w1)11(w2)12 + (w1)12(w2)22

)
(w3)21,

w22 =
(
(w1)21(w2)11 + (w1)22(w2)21

)
(w3)12

+
(
(w1)21(w2)12 + (w1)22(w2)22

)
(w3)22.

The shared involvement of all elements from W2 (the teal matrix) in forming both w11 and w22 leads
to coupled dynamics, provided these elements are non-zero. (Conversely, if some elements were
to become zero, this could potentially lead to decoupled dynamics, as illustrated in the subsequent
subsection.)

B.2 DECOUPLED DYNAMICS EXAMPLE

B.2.1 DEPTH-2 MODEL

For depth-2 models, decoupled dynamics coincide with disconnected observation patterns. Indeed,
by Lemma B.1,

⟨∇θwij ,∇θwpq⟩ =
2∑

l=1

(
e⊤i Tlep

) (
e⊤j Sleq

)

=
(
e⊤1 W2W

⊤
2 ep

)
δjq + δip

(
e⊤j W

⊤
1 W1eq

)
,

where δab = 1 if a = b and 0 otherwise. Hence, if i ̸= p and j ̸= p, the inner product is identically
zero for all weights, which explains the decoupling for the depth-2 matrix when the observations are
disconnected.

To illustrate the disconnected case, consider the 2 × 2 incomplete matrix example MD, to be
completed from diagonal-only observations.

MD ≜

[
w∗

11 ?
? w∗

22

]
.

Then the observation matrix PD can be constructed as:

PD =

[
1 0
0 1

]
,

and the adjacency matrix AD can be constructed as:

AD =

[
02,2 P⊤

D
PD 02,2

]
=



0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


 ,
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which forms the disconnected graph as illustrated in Figure 1a. This setup inherently leads to
decoupled training dynamics. The decoupling can be visually understood by examining how distinct
sets of elements in the factor matrices A and B contribute to the observed entries w11 and w22.
Specifically, as illustrated below, red-colored entries are exclusively involved in predicting w11, while
blue-colored entries are exclusively involved in predicting w22. These two sets of entries are disjoint,
confirming the decoupled nature of the dynamics:

[
w11 w12

w21 w22

]
=

[
a11 a12
a21 a22

] [
b11 b12
b21 b22

]
,

w11 = a11b11 + a12b21,

w22 = a21b12 + a22b22.

B.2.2 DEPTH≥ 3 MODEL

For deep (L ≥ 3) matrices, decoupled training dynamics are observed in at least two key scenarios.
First, as detailed in Appendix D.2.3, an αId initialization combined with diagonal-only observations
leads to decoupled dynamics for any depth-factorized matrix.

To illustrate this for a deeper case, we revisit the MD observation pattern in a depth-3 context.
Lemma D.1 in Appendix D.2.3 states that with such an initialization and observing only diagonal
entries, all off-diagonal elements of the factor matrices Wl(t) remain zero throughout training.
Consequently, the factor matrices W1,W2,W3 are diagonal. The product matrix WL:1(t) is thus
formed as:

[
w11 w12

w21 w22

]
=

[
(w1)11 0

0 (w1)22

] [
(w2)11 0

0 (w2)22

] [
(w3)11 0

0 (w3)22

]
.

The observed entries are therefore computed as products of the respective diagonal elements:

w11 = (w1)11(w2)11(w3)11,

w22 = (w1)22(w2)22(w3)22.

Since w11 depends only on the set of parameters {(Wk)11}3k=1 and w22 depends only on the entirely
disjoint set of parameters {(Wk)22}3k=1, their training dynamics are decoupled.

Second, the training dynamics are also decoupled when all factor matrices are initialized as d× d
zero matrices, 0d×d. To see this, note that by the chain rule, we have

∂wpq(t)

∂(wl(t))ij
= (WL(t)WL−1(t) · · ·Wl+1(t))pi (Wl−1(t)Wl−2(t) · · ·W1(t))jq , (12)

where we define the (i, j)-th entry of the factor matrix Wl(t) ≜ (wl(t))ij . If at some time t all factor
matrices satisfy Wk(t) = 0, then the right-hand side of (12) is the zero matrix, and thus

∂wpq(t)

∂(wl(t))ij
= 0 for all p, q.

Therefore,
∂ϕ

∂(wl(t))ij
=

∑

(p,q)∈Ω

(
wpq(t)− w∗

pq

) ∂wpq(t)

∂(Wl(t))ij
= 0,

which implies
˙(wl(t))ij = − ∂ϕ

∂(wl(t))ij
= 0.

Since the initial condition is (wl(0))ij = 0, uniqueness of ODE solutions guarantees that (wl(t))ij ≡
0 for all t ≥ 0. As this holds for arbitrary l, i, j, we conclude that Wl(t) ≡ 0 for all l and all t ≥ 0.

Finally, because ∇θ(t)wpq(t) = 0 for all p, q and t ≥ 0, the inner product condition

⟨∇θ(t)wij(t), ∇θ(t)wpq(t)⟩ = 0

is satisfied for all (i, j), (p, q) ∈ Ω and for all t ≥ 0. Hence, the dynamics are (trivially) decoupled.
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C ADDITIONAL EXPERIMENTS

This section provides additional experiments omitted from the main text.

C.1 IMPLICIT BIAS EXPERIMENTS

Connected vs Disconnected Observation Patterns. In Figure 1, we present experiments with
specific choices of MC and MD, which are 2× 2 rank-1 ground-truth matrices illustrating connected
and disconnected examples, respectively. To generalize these observations, we extended our experi-
ments to a 3× 3 rank-1 ground truth matrix, considering all possible connected and disconnected
observation patterns. After accounting for symmetries to eliminate duplicates, this results in a total of
23 unique observation patterns, which are categorized into 17 connected and 6 disconnected cases.

For each of these 23 observation patterns, the 3× 3 rank-1 ground truth matrix was generated using
constituent vectors whose entries were sampled from a standard normal distribution. Each factor
matrix was then initialized by sampling its entries from a Gaussian distribution with a mean of zero
and a standard deviation of α. We performed 10 independent trials for each pattern.

Figure 4 illustrates that, consistent with the findings in Figure 1, a significant discrepancy exists
between the behavior of depth-2 matrices and that of deeper matrices. This discrepancy becomes
notably more pronounced for the disconnected observation patterns.
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Figure 4: The left panel shows the averaged effective rank of all possible connected patterns as a
function of the initial scale αL. The right panel displays the averaged effective rank of all possible
disconnected patterns.

Numerical Solutions of the Implicit Equations. We next provide a theoretical validation of our
main claim: coupled dynamics induce a low-rank bias, whereas decoupled dynamics do not. This
validation builds on Theorem 3.3, under various conditions, by numerically solving the equations
while varying the ground truth value w∗ and the dimension d. The results shown in Figure 7 (for
w∗ = 1, d = 3), Figure 5 (for w∗ = 10, d = 10), and Figure 6 (for w∗ = 0.1, d = 10) provide strong
supporting evidence for the claim.

Gradient Descent Validation. Furthermore, we ran gradient descent with a sufficiently small step
size to validate our derived equations. For the results shown in Figure 8, we replicated the setup of
Figure 7 (w∗ = 1, d = 3), excluding the α = 10−10 case due to prohibitive computation time. The
observed values closely match the theoretical predictions from Theorem 3.3, as illustrated in Figure 7.

Comparison with Gaussian Initialization. To validate that our initialization scheme (7) can
achieve comparable outcomes to Gaussian initialization while offering more control, we conducted
experiments on a 3× 3 matrix completion task with diagonal observations (i.e., w∗

11 = w∗
22 = w∗

33 =
1). While our scheme allows initial rank properties to be adjusted via the parameter m, Gaussian
initialization’s inherent randomness precludes such direct control. Therefore, for comparison with
Gaussian initialization, we ran 1000 independent seeds and sorted the converged solutions by their
rank. A comparison of the results in Figure 9 suggests that the behavioral trends may appear similar.
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Figure 5: Numerical conditions identical to those in Figure 2, except with ground truth value w∗ = 10
and dimension d = 10.
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Figure 6: Numerical conditions identical to those in Figure 2, except with ground truth value w∗ = 0.1
and dimension d = 10.
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Figure 7: Numerical conditions identical to those in Figure 2, except with ground truth value w∗ = 1
and dimension d = 3.

Figure 8: Gradient descent experiments conducted under conditions identical to those in Figure 7.

In the depth-2 case, both initializations tend to converge to high-rank solutions. Moreover, for both
initializations, a clear gap emerges between L = 2 and L = 3, with the depth-3 model exhibiting a
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(a) Results from Initialization using (7).
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(b) Results from Gaussian initialization.

Figure 9: (a) Effective rank for the initialization scheme in (7). The x-axis denotes the parameter
m, which controls the initial rank characteristics of the model, while the y-axis represents the corre-
sponding effective rank after convergence. (b) Effective rank distributions for Gaussian initialization.
The results are from 1000 independent trials, sorted by their converged effective rank. The x-axis
denotes the sorted trial index (from lowest to highest converged rank), and the y-axis represents the
corresponding effective rank after convergence.

stronger low-rank bias. For deeper networks (L ≥ 3), the tendency to converge toward lower-rank
solutions becomes increasingly pronounced as depth increases.

Noisy Diagonal Experiments. We also experimented with observing noisy diagonal entries using
gradient descent. In particular, instead of fixing all ground truth diagonal entries to be equal, we
perturbed them as (W ∗)ii = w∗ + ϵi, where ϵi ∼ N (0, σ2). We set (w∗ = 1), dimension (d = 5),
and used the initialization scheme (7) with m = 100. For each configuration, we independently
sampled 10 noise realizations and report the average behavior along with the standard deviations.

As shown in Figure 10, the qualitative trends are consistent with our theory. When L = 2, the
model converges to a high-rank solution largely independently of the initialization scale, whereas for
deeper networks the stable rank decreases as depth increases, indicating a stronger low-rank bias.
We also observe that larger noise levels lead to more pronounced low-rank behavior. This is natural,
since increasing the noise drives the ground truth further away from the identity. Moreover, the
dependence on the noise magnitude appears continuous: in the small noise regime (leftmost panel),
the change in stable rank is relatively mild, while in the larger noise regime (rightmost panel), the gap
becomes more substantial. These experiments suggest that our depth-induced low-rank phenomenon
is empirically robust to moderate perturbations of the diagonal entries.
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Figure 10: Limiting stable rank (y-axis) as a function of αL (x-axis) under noisy diagonal observations.
Dashed lines indicate the noiseless baseline, and solid lines indicate the noisy case. The noise standard
deviation is set to σ = 0.01 (leftmost), σ = 0.05 (middle), and σ = 0.1 (rightmost). The depth
dependent low-rank bias persists and follows a trend similar to the noiseless setting.

Non-Equal Diagonal Experiments. We also experimented with observing non-equal diagonal
entries using gradient descent. In particular, instead of fixing all ground truth diagonal entries to be
equal, we assigned different values to each diagonal entry. We set the dimension to d = 5 and take
the diagonal entries of W ∗ to be 0, 0.5, 1, 1.5, 2, respectively, and used the initialization scheme (7).
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As shown in Figure 11, the qualitative trends are consistent with our theory. When L = 2, the
model converges to a high rank solution independently of the initialization scale, whereas for deeper
networks the stable rank decreases as depth increases. For the case m = ∞ (rightmost plot), all
models converge to high rank solutions regardless of depth, which is consistent with Theorem 3.3.
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Figure 11: Limiting stable rank (y-axis) as a function of the initialization scale (x-axis) under non-
equal diagonal observations. The low-rank bias induced by coupled training dynamics persists and
closely matches the behavior in the equal-diagonal setting described in Theorem 3.3 and Figure 2.

Additional Optimizer Ablations. We also experimented with other optimizers, including adaptive
methods, such as stochastic gradient descent (SGD), gradient descent with momentum, Adam,
RMSProp, and Adagrad. In this experiment, we fix the dimension to d = 5, use Gaussian initialization
with diagonal observations with w∗ = 1, and run gradient based optimization with a sufficiently small
step size over 10 random seeds. For each optimizer, we use the default hyperparameters from the
PyTorch implementation, and for SGD we update the model using one observed entry per iteration.

The results in Figures 12-16 align well with our theory: for depth-2 (which induces decoupled
dynamics), the model converges to high-rank solutions across initialization scales, whereas for
depth L ≥ 3 (which induces coupled dynamics) the solutions become increasingly low-rank as the
initialization scale decreases and as depth increases.
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Figure 12: Final stable rank as a function of depth. Each panel corresponds to a different initialization
scale. Results are obtained using SGD.
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Figure 13: Final stable rank as a function of depth. Each panel corresponds to a different initialization
scale. Results are obtained using GD with momentum.
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Figure 14: Final stable rank as a function of depth. Each panel corresponds to a different initialization
scale. Results are obtained using Adam.
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Figure 15: Final stable rank as a function of depth. Each panel corresponds to a different initialization
scale. Results are obtained using RMSProp.
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Figure 16: Final stable rank as a function of depth. Each panel corresponds to a different initialization
scale. Results are obtained using Adagrad.
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C.1.1 EXPERIMENTS IN NEURAL NETWORKS

To study how depth influences low rank bias in practice, we train ResNet and VGG models across
varying depths. While Huh et al. (2021) show that deeper networks yield lower rank embeddings,
their analysis does not address the weight matrices. Following Galanti et al. (2023), we measure
the effective rank of the weight matrices directly and find that deeper networks are biased toward
low-rank solutions.

To be more specific, we train ResNet–18, 34, 50, and 101, as well as VGG–11, 13, 16, and 19,
on CIFAR-10 and CIFAR-100 for 200 epochs with a batch size of 128. Training uses SGD with
momentum, Adam, and RMSProp. The initial learning rates are 0.1 for SGD with momentum, and
0.001 for Adam and RMSProp. We apply weight decay of 0.0005 for SGD with momentum and
1e-05 for Adam and RMSProp. A cosine annealing scheduler is used together with standard data
augmentation (horizontal flipping and random cropping).

We measure the effective rank across all layers except the final one and average them to obtain a single
scalar. Following Galanti et al. (2023), each weight tensor Z ∈ Rcin×cout×k1×k2 of a convolutional
layer, where cin and cout denote the numbers of input and output channels and (k1, k2) is the kernel
size, is reshaped into a matrix W ∈ Rcin×(coutk1k2) to measure the layer’s effective rank. We report
averages over five runs with 95% confidence intervals.

The results in Figures 17 to 20 for SGD with momentum, Figures 21 to 24 for Adam, and Figures 25
to 28 for RMSProp consistently show that the average effective rank decreases as depth increases.
This trend is consistent with Theorem 3.3, which establishes the depth induced low-rank bias in
matrix completion settings.
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Figure 17: We train CIFAR-10 with ResNet models ranging from 18 to 101 layers using SGD with
momentum, averaging results over five independent runs with 95% confidence intervals. The leftmost
plot reports the training accuracy, the middle plot the test accuracy, and the rightmost plot the average
effective rank. As depth increases, the average effective rank decreases.

0 50 100 150 200
Epochs

75

80

85

90

95

100

Tr
ai

n 
Ac

cu
ra

cy

0 50 100 150 200
Epochs

60

65

70

75

80

Te
st

 A
cc

ur
ac

y

0 50 100 150 200
Epochs

50

100

150

200

Av
er

ag
e 

Ef
fe

ct
iv

e 
Ra

nk ResNet-18
ResNet-34
ResNet-50
ResNet-101

Figure 18: The results for CIFAR-100 with ResNet-18 to 101, under the same conditions as in
Figure 17.
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Figure 19: The results for CIFAR-10 with VGG-11 to 19, under the same conditions as in Figure 17.
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Figure 20: The results for CIFAR-100 with VGG-11 to 19, under the same conditions as in Figure 17.
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Figure 21: We train CIFAR-10 with ResNet models ranging from 18 to 101 layers using Adam,
averaging results over five independent runs with 95% confidence intervals. The leftmost plot reports
the training accuracy, the middle plot the test accuracy, and the rightmost plot the average effective
rank. As depth increases, the average effective rank decreases.
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Figure 22: The results for CIFAR-100 with ResNet-18 to 101, under the same conditions as in
Figure 21.
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Figure 23: The results for CIFAR-10 with VGG-11 to 19, under the same conditions as in Figure 21.
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Figure 24: The results for CIFAR-100 with VGG-11 to 19, under the same conditions as in Figure 21.

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

0 50 100 150 200
Epochs

85

90

95

100

Tr
ai

n 
Ac

cu
ra

cy

0 50 100 150 200
Epochs

82

84

86

88

90

92

Te
st

 A
cc

ur
ac

y

0 50 100 150 200
Epochs

20

40

60

80

Av
er

ag
e 

Ef
fe

ct
iv

e 
Ra

nk ResNet-18
ResNet-34
ResNet-50
ResNet-101

Figure 25: We train CIFAR-10 with ResNet models ranging from 18 to 101 layers using RMSProp,
averaging results over five independent runs with 95% confidence intervals. The leftmost plot reports
the training accuracy, the middle plot the test accuracy, and the rightmost plot the average effective
rank. As depth increases, the average effective rank decreases.
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Figure 26: The results for CIFAR-100 with ResNet-18 to 101, under the same conditions as in
Figure 25.
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Figure 27: The results for CIFAR-10 with VGG-11 to 19, under the same conditions as in Figure 25.
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Figure 28: The results for CIFAR-100 with VGG-11 to 19, under the same conditions as in Figure 25.
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Coupled vs. Decoupled Dynamics in NN. To examine whether coupled and decoupled training
dynamics intensify low-rank bias in practical neural networks, we conducted an additional experiment
with fully connected networks with ReLU activations, under both Gaussian and identity-based
initializations, using the CIFAR-10 dataset. For the Gaussian initialization, all layers are initialized
with i.i.d. Gaussian weights. For the identity-based initialization, all hidden layers are initialized as
scaled identity matrices, while the first and last layers are initialized with Gaussian weights, since
these layers are not square.

We train networks of depth L ∈ {2, 3, 5} with a fixed hidden width of 512 for 100 epochs, using
SGD with momentum and a constant learning rate of 0.01. The results show that, even when both
initializations successfully achieve low training loss, the low-rank bias is substantially stronger under
Gaussian initialization compared to identity initialization, which indicates that low-rank bias is
intensified under coupled training dynamics in a way that is consistent with our theoretical findings.

Furthermore, as depth increases, the stable rank of the weight matrices decreases under Gaussian
initialization. In contrast, with identity-based initialization, deeper networks tend to converge to
higher rank solutions. A plausible explanation is that, as depth grows, a larger fraction of the layers
are initialized using identity (recall that the first and last layers are initialized under Gaussian), which
makes the overall dynamics closer to a decoupled regime and therefore less biased toward low-rank
solutions.
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Figure 29: Left: training loss (log scale). Right: average stable rank across all layers except the
last. Solid lines correspond to Gaussian initialization and dashed lines to identity-based initialization.
Gaussian initialization (corresponding to coupled training dynamics) converges to noticeably lower
rank than identity-based initialization (corresponding to more decoupled training dynamics).

C.2 LOSS OF PLASTICITY EXPERIMENTS

Section 4.2 discusses a scenario where pre-training employs diagonal entries, after which an off-
diagonal term (specifically, w∗

12) is introduced to restore connectivity, leading to coupled dynamics.
Theorem 4.2 establishes that, in this situation, the model indeed does not converge to a low-rank
solution. To empirically validate this theoretical finding, we conducted experiments using the family
of initializations (7) tailored to this specific scenario, with results detailed in Figures 30 and 31. These
experiments utilized a depth-2 model to reconstruct the ground-truth matrix, with an initialization
scale set to α = 10−35. Notably, if the initialization scale α is set significantly lower, as the dynamics
are coupled, a cold-started model can converge to solutions exhibiting a more pronounced low-rank
structure.

For the case presented in Figure 30, where w∗ = 1, w∗
12 = 0.1, following Theorem 4.2, the

theoretical lower bound on the stable rank for a warm-started model initialized diagonally (m = ∞)
is approximately 1.45, while the empirically observed stable rank is approximately 1.8. Even in
scenarios where substantial new information must be learned (e.g., by setting w∗

12 to a large value),
loss of plasticity is empirically observed, primarily manifesting as high test error (i.e., a significant
gap between the target w∗

21 and the converged w21). While Theorem 4.2’s analysis via stable rank
does not fully explain an accompanying low-rank bias (a point consistent with Figure 31), the theorem
does predict that w21 converges to a negative value, which implies a large test loss.
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Furthermore, we performed additional experiments with different diagonal entry values to investigate
whether this argument extends to other scenarios (results shown in Figure 32), although specific
theoretical guarantees have not been established for these broader cases. We observe that even in
these varied settings, both the effective rank and the stable rank of a warm-started model substantially
exceed one, whereas cold-started models can converge to lower-rank solutions.
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Figure 30: Experimental results for a 2 × 2 rank-1 ground-truth matrix W ∗ with w∗
11 = w∗

22 = 1
and w∗

12 = 0.5 (implying w∗
21 = 2 for rank-1 structure). Models, initialized according to (7), are

first pre-trained on diagonal entries. After achieving zero-loss convergence in pre-training, the
off-diagonal element w∗

12 is introduced, and models are subsequently trained on combined diagonal
and off-diagonal observations. The plots display: (Left and Middle) effective rank under different
settings; (Right) converged value of w21(∞). Key observations: (1) Warm-starting with a model that
converged to a high-rank solution during pre-training tends to maintain this high rank, even when
presented with the same subsequent observations as a cold-started model. (2) In the theoretically
analyzed m = ∞ case, w21(∞) < 0 is observed, which correlates with the highest effective rank.
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Figure 31: Experimental conditions identical to those in Figure 30, except with ground truth value
w∗

12 = 10. The model have to predict w∗
21 as 0.1
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Figure 32: Experimental conditions identical to those in Figure 30, except with ground truth value
w∗

11 = 1, w∗
22 = 2, and w∗

12 = 0.5. The model have to predict w∗
21 as 4.

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

D PROOF FOR SECTION 3

In this and the following sections, we prove the Propositions and Theorems presented in the main
text. We begin with the proof of Theorem 3.1.

D.1 PROOF FOR THEOREM 3.1

When convergence is guaranteed, we can define the reference vector u∗ ≜ b1(∞)
∥b1(∞)∥ ∈ Rd1 , which

is entirely determined by their initial values and the targets. Note that u∗ does not change with
time, since it is defined at t = ∞. We decompose a1(t), a2(t), and b1(t) into two components: one
parallel to u∗ and one perpendicular to u∗:

a1(t) = a1∥(t) + a1⊥(t), a2(t) = a2∥(t) + a2⊥(t), b1(t) = b1∥(t) + b1⊥(t).

For any vector u ∈ Rd1 , the parallel component is defined as u∥ = (u∗⊤u)u∗, and the perpendicular
component as u⊥ = u− u∥.

We introduce notation to quantify the alignment of each vector with u∗:

αa1
(t) = u∗⊤a1(t), αa2

(t) = u∗⊤a2(t), αb1
(t) = u∗⊤b1(t). (13)

Additionally, we define notation to measure the magnitude of the perpendicular components:

βa1
(t) = ∥a1⊥(t)∥22, βa2

(t) = ∥a2⊥(t)∥22, βb1
(t) = ∥b1⊥(t)∥22. (14)

Then, using equation (4), time evolution of each component in equation (13) can be written as:

˙αa1
(t) = u∗⊤ȧ1(t)

= (w∗
11 − a1

⊤(t)b1(t))︸ ︷︷ ︸
≜r1(t)

u∗⊤b1(t)

= r1(t)αb1
(t). (15)

Likewise, for αa2
(t), we derive:

˙αa2
(t) = u∗⊤ȧ2(t)

= (w∗
21 − a⊤

2 (t)b1(t))︸ ︷︷ ︸
≜r2(t)

u∗⊤b1(t)

= r2(t)αb1
(t). (16)

Finally, for αb1
(t), we have:

˙αb1
(t) = u∗⊤ḃ1(t)

= (w∗
11 − a⊤

1 (t)b1(t))u
∗⊤a1(t) + (w∗

21 − a⊤
2 (t)b1(t))u

∗⊤a2(t)

= r1(t)αa1
(t) + r2(t)αa2

(t). (17)

Also, for the perpendicular components, their time evolution can be derived as:

β̇a1
(t) = 2a1⊥(t) · ȧ1⊥(t)

= 2a1⊥(t) ·
d

dt

(
a1(t)−

(
u∗⊤a1(t)

)
u∗
)

= 2a1⊥(t) ·
(
r1(t)b1(t)− r1(t)

(
u∗⊤b1(t)

)
u∗
)
.

Noting that a1⊥(t) is perpendicular to u∗, the second term in the parenthesis is zero. Thus, we have

β̇a1
(t) = 2r1(t)a1⊥(t)

⊤b1⊥(t).

Likewise, for βa2
(t) and βb1

(t), we can derive their time derivative as:

β̇a2
(t) = 2r2(t)a2⊥(t)

⊤b1⊥(t), β̇b1
(t) = β̇a1

(t) + β̇a2
(t).
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Note that by the definition of u∗, we have βb1
(∞) = 0. Integrating the identity β̇b1

(t) = β̇a1
(t) +

β̇a2
(t) from t = 0 to ∞ gives:

βa1
(∞) + βa2

(∞) = βa1
(0) + βa2

(0)− βb1
(0)︸ ︷︷ ︸

≜β0≥0

.

This equation shows that if the initial value β0 is small, it constrains the total perpendicular magnitude
at convergence. However, since we do not know u∗ in advance, one natural way to ensure small
perpendicular components is to initialize the entire norms of a1(0), a2(0) to be sufficiently small.

To develop a more rigorous understanding, we analyze the parallel components. Under the assumption
of convergence, we have:

a1(∞)⊤b1(∞) = w∗
11, a2(∞)⊤b1(∞) = w∗

21.

Decomposing a1(∞) and a2(∞) leads to:

a1(∞)⊤b1(∞) =
(
a1⊥(∞) + u∗⊤a1(∞)u∗

)⊤
b1(∞)

= αa1
(∞)αb1

(∞) = w∗
11, (18)

a2(∞)⊤b1(∞) =
(
a2⊥(∞) + u∗⊤a2(∞)u∗

)⊤
b1(∞)

= αa2
(∞)αb1

(∞) = w∗
21. (19)

Using equations (15)–(17), and noting that

d

dt
α2
b1
(t) =

d

dt
(α2

a1
(t) + α2

a2
(t)),

we can integrate both sides of the equation over time from 0 to ∞ to obtain:

α2
a1
(∞) + α2

a2
(∞) = α2

b1
(∞) + α2

a1
(0) + α2

a2
(0)− α2

b1
(0)︸ ︷︷ ︸

≜α0

. (20)

By solving equations (18), (19), and (20), we can obtain closed-form solutions of αa1
(∞), αa2

(∞),
and αb1(∞) as follows:

α2
a1
(∞) =

2w∗
11

2

√
α2
0 + 4w∗

11
2 + 4w∗

21
2 − α0

, α2
a2
(∞) =

2w∗
21

2

√
α2
0 + 4w∗

11
2 + 4w∗

21
2 − α0

, (21)

α2
b1
(∞) =

√
α2
0 + 4w∗

11
2 + 4w∗

21
2 − α0

2
. (22)

Thus, we can upper bound the proportion of the perpendicular component of a1(∞) and a2(∞)
relative to its total magnitude as follows:

∥a1⊥(∞)∥2
∥a1(∞)∥2 =

βa1
(∞)

α2
a1
(∞) + βa1

(∞)
≤

β0

(√
α2
0 + 4w∗

11
2 + 4w∗

21
2 − α0

)

2w∗
11

2 ,

∥a2⊥(∞)∥2
∥a2(∞)∥2 =

βa2
(∞)

α2
a2
(∞) + βa2

(∞)
≤

β0

(√
α2
0 + 4w∗

11
2 + 4w∗

21
2 − α0

)

2w∗
21

2 .

To further refine these bounds, we analyze the terms β0 and S(α0) ≜
√

α2
0 + 4w∗

11
2 + 4w∗

21
2 − α0.

By the definition of β0, it is upper bounded by ∥a1(0)∥2 + ∥a2(0)∥2 = ∥A(0)∥2F . Also, by the
definition of α0, we have:

−∥b1(0)∥22 ≤ α0 ≤ ∥A(0)∥2F .
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Noting that the function f(x) =
√
x2 + C − x (where C > 0) is non-negative and monotonically

decreasing for all x ∈ R, we can upper bound S(α0) using the lower bound of α0:

S(α0) ≤ S(−∥b1(0)∥22)

=

√
(−∥b1(0)∥22)2 + 4(w∗

11
2 + w∗

21
2)− (−∥b1(0)∥22)

=

√
∥b1(0)∥42 + 4(w∗

11
2 + w∗

21
2) + ∥b1(0)∥22.

Substituting these bounds for β0 and S(α0) into the inequality ∥a1⊥(∞)∥2

∥a1(∞)∥2
2

≤ β0S(α0)
2w∗

11
2 , we obtain the

final upper bound for the proportion of the perpendicular component of a1(∞):

∥a1⊥(∞)∥2
∥a1(∞)∥22

≤
∥A(0)∥2F

(√
∥b1(0)∥42 + 4(w∗

11
2 + w∗

21
2) + ∥b1(0)∥22

)

2w∗
11

2 .

A similar bound applies to ∥a2⊥(∞)∥2

∥a2(∞)∥2
2

:

∥a2⊥(∞)∥2
∥a2(∞)∥22

≤
∥A(0)∥2F

(√
∥b1(0)∥42 + 4(w∗

11
2 + w∗

21
2) + ∥b1(0)∥22

)

2w∗
21

2 .
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D.2 PROOF FOR PROPOSITION 3.2

According to the definition of coupled/decoupled dynamics presented in Definition 2, for the family
of initializations defined in (7) along with the diagonal observations (Ω(d)

diag), we divide the cases to
ensure that all possible scenarios for this family of initializations are covered.

D.2.1 CASE FOR L = 2

First, we consider the depth-2 (L = 2) case. Each diagonal observation, wii(t), is the inner product
of the i-th row of A(t) and the i-th column of B(t). Then, when we take the gradient ∇θ(t)wii(t),
where θ(t) represents the concatenation of A(t) and B(t), this gradient has non-zero components
only corresponding to the i-th row of A(t) and the i-th column of B(t); all other components are
zero for all t ≥ 0. Therefore, for any j ̸= i, the inner product ⟨∇θ(t)wii(t),∇θ(t)wjj(t)⟩ must be
zero. This means that there exists a partition of Ω(d)

diag into disjoint subsets Ω1, . . . ,Ωd, where each
Ωi = {(i, i)}. Therefore, for any initialization, the training dynamics are decoupled.

D.2.2 CASE FOR L ≥ 3 AND 1 < m < ∞
For the deeper matrix case (L ≥ 3), we first note that each diagonal observation wii(t) can be
expressed as:

wii(t) =

d∑

iL−1=1

· · ·
d∑

i1=1

(WL(t))i,iL−1
(WL−1(t))iL−1,iL−2

· · · (W1(t))i1,i.

Now consider the case 1 < m < ∞, where every entry of each weight matrix Wl(0) (for
l = 1, . . . , L) is initialized as a positive value. Since wii(0) is a sum of products of these pos-
itive entries, its gradient with respect to the parameters θ(0), ∇θ(0)wii(0), likewise consist of
components that are sums of positive products (see (23)). Therefore, it is asserted that each relevant
component of ∇θ(0)wii(0) is positive at initialization. Consequently, for any j ̸= i, since both
∇θ(0)wii(0) and ∇θ(0)wjj(0) have all their corresponding components positive, their inner product
⟨∇θ(0)wii(0),∇θ(0)wjj(0)⟩ will be non-zero (specifically, positive). This non-zero inner product
signifies coupled dynamics.

D.2.3 CASE FOR L ≥ 3 AND m = ∞
Next, we examine the m = ∞ case, which corresponds to initializing each factor matrix Wl(0) as
a scaled identity, i.e., Wl(0) = αId. The following lemma states that under this initialization, and
for dynamics driven by diagonal observations (from Ω

(d)
diag), all off-diagonal elements of each Wl(t)

remain zero for all t ≥ 0.
Lemma D.1. For a set of L matrices W1(t), . . . ,WL(t) ∈ Rd×d, let WL:1(t) = WL(t) · · ·W1(t).
Following gradient flow dynamics in (3), if each factor matrix Wl(0) is initialized as a diagonal
matrix (e.g., Wl(0) = αlId for scalars αl), then all off-diagonal elements of each matrix Wl(t)
remain zero for all t ≥ 0.

Proof. For a given diagonal observation indices Ω(d)
diag, if we consider the gradient flow dynamics for

an (i, j)-th entry of the factor matrix Wl(t) (≜ (wl(t))ij), we have:

d(wl(t))ij
dt

= − ∂ϕ

∂(wl(t))ij

= −
d∑

p=1

(wpp(t)− w∗
pp)

∂wpp(t)

∂(wl(t))ij
,

Here, the derivative of a diagonal element wpp(t) with respect to (wl(t))ij is:

∂wpp(t)

∂(wl(t))ij
= (WL(t)WL−1(t) · · ·Wl+1(t))pi (Wl−1(t)Wl−2(t) · · ·W1(t))jp , (23)
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where the first term is (p, i)-th element of the product WL(t)WL−1(t) · · ·Wl+1(t), and the second
term is (j, p)-th element of the product Wl−1(t)Wl−2(t) · · ·W1(t). We want to show that if all
Wl(t) are diagonal, then d(wl(t))ij

dt = 0 for any off-diagonal element (wl(t))ij (i.e., i ̸= j).

Assume at a given time t that all factor matrices Wl(t) are diagonal. Then, the product P (t) ≜∏L
k=l+1 Wk(t) is diagonal. Similarly, the product S(t) ≜

∏l−1
k=1 Wk(t) is diagonal. For ∂wpp(t)

∂(wl(t))ij

to be non-zero (given all Wl(t) are diagonal), both (P (t))pi and (S(t))jp must be non-zero. This
requires p = i and j = p, which implies i = j.

However, we are considering an off-diagonal element (wl(t))ij , for which i ̸= j. This means that if
all Wl(t) are diagonal, then for any p:

∂wpp

∂(wl(t))ij
= 0, if i ̸= j

Substituting this into the dynamic equation for (wl(t))ij :

d(wl(t))ij
dt

= −
d∑

p=1

(wpp(t)− w∗
pp) · 0 = 0, if i ̸= j

Initially, Wl(0) are diagonal, so all off-diagonal elements (wl(t))ij are zero for i ̸= j. Since their
time derivatives are zero when they are zero (i.e., when the matrices are diagonal), these off-diagonal
elements remain zero for all t ≥ 0.

With Lemma D.1, the factor matrices Wl(t) remain diagonal, so wii(t) = (WL(t))ii · · · (W1(t))ii.
This structure leads to decoupled dynamics because each wii(t) depends exclusively on the set of
parameters {(Wk(t))ii}Lk=1, while wjj(t) (for j ̸= i) depends on the distinct set {(Wk(t))jj}Lk=1.
Consequently, for any j ̸= i, their respective gradients ∇θ(t)wii(t) and ∇θ(t)wjj(t) are orthogonal,
meaning their inner product is zero:

⟨∇θ(t)wii(t),∇θ(t)wjj(t)⟩ = 0.

This orthogonality implies that the learning for each diagonal entry is independent, allowing a
conceptual partition of Ω

(d)
diag into disjoint subsets Ωi = {(i, i)}. Therefore, under this specific

diagonal initialization (the m = ∞ case), the training dynamics are decoupled.
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D.3 PROOF FOR THEOREM 3.3

Before presenting the proof of Theorem 3.3, we first restate the problem setting. The model is defined
as WL:1(t) = WL(t)WL−1(t) · · ·W1(t), where each factor matrix Wl(t) ∈ Rd×d is subject to
diagonal observations Ω(d)

diag = {(i, i)}di=1, and follows the gradient flow described in (3). We also
assume that all diagonal entries are equal, i.e., w∗ ≜ w∗

11 = w∗
22 · · · = w∗

dd. To simplify notation, we
use ℓ(WL:1(t)) in place of ℓ(WL:1(t); Ω

(d)
diag) when the context is clear. The explicit gradient flow

dynamics for each factor matrix is then given by:

Ẇl(t) = −
L∏

i=l+1

Wi(t)
⊤ · ∇ℓ(WL:1(t)) ·

l−1∏

i=1

Wi(t)
⊤, (24)

where ∇ℓ(WL:1(t)) = diag(r1(t), r2(t), · · · , rd(t)). Here, the residual term is defined as ri(t) ≜
wii(t)− w∗. To begin, we first present the preliminary lemma required for the following result.

Lemma D.2. Let In denote the n× n identity matrix and Jn ≜ 1n1
⊤
n denote the n× n matrix with

all entries equal to 1. Then the set

S = {aIn + bJn | a, b ∈ R}
is closed under scalar multiplication, addition, and matrix multiplication. Also, any two matrices
A,B ∈ S commute.

Proof. Let

A = aIn + bJn and B = cIn + dJn,

with a, b, c, d ∈ R, and let λ ∈ R be an arbitrary scalar.

Scalar Multiplication:

λA = λ(aIn + bJn) = (λa)In + (λb)Jn.

Since λa, λb ∈ R, it follows that λA ∈ S.

Addition:

A+B = (aIn + bJn) + (cIn + dJn) = (a+ c)In + (b+ d)Jn.

Since a+ c, b+ d ∈ R, we have A+B ∈ S.

Matrix Multiplication:

AB = (aIn + bJn)(cIn + dJn).

Using the distributive property and the facts that

InJn = JnIn = Jn and J2
n = nJn,

we expand:

AB = ac InIn + ad InJn + bcJnIn + bdJ2
n

= ac In + adJn + bcJn + bd (nJn)

= ac In + (ad+ bc+ nbd)Jn.

Thus, AB is of the form αIn + βJn with α = ac and β = ad+ bc+ nbd, and hence AB ∈ S.

Commutativity: By the same procedure as above,

AB = (aIn + bJn)(cIn + dJn)

= acIn + (ad+ bc+ nbd)Jn

= caIn + (cb+ da+ ndb)Jn

= BA,

which completes the proof.
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D.3.1 CASE FOR L = 2 & L ≥ 3 AND 1 < m < ∞
We will first examine two main scenarios: the depth-2 (L = 2) case and deeper networks (L ≥ 3)
where 1 < m < ∞. The m = ∞ case will be considered separately in the later subsection, as its
initialization with αId warrants distinct treatment.

We now proceed to prove the following auxiliary results, which are used in the proof of Lemma D.4.
Based on Lemmas D.3–D.5, we will show that all diagonal entries across all layers are identical, and
likewise, all off-diagonal entries across layers are also equal.
Lemma D.3. Suppose we have a ground truth matrix W ∗ ∈ Rd×d whose diagonal entries are
the same that we are observing, i.e., w∗ ≜ w∗

11 = w∗
22 = · · · = w∗

dd and Ω
(d)
diag = {(i, i)}di=1. We

factorize a solution matrix at time t as a product of L matrices,

WL:1(t) = WL(t)WL−1(t) · · ·W1(t), Wl(t) ∈ Rd×d for all l ∈ [L].

Suppose that for all l ∈ [L] and 0 ≤ m ≤ k, the following holds:

W
(m)
l (t) = x(m)Id + y(m) (Jd − Id) ,

for some scalars x(m), y(m) ∈ R where we denote A(k)(t) as k-th derivative with respect to t of a
matrix A(t). Then, the k-th derivative of the product WL:1(t) satisfies

w
(k)
11 (t) = w

(k)
22 (t) = · · · = w

(k)
dd (t).

Proof. Let us denote the m-th derivative of each layer matrix by

A(m) ≜ W
(m)
l (t).

Then, the k-th time derivative of the product WL:1(t) is given by the Leibniz rule:

dk

dtk
WL:1(t) =

∑

k1+···+kL=k

(
k

k1, . . . , kL

)
A(kL)A(kL−1) · · ·A(k1).

By the assumption, each A(m) lies in the span of {Id,Jd}, and since this span is closed under matrix
multiplication and scalar multiplication (by Lemma D.2), each term in the sum lies in the same span.
Hence, the entire sum W (k)(t) also lies in span{Id,Jd}, which implies that all diagonal entries of
W (k)(t) are equal.

Lemma D.4. Under the setting of Lemma D.3 where each factor matrix Wl(0) is initialized according
to (7), the following identities hold for all k ∈ N ∪ {0} under the gradient flow dynamics defined
in (3):

(
W

(k)
l1

(0)
)
ii
=
(
W

(k)
l2

(0)
)
jj
, i, j ∈ [d], l1, l2 ∈ [L],

(
W

(k)
l1

(0)
)
i1j1

=
(
W

(k)
l2

(0)
)
i2j2

, i1 ̸= j1, i2 ̸= j2 ∈ [d], l1, l2 ∈ [L].

Proof. For the base case, when k = 0, these identities immediately follow from our initialization
assumptions. Now, suppose the induction hypothesis holds for all orders m < k (with k ≥ 1), which
means we have:

(
W

(m)
l1

(0)
)
ii
=
(
W

(m)
l2

(0)
)
jj
, i, j ∈ [d], l1, l2 ∈ [L],

(
W

(m)
l1

(0)
)
i1j1

=
(
W

(m)
l2

(0)
)
i2j2

, i1 ̸= j1, i2 ̸= j2 ∈ [d], l1, l2 ∈ [L].
(25)

By applying the Leibniz rule to (24), the k-th derivative of Wl(t) is given by:

W
(k)
l (t) = −

∑

i1,...,iL

(
k − 1

i1, . . . , iL

) L∏

r=l+1

W (ir)
r (t)⊤ · ∇ℓ(WL:1(t))

(il) ·
l−1∏

r=1

W (ir)
r (t)⊤, (26)
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with
∑L

l=1 il = k − 1 where each il ≥ 0. Given our induction assumption in equation (25) for all
m < k, let x(m)(0) denote the m-th derivative of the diagonal entries and y(m)(0) the m-th derivative
of the off-diagonal entries at initialization. Note that at initialization, by Lemma D.3, under the
assumption that W (m)

l (0) lies in the span of {Id,Jd} leads to w
(m)
11 (0) = w

(m)
22 (0) · · · = w

(m)
dd (0).

Therefore, we know ∇ℓ(WL:1(0))
(il) = r(il)(0)Id for all il < k, where r(il)(0) ≜ r

(il)
11 (0) = · · · =

r
(il)
dd (0). Thus, at initialization, since equation (26) consists of terms involving x(m)(0) and y(m)(0)

for all m < k, we can rewrite the above expression at t = 0 in terms of these derivatives as follows:

W
(k)
l (0) = −

∑

i1,...,iL

(
k − 1

i1, . . . , iL

)
r(il)(0)

∏

r∈[L]\{l}

W (ir)
r (0)

= −
∑

i1,...,iL

(
k − 1

i1, . . . , iL

)
r(il)(0)

∏

r∈[L]\{l}

(arId + brJd) ,

where constants ar and br are composed of x(r)(0) and y(r)(0). Then, by Lemma D.2, W (k)
l (0) can

be expressed in terms of only two values—one for the diagonal entries and one for the off-diagonal
entries:

W
(k)
l (0) = αId + βJd, α, β ∈ R,

thus concluding the proof.

Lemma D.5. Under the setting of Lemma D.4, the symmetries are preserved for all time t ≥ 0:

(Wl1(t))ii = (Wl2(t))jj for all i, j ∈ [d], l1, l2 ∈ [L],

(Wl1(t))i1j1 = (Wl2(t))i2j2 for all i1 ̸= j1, i2 ̸= j2 ∈ [d], l1, l2 ∈ [L].

Proof. By applying Lemma F.6 to the result of Lemma D.4, we can conclude that the symmetries are
preserved for timesteps t ≥ 0.

By the above lemmas, if the initialization follows the scheme in (7), then all diagonal entries of all
layers are identical, and all off-diagonal entries are also identical. Under this condition, the gradient
flow dynamics can be easily described by the following lemma.
Lemma D.6. Under the same conditions as in Lemma D.4, if the diagonal entries of each layer are
identical at timestep t (denoted by x(t)), and if the off-diagonal entries of each layer are identical at
timestep t (denoted by y(t)), then the time derivative of x(t) and y(t) are given as:

ẋ(t) = − (x(t) + (d− 1)y(t))L−1 + (d− 1)(x(t)− y(t))L−1

d
r(t),

ẏ(t) = − (x(t) + (d− 1)y(t))L−1 − (x(t)− y(t))L−1

d
r(t).

Proof. For l ∈ [L] the gradient flow dynamics of Wl are written as:

Ẇl(t) = −
L∏

i=l+1

Wi(t)
⊤ · ∇ℓ(WL:1(t)) ·

l−1∏

i=1

Wi(t)
⊤, (27)

where ∇ℓ(WL:1(t)) = diag(r(t), · · · , r(t)). Since Wl(t) is comprised of x(t) in diagonal entries
and y(t) in off-diagonal entries, the above dynamics can be rewritten as follows:

Ẇl(t) = −r(t) [Wl(t)]
L−l · Id · [Wl(t)]

l−1

= −r(t) [Wl(t)]
L−1

. (28)

If we rewrite Wl(t) = (x(t)− y(t))Id + y(t)Jd, its eigenvalues are derived as:

λ1 = x(t) + (d− 1)y(t) for the eigenvector 1,
λ2 = x(t)− y(t) for any eigenvector orthogonal to 1 (multiplicity d− 1).
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Here, we denote λi ≜ λi(WL:1(t)), unless otherwise specified. Then, we can decompose Wl(t)
with projection matrix P∥ = 1

dJd and P⊥ = Id − 1
dJd as follows:

Wl(t) = λ1P∥ + λ2P⊥.

Therefore, if we take (L− 1)-th power of Wl(t), we can derive:

[Wl(t)]
L−1 = λL−1

1 P∥ + λL−1
2 P⊥

= (x(t) + (d− 1)y(t))
L−1 · 1

d
Jd + (x(t)− y(t))L−1

(
Id −

1

d
Jd

)

= (x(t)− y(t))L−1Id +
(x(t) + (d− 1)y(t))

L−1 − (x(t)− y(t))L−1

d
Jd.

Recalling that Id has 1 on the diagonal and 0 off-diagonal, and Jd has 1 in every entry, the entries of
[Wl(t)]

L−1 are:

(
[Wl(t)]

L−1
)
ii
= (x(t)− y(t))L−1 +

(x(t) + (d− 1)y(t))
L−1 − (x(t)− y(t))L−1

d

=
(x(t) + (d− 1)y(t))

L−1
+ (d− 1)(x(t)− y(t))L−1

d
, ∀i ∈ [d], (29)

(
[Wl(t)]

L−1
)
ij
=

(x(t) + (d− 1)y(t))
L−1 − (x(t)− y(t))L−1

d
, ∀i ̸= j ∈ [d]. (30)

This concludes the proof by substituting the above equations into equation (28).

Under the gradient flow dynamics of the diagonal entry x(t) and y(t), we derive the dynamics of the
singular value of Wl(t).

Lemma D.7. Under the conditions of Lemma D.4, the singular values of Wl(t), which is defined as
si(t) for i ∈ [d], evolve according to:

ṡi(t) = −sL−1
i (t)r(t), i = 1, 2, . . . d.

Proof. By Lemma D.5, each factor matrix Wl(t) is symmetric, having x(t) as its diagonal entries
and y(t) as its off-diagonal entries. The distinct eigenvalues of Wl(t) are λ1(t) = x(t)+ (d− 1)y(t)
and λ2(t) = x(t)− y(t) (where λ2(t) has multiplicity d− 1). Their time derivatives are calculated
by:

λ̇i(t) = −λL−1
i (t)r(t),

Note that by setting m > 1, we have λ1(0) ≥ λ2(0) > 0. If L = 2, the solution of above equation is
equal to λi(t) = λi(0) exp

(
−
∫ t

0
r(τ)dτ

)
, which means it maintains the positiveness of λi(0) for

all t ≥ 0. For L > 2, its general solution can be written as follows:

λi(t) =

(
λi(0)

2−L + (L− 2)

∫ t

0

r(τ)dτ

) 1
2−L

,

due to its positivity at initialization. Then, λi(t) stays strictly positive, since it never reaches zero or
changes sign. Therefore, due to the symmetry and positive definiteness of Wl(t), we further conclude
that λi(t) ≡ si(t).

By the above lemma, we can solve the ODE and find sr(t) as follows:

sr(t) =




sr(0) exp

(
−
∫ t

0
r(τ)dτ

)
, L = 2,

(
sr(0)

2−L + (L− 2) ·
∫ t

0
r(τ)dτ

) 1
2−L

, L > 2.
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Since s1(0) = x(0) + (d − 1)y(0) = α
(
1 + d−1

m

)
and sr(0) = x(0) − y(0) = α(1 − 1

m ) for all
i ≥ 2, we can separate above equation as following:

s1(t) =




α
(
1 + d−1

m

)
exp

(
−
∫ t

0
r(τ)dτ

)
, L = 2,

(
α2−L

(
1 + d−1

m

)2−L
+ (L− 2) ·

∫ t

0
r(τ)dτ

) 1
2−L

, L > 2,

sr(t) =




α(1− 1

m ) exp
(
−
∫ t

0
r(τ)dτ

)
, L = 2,

(
α2−L(1− 1

m )2−L + (L− 2) ·
∫ t

0
r(τ)dτ

) 1
2−L

, L > 2.
, r = 2, 3, . . . , d.

Then, we can establish a relationship between s1(t) and sr(t), thereby identifying an invariant
property independent of time t:

• For L = 2:
s1(t)

sr(t)
=

m+ d− 1

m− 1
, (31)

• For L > 2:

s2−L
1 (t)− s2−L

r (t) = α2−L

((
1 +

d− 1

m

)2−L

−
(
1− 1

m

)2−L
)
. (32)

Furthermore, we can derive a closed-form solution for the singular values by utilizing the convergence
guarantee. From equation (29), the diagonal entries of the solution matrix can be expressed as:

wii(t) =
(
[Wl(t)]

L
)
ii
=

(x(t) + (d− 1)y(t))
L
+ (d− 1) (x(t)− y(t))

L

d
, ∀i ∈ [d].

Since wii(t) converges to a fixed value w∗, and noting that s(t) = x(t) + (d− 1)y(t) and sr(t) =
x(t)− y(t), we obtain the following convergence equation:

w∗ =
sL1 (∞) + (d− 1)sLr (∞)

d
=

σ1(∞) + (d− 1)σr(∞)

d
, (33)

where we define σi(t) ≜ sLi (t) to denote the singular values of the product matrix, WL:1(t).
Combining Equations (31) and (33), we derive a closed-form solution for the singular values of the
depth-2 matrix as t → ∞:

σ1(∞) =

(
w∗(m+ d− 1)2

m2 + d− 1

)L
2

,

σr(∞) =

(
w∗(m− 1)2

m2 + d− 1

)L
2

, r = 2, 3, . . . , d,

For the case when L ≥ 3, we cannot obtain an exact analytical solution for σr(∞). Instead, we
derive implicit equations for both σ1(∞) and σr(∞) that cannot be easily solved without specifying
numerical values:

σ
2−L
L

1 (∞)−
(
w∗d− σ1(∞)

d− 1

) 2−L
L

= Cα,m,L,d,

(w∗d− (d− 1)σr(∞))
2−L
L − σ

2−L
L

r (∞) = Cα,m,L,d, for r = 2, . . . , d.,

where Cα,m,L,d ≜
(
α
m

)2−L
(
(m+ d− 1)

2−L − (m− 1)
2−L

)
. If we specify the values of α >

0,m > 1, d ≥ 2, L ≥ 3 and w∗ > 0 for ground-truth value, we can derive σ1(∞) and σr(∞) of
solution matrix of depth-L by substituting the values to above equations.

Remark. The L ≥ 3 and m = ∞ case could arguably fall under the preceding analysis when
other parameters are held fixed, as m = ∞ implies that all singular values are identical. However,
a slight dependency on the specific value of α persists; for instance, tracking the overall result
becomes challenging if α approaches zero while m = ∞. Therefore, we will restrict the scope of the
aforementioned analysis to finite m. Consequently, the L ≥ 3 and m = ∞ case will be analyzed
separately in the following subsection.
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D.3.2 CASE FOR L ≥ 3 AND m = ∞
We now examine the m = ∞ case, which corresponds to an initialization scheme like Wl(0) = αId.
By Lemma D.1, the factor matrices Wl(t) remain diagonal for all t ≥ 0, and thus the diagonal
entries of the product matrix are wii(t) = (WL(t))ii(WL−1(t))ii · · · (W1(t))ii. Assuming zero-loss
convergence is achieved for any initial choice of α > 0, it follows that wii(∞) = w∗ for all i, and
consequently, the overall matrix WL:1(∞) is diagonal with entries w∗.

Furthermore, let us consider the implications of Lemmas D.3–D.5. These lemmas hold under a
condition y(t) = 0, thereby belonging to span{Id,Jd}, this leads to the result that each diagonal
element of the factor matrices at convergence is (Wl(∞))ii = (w∗)1/L for all i ∈ [d] and l ∈ [L].
This means each layer Wl(∞) becomes (w∗)1/LId, and thus has identical singular values equal to
(w∗)1/L (assuming w∗ ≥ 0). This, in turn, leads to the final claim that for the overall product matrix
WL:1(∞), its singular values σi(∞) satisfy σi(∞) = w∗ for all i ∈ [d].

D.3.3 LOSS CONVERGENCE

We further establish loss convergence in the following proposition.

Proposition D.1. Let W ∗ ∈ Rd×d be a ground-truth matrix with identical positive diagonal entries
w∗ ≜ w∗

11 = · · · = w∗
dd > 0, and let Ω(d)

diag = {(i, i)}di=1. Consider gradient flow (3) on the product
WL:1, where each factor Wl ∈ Rd×d is initialized as in (7). Define K from the initialization scale α
by

K =

{
L (wii(0))

2L−2
L , 0 < wii(0) ≤ w∗,

L (w∗)
2L−2

L , wii(0) ≥ w∗,

where

wii(0) =
αL
(
(m+ d− 1)L + (d− 1)(m− 1)L

)

dmL
.

Then, for all t ≥ 0, the loss decays exponentially:

ℓ(WL:1(t)) ≤ ℓ(WL:1(0))e
−2Kt.

Proof. Recall that the eigenvalues are given by λ1(t) = x(t) + (d− 1)y(t) and λ2(t) = x(t)− y(t).
From Lemma D.6, their time derivatives are

λ̇1(t) = −λL−1
1 (t)r(t),

λ̇2(t) = −λL−1
2 (t)r(t).

The diagonal entries wii(t) of WL:1(t) can be written as

wii(t) =
(x(t) + (d− 1)y(t))L + (d− 1)(x(t)− y(t))L

d

=
λL
1 (t) + (d− 1)λL

2 (t)

d
.

Define the residual r(t) = wii(t)− w∗, where w∗ is a constant. Differentiating r(t) and substituting
the expressions for λ̇1(t) and λ̇2(t) yields

ṙ(t) =
d

dt
(wii(t)− w∗)

=
L

d
λL−1
1 (t)λ̇1(t) +

L(d− 1)

d
λL−1
2 (t)λ̇2(t)

=
L

d
λL−1
1 (t)

(
−λL−1

1 (t)r(t)
)
+

L(d− 1)

d
λL−1
2 (t)

(
−λL−1

2 (t)r(t)
)

= −
(

L

d
λ2L−2
1 (t) +

L(d− 1)

d
λ2L−2
2 (t)

︸ ︷︷ ︸
≜K(t)

)
r(t). (34)
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Thus ṙ(t) = −K(t)r(t), whose solution is

r(t) = r(0) exp

(
−
∫ t

0

K(τ)dτ

)
. (35)

Consequently, r(t) preserves the sign of r(0) for all t ≥ 0. Also, by noting that the map u 7→ u
2L−2

L

is convex on R+, we can lower-bound K(t) using Jensen’s inequality for any fixed t:

K(t) = L

(
λ2L−2
1 (t) + (d− 1)λ2L−2

2 (t)

d

)

= L



(
λL
1 (t)

) 2L−2
L + (d− 1)

(
λL
2 (t)

) 2L−2
L

d




≥ L

(
λL
1 (t) + (d− 1)λL

2 (t)

d

) 2L−2
L

= L(wii(t))
2L−2

L . (36)

Case 1 (r(0) ≤ 0). Assume

0 < αL ≤ w∗dmL

(m+ d− 1)L + (d− 1)(m− 1)L
,

which implies r(0) ≤ 0 and hence r(t) ≤ 0 by (35). For any i ∈ {1, 2} with λi(0) > 0 we then have

λ̇i(t) = −λL−1
i (t)r(t) ≥ 0,

so λi(t) ≥ λi(0) > 0 for all t ≥ 0, which in turn implies wii(t) ≥ wii(0). Therefore, we can lower
bound (36) with wii(0):

K(t) ≥ L(wii(0))
2L−2

L .

Case 2 (r(0) ≥ 0). If

αL ≥ w∗dmL

(m+ d− 1)L + (d− 1)(m− 1)L
,

then r(0) ≥ 0 hence r(t) ≥ 0 for all t ≥ 0 by (35). Therefore, wii(t) ≥ w∗, then we lower bound
(36)

K(t) ≥ L(w∗)
2L−2

L .

Moreover, since λ̇i(t) = −λL−1
i (t)r(t) ≤ 0, each λi(t) is non-increasing. If it reaches 0 at some

time, then λ̇i(t) = 0 there, so it cannot cross into the negative region; thus λi(t) ≥ 0 for all t ≥ 0.
This justifies the use of (36).

By upper-bounding the absolute value of (35), we derive:

|r(t)| ≤ |r(0)| exp(−Kt),

where K = L(wii(0))
2L−2

L in Case 1 and K = L(w∗)
2L−2

L in Case 2. Since ℓ(WL:1(t)) =
d
2r

2(t),
we obtain the exponential decay of the loss:

ℓ(WL:1(t)) ≤ ℓ(WL:1(0)) exp(−2Kt).
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D.3.4 UNIQUENESS OF THE LIMITING SINGULAR VALUES

Proposition D.2. Under the setting of Theorem 3.3,

f1(σ) = σ
2−L
L −

(
w∗d− σ

d− 1

) 2−L
L

strictly decreases in σ ∈ (0, w∗d). Also,

f2(σ) = (w∗d− (d− 1)σ)
2−L
L − σ

2−L
L

strictly increases in σ ∈
(
0, w∗d

d−1

)
. Therefore, Equations (8) and (9) admit a unique solution (σ1, σr).

Proof. By initialization (7), each Wl(0) is full rank. The gradient flow (3) is analytic, so det(Wl(t))
cannot cross zero in finite time. Thus every Wl(t) remains full rank for all t ≥ 0, and all singular
values of the product matrix stay strictly positive. In particular, the limiting singular values satisfy

σ1 > 0, σr > 0.

Furthermore, (33) in Appendix D.3 shows that the limiting singular values satisfy

σ1 + (d− 1)σr = w∗d. (37)

Combining positivity with (37) gives the bounds

0 < σ1 = w∗d− (d− 1)σr < w∗d,

and

0 < σr =
w∗d− σ1

d− 1
<

w∗d

d− 1
.

These inequalities identify the domains on which we analyze the scalar functions associated with (8)
and (9).

For notational convenience, we set a ≜ 2−L
L < 0.

Uniqueness of σ1. For (8), define

f1(σ) = σa −
(
w∗d− σ

d− 1

)a

, σ ∈ (0, w∗d).

Differentiating, we obtain

f ′
1(σ) = aσa−1 +

a

d− 1

(
w∗d− σ

d− 1

)a−1

.

Since a < 0 and both σa−1 and
(

w∗d−σ
d−1

)a−1

are positive on (0, w∗d), every term in f ′
1(σ) is

negative, so
f ′
1(σ) < 0, for all σ ∈ (0, w∗d).

At the endpoints we have

lim
σ→0+

f1(σ) = +∞, lim
σ→(w∗d)−

f1(σ) = −∞.

Thus f1 is continuous, strictly decreasing on (0, w∗d), and satisfies range(f1) = R. Consequently,
for any constant Cα,m,L,d ∈ R there exists a unique σ1 ∈ (0, w∗d) such that

f1(σ1) = Cα,m,L,d.

47



2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

Uniqueness of σr. For (9), define

f2(σ) = (w∗d− (d− 1)σ)a − σa, σ ∈
(
0,

w∗d

d− 1

)
.

Differentiating gives

f ′
2(σ) = −a(d− 1)(w∗d− (d− 1)σ)a−1 − aσa−1.

Since −a > 0 and both (w∗d− (d− 1)σ)a−1 and σa−1 are positive on
(
0, w∗d

d−1

)
, we obtain

f ′
2(σ) > 0, for all σ ∈

(
0,

w∗d

d− 1

)
.

The endpoint limits are

lim
σ→0+

f2(σ) = −∞, lim
σ→(w∗d

d−1 )
−
f2(σ) = +∞.

Therefore f2 is continuous, strictly increasing on
(
0, w∗d

d−1

)
and satisfies range(f2) = R.

Hence, for any constant Cα,m,L,d ∈ R there exists a unique σr ∈
(
0, w∗d

d−1

)
such that

f2(σr) = Cα,m,L,d.

Combining the uniqueness of σ1 and σr with the linear relation (37) shows that the limiting singular
values solving (8) and (9) are uniquely determined by α,m,L, d, and w∗. This completes the
proof.
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D.4 PROOF FOR COROLLARY 3.4

Corollary 3.4. Let 1 < m < ∞, d ≥ 2, w∗ > 0, and L ≥ 3 be fixed. Then, as α → 0, the stable
rank of the limit product matrix WL:1(∞) converges to one; that is,

srank
(
WL:1(∞)

)
→ 1.

Proof. Fix m > 1, d ≥ 2, w∗ > 0, and L ≥ 3. Let

a ≜
2− L

L
< 0.

First, we analyze the behavior of

Cα,m,L,d =
( α

m

)2−L (
(m+ d− 1)2−L − (m− 1)2−L

)

as α → 0. Since L ≥ 3, we have 2− L < 0. The map x 7→ x2−L is strictly decreasing on (0,∞),
and because m+ d− 1 > m− 1 > 0,

(m+ d− 1)2−L − (m− 1)2−L < 0.

Moreover,
(
α
m

)2−L → +∞ as α → 0. Hence

Cα,m,L,d → −∞ as α → 0.

Next, consider the function from (9)

f2(σ) = (w∗d− (d− 1)σ)a − σa, σ ∈
(
0,

w∗d

d− 1

)
.

By Proposition D.2, we know that f2 is a continuous, strictly increasing bijection from
(
0, w∗d

d−1

)

onto R, and for each C ∈ R there is a unique σ(C) such that f2
(
σ(C)

)
= C.

Now we apply this to Cα,m,L,d. Since Cα,m,L,d → −∞ as α → 0 and f2 is strictly increasing with
lim

σ→0+
f2(σ) = −∞, it follows that

σr(α) → 0 as α → 0.

Using the linear constraint (33), we then obtain

σ1(α) = w∗d− (d− 1)σr(α) → w∗d as α → 0.

The stable rank of WL:1(∞) is

srank
(
WL:1(∞)

)
=

σ1(α)
2 + (d− 1)σr(α)

2

σ1(α)2
= 1 + (d− 1)

(
σr(α)

σ1(α)

)2

.

Since σr(α) → 0 and σ1(α) → w∗d > 0, we have

σr(α)

σ1(α)
→ 0,

and therefore
srank

(
WL:1(∞)

)
→ 1 as α → 0.
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D.5 GENERALIZATION TO BLOCK-DIAGONAL OBSERVATIONS

In this section, we extend Theorem 3.3 to a block-diagonal observation model. Specifically, we
consider a ground truth matrix W ∗ ∈ Rd×d with observation set

Ω =
⋃

m∈[n]

{
(i, j) | i, j ∈ {(m− 1)k + 1, . . . ,mk}

}
.

Here k, n ∈ N with d = nk, where k is the block size and n is the number of blocks. By construction,
every diagonal block is fully observed. We assume that all observed entries share the same value:

w∗ ≜ W ∗
i1,j1 = W ∗

i2,j2 for any (i1, j1), (i2, j2) ∈ Ω.

Note that this setting recovers the diagonal observation case in Theorem 3.3 when k = 1, which
shows that this framework strictly generalizes the diagonal case. Under this setup, we now introduce
the following theorem.
Theorem D.3. Let k, n ∈ N be the block size and number of blocks, respectively, such that d = nk.
Consider the product matrix WL:1 whose factor matrices Wl ∈ Rd×d are initialized according to (7).
We define the observation set Ω as the block-diagonal entries:

Ω =
⋃

b∈[n]

{
(p, q) | p, q ∈ {(b− 1)k + 1, . . . , bk}

}
.

Assume that the training loss converges to zero, i.e., ℓ(WL:1(∞); Ω) = 0, under the gradient flow
dynamics (3). Let σ1 ≥ σ2 ≥ · · · ≥ σd ≥ 0 denote the sorted singular values of the converged
matrix WL:1(∞). We partition the indices into three groups: the principal index 1, the secondary
indices i ∈ {2, . . . , n}, and the remaining indices j ∈ {n+ 1, . . . , d}. Then, for any initialization
parameters α > 0,m > 1 and depth L ≥ 2, the singular values are determined as follows:

- If L = 2: The singular values are given in closed form by

σ1 =
w∗d(m+ d− 1)2

(m+ d− 1)2 + (n− 1)(m− 1)2
,

σi =
w∗d(m− 1)2

(m+ d− 1)2 + (n− 1)(m− 1)2
,

σj = 0.

- If L ≥ 3 and 1 < m < ∞: The singular values satisfy the following implicit equations:

σ
2−L
L

1 −
(
w∗d− σ1

n− 1

) 2−L
L

= Cα,m,L,d,

(w∗d− (n− 1)σi)
2−L
L − σ

2−L
L

i = Cα,m,L,d,

σj = 0.

where Cα,m,L,d ≜
(
α
m

)2−L
(
(m+ d− 1)

2−L − (m− 1)
2−L

)
.

- If L ≥ 3 and m = ∞: The singular values converges to:

σ1 = σi = kw∗, σj = 0.

Here the singular values σj for j ∈ {n + 1, . . . , d} always converge to zero. Intuitively, even if
the dynamics are decoupled at the level of the full matrix in the sense of Definition 2, they become
coupled once we apply the same coupling notion to each diagonal block separately, so the training
dynamics are coupled within each block. In the coupled regime of Theorem D.3, the product matrix
WL:1(∞) converges to w∗ · 1d1

⊤
d . In the decoupled regime, the limiting matrix has all diagonal

blocks converging to the same value w∗, while all off diagonal blocks converge to a common value
that is different from w∗.

Therefore, all rows belonging to the same block share identical entries, so the row space is spanned
by at most n distinct row patterns (one per block), and the overall rank is at most n, the number
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of blocks. This block diagonal example therefore further illustrates how coupled versus decoupled
dynamics control the strength of the low rank bias.

We solve the implicit equations derived from the theorem above. Since all σj are zero, it suffices to
compute σ1 and σi. In Figure 33, we set w∗ = 1, d = 10, and choose the number of blocks as n = 5
(so k = 2). Consistent with the diagonal case, the decoupled dynamics lead to a high-rank solution,
whereas under coupled dynamics with sufficiently small initialization, the solution converges to
low-rank.

0.1 0.001 1e-05 1e-07 1e-10
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0.1 0.001 1e-05 1e-07 1e-10
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m = 1e + 10
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L = 7, 1
L = 7, i

Figure 33: Singular values σi of WL:1(∞) (numerically obtained from Theorem D.3) against
initialization scale αL for the block-diagonal observation task. Solid lines represent the largest
singular value σ1; dashed lines denote the identical singular values σi for i ∈ {2, . . . , n}. Note that
σj for j ∈ {n+ 1, . . . , d} are all zero. For finite m, these results show that both greater depth L and
a smaller initial scale α strengthen the low-rank bias, in contrast to the L = 2 case. Conversely, when
m is extremely large (e.g., m = 1010), approximating an αId rank d initialization, the dynamics
decouple and cannot achieve the minimal low-rank solution, regardless of L or α.

D.5.1 PROOF FOR THEOREM D.3.

For a, b, c ∈ R, define

D(a, b) = (a− b)Ik + bJk,

O(c) = cJk,

where Ik is the k × k identity matrix and Jk is the k × k all-ones matrix. Consider the d× d block
matrix

M(a, b, c) = In ⊗D(a, b) + (Jn − In)⊗O(c)

=




D(a, b) O(c) · · · O(c)
O(c) D(a, b) · · · O(c)

...
...

. . .
...

O(c) O(c) · · · D(a, b)


 ∈ Rd×d,

which is an n× n block matrix with k × k blocks. Define

M ≜ {M(a, b, c) | a, b, c ∈ R}.

We now state a lemma that captures the key algebraic features of this family.

Lemma D.8. The set M is closed under scalar multiplication and addition, and it is also closed under
matrix multiplication. Moreover, for any (a1, b1, c1) and (a2, b2, c2), the matrices M(a1, b1, c1) and
M(a2, b2, c2) commute.

Proof. Note that by Lemma D.2, D(a, b) is closed under scalar multiplication, addition, and matrix
multiplication. Since Jk is also closed under these operations, the same holds for O(c).
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Scalar multiplication. For any scalar λ ∈ R,
λM(a, b, c) = λ [In ⊗D(a, b) + (Jn − In)⊗O(c)]

= In ⊗ (λD(a, b)) + (Jn − In)⊗ (λO(c))

= In ⊗D(λa, λb) + (Jn − In)⊗O(λc)

= M(λa, λb, λc) ∈ M.

Addition. For any (a1, b1, c1) and (a2, b2, c2),
M(a1, b1, c1) +M(a2, b2, c2) = [In ⊗D(a1, b1) + (Jn − In)⊗O(c1)]

+ [In ⊗D(a2, b2) + (Jn − In)⊗O(c2)]

= In ⊗ (D(a1, b1) +D(a2, b2)) + (Jn − In)⊗ (O(c1) +O(c2))

= In ⊗D(a1 + a2, b1 + b2) + (Jn − In)⊗O(c1 + c2)

= M(a1 + a2, b1 + b2, c1 + c2) ∈ M.

Matrix multiplication. First observe that
D(a1, b1)D(a2, b2) = D(a1a2 + (k − 1)b1b2, a1b2 + a2b1 + (k − 2)b1b2),

O(c1)O(c2) = O(kc1c2),

D(a, b)O(c) = O(c)D(a, b) = O(ac+ (k − 1)bc).

Multiplying M(a1, b1, c1) and M(a2, b2, c2) gives

M(a1, b1, c1)M(a2, b2, c2) =




T1 T2 · · · T2

T2 T1 · · · T2

...
...

. . .
...

T2 T2 · · · T1


 ,

where
T1 = D(a1, b1)D(a2, b2) + (n− 1)O(c1)O(c2),

T2 = O(c1)D(a2, b2) +D(a1, b1)O(c2) + (n− 2)O(c1)O(c2).

Using the identities above, we can rewrite T1 and T2 as
T1 = D(a1a2 + (k − 1)b1b2, a1b2 + a2b1 + (k − 2)b1b2) +O((n− 1)kc1c2)

= D
(
a1a2 + (k − 1)b1b2 + (n− 1)kc1c2, a1b2 + a2b1 + (k − 2)b1b2 + (n− 1)kc1c2

)
,

T2 = O(a2c1 + (k − 1)b2c1) +O(a1c2 + (k − 1)b1c2) +O((n− 2)kc1c2)

= O
(
a1c2 + a2c1 + (k − 1)b1c2 + (k − 1)b2c1 + (n− 2)kc1c2

)
.

Hence M(a1, b1, c1)M(a2, b2, c2) again has the same block structure as M(·, ·, ·), so M is closed
under matrix multiplication.

Commutativity. The expressions for T1 and T2 above are symmetric in (a1, b1, c1) and (a2, b2, c2).
In particular, if we interchange (a1, b1, c1) and (a2, b2, c2) in the formulas for T1 and T2, we obtain
the same matrices. Therefore

M(a1, b1, c1)M(a2, b2, c2) = M(a2, b2, c2)M(a1, b1, c1),

and the matrices in M commute pairwise.

Using the above lemma, we show that if all factor matrices Wl are initialized according to (7), then
Wl(t) stays in M for every t ≥ 0.
Lemma D.9. Let k, n ∈ N and set d = nk. Consider a ground truth matrix W ∗ ∈ Rd×d with
observation set

Ω =
⋃

m∈[n]

{
(i, j) | i, j ∈ {(m− 1)k + 1, . . . ,mk}

}
.

Assume that all observed entries share the same value, i.e.,
w∗ ≜ W ∗

i1,j1 = W ∗
i2,j2 for any (i1, j1), (i2, j2) ∈ Ω.

Consider the product matrix WL:1, where the factor matrices Wl ∈ Rd×d are initialized according
to (7). Under the gradient flow dynamics (3), Wl(t) remains in the family M for all t ≥ 0 and all
l ∈ [L].
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Proof. First note that the initialization in (7) belongs to the family M, since each factor is of the
form

Wl(0) = M(α, α/m,α/m), l ∈ [L].

We will show that M is invariant under the gradient flow.

Fix any time t ≥ 0 and assume that Wl(t) ∈ M for all l ∈ [L]. By Lemma D.8, M is closed
under matrix multiplication and every matrix in M is symmetric, so it is also closed under transpose.
Hence the product matrix WL:1(t) = WL(t) · · ·W1(t) lies in M. In particular, there exist scalars
A,B,C ∈ R such that WL:1(t) = M(A,B,C).

By the definition of the observation set Ω and the assumption that all observed entries share the same
ground-truth value w∗, the loss has the form

ℓ(WL:1) =
1

2

∑

(i,j)∈Ω

(
(WL:1)ij − w∗)2.

Since Ω contains exactly the entries inside each diagonal block, and WL:1(t) = M(A,B,C) has
diagonal blocks with diagonal entries A and off-diagonal entries B, a direct computation gives

∇ℓ(WL:1(t)) = M(A− w∗, B − w∗, 0) ∈ M.

The gradient flow dynamics for each factor matrix are

Ẇl(t) = −
(

L∏

i=l+1

Wi(t)
⊤

)
∇ℓ(WL:1(t))

(
l−1∏

i=1

Wi(t)
⊤

)
, l ∈ [L].

Each factor in the products on the right-hand side belongs to M, and by Lemma D.8 the product of
matrices in M remains in M. Since ∇ℓ(WL:1(t)) ∈ M as well, it follows that

Ẇl(t) ∈ M for all l ∈ [L].

Since the initial condition satisfies Wl(0) ∈ M for all l ∈ [L], we conclude that

Wl(t) ∈ M for all t ≥ 0, l ∈ [L].

Beyond showing that every factor matrix remains in the family M, we further establish that all layers
evolve identically with below lemma:

Lemma D.10. Under the setting of Lemma D.9,

WL(t) = WL−1(t) = · · · = W1(t)

holds for all t ≥ 0.

Proof. By Lemma D.9 and Lemma D.8, we know that for all t ≥ 0 and all l ∈ [L] we have
Wl(t) ∈ M, and that matrices in M are closed under matrix multiplication, transpose, and commute
pairwise. Moreover, as shown in the proof of Lemma D.9, the loss gradient ∇ℓ(WL:1(t)) also lies in
M.

Fix any time t and suppose that

WL(t) = WL−1(t) = · · · = W1(t) =: U(t).

Then the product matrix satisfies WL:1(t) = U(t)L, and the gradient flow dynamics for each layer
can be written as

Ẇl(t) = −
(

L∏

i=l+1

Wi(t)
⊤

)
∇ℓ(WL:1(t))

(
l−1∏

i=1

Wi(t)
⊤

)

= −U(t)L−l∇ℓ
(
U(t)L

)
U(t)l−1.

53



2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2026

Since U(t) and ∇ℓ(U(t)L) both lie in M and matrices in M commute pairwise, we can reorder the
factors to obtain

Ẇl(t) = −∇ℓ
(
U(t)L

)
U(t)L−1 for all l ∈ [L].

Thus, whenever W1(t) = · · · = WL(t) holds at some time t, the time derivatives of all layers
coincide at that time:

ẆL(t) = ẆL−1(t) = · · · = Ẇ1(t).

By the initialization scheme (7) we have
WL(0) = WL−1(0) = · · · = W1(0).

Since the gradient flow admits a unique solution for this initial condition, it follows that the equalities
between the layers are preserved for all times t ≥ 0, that is,

WL(t) = WL−1(t) = · · · = W1(t) for all t ≥ 0.

Using the lemma above, we can parameterize every factor matrix as Wl(t) = M(a(t), b(t), c(t)) for
all l ∈ [L], where (a(t), b(t), c(t)) are shared coefficients. Likewise, we write the product matrix as
WL:1(t) = M(A(t), B(t), C(t)). We now derive the eigenvalues of each factor matrix.
Lemma D.11. Let k, n ∈ N and d = nk. For a, b, c ∈ R, let M(a, b, c) ∈ Rd×d be the block matrix
defined by

M(a, b, c) = In ⊗D(a, b) + (Jn − In)⊗O(c),

where D(a, b) = (a − b)Ik + bJk and O(c) = cJk. The eigenvalues of M(a, b, c) and their
corresponding multiplicities are:

λ1 = a+ (k − 1)b+ k(n− 1)c with multiplicity 1,

λ2 = a+ (k − 1)b− kc with multiplicity n− 1,

λ3 = a− b with multiplicity n(k − 1).

Proof. First, we express M(a, b, c) in terms of Kronecker products of identity matrices I and all-ones
matrices J . Substituting the definitions of D and O:

M = In ⊗ ((a− b)Ik + bJk) + (Jn − In)⊗ (cJk)

= (a− b)(In ⊗ Ik) + b(In ⊗ Jk) + c(Jn ⊗ Jk)− c(In ⊗ Jk)

= (a− b)(In ⊗ Ik) + (b− c)(In ⊗ Jk) + c(Jn ⊗ Jk).

The matrix Jm has two distinct eigenvalues: m (corresponding to eigenvector 1m) and 0 (correspond-
ing to the orthogonal complement 1⊥

m). We construct the eigenbasis of M using tensor products of
the eigenvectors of Jn and Jk.

Case 1. Consider the eigenvector v1 = 1n ⊗ 1k. Since Jn1n = n1n and Jk1k = k1k, we have:
Mv1 = ((a− b) + (b− c)k + c(nk))v1

= (a+ (k − 1)b+ k(n− 1)c)v1.

This subspace has dimension 1× 1 = 1.

Case 2. Consider eigenvectors v2 = u⊗1k, where u ∈ 1
⊥
n ⊂ Rn. Here Jnu = 0 and Jk1k = k1k.

Thus:
Mv2 = ((a− b) + (b− c)k + c(0 · k))v2

= (a+ (k − 1)b− kc)v2.

The dimension of 1⊥
n is n− 1, so the multiplicity is (n− 1)× 1 = n− 1.

Case 3. Consider eigenvectors v3 = w ⊗ z, where w ∈ Rn is arbitrary and z ∈ 1
⊥
k ⊂ Rk. Here

Jkz = 0. Consequently, any term containing Jk in the Kronecker product sends this vector to zero:
(A⊗ Jk)(w ⊗ z) = Aw ⊗ Jkz = Aw ⊗ 0 = 0.

Therefore, only the identity term remains:
Mv3 = (a− b)Inkv3 + 0+ 0

= (a− b)v3.

The dimension of Rn is n and the dimension of 1⊥
k is k − 1. Thus, the multiplicity is n(k − 1).
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Lemma D.12. Let λi(t) for i ∈ {1, 2, 3} denote the eigenvalues of the factor matrix Wl(t) from
Lemma D.11. Under gradient flow (3), the evolution of these eigenvalues is governed by the following
system of ODE:

λ̇1(t) = −
(
λL
1 (t) + (n− 1)λL

2 (t)

n
− kw∗

)
λL−1
1 (t),

λ̇2(t) = −
(
λL
1 (t) + (n− 1)λL

2 (t)

n
− kw∗

)
λL−1
2 (t),

λ̇3(t) = −λ2L−1
3 (t).

Proof. Given that the factor matrices Wl(t) share the same form (Lemma D.10), let λi(t) denote
their eigenvalues. We omit the time dependence t when the context is clear. Consequently, the
eigenvalues of the product matrix WL:1(t) are λL

i (t). Using Lemma D.11 to invert the eigenvalue
relations, we can express the parameters of of WL:1(t) = M(A,B,C) as follows:

A =
λL
1 + (n− 1)λL

2 + n(k − 1)λL
3

nk
.

B =
λL
1 + (n− 1)λL

2 − nλL
3

nk
,

C =
λL
1 − λL

2

nk
.

Recall from the proof of Lemma D.9 that the gradient takes the form ∇ℓ(WL:1) = M(A −
w∗, B − w∗, 0). Let γi denote the eigenvalue of ∇ℓ(WL:1) corresponding to the i-th index defined
in Lemma D.11. Note that for the gradient matrix, the off-diagonal block parameter is zero (c = 0).
Consequently, the eigenvalues for γ1 and γ2 coincide. Specifically:

γ1 = (A− w∗) + (k − 1)(B − w∗) + k(n− 1)(0)

= (A− w∗) + (k − 1)(B − w∗),

γ2 = (A− w∗) + (k − 1)(B − w∗)− k(0)

= γ1,

γ3 = (A− w∗)− (B − w∗).

Substituting the expressions for A and B into the equations above yields γi in terms of λL
i :

γ1 = γ2 =

(
λL
1 + (n− 1)λL

2 + n(k − 1)λL
3

nk
− w∗

)
+ (k − 1)

(
λL
1 + (n− 1)λL

2 − nλL
3

nk
− w∗

)

=
λL
1 + (n− 1)λL

2

n
− kw∗,

γ3 =

(
λL
1 + (n− 1)λL

2 + n(k − 1)λL
3

nk
− w∗

)
−
(
λL
1 + (n− 1)λL

2 − nλL
3

nk
− w∗

)

= λL
3 .

Finally, recall that the gradient flow dynamics for each layer are governed by

Ẇl(t) = −




L∏

j=l+1

Wj(t)
⊤


∇ℓ(WL:1(t))




l−1∏

j=1

Wj(t)
⊤


 .

Since the weight matrices Wl(t) and the gradient matrix ∇ℓ(WL:1(t)) belong to M, they are
commutative and simultaneously diagonalizable. Let P ∈ Rd×d be the common orthogonal matrix
such that Wl(t) = PΛ(t)P⊤ and ∇ℓ(WL:1(t)) = PΓ(t)P⊤, where Λ(t) and Γ(t) are diagonal
matrices containing the eigenvalues λi(t) and γi(t), respectively.

Projecting the gradient flow dynamics onto the eigenspace spanned by the i-th eigenvector, we obtain
the evolution of the eigenvalues. Using the fact that Wl(t)

⊤ = Wl(t) due to symmetry, the dynamics
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for the l-th layer become:

Ẇl(t) = P Λ̇(t)P⊤ = −
(
PΛ(t)P⊤)L−l (

PΓ(t)P⊤) (PΛ(t)P⊤)l−1

= −P
(
ΛL−l(t)Γ(t)Λl−1(t)

)
P⊤.

Multiplying by P⊤ on the left and P on the right yields the diagonal evolution:

Λ̇(t) = −Γ(t)ΛL−1(t).

For each distinct eigenvalue index i ∈ {1, 2, 3}, the scalar dynamics simplify to:

λ̇i(t) = −γi(t)λ
L−1
i (t).

Substituting the values of γi derived previously, we obtain the specific evolution equations for each
eigenvalue:

λ̇1(t) = −γ1(t)λ
L−1
1 (t) = −

(
λL
1 (t) + (n− 1)λL

2 (t)

n
− kw∗

)
λL−1
1 (t),

λ̇2(t) = −γ2(t)λ
L−1
2 (t) = −

(
λL
1 (t) + (n− 1)λL

2 (t)

n
− kw∗

)
λL−1
2 (t),

λ̇3(t) = −γ3(t)λ
L−1
3 (t) = −λ2L−1

3 (t).

Building on the lemma above, we can identify a conserved quantity that depends on the depth.
Lemma D.13. Under the gradient flow dynamics defined in Lemma D.12, the eigenvalues λ1(t) and
λ2(t) satisfy the following conservation laws for all t ≥ 0:

1. If L = 2, the ratio of the eigenvalues is conserved:
λ1(t)

λ2(t)
=

λ1(0)

λ2(0)
.

2. If L ≥ 3, the difference of the negated powers is conserved:

λ2−L
1 (t)− λ2−L

2 (t) = λ2−L
1 (0)− λ2−L

2 (0).

Proof. From Lemma D.12, the scalar dynamics for the first two eigenvalues are given by:

λ̇i(t) = −γ(t)λL−1
i (t) for i ∈ {1, 2},

where γ(t) = λ1(t)
L+(n−1)λ2(t)

L

n − kw∗. We consider the two cases based on the depth L.

Case 1: (L = 2). In this case, the dynamics simplify to λ̇i(t) = −γ(t)λi(t). Rearranging the terms
to separate variables, we have:

λ̇1(t)

λ1(t)
= −γ(t),

λ̇2(t)

λ2(t)
= −γ(t).

Subtracting the second equation from the first eliminates γ(t):
d

dt
log |λ1(t)| −

d

dt
log |λ2(t)| = 0

d

dt
log

∣∣∣∣
λ1(t)

λ2(t)

∣∣∣∣ = 0.

This implies that the ratio λ1(t)/λ2(t) is constant in time.

Case 2: (L ≥ 3). Consider the time derivative of the quantity Q(t) = λ2−L
1 (t)− λ2−L

2 (t). Applying
the chain rule:

d

dt

(
λ2−L
1 (t)

)
= (2− L)λ1−L

1 (t) · λ̇1(t)

= (2− L)λ1−L
1 (t) ·

(
−γ(t)λL−1

1 (t)
)

= −(2− L)γ(t).
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Similarly, for the second term:

d

dt

(
λ2−L
2 (t)

)
= (2− L)λ1−L

2 (t) ·
(
−γ(t)λL−1

2 (t)
)

= −(2− L)γ(t).

Subtracting the two derivatives yields:

d

dt

(
λ2−L
1 (t)− λ2−L

2 (t)
)
= (−(2− L)γ(t))− (−(2− L)γ(t)) = 0.

Since the time derivative is zero, the quantity is conserved throughout the training, proving the
statement.

We are now ready to prove Theorem D.3.

Proof. Using the inverse relations from Lemma D.11, we express the parameters A(t) and B(t) in
terms of the eigenvalues:

A(t) =
λL
1 (t) + (n− 1)λL

2 (t) + n(k − 1)λL
3 (t)

nk
,

B(t) =
λL
1 (t) + (n− 1)λL

2 (t)− nλL
3 (t)

nk
.

Consider the difference between the parameters:

A(t)−B(t) =
nλL

3 (t)

nk
=

1

k
λL
3 (t).

The assumption that the loss converges to zero implies global optimality, which requires A(∞) =
B(∞) = w∗. Taking the limit t → ∞, the difference vanishes, yielding:

λ3(∞) = 0.

Next, substituting λ3(∞) = 0 and A(∞) = w∗ into the expression for A(t), we obtain:

w∗ =
λL
1 (∞) + (n− 1)λL

2 (∞)

nk
.

Multiplying by nk = d, we arrive at the first constraint:

λL
1 (∞) + (n− 1)λL

2 (∞) = dw∗. (38)

Let σ1 ≥ σ2 ≥ · · · ≥ σd denote the singular values of the limiting product matrix WL:1(∞). Under
our initialization scheme and Lemma F.3, the factor matrices remain positive definite, implying that
the singular values of the product matrix coincide with the L-th power of the eigenvalues. Based on
the multiplicities derived in Lemma D.11, we identify:

σ1 = λL
1 (∞), σi = λL

2 (∞) for i ∈ {2, . . . , n}, σj = λL
3 (∞) = 0 for j > n.

We now solve for the non-zero singular values by considering two cases based on the depth L.

Case 1: (L = 2). For L = 2, Lemma D.13 states that the ratio of eigenvalues is preserved. Using the
initialization values from (7) and Lemma D.11, this ratio is given by:

λ1(∞)

λ2(∞)
=

λ1(0)

λ2(0)
=

m+ d− 1

m− 1
. (39)

Substituting λ2
i (∞) = σi into (38) and combining it with the squared ratio from (39), we can solve

for σ1 and σi:

σ1 =
w∗d(m+ d− 1)2

(m+ d− 1)2 + (n− 1)(m− 1)2
,

σi =
w∗d(m− 1)2

(m+ d− 1)2 + (n− 1)(m− 1)2
for all i ∈ {2, . . . , n}.
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Case 2: (L ≥ 3 and finite m). For L ≥ 3 with 1 < m < ∞, Lemma D.13 ensures the conservation
of the difference of negated powers:

λ2−L
1 (∞)− λ2−L

2 (∞) = λ2−L
1 (0)− λ2−L

2 (0).

Substituting the initial eigenvalues from (7), the right-hand side becomes:

λ2−L
1 (∞)− λ2−L

2 (∞) =
( α

m

)2−L (
(m+ d− 1)

2−L − (m− 1)
2−L

)
. (40)

Finally, expressing the eigenvalues in terms of singular values via λi(∞) = σ
1/L
i (implying λ2−L

i =

σ
2−L
L

i ) and combining (38) with (40), we obtain the system of implicit equations:

σ
2−L
L

1 −
(
w∗d− σ1

n− 1

) 2−L
L

= Cα,m,L,d,

(w∗d− (n− 1)σi)
2−L
L − σ

2−L
L

i = Cα,m,L,d for all i ∈ {2, . . . , n},

where Cα,m,L,d ≜
(
α
m

)2−L
(
(m+ d− 1)

2−L − (m− 1)
2−L

)
.

Case 3: (L ≥ 3 and m = ∞). In this case, the initial eigenvalues of the factor matrices become:

λ1(0) = lim
m→∞

α

(
1 +

d− 1

m

)
= α,

λ2(0) = lim
m→∞

α

(
1− 1

m

)
= α.

Since the initial eigenvalues are identical, i.e., λ1(0) = λ2(0), the conserved quantities derived in
Lemma D.13 dictate that the limiting values must also be identical. When L ≥ 3, the conservation
law states:

λ2−L
1 (∞)− λ2−L

2 (∞) = λ2−L
1 (0)− λ2−L

2 (0) = α2−L − α2−L = 0.

This implies λ1(∞) = λ2(∞). Consequently, the singular values of the product matrix satisfy
σ1 = σi for all i ∈ {2, . . . , n}.

In the case where L = 2, the conservation law states:

λ1(∞)

λ2(∞)
=

λ1(0)

λ2(0)
=

α

α
= 1.

This also implies λ1(∞) = λ2(∞) and thus σ1 = σi.
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E PROOF FOR SECTION 4

In this section, we provide the proofs for the propositions and theorems presented in Section 4. First,
Subsection E.1 presents the general form of Proposition 4.1 along with its proof. Next, Subsection E.2
details the proof of Theorem 4.2, focusing on the 2×2 matrix case. Lastly, Subsection E.3 generalizes
the core ideas of Theorem 4.2 to d× d matrices and provides the formal statement and the proof of
Theorem 4.3.

E.1 GENERAL FORM AND PROOF OF PROPOSITION 4.1

We first present the general form of Proposition 4.1. This proposition applies to any “fully discon-
nected case”, a scenario that involves the diagonal entries introduced within this same proposition.

For a d× d ground truth matrix W ∗, the observed entries are given by Ω = {(in, jn)}dn=1. Since
we consider the fully disconnected case, in ̸= im, jn ̸= jm for all n ̸= m ∈ [d]. We factorize
the solution model at time t as WA,B(t) = A(t)B(t), where WA,B(t),A(t),B(t) ∈ Rd×d. We
consider the gradient flow dynamics with the loss function defined as in (2).

For a given row index k, since there exists a unique entry (k, j) ∈ Ω, we denote this unique column
index by j(k). Thus, w∗

k,j(k) and wk,j(k)(t) refer to the ground truth weight w∗
k,j and the time-varying

weight wk,j(t) respectively, where j = j(k). Similarly, for a given column index l, since there exists
a unique entry (i, l) ∈ Ω, we denote this unique row index by i(l). Thus w∗

i(l),l
and wi(l),l refer to the

ground truth weight w∗
i,l and the time-varying weight wi,l(t) respectively, where i = i(l). Defining

the residuals as rij(t) := w∗
ij − wij(t), we adopt this compact notation for residuals as well. Then,

we can derive a closed-form solution for arbitrary initialization with below proposition.

Proposition E.1. Consider a ground truth matrix W ∗ ∈ Rd×d and a set of d fully disconnected
observations Ω = {(in, jn)}dn=1. The model is factorized as WA,B(t) = A(t)B(t), where the
factors A(t),B(t) ∈ Rd×d. For each observed pair (in, jn) ∈ Ω, define the constants Pin,jn and
Qin,jn based on the initial values A(0) and B(0):

Pin,jn ≜
d∑

k=1

ain,k(0)bk,jn(0) and Qin,jn ≜
d∑

k=1

(
ain,k(0)

2 + bk,jn(0)
2
)
.

Furthermore, for each such observed pair (in, jn), let the parameter r̄in,jn be determined from the
ground truth entry w∗

in,jn
and the constants defined above, as follows:

r̄in,jn ≜
1

2
log




Pin,jn +
Qin,jn

2

w∗
in,jn

+

√
w∗

in,jn
2 − P 2

in,jn
+
(

Qin,jn

2

)2


 .

Then, assuming convergence to a zero-loss solution (i.e., win,jn(∞) = w∗
in,jn

for all (in, jn) ∈ Ω),
any entry ap,q(∞) of the converged matrix A(∞) and any entry bp,q(∞) of the converged matrix
B(∞) (for arbitrary indices p, q ∈ [d]) are explicitly given by:

ap,q(∞) = ap,q(0) cosh
(
r̄p,j(p)

)
− bq,j(p)(0) sinh

(
r̄p,j(p)

)
,

bp,q(∞) = bp,q(0) cosh
(
r̄i(q),q

)
− ai(q),p(0) sinh

(
r̄i(q),q

)
.

Proof. We can express their evolution in the following vector form using the vectorized parameter

θ(t) :=

[
vec(A(t))
vec(B(t))

]
∈ R2d2

:

θ̇(t) = −
[
0d2,d2 R(t)
R(t)⊤ 0d2,d2

]
θ(t) (41)
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where R(t) ∈ Rd2×d2

is defined as:

R(t) =




r1,j(1)(t)e
⊤
j(1)

r1,j(1)(t)e
⊤
j(1)+d

...
r1,j(1)(t)e

⊤
j(1)+(d−1)d

r2,j(2)(t)e
⊤
j(2)

r2,j(2)(t)e
⊤
j(2)+d

...
rd,j(d)(t)e

⊤
j(d)+(d−1)d




(42)

for ei ∈ Rd2

form the standard basis. Since
[
0d2,d2 R(t)
R(t)⊤ 0d2,d2

]
commutes with any other t values,

the solution is given as:

θ(t) = exp

(
−
∫ τ

0

[
0d2,d2 R(t)
R(t)⊤ 0d2,d2

]
dτ

)
· θ(0) (43)

= exp

(
−
[
0d2,d2 R̄(t)
R̄(t)⊤ 0d2,d2

]
dτ

)
· θ(0) (44)

where

R̄(t) :=

∫ t

0

R(τ)dτ =




r̄1,j(1)(t)e
⊤
j(1)

r̄1,j(1)(t)e
⊤
j(1)+d

...
r̄1,j(1)(t)e

⊤
j(1)+(d−1)d

r̄2,j(2)(t)e
⊤
j(2)

r̄2,j(2)(t)e
⊤
j(2)+d

...
r̄d,j(d)(t)e

⊤
j(d)+(d−1)d




for r̄i,j(t) =
∫ t

0
ri,j(τ)dτ . If we assume convergence, we get:

θ(∞) = exp

(
−
[
0d2,d2 R̄(∞)
R̄(∞)⊤ 0d2,d2

]
dτ

)
· θ(0) (45)

=

([
Id2 0d2,d2

0d2,d2 Id2

]
−
[
0d2,d2 R̄(t)
R̄(t)⊤ 0d2,d2

]
+

1

2

[
R̄(t)R̄(t)⊤ 0d2,d2

0d2,d2 R̄(t)⊤R̄(t)

]
(46)

− 1

6

[
0d2,d2 R̄(t)R̄(t)⊤R̄(t)

R̄(t)⊤R̄(t)R̄(t)⊤ 0d2,d2

]
+

1

24

[(
R̄(t)R̄(t)⊤

)2
0d2,d2

0d2,d2

(
R̄(t)⊤R̄(t)

)2
]

(47)

− · · ·
)

· θ(0), (48)

which can be simplified as:

θ(∞) =

[
C D
E F

]
θ(0), (49)
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with C,D,E and F are defined as following:

C = cosh

(
diag

(
r̄1,j(1) , . . . , r̄1,j(1) , r̄2,j(2) , . . . , r̄2,j(2) , . . . , r̄d,j(d) , . . . , r̄d,j(d)

))
,

F = cosh

(
diag

(
r̄i(1),1, r̄i(2),2, . . . , r̄i(d),d, . . . , r̄i(1),1, r̄i(2),2, . . . , r̄i(d),d

))
,

D = − sinh

([
r̄1,j(1)e

⊤
j(1) , . . . , r̄1,j(1)e

⊤
j(1)+(d−1)d, . . . , r̄d,j(d)e

⊤
j(d) , . . . , r̄d,j(d)e

⊤
j(d)+(d−1)d

]⊤)
,

E = − sinh

([
r̄1,j(1)ej(1) , . . . , r̄1,j(1)ej(1)+(d−1)d, . . . , r̄d,j(d)ej(d) , . . . , r̄d,j(d)ej(d)+(d−1)d

])
.

Here, for any matrix P , the operations cosh(P ) and sinh(P ) are performed elementwise. For a
set of d observed indices Ω, there exists d corresponding unknown variables, r̄ik,jk . If convergence
is guaranteed, the model yields d equations relating these variables to the d ground truth values.
This implies that the variables r̄ik,jk can be characterized as a closed-form. To characterize more
rigorously, we substitute C,D,E, and F into (49):

θ(∞) =




a1,1(∞)
a1,2(∞)

...
a1,d(∞)
a2,1(∞)
a2,2(∞)

...
a2,d(∞)

...
ad,1(∞)

...
ad,d(∞)

b1,1(∞)
b1,2(∞)

...
b1,d(∞)
b2,1(∞)
b2,2(∞)

...
b2,d(∞)

...
bd,1(∞)

...
bd,d(∞)




=




a1,1(0) cosh(r̄1,j(1))− b1,j(1)(0) sinh(r̄1,j(1))
a1,2(0) cosh(r̄1,j(1))− b2,j(1)(0) sinh(r̄1,j(1))

...
a1,d(0) cosh(r̄1,j(1))− bd,j(1)(0) sinh(r̄1,j(1))
a2,1(0) cosh(r̄2,j(2))− b1,j(2)(0) sinh(r̄2,j(2))
a2,2(0) cosh(r̄2,j(2))− b2,j(2)(0) sinh(r̄2,j(2))

...
a2,d(0) cosh(r̄2,j(2))− bd,j(2)(0) sinh(r̄2,j(2))

...
ad,1(0) cosh(r̄d,j(d))− b1,j(d)(0) sinh(r̄d,j(d))

...
ad,d(0) cosh(r̄d,j(d))− bd,j(d)(0) sinh(r̄d,j(d))

−ai(1),1(0) sinh(r̄i(1),1) + b1,1(0) cosh(r̄i(1),1)
−ai(2),1(0) sinh(r̄i(2),2) + b1,2(0) cosh(r̄i(2),2)

...
−ai(d),1(0) sinh(r̄i(d),d) + b1,d(0) cosh(r̄i(d),d)
−ai(1),2(0) sinh(r̄i(1),1) + b2,1(0) cosh(r̄i(1),1)
−ai(2),2(0) sinh(r̄i(2),2) + b2,2(0) cosh(r̄i(2),2)

...
−ai(d),2(0) sinh(r̄i(d),d) + b2,d(0) cosh(r̄i(d),d)

...
−ai(1),d(0) sinh(r̄i(1),1) + bd,1(0) cosh(r̄i(1),1)

...
−ai(d),d(0) sinh(r̄i(d),d) + bd,d(0) cosh(r̄i(d),d)




. (50)

Then, assuming convergence, for each observation (in, jn) ∈ Ω (for n = 1, . . . , d), we obtain the
equation:

w∗
in,jn = win,jn(∞) = ain,1(∞)b1,jn(∞) + · · ·+ ain,d(∞)bd,jn(∞)

=

d∑

k=1

[
(
ain,k(0) cosh(r̄in,jn)− bk,j(in)(0) sinh(r̄in,jn)

)

· (bk,jn(0) cosh(r̄in,jn)− ain,k(0) sinh(r̄in,jn))

]
.
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Let Cn = cosh(r̄in,jn) and Sn = sinh(r̄in,jn). Then we can rewrite the above equation as:

w∗
in,jn =

d∑

k=1

(
ain,k(0)bk,jn(0)C

2
n − ain,k(0)

2CnSn − bk,jn(0)
2CnSn + ain,k(0)bk,jn(0)S

2
n

)

=

(
d∑

k=1

ain,k(0)bk,jn(0)

)
(
C2

n + S2
n

)
−
(

d∑

k=1

(
ain,k(0)

2 + bk,jn(0)
2
)
)
CnSn

= Pin,jn cosh(2r̄in,jn)−
Qin,jn

2
sinh(2r̄in,jn), (51)

where Pin,jn =
∑d

k=1 ain,k(0)bk,jn(0) and Qin,jn =
∑d

k=1

(
ain,k(0)

2 + bk,jn(0)
2
)
.

By solving (51) with respect to r̄in,jn , we can get:

2w∗
in,jn = Pin,jn

(
e2r̄in,jn + e−2r̄in,jn

)
− Qin,jn

2

(
e2r̄in,jn − e−2r̄in,jn

)

= e2r̄in,jn

(
Pin,jn − Qin,jn

2

)
+ e−2r̄in,jn

(
Pin,jn +

Qin,jn

2

)
.

Multiply by e2r̄in,jn leads to:

2w∗
in,jne

2r̄in,jn = e4r̄in,jn

(
Pin,jn − Qin,jn

2

)
+ Pin,jn +

Qin,jn

2
.

Rearrange into a quadratic equation by setting u = e2r̄in,jn :
(
Pin,jn − Qin,jn

2

)
u2 − 2w∗

in,jnu+ Pin,jn +
Qin,jn

2
= 0.

By solving the above equation while noting that Pin,jn − Qin,jn

2 ≤ 0 by the definition, we can get
explicit solutions for r̄in,jn :

r̄in,jn =
1

2
log




Pin,jn +
Qin,jn

2

w∗
in,jn

+

√
w∗

in,jn
2 − P 2

in,jn
+
(

Qin,jn

2

)2


 .

Note that each r̄in,jn is solely determined by the initial points θ(0). With r̄in,jn determined for each
observed entry, we have closed-form expressions characterizing the model’s learned relationship for
these observations. Consequently, by (50), we have:

ap,q(∞) = ap,q(0) cosh
(
r̄p,j(p)

)
− bq,j(p)(0) sinh

(
r̄p,j(p)

)
,

bp,q(∞) = bp,q(0) cosh
(
r̄i(q),q

)
− ai(q),p(0) sinh

(
r̄i(q),q

)
.
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E.2 PROOF OF THEOREM 4.2

In this section, we will provide the analysis of 2× 2 matrix that starts from pre-trained weights with
diagonal observations w∗ ≜ w∗

11 = w∗
22, WA,B(t) cannot converge to a low-rank solution. Let

T1 > t1 be the timestep that concludes the pre-train phase. For the sake of simplicity, we omit the ϵ
term introduced in the pre-training phase. Then, we know from Proposition E.1, we have:

A(T1) = B(T1) =

(√
w∗ 0
0

√
w∗

)
. (52)

In the post-train phase, we introduce an additional observation in the off-diagonal entries, specifically
w∗

12 or w∗
21. Without loss of generality, we assume w∗

12 > 0 is revealed while other observations
remain the same, i.e., Ωpost = {(1, 1), (1, 2), (2, 2)}. Note that the gradient of the post-train loss is:

∇ℓ(WA,B) =

(
w11 − w∗ w12 − w∗

12
0 w22 − w∗

)

=

(
a11b11 + a12b21 − w∗ a11b12 + a12b22 − w∗

12
0 a21b12 + a22b22 − w∗

)
.

For simplicity, we again omit the Ω term in the loss specification. We define the residuals for the
relevant matrix elements as r11 := w11 − w∗, r12 := w12 − w∗

12, and r22 := w22 − w∗.

We begin by demonstrating a pairwise symmetry between the entries of A(t) and B(t), which
simplifies subsequent analysis. To this end, we first provide the time derivatives for the elements
of A(t) and B(t). Given the general gradient flow dynamics Ȧ(t) = −∇ℓ(WA,B(t))B⊤(t) and
Ḃ(t) = −A⊤(t)∇ℓ(WA,B(t)), the component-wise updates are as follows. For A(t):

ȧ11(t) = b11(t)(w
∗ − w11(t)) + b12(t)(w

∗
12 − w12(t)),

ȧ12(t) = b21(t)(w
∗ − w11(t)) + b22(t)(w

∗
12 − w12(t)),

ȧ21(t) = b12(t)(w
∗ − w22(t)),

ȧ22(t) = b22(t)(w
∗ − w22(t)),

(53)

and for B(t):
ḃ11(t) = a11(t)(w

∗ − w11(t)),

ḃ12(t) = a11(t)(w
∗
12 − w12(t)) + a21(t)(w

∗ − w22(t)),

ḃ21(t) = a12(t)(w
∗ − w11(t)),

ḃ22(t) = a12(t)(w
∗
12 − w12(t)) + a22(t)(w

∗ − w22(t)).

(54)

Using the equations above, we first present a result showing that the k-th derivative of each element
in A(t) and B(t) at initialization exhibits a pairwise symmetry:

Lemma E.1. Let WA,B(T1) = A(T1)B(T1) ∈ R2×2 be a product matrix, where A(T1) and B(T1)
are matrices that are obtained at the end of the pre-training phase. Suppose the ground truth matrix
satisfies w∗

11 = w∗
22. Then for every k ∈ N ∪ {0}, the following identities hold:

a
(k)
11 (T1) = b

(k)
22 (T1), a

(k)
12 (T1) = b

(k)
12 (T1),

a
(k)
21 (T1) = b

(k)
21 (T1), a

(k)
22 (T1) = b

(k)
11 (T1),

(55)

and consequently,

w
(k)
11 (T1) = w

(k)
22 (T1). (56)

Proof. We prove the statement by induction on k. When k = 0, by the initialization assumption, we
have

a11(T1) = b22(T1), a12(T1) = b12(T1), a21(T1) = b21(T1), a22(T1) = b11(T1),
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and therefore w11(T1) = w22(T1).

Assume that for all orders m < k (with k ≥ 1) the identities

a
(m)
11 (T1) = b

(m)
22 (T1), a

(m)
12 (T1) = b

(m)
12 (T1), a

(m)
21 (T1) = b

(m)
21 (T1), a

(m)
22 (T1) = b

(m)
11 (T1),

hold, and hence also w
(m)
11 (T1) = w

(m)
22 (T1). By the Leibniz rule, each element of the k-th derivative

can be written as a finite sum involving derivatives of orders strictly less than k. For A(t):

a
(k)
11 (t) = −

k−1∑

j=0

(
k − 1

j

)(
b
(k−1−j)
11 (t)r

(j)
11 (t) + b

(k−1−j)
12 (t)r

(j)
12 (t)

)
,

a
(k)
12 (t) = −

k−1∑

j=0

(
k − 1

j

)(
b
(k−1−j)
21 (t)r

(j)
11 (t) + b

(k−1−j)
22 (t)r

(j)
12 (t)

)
,

a
(k)
21 (t) = −

k−1∑

j=0

(
k − 1

j

)
b
(k−1−j)
12 (t)r

(j)
22 (t),

a
(k)
22 (t) = −

k−1∑

j=0

(
k − 1

j

)
b
(k−1−j)
22 (t)r

(j)
22 (t),

and for B(t):

b
(k)
11 (t) = −

k−1∑

j=0

(
k − 1

j

)
a
(k−1−j)
11 (t)r

(j)
11 (t),

b
(k)
12 (t) = −

k−1∑

j=0

(
k − 1

j

)(
a
(k−1−j)
11 (t)r

(j)
12 (t) + a

(k−1−j)
21 (t)r

(j)
22 (t)

)
,

b
(k)
21 (t) = −

k−1∑

j=0

(
k − 1

j

)
a
(k−1−j)
12 (t)r

(j)
11 (t),

b
(k)
22 (t) = −

k−1∑

j=0

(
k − 1

j

)(
a
(k−1−j)
12 (t)r

(j)
12 (t) + a

(k−1−j)
22 (t)r

(j)
22 (t)

)
.

By the inductive hypothesis, all derivatives of order less than k satisfy the symmetric relations at
t = T1. Inserting these equalities into the expressions with t = T1 above shows that the symmetry is
maintained at the k-th order:

a
(k)
11 (T1) = b

(k)
22 (T1), a

(k)
12 (T1) = b

(k)
12 (T1), a

(k)
21 (T1) = b

(k)
21 (T1), a

(k)
22 (T1) = b

(k)
11 (T1),

proving equations (55) and (56).

Lemma E.2. Under the setting of Lemma E.1, below relationships hold for all t ≥ T1:

a11(t) = b22(t), a12(t) = b12(t),

a21(t) = b21(t), a22(t) = b11(t),
(57)

which further leads to w11(t) = w22(t).

Proof. By Lemmas F.6 and E.1, we may conclude that for all t ≥ T1, equation (57) holds, and
therefore w11(t) = w22(t).

By Lemma E.2, all entries of B(t) can be expressed in terms of the entries of A(t) for all t ≥ T1.
From this point onward, we will represent WA,B(t) solely using the elements of A(t). We begin by
simplifying the time derivative of A(t) as follows:
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ȧ11(t) = a22(t)(w
∗ − w11(t)) + a12(t)(w

∗
12 − w12(t)),

ȧ12(t) = a21(t)(w
∗ − w11(t)) + a11(t)(w

∗
12 − w12(t)),

ȧ21(t) = a12(t)(w
∗ − w22(t)),

ȧ22(t) = a11(t)(w
∗ − w22(t)).

(58)

Rewriting WA,B(t) in terms of the elements of A(t) yields:

WA,B(t) = A(t)B(t)

=

(
a11(t) a12(t)
a21(t) a22(t)

)(
a22(t) a12(t)
a21(t) a11(t)

)

=

(
a11(t)a22(t) + a12(t)a21(t) 2a11(t)a12(t)

2a21(t)a22(t) a11(t)a22(t) + a12(t)a21(t)

)
. (59)

We can also simplify the time derivative of WA,B(t) as follows:

ẇ11(t) = (w∗ − w11(t))
(
a211(t) + a212(t) + a221(t) + a222(t)

)

+ (w∗
12 − w12(t)) (a11(t)a21(t) + a12(t)a22(t)) ,

ẇ12(t) = 2(w∗
12 − w12(t))

(
a211(t) + a212(t)

)

+ 2(w∗ − w11(t)) (a11(t)a21(t) + a12(t)a22(t)) ,

ẇ21(t) = 2(w∗ − w11(t))(a11(t)a21(t) + a12(t)a22(t)),

ẇ22(t) = ẇ11(t).

(60)

Using (59), we state the basic conservation law from Arora et al. (2018): if the matrices are initialized
in a balanced manner, this balancedness is preserved throughout the training process. That is,

A(T1)
⊤A(T1) = B(T1)B(T1)

⊤,

holds at initialization, this leads to

a211(t) + a221(t) = a212(t) + a222(t), ∀t ≥ T1. (61)

Now, we are going to examine the time derivative of the loss:

d

dt
ℓ(WA,B(t)) =

〈
∇ℓ(WA,B(t)), Ẇ (t)

〉

=
〈
∇ℓ(WA,B(t)), Ȧ(t)B(t) +A(t)Ḃ(t)

〉

= Tr
(
∇ℓ⊤(WA,B(t))

(
Ȧ(t)B(t) +A(t)Ḃ(t)

))

= Tr
(
∇ℓ⊤(WA,B(t))Ȧ(t)B(t)

)
+Tr

(
∇ℓ⊤(WA,B(t))A(t)Ḃ(t)

)

= −Tr
(
∇ℓ⊤(WA,B(t))∇ℓ(WA,B(t))B⊤(t)B(t)

)

− Tr
(
∇ℓ⊤(WA,B)A(t)A⊤(t)∇ℓ(WA,B(t))

)

= −Tr
(
∇ℓ(WA,B(t))B⊤(t)B(t)∇ℓ(W⊤

A,B(t))
︸ ︷︷ ︸

:=L1(t)

)

− Tr
(
∇ℓ(W⊤

A,B(t))A(t)A⊤(t)∇ℓ(WA,B(t))
︸ ︷︷ ︸

:=L2(t)

)
)
. (62)

The third equality follows from the fact that for any two matrices A and B of the same size,
⟨A,B⟩ = Tr(A⊤B). The last equation holds due to the cyclic property of the trace. Combining (62)
with Lemma F.7, we can ensure L1(t) and L2(t) are both positive semidefinite, which implies the
loss is monotonically non-increasing for all t ≥ T1.

With Lemma E.2 and the monotonicity of the loss, we can guarantee positiveness of a11, a22, w11,
and w22 after the pre-train phase:
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Lemma E.3. For a product matrix WA,B(t) = A(t)B(t) ∈ R2×2, if a11(T1), a22(T1), w11(T1),
and w22(T1) have all positive values, following inequalities hold for all t ≥ T1:

a11(t), a22(t) > 0, a12(t) ≥ 0.

Furthermore,

w11(t), w22(t) > 0

holds for all t ≥ T1.

Proof. We will prove the inequalities step by step.

Positiveness of a11(t). For the sake of contradiction, assume that there exists a timestep τ1 > T1

where a11(τ1) = 0 holds. From (59) and Lemma F.3, we must have det(A(τ1)) > 0, which implies
that a12(τ1)a21(τ1) < 0. Given the monotonicity of ℓ, WA,B(t) must satisfy:

ℓ(WA,B(t)) ≤ ℓ(WA,B(T1)). (63)

for all t ≥ T1. However, WA,B(τ1) cannot satisfy (63) because w11(τ1), w22(τ1) < 0 and
w12(τ1) = 0 for any τ1 ≥ 0. This contradiction implies that such a τ1 cannot exist.

Positiveness of a22(t). Similarly, let’s assume there exists a time τ2 > T1 such that a22(τ2) = 0 for
the first time. We can express WA,B(τ2) as:

WA,B(τ2) =

(
a12(τ2)a21(τ2) 2a11(τ2)a12(τ2)

0 a12(τ2)a21(τ2)

)
.

where the diagonal entries are negative due to the condition det(A(τ2)) > 0. Therefore, the time
derivative of a22 at timestep τ2 is positive:

ȧ22(τ2) = a11(τ2)(w
∗ − w11(τ2)) > 0.

Since a22(t) is increasing at point τ2, there exists time t′ < τ2 such that a22(t′) < 0 (since a22(t) is
continuous and differentiable), which is contradictory. Consequently, there cannot exist a τ2 such
that a22(τ2) = 0.

Positiveness of a12(t). Given that ℓ is non-decreasing, we can state:

ℓ(WA,B(t)) =
1

2

[
(w∗ − w11(t))

2 + (w∗
12 − w12(t))

2 + (w∗ − w22(t))
2
]

≤ ℓ(WA,B(T1)) =
1

2
w∗

12
2,

for all t ≥ T1. Since (w∗ − w11(t))
2 and (w∗ − w22(t))

2 are non-negative, w12(t) must be non-
negative for all t ≥ T1. From (59), we know w12(t) = 2a11(t)a12(t), which implies a12(t) ≥ 0 for
all t ≥ T1 with the above conclusion which states a11(t) > 0.

Positiveness of w11(t),w22(t). Likewise, assume for the sake of contradiction that there exists
a time τ3 ≥ T1 when w11(τ3) = 0 is first satisfied. This directly implies that a11(τ3)a22(τ3) =
−a12(τ3)a21(τ3). Squaring both sides of the equation yields:

a211(τ3)a
2
22(τ3) = a212(τ3)a

2
21(τ3).

Subtracting a212(τ3)a
2
22(τ3) from both sides:

a211(τ3)a
2
22(τ3)− a212(τ3)a

2
22(τ3) = a212(τ3)a

2
21(τ3)− a212(τ3)a

2
22(τ3).

Factoring:

a222(τ3)
(
a211(τ3)− a212(τ3)

)
= a212(τ3)

(
a221(τ3)− a222(τ3)

)
.

By the conservation law in (61), we have a211(τ3) + a221(τ3) = a212(τ3) + a222(τ3), which leads to
a211(τ3)− a212(τ3) = a222(τ3)− a221(τ3). Replacing a211(τ3)− a212(τ3) with −(a221(τ3)− a222(τ3)):

−a222(τ3)
(
a221(τ3)− a222(τ3)

)
= a212(τ3)

(
a221(τ3)− a222(τ3)

)
.
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This gives us: (
a212(τ3) + a222(τ3)

) (
a221(τ3)− a222(τ3)

)
= 0.

Since a22(τ3) > 0 from the previous result, we can conclude that a21(τ3) = ±a22(τ3). To determine
the sign of a21(τ3), recall that WA,B(τ3) is written as:

WA,B(τ3) =

(
0 2a11(τ3)a12(τ3)

2a21(τ3)a22(τ3) 0

)
.

Since a11(τ3) > 0, a12(τ3) ≥ 0 from the previous result, 2a11(τ3)a12(τ3) ≥ 0 holds. Also, given
that det(WA,B(τ3)) > 0, we can determine that a21(τ3) is negative, which implies a21(τ3) =
−a22(τ3). Additionally, by the conservation law, we have a211(τ3) = a212(τ3), which leads to
a11(τ3) = a12(τ3) > 0.

Finally, consider the time derivative of w11 at timestep τ3, substituting a11(τ3) and a21(τ3) with
a12(τ3) and −a22(τ3), respectively:

ẇ11(τ3) = (w∗ − w11(τ3))(a
2
11(τ3) + a212(τ3) + a221(τ3) + a222(τ3))

+ (w∗
12 − w12(τ3))(a11(τ3)a21(τ3) + a12(τ3)a22(τ3))

= 2w∗(a212(τ3) + a222(τ3))

> 0,

which contradicts our initial assumption.

Given that the time derivative in the (60) includes the term a11(t)a21(t) + a12(t)a22(t), we need to
verify the sign of a11a21 + a12a22 in order to proceed with the analysis. Below lemma shows that as
long as w12(t) ≤ w∗

12 holds, a11(t)a21(t) + a12(t)a22(t) is always lower bounded by zero.
Lemma E.4. For a product matrix WA,B(t) = A(t)B(t) ∈ R2×2, if at any point t ∈ [T1, T2] we
have w12(t) ≤ w∗

12, then the following inequality holds throughout the entire interval [T1, T2]:

a11(t)a21(t) + a12(t)a22(t) ≥ 0.

Proof. We first define g(t) ≜ a11(t)a21(t) + a12(t)a22(t). Recall that at T1, we have a12(T1) =
a21(T1) = 0, which implies g(T1) = 0 as well. Note that by (58), at timestep T1, we have

ȧ12(T1) = a11(T1)(w
∗
12 − w12(T1)) + a21(T1)(w

∗ − w11(T1)) > 0,

while other elements remain unchanged. This indicates that g(t) > 0 immediately after T1. We
now show that if g(τ) > 0 for any τ ∈ (T1, T2], then there is no τ ′ ∈ [τ, T2] which satisfies both
g(τ ′) = 0 and d

dtg(t)
∣∣∣
t=τ ′

< 0. This implies that g(t) never becomes negative under the assumption

of w12(t) ≤ w∗
12.

Suppose, for the sake of contradiction, that there exists a τ ′ ∈ [τ, T2] where g(τ ′) = 0 and
d
dtg(t)

∣∣∣
t=τ ′

< 0. Given g(τ ′) = 0 and the conservation law in (61), and the inequalities from
Lemma E.3, we can determine that there exist two combinations of the solution:

1. a11(τ
′) = a22(τ

′), a12(τ
′) = −a21(τ

′), a11(τ
′) > a12(τ

′).

2. a11(τ
′) = a22(τ

′), a12(τ
′) = a21(τ

′) = 0.

We take the time derivative of g(t) at timestep τ ′ and substitute the values from (58) as follows:

d

dt
g(t)

∣∣∣
t=τ ′

= ȧ11(τ
′)a21(τ

′) + a11(τ
′)ȧ21(τ

′) + ȧ12(τ
′)a22(τ

′) + a12(τ
′)ȧ22(τ

′)

= 2(w∗ − w11(τ
′))(a11(τ

′)a12(τ
′) + a21(τ

′)a22(τ
′))

+ (w∗
12 − w12(τ

′))(a11(τ
′)a22(τ

′) + a12(τ
′)a21(τ

′)). (64)
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For the first case, substituting equations a11(τ ′) = a22(τ
′) and a12(τ

′) = −a21(τ
′) to (64) leads to:

d

dt
g(t)

∣∣∣
t=τ ′

= (w∗
12 − w12(τ

′))w11(τ
′).

Since w11(t) > 0 for all t ≥ T1, if w12(τ
′) ≤ w∗

12 holds, then g(t) cannot take negative values at
time τ ′.

For the second case, substituting equations a11(τ ′) = a22(τ
′) and a12(τ

′) = a21(τ
′) = 0 to (64)

leads to:
d

dt
g(t)

∣∣∣
t=τ ′

= (w∗
12 − w12(τ

′))a211(τ
′),

which is again a non-negative value if w12(τ
′) ≤ w∗

12, leading to a contradiction.

Lemma E.5. For a product matrix WA,B(t) = A(t)B(t) ∈ R2×2, the following inequalities holds
for all timestep t ≥ T1:

w12(t) ≤ w∗
12,

w11(t), w22(t) ≥ w∗,

w21(t) ≤ 0.

Proof. We will prove this lemma in several steps:

Step 1: w12(t) ≤ w∗
12 for all t ≥ T1.

We know w12(T1) = 0 ≤ w∗
12. Assume, for the sake of contradiction, that there exists a time t′ > T1

where t′ is the first timestep such that w12(t
′) > w∗

12. If this were true, there must exist a time s
where T1 ≤ s < t′ such that:

w12(s) = w∗
12, ẇ12(s) > 0.

For these conditions to be met, w12(s) must satisfy:

ẇ12(s) = 2(w∗ − w11(s))(a11(s)a21(s) + a12(s)a22(s)) > 0. (65)

To satisfy (65), there are two possibilities:

(w∗ − w11(s)) > 0 and (a11(s)a21(s) + a12(s)a22(s)) > 0, (66)
or (w∗ − w11(s)) < 0 and (a11(s)a21(s) + a12(s)a22(s)) < 0. (67)

However, neither of these can be true:

1. Equation (67) contradicts Lemma E.4, given that s < t′.

2. Equation (66) cannot be satisfied because there is no s where w∗ > w11(s). If there were,
there would be a time s′ where T1 ≤ s′ < s both satisfying w11(s

′) = w∗, and ẇ11(s
′) < 0.

But we find:

ẇ11(s
′) = (w∗

12 − w12(s
′))(a11(s

′)a21(s
′) + a12(s

′)a22(s
′)) ≥ 0.

This is because w12(s
′) < w∗

12, and thus a11(s′)a21(s′) + a12(s
′)a22(s

′) ≥ 0 by Lemma
E.4. Therefore, our initial assumption must be false, implying that w12(t) ≤ w∗

12 for all
t ≥ T1.

Step 2: Prove w11(t) ≥ w∗
11 and w22(t) ≥ w∗

22 for all t ≥ T1.

Given w12(t) ≤ w∗
12 for all t ≥ T1, Lemma E.4 implies a11(t)a21(t) + a12(t)a22(t) ≥ 0 for all

t ≥ T1. The evolution of w11 is given by:

ẇ11(t) = (w∗−w11(t))(a
2
11(t)+a212(t)+a221(t)+a222(t))+(w∗

12−w12(t))(a11(t)a21(t)+a12(t)a22(t)).
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By above equation, if there exists a time t′ ≥ T1 where w11(t
′) = w∗, we can conclude ẇ11(t

′) ≥ 0,
and thus w11(t) ≥ w∗ for all t ≥ T1. By Lemma E.2, w22 has the same value as w11, so w22(t) ≥ w∗

for all t ≥ T1.

Step 3: Prove w21(t) ≤ 0 for all t ≥ T1.

The evolution of w21 is given by:

ẇ21(t) = 2(w∗ − w11(t))(a11(t)a21(t) + a12(t)a22(t)).

Since w11(t) ≥ w∗ and a11(t)a21(t)+a12(t)a22(t) ≥ 0 for all t ≥ T1, we can conclude w21(t) ≤ 0
for all t ≥ T1.

E.2.1 PROOF OF LOSS CONVERGENCE

Recall that the time derivative of the loss function is written as:
d

dt
ℓ(WA,B(t)) = −Tr(L1(t))− Tr(L2(t)),

where L1(t) and L2(t) are defined in (62). To further our analysis, we can expand the time derivative
of the loss by calculating the trace of L1(t) and L2(t). We omit the time index t when clear from
context.

L1 =

(
r11 r12
0 r22

)(
a221 + a222 a11a21 + a12a22

a11a21 + a12a22 a211 + a212

)(
r11 0
r12 r22

)

=

(
r211(a

2
21 + a222) + 2r11r12(a11a21 + a12a22) + r212(a

2
11 + a212) C1

C1 r222(a
2
11 + a212)

)
,

for some time-dependent value C1. Following a similar process, we calculate L2:

L2 =

(
r11 0
r12 r22

)(
a211 + a212 a11a21 + a12a22

a11a21 + a12a22 a221 + a222

)(
r11 r12
0 r22

)

=

(
r211(a

2
11 + a212) C2

C2 r212(a
2
11 + a212) + 2r12r22(a11a21 + a12a22) + r222(a

2
21 + a222)

)
,

again for the time-dependent value C2. With these expressions for L1 and L2, we can now rewrite
equation (62) in a more explicit form:

d

dt
ℓ (WA,B(t)) =− Tr (L1(t))− Tr (L2(t))

=− r211(t)
(
a211(t) + a212(t) + a221(t) + a222(t)

)

− 2r212(t)
(
a211(t) + a212(t)

)

− r222(t)
(
a211(t) + a212(t) + a221(t) + a222(t)

)

− 2r12(t)r22(t) (a11(t)a21(t) + a12(t)a22(t))

− 2r11(t)r12(t) (a11(t)a21(t) + a12(t)a22(t)) . (68)

Note that the (68) is the non-positive term. Given that L1 and L2 are positive semi-definite, we can
analyze each diagonal entry separately. This leads us to the following inequalities:

r211(a
2
21 + a222) + 2r11r12(a11a21 + a12a22) + r212(a

2
11 + b212) ≥ 0,

r212(a
2
11 + a212) + 2r12r22(a11a21 + a12a22) + r222(a

2
21 + a222) ≥ 0.

By rearranging the above inequalities, we obtain:

−2r11r12(a11a21 + a12a22) ≤ r211(a
2
21 + a222) + r212(a

2
11 + a212),

−2r12r22(a11a21 + a12a22) ≤ r212(a
2
11 + a212) + r222(a

2
21 + a222).

Substituting these inequalities into equation (68), we derive:

d

dt
ℓ(WA,B(t)) ≤ −r211(t)

(
a211(t) + a212(t)

)
− r222(t)

(
a211(t) + a212(t)

)
. (69)
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This provides a tighter upper bound on the time derivative of the loss. However, it is still insufficient
to guarantee convergence, as the bound does not depend on the term r12(t). As a result, even though
the right-hand side converges to zero, this alone does not imply that the loss itself converges.

To further tighten the bound, we leverage the positive semidefiniteness of L1 and L2.
Specifically, note that for both QKQ⊤ and Q⊤KQ to be positive semi-definite, the
only necessary condition is K ≽ 0. Therefore, we modify L1(t) to L̃1(t) ≜
∇ℓ(WA,B(t))

(
B⊤(t)B(t)− µ(t) · e2e⊤2

)
∇ℓ⊤(WA,B(t)), where µ(t) is chosen to ensure that

the matrix B⊤(t)B(t)− µ(t) · e2e⊤2 remains positive semidefinite. This guarantees that L̃1(t) ≽ 0.
To ensure this condition, µ(t) must satisfy:
∣∣B(t)⊤B(t)− µ(t) · e2e⊤2

)
| =

∣∣∣∣
(

a221(t) + a222(t) a11(t)a21(t) + a12(t)a22(t)
a11(t)a21(t) + a12(t)a22(t) a211(t) + a212(t)− µ(t)

)∣∣∣∣

= −
(
a221(t) + a222(t)

)
µ(t) + (a11(t)a22(t)− a12(t)a21(t))

2

≥ 0.

Rearranging this inequality with respect to µ(t), we get:

µ(t) ≤ (a11(t)a22(t)− a12(t)a21(t))
2

a221(t) + a222(t)
(70)

=
det(B(t))2

a221(t) + a222(t)
.

Therefore, if we set µ(t) to satisfy the above inequality, we can guarantee L̃1 to be a positive
semidefinite matrix. Now, L̃1(t) can be calculated as:

L̃1 =

(
r11 r12
0 r22

)(
a221 + a222 a11a21 + a12a22

a11a21 + a12a22 a211 + a212 − µ

)(
r11 0
r12 r22

)

=

(
r211(a

2
21 + a222) + 2r11r12(a11a21 + a12a22) + r212(a

2
11 + a212 − µ) C̃

C̃ r222(a
2
12 + a222 − µ)

)
,

for some C̃. Since the matrix B⊤B−µ·e2e⊤2 is positive semi-definite, we can ensure a212+a222−µ ≥
0. This leads to the following inequality from

(
L̃1

)
11

:

−2r11r12(a11a21 + a12a22) ≤ r211(a
2
21 + a222) + r212(a

2
11 + a212 − µ).

Finally, substituting this inequality into (68), we arrive at:

d

dt
ℓ(WA,B(t)) ≤ −

(
r211(t) + r222(t)

) (
a211(t) + a212(t)

)
− r212(t)µ(t). (71)

To prove the convergence of the loss, our main remaining goal is to establish a time-invariant lower
bound for

min
{
a211(t) + a212(t), µ(t)

}

to apply Grönwall’s inequality.
Lemma E.6. For a solution matrix WA,B(t) initialized as WA,B(T1), which represents the state of
the matrix after pre-training up to time T1, the inequality

det (WA,B(t)) ≥ w∗2

holds for all t ≥ T1.

Proof. Since w12(t) must satisfy |w12(t) − w∗
12| ≤

√
2ℓ(WA,B(t)) ≤ w∗

12 by the monotonic-
ity of the loss, we can ensure that w12(t) ≥ 0 for all t ≥ T1. Also, by Lemma E.5, we have
w11(t), w22(t) ≥ w∗, and w21(t) ≤ 0 for all t ≥ T1. Under these conditions, det(WA,B(t)) can be
lower bounded as:

det(WA,B(t)) = w11(t)w22(t)− w12(t)w21(t) ≥ w∗2,

for all timesteps t ≥ T1.
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Lemma E.7. For µ(t) defined to satisfy (70) and the entries in A(t), the following inequality holds
for all timesteps t ≥ T1:

min
{
a211(t) + a212(t), µ(t)

}
≥ w∗.

Proof. To prove the lower bound of a211(t)+a212(t), Our goal is to demonstrate that a211(t)+a212(t) ≥
w∗ for all timesteps t after T1. By Lemma E.7, we have ∥WA,B(t)∥F ≥

√
2w∗, which leads to:

√
2w∗ ≤ ∥WA,B(t)∥F

=
√

σ2
1 (WA,B(t)) + σ2

2 (WA,B(t)).

By applying Lemma F.4, we have:
√

σ2
1(WA,B(t)) + σ2

2(WA,B(t)) =
√

σ4
1(A(t)) + σ4

2(A(t))

=

√
(σ2

1 (A(t)) + σ2
2 (A(t)))

2 − 2σ2
1(A(t))σ2

2(A(t))

=
√

∥A(t)∥4F − 2 det(A(t))2. (72)

Rewriting (72) while applying Lemmas F.4 and E.6 leads to:

∥A(t)∥4F ≥ 2w∗2 + 2det(A(t))2

= 2w∗2 + 2det(WA,B(t))

≥ 4w∗2.

Thus, A(t) have to satisfy ∥A(t)∥2F ≥ 2w∗ for all timesteps t ≥ T1. Now, assume that there exists a
time t′ > T1 such that a211(t

′) + a212(t
′) < w∗. To satisfy inequality ∥A(t′)∥2F ≥ 2w∗, we would

need at least a221(t
′) + a222(t

′) > w∗ to hold. To verify the value of a221(t
′) + a222(t

′), we take its
time derivative using (58):

d

dt
(a221(t) + a222(t)) = 2a21(t) ˙a21(t) + 2a22(t) ˙a22(t)

= −2a12(t)a21(t)r22(t)− 2a11(t)a22(t)r22(t)

= −2r22(t)(a11(t)a22(t) + a12(t)a21(t))

= 2w11(t)(w
∗ − w11(t)).

Since w11(t) ≥ w∗ holds by Lemma E.5 for all t ≥ T1, we conclude a221(t)+a222(t) is monotonically
non-increasing from time t ≥ T1. Since a212(T1) + a222(T1) is initialized as w∗, this implies that
a221(t

′) + a222(t
′) ≤ w∗. Consequently, there cannot exist a t′ > T1 such that a211(t

′) + a212(t
′) < w∗

holds, which leads to contradiction.

Next, we are now showing that the term det(B(t))2

a2
21(t)+a2

22(t)
is lower bounded by w∗. Therefore, if we set

µ(t) as w∗, we can guarantee the positive semidefiniteness of L̃1(t).

By applying Lemma F.4 and the lower bound of det(WA,B(t)) by Lemma E.6, we have

det (B(t))
2

a221(t) + a222(t)
=

det (WA,B(t))

a221(t) + a222(t)
≥ w∗2

a221(t) + a222(t)
.

Also, from the previous result, we have an upper bound on a221(t)+a222(t), which is a221(t)+a222(t) ≤
w∗. Combining these results, the following inequality holds:

det (WA,B(t))

a221(t) + a222(t)
≥ w∗.

Therefore, if we set µ(t) to be w∗, µ(t) can satisfy the positive semidefiniteness condition. By
combining the results, we can finally guarantee:

min
{
a211(t) + a212(t), µ(t)

}
≥ w∗.
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Using the results of Lemma E.7, we can rewrite (71) as follows:

d

dt
ℓ(WA,B(t)) ≤ −

(
r211(t) + r222(t)

) (
a211(t) + a212(t)

)
− r212(t)µ(t)

≤ −
(
r211(t) + r212(t) + r222(t)

)
w∗

≤ −2w∗ℓ(WA,B(t)).

Applying Grönwall’s inequality to our previous result, we can now demonstrate loss convergence
where t ≥ T1:

ℓ(WA,B(t)) ≤ ℓ(WA,B(T1))e
−2w∗(t−T1)

=
1

2
w∗

12
2e−2w∗(t−T1). (73)

This inequality allows us to conclude that ℓ(WA,B(t)) converges to zero exponentially.

E.2.2 PROOF OF STABLE RANK BOUND

From (73), we know that at convergence, w11(∞) = w22(∞) = w∗ and w12(∞) = w∗
12. Although

a closed-form expression for w21(∞) is unavailable, Lemma E.5 shows that w21(t) ≤ 0 for t ≥ T1,
which implies w21(∞) ≤ 0. This indicates that the test loss remains strictly positive, as the ground-
truth value w∗

21 = w∗2

w∗
12

is assumed to be strictly positive.

In this section, we leverage the fast convergence rate detailed in (73) to establish bounds on the
singular values of the converged matrix WA,B(∞). Subsequently, these singular value bounds are
used to further bound the stable rank of WA,B(∞).

Lemma E.8. The singular values of WA,B(∞) fulfill:

σ1(WA,B(∞)) ≤ w∗ · exp
(
2
w∗

12

w∗

)
,

σ2(WA,B(∞)) ≥ w∗ · exp
(
−2

w∗
12

w∗

)
.

Proof. We denote the singular values of WA,B(t) as σr(t) for simplicity. By Lemma F.1, we can
get general solution of each singular value σr(t) by solving linear differential equation:

σr(t) = σr(s) · exp
(
−2

∫ t

t′=s

⟨∇ℓ(WA,B(t′)),ur(t
′)v⊤

r (t
′)⟩dt′

)
, r = 1, 2, (74)

where ur(t) and vr(t) denotes left and right singular vector of corresponding r-th singular value,
respectively. Since ur(t) and vr(t) are both unit vectors, applying Cauchy-Schwartz inequality, we
can bound

〈
∇ℓ(WA,B(t)),ur(t)v

⊤
r (t)

〉
by:

∣∣〈∇ℓ(WA,B(t)),ur(t)v
⊤
r (t)

〉∣∣ ≤ ∥∇ℓ(WA,B(t))∥F ·
∥∥ur(t)v

⊤
r (t)

∥∥
F

= ∥∇ℓ(WA,B(t))∥F
=
√

2ℓ(WA,B(t)).

we can get bound σr(t) as following:

σr(s)·exp
(
−2

√
2

∫ t

t′=s

√
ℓ(WA,B(t′))dt′

)
≤ σr(t) ≤ σr(s)·exp

(
2
√
2

∫ t

t′=s

√
ℓ(WA,B(t′))dt′

)

(75)
With the setting above, in the pre-train section, after T1 timesteps, we prove that σ1(T1) = σ2(T1) =
w∗. Starting from T1 with pre-trained weights, we can lower bound σ2(WA,B(t)) with equations (73)
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and (75) when t ≥ T1 as follows:

σ2(t) ≥ σ2(T1) · exp
(
−2

√
2

∫ t

t′=T1

√
ℓ(WA,B(t′))dt′

)

≥ w∗ · exp
(
−2w∗

12

∫ t

t′=T1

e−w∗(t′−T1)dt′
)

= w∗ · exp
(
−2w∗

12

w∗

(
1− e−w∗(t−T1)

))
.

and when t → ∞, σ2(∞) can be lower bounded by:

σ2(∞) ≥ w∗ · e−2·w
∗
12

w∗ .

In the same way, we can upper bound σ1(∞) by:

σ1(∞) ≤ w∗ · e2·
w∗

12
w∗ .

By Lemma E.8, we can now lower bound the stable rank of a matrix WA,B(∞):

∥WA,B(∞)∥2F
∥WA,B(∞)∥22

=
σ2
1(WA,B(∞)) + σ2

2(WA,B(∞))

σ2
1(WA,B(∞))

= 1 +
σ2
2(WA,B(∞))

σ2
1(WA,B(∞))

≥ 1 + exp

(
−8

w∗
12

w∗

)
,

which concludes the proof of Theorem 4.2.
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E.3 FORMAL STATEMENT AND PROOF OF THEOREM 4.3

We now extend the preceding analysis to the general case involving a ground truth matrix W ∗ ∈ Rd×d.
The solution matrix WA,B ∈ Rd×d is again factorized as WA,B = AB, where both A,B ∈ Rd×d.
In this section, our detailed presentation and proof of Theorem 4.3 (from the main text) are structured
as follows: we first introduce and prove Theorem E.2, which is then followed by its direct consequence,
Corollary E.3.

We use the slightly modified loss function:

L(A,B) =
1

2

N∑

n=1

(⟨AB,Xn⟩ − yn)
2
, (76)

where the measurement matrix Xn = eine
⊤
jn

represents a masking matrix, with the n-th observed
entry set to one and all other entries set to zero, and yn ∈ R denotes the ground truth value of the

n-th observation. Then, by defining Θ =

[
A
B⊤

]
∈ R2d×d and X̄n = 1

2

[
0 Xn

X⊤
n 0

]
∈ R2d×2d, we

can rewrite the (76) as:

L(A,B) = L̃(Θ) =
1

2

N∑

n=1

(
⟨ΘΘ⊤, X̄n⟩ − yn

)2

=
1

2
∥F (Θ)− y∥22. (77)

Here, F (Θ) and y represent vectors defined as:

F (Θ) ≜




⟨ΘΘ⊤, X̄1⟩
⟨ΘΘ⊤, X̄2⟩

...
⟨ΘΘ⊤, X̄N ⟩


 ∈ RN , y ≜




y1
y2
...
yN


 ∈ RN . (78)

By reparameterizing A, B to Θ, and Xn to X̄n, we can reduce the parameter matrices into a single
matrix Θ while ensuring the symmetry of ΘΘ⊤. We train the model Θ via gradient flow, where the
loss evolution is given by:

˙̃L(Θ(t)) = (F (Θ(t))− y)
⊤
Ḟ (Θ(t))

= (F (Θ(t))− y)
⊤




d
dt ⟨Θ(t)Θ(t)⊤, X̄1⟩
d
dt ⟨Θ(t)Θ(t)⊤, X̄2⟩

...
d
dt ⟨Θ(t)Θ(t)⊤, X̄N ⟩




= 2 (F (Θ(t))− y)
⊤




⟨X̄1Θ(t), Θ̇(t)⟩
⟨X̄2Θ(t), Θ̇(t)⟩

...
⟨X̄NΘ(t), Θ̇(t)⟩




= 2 (F (Θ(t))− y)
⊤




vec
(
X̄1Θ(t)

)⊤

vec
(
X̄2Θ(t)

)⊤
...

vec
(
X̄NΘ(t)

)⊤



vec
(
Θ̇(t)

)
(79)

= (F (Θ(t))− y)
⊤
J(Θ(t)) vec

(
Θ̇(t)

)
. (80)
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Here, the Jacobian matrix J(Θ(t)) is defined as:

J(Θ(t)) ≜
∂F (Θ(t))

∂vec(Θ(t))
=




vec
(
∇Θ⟨Θ(t)Θ(t)⊤, X̄1⟩

)⊤

vec
(
∇Θ⟨Θ(t)Θ(t)⊤, X̄2⟩

)⊤
...

vec
(
∇Θ⟨Θ(t)Θ(t)⊤, X̄N ⟩

)⊤



= 2




vec
(
X̄1Θ(t)

)⊤

vec
(
X̄2Θ(t)

)⊤
...

vec
(
X̄NΘ(t)

)⊤



∈ RN×2d2

.

(81)

With the notations defined above, we state the following theorem:

Theorem E.2. Let the combined weight matrix be

Θ ≜

[
A
B⊤

]
∈ R2d×d,

and consider the loss function L̃ defined in (76). Denote

σmin ≜ σmin(J(Θ(0))), σmax ≜ σmax(J(Θ(0))).

If the initialization satisfies:

L̃(Θ(0)) ≤ σ6
min

1152dσ2
max

,

then for every t ≥ 0 the following hold:

L̃(Θ(t)) ≤ L̃(Θ(0)) exp

(
−1

2
σ2
mint

)
,

∥Θ(t)−Θ(0)∥F ≤ 6
√
2σmax

σ2
min

√
L̃(Θ(0)).

The above theorem tells us that, if the model is initialized with a sufficiently small loss, the model’s
loss will converge to zero quickly, and the parameters will not move significantly from the initializa-
tion. With the above theorem, we can state the following corollary:

Corollary E.3. Suppose A and B are initialized as balanced, i.e.:

A(0)⊤A(0) = B(0)B(0)⊤.

Under the conditions of Theorem E.2, for every singular index i ∈ [d] and all t ≥ 0:

σi(A(t)) = σi(B(t)) and |σi(A(t))− σi(A(0))| ≤ σmin

4
√
2d

.

Consequently, the stable rank of A(t) remains bounded below by

∥A(t)∥2F
∥A(t)∥22

≥
(
∥A(0)∥F − σmin

4
√
2d

∥A(0)∥2 + σmin

4
√
2d

)2

.

E.3.1 PROOF OF THEOREM E.2

We begin the proof of the theorem by noting that the Jacobian J(·) is a Lipschitz function, as stated
in the following lemma:

Lemma E.9. The Jacobian matrix J(W ), as defined in (81), is
√
d-Lipschitz. Specifically, for any

matrices W ,V ∈ R2d×d, the following inequality holds:

∥J(W )− J(V )∥ ≤
√
d∥vec(W )− vec(V )∥. (82)
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Proof. Note that for each n-th observation,

Jn(Θ) = 2vec
(
X̄nΘ

)⊤

= vec

((
0 Xn

X⊤
n 0

)(
A
B⊤

))⊤

= vec

((
XnB

⊤

X⊤
n A

))⊤

∈ R2d2

.

Let Ml denote the l-th row of a matrix M , and let M·,l denote its l-th column. We have

∥Jn(Θ)∥2F = ∥X⊤
n A∥2F + ∥XnB

⊤∥2F
= ∥ejne⊤inA∥F + ∥eine⊤jnB⊤∥F
= ∥Ain∥22 + ∥B·,jn∥22.

Now, suppose we observe all entries, i.e., N = d2. Then for any fixed n, in = im can be satisfied for
all m ∈ [d], meaning each element of A is observed d times. Similarly, each element of B is also
observed d times.

Therefore, we can upper bound the Frobenius norm of the Jacobian matrix by the Frobenius norm of
the Jacobian under full observation:

∥J(Θ)∥2F ≤
d2∑

n=1

(
∥X⊤

n A∥2F + ∥XnB
⊤∥2F

)

= d
(
∥A∥2F + ∥B∥2F

)

= d∥Θ∥2F .

By upper-bounding the spectral norm of the difference between two Jacobian matrices and applying
the inequality above, we obtain:

∥J(W )− J(V )∥2 = ∥J(W − V )∥2

≤ ∥J(W − V )∥2F
≤ d∥W − V ∥2F ,

which concludes the proof.

Next, we borrow a lemma from Telgarsky (2021), which states that for a Lipschitz function J , if we
consider a sufficiently small neighborhood around the initialization Θ(0), then the singular values of
the Jacobian J(Θ) remain close to those at initialization:
Lemma E.10 (Lemma 8.3 in Telgarsky (2021)). If we suppose ∥vec(Θ)− vec(Θ(0))∥ ≤ σmin

2
√
d

, we
have the following:

σmin(J(Θ)) ≥ σmin

2
, σmax(J(Θ)) ≤ 3σmax

2
,

where we denote σmin ≜ σmin(J(Θ(0)), and σmax ≜ σmax(J(Θ(0)).

For simplicity, we denote θ as the vectorized version of Θ, i.e., θ ≜ vec(Θ). We define the time step
τ , which is the first time step when the trajectory of θ(t) touches the boundary:

τ ≜ inf
t≥0

{
t | ∥θ(t)− θ(0)∥ ≥ σmin

2
√
d

}
.

We now demonstrate the convergence of the loss when t ∈ [0, τ ] using the following lemma.
Lemma E.11. For all t ∈ [0, τ ], the loss defined in (76) converges as follows:

L̃(Θ(t)) ≤ L̃(Θ(0)) exp

(
−1

2
σ2
mint

)
,

where we define σmin ≜ σmin(J(Θ(0))).

76



4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157

Under review as a conference paper at ICLR 2026

Proof. Recall that the time derivative of the loss can be written as follows, according to (80):
˙̃L(Θ(t)) = − (F (Θ(t))− y)

⊤
J(Θ(t)) θ̇(t)

= − (F (Θ(t))− y)
⊤
J(Θ(t))J(Θ(t))⊤ (F (Θ(t))− y) ,

noting that
θ̇(t) = −∇θ(t)L̃(Θ(t)) = −J(Θ(t))⊤(F (Θ(t))− y).

By Lemma E.10, for any t ∈ [0, τ ], we can upper bound the above term as follows:
˙̃L(Θ(t)) ≤ −λmin

(
J(Θ(t))J(Θ(t))⊤

)
∥F (Θ(t))− y∥2

≤ −1

2
σ2
minL̃(Θ(t)).

Applying Grönwall’s inequality gives:

L̃(Θ(t)) ≤ L̃(Θ(0)) exp

(
−1

2
σ2
mint

)
for t ∈ [0, τ ].

The above lemma shows that the loss decays rapidly to zero if θ(t) stays within a small neighborhood
around the initialization. We now show that if the loss converges quickly near initialization, then θ(t)
does not move far from its initial value:
Lemma E.12. Let σmin ≜ σmin(J(Θ(0))) and σmax ≜ σmax(J(Θ(0))). For all t ∈ [0, τ ], the
distance between the weight vector at time t and the initial weight vector is bounded by:

∥θ(t)− θ(0)∥ ≤ 6
√
2σmax

σ2
min

√
L̃(Θ(0)).

Proof. We start by evaluating the distance between θ(t) and θ(0) using Lemma E.10:

∥θ(t)− θ(0)∥ =

∥∥∥∥
∫ t

0

θ̇(s) ds

∥∥∥∥

=

∫ t

0

∥∥J(Θ(s))⊤ (F (Θ(s))− y)
∥∥ ds

≤
∫ t

0

σmax(J(Θ(s))) ∥F (Θ(s))− y∥ ds

≤ 3

2
σmax

∫ t

0

∥F (Θ(s))− y∥ ds.

By Lemma E.11, we know that the objective function L̃(Θ) satisfies:

∥F (Θ(t))− y∥2 ≤ ∥F (Θ(0))− y∥2 exp
(
−1

2
σ2
mint

)
.

Taking the square root of both sides, we obtain:

∥F (Θ(t))− y∥ ≤ ∥F (Θ(0))− y∥ exp
(
−1

4
σ2
mint

)
.

Substituting this into the previous inequality:

∥θ(t)− θ(0)∥ ≤ 3

2
σmax∥F (Θ(0))− y∥

∫ t

0

exp

(
−1

4
σ2
mins

)
ds

≤ 6σmax

σ2
min

∥F (Θ(0))− y∥,

where we used the fact that: ∫ t

0

exp(−Cs) ds ≤ 1

C
, forC > 0.

77



4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211

Under review as a conference paper at ICLR 2026

By combining Lemmas E.11 and E.12, we obtain the following results:

L̃(Θ(t)) ≤ L̃(Θ(0)) exp

(
−1

2
σ2
mint

)
, (83)

∥θ(t)− θ(0)∥ ≤ 6
√
2σmax

σ2
min

√
L̃(Θ(0)), (84)

which hold for t ∈ [0, τ ]. If we can demonstrate that τ = ∞, the proof is complete.

Actually, if we initialize Θ(0) to satisfy the condition:

L̃(Θ(0)) ≤ σ6
min

1152dσ2
max

,

and substitute this condition into (84), we obtain an upper bound for ∥θ(t)− θ(0)∥:

∥θ(t)− θ(0)∥ ≤ 6
√
2σmax

σ2
min

σ3
min√

1152dσmax

=
σmin

4
√
d
.

Recall the definition of τ , which is the first time when θ(t) touches the boundary of the small ball
around the initialization:

τ ≜ inf
t≥0

{
t | ∥θ(t)− θ(0)∥ ≥ σmin

2
√
d

}
.

However, with the condition L̃(Θ(0)) ≤ σ6
min

1152dσ2
max

, θ(t) cannot ever touch the boundary. This is
because ∥θ(t) − θ(0)∥ is bounded above by σmin

4
√
d

, which is strictly less than σmin

2
√
d

. Therefore, the
parameter will remain inside the ball indefinitely, meaning τ = ∞. This completes the proof of the
theorem.

E.3.2 PROOF OF COROLLARY E.3

First, we establish the equality σi(A(t)) = σi(B(t)) for all i ∈ [d]. Corollary E.3 assumes that A(0)
and B(0) are initialized as “balanced”, satisfying A(0)⊤A(0) = B(0)B(0)⊤. By Lemma F.4, this
balanced condition ensures that the singular values of A(t) and B(t) remain identical for all t ≥ 0:

σi(A(t)) = σi(B(t)).

Second, we address the change in the singular values of a combined parameter matrix Θ(t) (related to
A(t) and B(t)). Theorem E.2 states that under a specified condition on the initial loss, L̃(Θ(0)) ≤

σ6
min

1152dσ2
max

, the deviation of Θ(t) from its initialization Θ(0) is bounded for all t ≥ 0 by:

∥Θ(t)−Θ(0)∥F ≤ σmin

4
√
d
.

Let K = σmin

4
√
d

. By Weyl’s inequality, |σi(X)− σi(Y )| ≤ ∥X − Y ∥2, and noting that ∥·∥2 ≤ ∥·∥F ,
we have for all i ∈ [d]:

|σi(Θ(t))− σi(Θ(0))| ≤ ∥Θ(t)−Θ(0)∥2
≤ ∥Θ(t)−Θ(0)∥F
≤ K.

This inequality allows us to establish bounds for ∥Θ(t)∥F (using reverse triangle inequality) and its
largest singular value σ1(Θ(t)) = ∥Θ(t)∥2:

∥Θ(t)∥F ≥ ∥Θ(0)∥F −K,

σ1(Θ(t)) ≤ σ1(Θ(0)) +K.

This yields the following lower bound on the stable rank of Θ(t):

∥Θ(t)∥2F
∥Θ(t)∥22

≥
( ∥Θ(0)∥F −K

σ1(Θ(0)) +K

)2

=

(
∥Θ(0)∥F − σmin

4
√
d

∥Θ(0)∥2 + σmin

4
√
d

)2

.
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Furthermore, the balancedness condition implies A(t)⊤A(t) = B(t)B(t)⊤. By the definition of
Θ(t), Θ(t)⊤Θ(t) = A(t)⊤A(t) + B(t)B(t)⊤, this leads to Θ(t)⊤Θ(t) = 2A(t)⊤A(t). This
relationship implies σi(Θ(t)) =

√
2σi(A(t)) for all i. Substituting this into the bounds for Θ(t),

we have

∥A(t)∥F ≥ ∥A(0)∥F −K/
√
2,

∥A(t)∥2 ≤ ∥A(0)∥2 +K/
√
2.

This leads to the final lower bound on the stable rank of A(t) (which, by balancedness, is equal to
that of B(t)):

∥A(t)∥2F
∥A(t)∥22

≥
(
∥A(0)∥F −K/

√
2

∥A(0)∥2 +K/
√
2

)2

=

(
∥A(0)∥F − σmin

4
√
2d

∥A(0)∥2 + σmin

4
√
2d

)2

.
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F USEFUL LEMMAS

Lemma F.1 (Adaptation of Lemma 1 and Theorem 3 in Arora et al. (2019)). For any time t, the
product matrix W (t) ∈ Rd,d can be decomposed into its singular value decomposition:

W (t) =

d∑

r=1

σr(t)ur(t)vr(t)
⊤

where σr(t) are the singular values of W (t), and ur(t), vr(t) are the corresponding left and right
singular vectors, respectively. Moreover, if A,B are balanced at initialization, i.e.,

A⊤(0)A(0) = B(0)B⊤(0),

the time evolution of the singular values σr(t) is represented as:

σ̇r(t) = −2 · σr(t) ·
〈
∇ℓ(W (t)),ur(t)vr(t)

⊤〉 , r = 1, . . . , d (85)

Lemma F.2. For any real-valued square matrix A ∈ Rd×d, the absolute value of its determinant
equals the product of its singular values:

|det(A)| =
d∏

r=1

σr

where σr are the singular values of A.

Proof. We express A using SVD: A = UΣV ⊤. Applying the determinant to both sides, we get:

det(A) = det(UΣV ⊤)

= det(U) det(Σ) det(V ⊤)

Here, U and V have orthonormal columns, and Σ is diagonal with singular values along its main
diagonal. Since the determinant of an orthonormal matrix is either ±1,

|det(A)| = det(Σ) =

d∏

r=1

σr.

Lemma F.3 (Determinant of A(t)). Consider a matrix A(t) ∈ Rd,d initialized as det(A(0)) > 0.
Then, det(A(t)) > 0 for all t ≥ 0.

Proof. This follows directly from Lemma F.1 and F.2. Since the singular values are initialized as
positive, and their evolution is continuous according to the given differential equation, they cannot
become zero or negative. Therefore, A(t) maintains its sign of the determinant at initialization
throughout the optimization process.

Lemma F.4 (Adaptation of Lemma 8 in Razin & Cohen (2020)). Consider a product matrix
W (t) = A(t)B(t) ∈ Rd×d, where A(t) and B(t) are of equal size and balanced at initialization.
Under these conditions, the following equality holds for all t ≥ 0 and all singular values:

σr (W (t)) = σr (A(t))
2
= σr (B(t))

2

where σr(·) denotes the r-th singular value of the respective matrix where r ∈ [d]. Moreover, if
det (A(0)) and det (B(0)) are both positive, then by Lemma F.3, we can guarantee that for all
t ≥ 0:

det (W (t)) = det (A(t))
2
= det (B(t))

2

Lemma F.5 (Adaptation of Theorem 1 in Arora et al. (2019)). Consider a product matrix W (t) =
A(t)B(t) ∈ Rd×d. We can guarantee A(t) and B(t) are analytic functions of t. As a result, W (t)
is also an analytic function of t.
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Lemma F.6 (Lemma 10 in Razin & Cohen (2020)). Let f, g : [0,∞] → R be real analytic functions
such that f (k)(0) = gk(0) for all k ∈ N ∪ {0}. Then, f(t) = g(t) for all t ≥ 0.

Lemma F.7 (Positive Semidefiniteness of ABA⊤). For matrices A,B ∈ Rd,d, if B is positive
semi-definite, then both ABA⊤ and A⊤BA are positive semi-definite.

Proof. For any vector x ∈ Rd:

x⊤ABA⊤x = (A⊤x)⊤B(A⊤x) ≥ 0

since B is a positive semi-definite matrix. In the same way, for any vector x ∈ Rd we have:

x⊤A⊤BAx = (Ax)⊤B(Ax) ≥ 0

which concludes the proof.
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