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ABSTRACT

We study matrix completion via deep matrix factorization (a.k.a. deep linear neural
networks) as a simplified testbed to examine how network depth influences training
dynamics. Despite the simplicity and importance of the problem, prior theory
largely focuses on shallow (depth-2) models and does not fully explain the implicit
low-rank bias observed in deeper networks. We identify coupled dynamics as a
key mechanism behind this bias and show that it intensifies with increasing depth.
Focusing on gradient flow under diagonal observations, we prove: (a) networks of
depth > 3 exhibit coupling unless initialized diagonally, and (b) convergence to
rank-1 occurs if and only if the dynamics is coupled—resolving an open question
by Menon (2024) for a family of initializations. We also revisit the loss of plasticity
phenomenon in matrix completion (Kleinman et al., 2024), where pre-training
on few observations and resuming with more degrades performance. We show
that deep models avoid plasticity loss due to their low-rank bias, whereas depth-2
networks pre-trained under decoupled dynamics fail to converge to low-rank, even
when resumed training (with additional data) satisfies the coupling condition—
shedding light on the mechanism behind this phenomenon.

1 INTRODUCTION

Overparameterized neural networks have the capacity to perfectly memorize the training data, even
when they are given random labels (Zhang et al., 2017). Despite their large capacity, neural networks
often generalize well to unseen data without any explicit regularization techniques, which challenges
conventional statistical wisdom. Recent studies attribute this phenomenon to the implicit bias of
neural networks, arguing that among the many possible global minima, first-order algorithms such as
(stochastic) gradient descent favor solutions that generalize well (Neyshabur et al., 2014; 2017; Huh
et al., 2021; Timor et al., 2023; Frei et al., 2023; Kou et al., 2023; Galanti et al., 2024; Jacot, 2022).

Matrix completion, a task with practical applications in areas like recommender systems and image
restoration, provides a key framework for investigating these implicit biases, particularly the tendency
towards low-rank solutions. While matrix completion can be viewed as a special case of the broader
matrix sensing framework (Jin et al., 2023; Soltanolkotabi et al., 2023; Ma & Fattahi, 2023; Stoger &
Soltanolkotabi, 2021; Li et al., 2018), which offers general tools for understanding recovery from
limited data, specific challenges can emerge when applying these general theories directly. Notably,
common theoretical assumptions prevalent in matrix sensing analyses, such as the Restricted Isometry
Property (RIP) (Candes & Tao, 2005), often prove too stringent or may not adequately capture the
nuances of many practical matrix completion tasks. For instance, even when completing the 2 x 2
matrix M (introduced in Figure 1a), which can successfully converge to a low-rank solution, the
RIP condition cannot be satisfied. Therefore, researchers have investigated implicit bias phenomena
specifically within matrix completion, without assuming the RIP condition (Menon, 2024; Bai et al.,
2024; Razin & Cohen, 2020; Ma & Fattahi, 2024; Kim & Chung, 2023).

The goal of the matrix completion task is to recover a low-rank ground truth matrix W* using only a
subset of its entries. A common strategy for matrix completion involves matrix factorization, which
can also be viewed as linear neural networks. These networks reparameterize the target matrix X as
a product of factors, X = Wy Wp,_; --- W1, and train these factors W; by minimizing the mean
squared error on the observed entries via gradient descent. The observed entries constitute the training
set, while the unobserved entries act as the test set.
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(a) Bipartite graph of Mp & Mc (b) Effective rank trained w/ Mp (c) Effective rank trained w/ Mc

Figure 1: (a) Examples of bipartite graphs corresponding to observation patterns of Mp (discon-
nected) and M¢ (connected). (b-¢) Training results showing effective rank (c¢f. Roy & Vetterli
(2007)) for completing rank-1 matrices Mp and M, respectively. The rank-1 ground truth matrices
were generated via uv |, where u, v € R? with entries sampled i.i.d. from a standard normal dis-
tribution. We initialized each layer’s entries by sampling from a Gaussian distribution with mean
zero and standard deviation «, chosen to ensure the initial scale of the product matrix W7,.1(0) is
approximately invariant to depth L. Each result shows an average of 300 independent random trials.

The problem of predicting W* is underdetermined, as infinitely many completions are possible.
Nevertheless, both theory and experiments indicate that training even a simple two-layer factorization
(L = 2) with gradient descent, without explicit rank constraints, typically yields a low-rank solution
under reasonable assumptions (Razin & Cohen, 2020; Bai et al., 2024; Ma & Fattahi, 2024).

A recent work by Bai et al. (2024) formalizes this phenomenon using the concept of data connectivity.
They demonstrate that if the observed entries form a connected bipartite graph (meaning any observed
entry can be reached from any other via shared rows or columns), a depth-2 factorization initialized
at an infinitesimally small scale converges to a low-rank solution. Conversely, the network may
converge to a higher-rank matrix if the observations are disconnected (see Definition 1 and Figure 1a).

However, the situation changes significantly for deeper (L > 3) networks, as empirically demonstrated
in Figure 1. Consider the task of completing the 2 x 2 matrix

_ (w7

My, ( ) %) (M
where only the diagonal entries are observed. This observation pattern forms a disconnected graph as
illustrated in Figure 1a. Consistent with the theory for disconnected graphs, L = 2 models fail to find
a low-rank solution, empirically converging to rank-2 regardless of initialization scale. In contrast,
deeper models (L > 3) with small initialization tend to converge to a rank-1 solution, as shown in
Figure 1b. This specific example highlights that the implicit low-rank bias appears to be strengthened
by depth, in a way that cannot be explained solely by the data connectivity framework developed for
L = 2 models. Furthermore, considering connected cases as well, Figure 1¢ demonstrates that this
strong low-rank bias is generally robust, tending to strengthen further as depth increases.

However, a theoretical understanding of this depth-induced bias remains elusive, largely due to the
complex, coupled dynamics during training. While Arora et al. (2019) offer insights, their claim that
the gap between two arbitrary singular values widens with depth is not fully formal. It stems largely
from their analysis assuming stabilized singular vectors, which limits its scope. Indeed, Menon
(2024) notes that even for a simple case like (1) with w}; = w3, = 1, proving that gradient descent
with a deep factorization converges to a low-rank solution is still an open problem. Motivated by this
gap in understanding, we theoretically analyze such settings, including the example (1).

Investigating the implicit low-rank bias in matrix completion can also shed light on the phenomenon
of “loss of plasticity”, a challenge widely observed in general neural network training (Shin et al.,
2024; Ash & Adams, 2020; Achille et al., 2018; Berariu et al., 2021). The term loss of plasticity
describes the tendency of neural networks, particularly after initial training, to lose their adaptability
to new information, hindering their generalization capabilities. A recent work by Kleinman et al.
(2024) empirically reports this phenomenon even in matrix completion. They observe that models
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trained with insufficient data often yield high-rank solutions. If these models then warm-start using
augmented data, they frequently struggle to achieve low-rank solutions. To provide a theoretical
explanation for why this loss of plasticity occurs, this paper elucidates the phenomenon.

To summarize, here are the main research questions that we address throughout the paper:

* What is the fundamental difference between deep (L > 3) and shallow (L = 2) factorizations
regarding their implicit low-rank bias, particularly for disconnected observations?

* Can we theoretically establish that deeper models (i.e., with larger L > 3) exhibit a stronger
implicit bias toward low-rank solutions?

* What is the underlying cause of the loss of plasticity phenomenon, and how does depth
interplay with it?

In Section 3.1, we begin by examining the depth-2 case to elucidate the key mechanism of connectivity.
We find that coupled training dynamics induces a low-rank bias, a phenomenon generalizable to
deeper networks. Section 3.2 further investigates this for all L > 2 using the diagonal observation
case. Our analysis reveals that, for deep models, this bias distinctively promotes low-rank solutions
compared to depth-2 models, strengthening with depth. Finally, Section 4 explores the loss of
plasticity phenomenon in matrix completion. We observe that deep models typically avoid this
phenomenon due to their low-rank bias. In contrast, we empirically observe and prove that depth-2
networks pre-trained with limited observations (yielding decoupled dynamics) and subsequently
trained with augmented observations (yielding coupled dynamics) fail to find a low-rank solution.
Please refer to Appendix A for further discussion of related work.

2 PROBLEM SETTING

We consider the problem of estimating a ground truth matrix W* € R?*? based on observations of
its entries {w;; }(; jyeq, where 2 C [d] x [d] is the set of observed indices. We model the estimate as
a linear network Wp.1 2 W, Wy_1 --- Wy, where W, € R4*di-1 with dy = d;, = d. We denote
the (7, j)-th entry of the matrix W7,.; as w;;. The factor matrices {W,}£ | are trained by minimizing
an objective function ¢, defined as the mean squared error ¢ over the observed entries in 2:

1 P2
P(Wh, ..., W;Q) £ U(W.1;Q) = 3 > (wij —wiy)” (@)
(4,5)€Q

We study the overparameterized regime where the intermediate dimensions satisfy d; > d for all
[ € [L — 1], imposing no explicit rank constraints on the product model W,.;. Consistent with prior
works, our analysis focuses on gradient flow dynamics (gradient descent with an infinitesimal step
size) for a given objective function ¢. The dynamics for each layer W, (t) evolve according to:

d 0
A
= —Wit) = ——=0(Wi(t), Wal(t),..., Wr(t);Q), lel|L],t>0. 3

W0 =~ G Wi, Wald), - Wi (1), 1€ [1] ©)
For depth-2 networks (L = 2), the product of factor matrices A € R?*% (representing W5) and
B € R%4%4 (representing W), we denote W4 g = AB. We denote the stable rank of a matrix by
srank(W) = |[W|[2/[|WJ3.
Bai et al. (2024) introduce the concept of data connectivity for an incomplete matrix M. Connectivity

is characterized by its set of observed indices 2 C [d] x [d] and the corresponding observation matrix
P (where P;; = 11if (¢,7) € ©, and 0 otherwise). The formal definition is as follows:

Definition 1 (Connectivity from Bai et al. (2024)). An incomplete matrix M is connected if the bi-
PT
P 0 ]

Wi(t)

partite graph Gng, constructed from its observation matrix P using the adjacency matrix {

is connected after removing isolated vertices. Otherwise, M is disconnected.

3 IMPLICIT BIAS OF DEPTH INDUCED BY COUPLED TRAINING DYNAMICS

In this section, we extend the connectivity argument of Bai et al. (2024) to general depth factorizations.
We first demonstrate how the coupling of training dynamics serves as the key mechanism explaining
data connectivity’s role in depth-2 models, through the completion of two previously introduced
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2 x 2 matrices, Mp and M, as illustrative examples. Building on the insights derived from these
depth-2 model analyses, we hypothesize that deep networks exhibit an intrinsic low-rank bias because
they maintain a high degree of coupled training dynamics, irrespective of observation patterns. This
hypothesis is further corroborated by the diagonal observation results presented in Section 3.2.

3.1 WARM-UP: COUPLED DYNAMICS VS. DECOUPLED DYNAMICS IN DEPTH-2 NETWORKS

We focus on the simple 2 x 2 matrix completion of Mp and M, using depth-2 models W4, B(t) =
A(t)B(t). For brevity, let a;(t) € R% be the transpose of the i-th row of A(t), and let b;(¢) € R%
be the j-th column of B(t). Our aim is to see how training dynamics affect the alignment of the rows
of A(t) or the columns of B(t), as such alignment leads to a rank-1 product matrix W g(t).

Decoupled Dynamics. Inthe My, case (disconnected observations w7, wss), the gradient flow
using the objective defined in (2), results in independent dynamics for the pairs (a1, by) and (as, bs):
Note that while the dynamics couple a4 (t) with by (¢) and a2 (t) with bs(t) within each pair, the two
pairs (a1, b1) and (ag, by) are decoupled. This decoupling means the overall system’s dynamics
separate into two independent systems. Consequently, there is no compelling reason to align vectors
from different pairs, typically leading to high-rank solutions with generic initializations (Figure 1b).
Indeed, we can obtain closed-form solutions solely dependent on initialization (see Proposition 4.1).
For instance, with A(0) = B(0) = al, we have W4 g(oc0) = diag(wi;, w3,), a rank-2 solution.

Coupled Dynamics. In contrast, for the M case (connected observations w7, w3, ), the gradient
flow on the objective (2) yields coupled dynamics that do not decompose into independent pairs:

dar(t) = (wi; — a1 () "b1(t)) ba(t), da(t) = (wh; — aa(t)  bi(t)) bi(t),
bi(t) = (wiy —a(t) Tbi(t)) a1 (t) + (w3, — as(t) "bi(t)) as(t).

An important observation from (4) is that A(0) = 0 ensures rank-1 W4 p(t) due to persistent
alignment of a4 (t), az(t) and by (t). Although non-zero initialization leads to more complex behavior
arising from coupled training dynamics, the following theorem demonstrates that sufficiently small
initial norms in A(0) also result in the alignment of a4 () and a2 (t) with by (¢).

Theorem 3.1. For the product model W a g(t) = A(t)B(t) € R**2, we consider the gradient
Sflow dynamics (4), where the observations are wi,(# 0) and w3, (# 0). We assume convergence

“

to the zero-loss solution (i.e., w11(00) = wiy, wa1(00) = w3). Defining u* = % and the

orthogonal component a; | (o) = a;(c0) — (a;(c0) Tu*)u*, we have:

, o [1AO)IF ( /161(0)]3 + 4wy ® + w3, * + [[b1(0)]3
@iy (o0)[3

lai(oo)3 ~ 2wy

, fori=1,2.

The theorem shows that small initial norms for A(0) lead to the alignment of a4 (c0) and as (o) with
by (c0), implying a near rank-1 product matrix W4 g (oco). This suggests that for depth-2 networks,
coupled training dynamics (resulting from connected observations) facilitate the emergence of low-
rank solutions under such small initialization, in contrast to the decoupled dynamics of disconnected
observations, where no such bias exists regardless of initialization scale. This connection between
observation connectivity and the coupling of training dynamics in depth-2 models motivates our
investigation into how coupled dynamics manifest and induce low-rank bias in deeper networks,
irrespective of connectivity patterns, as explored in the subsequent sections.

Remark. Analyzing these dynamics is challenging because the time evolutions of a1, a2, and by
are mutually dependent. We note that Theorem 3.1 is not a direct corollary of Theorem 3 in Bai et al.
(2024). We explicitly characterize the degree of misalignment as a function of the initialization scale,
unlike their assumption of an infinitesimal initialization scale with additional conditions.
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3.2 CoUPLED DYNAMICS IN DEEP NETWORKS INDUCE IMPLICIT BIAS TOWARDS LOW RANK

Section 3.1 illustrated the importance of coupled training dynamics, driven by data connectivity,
for achieving low-rank solutions in simple two-layer factorizations (L = 2). Building on this
understanding, we now extend our analysis to deep networks (L > 3). For illustrative purposes,
consider a depth-3 network W.;. An arbitrary observed entry w;; from this matrix is given by:

Wij = ZZ; Zj;l(W?»)ik(WQ)kl(Wl)lj- ()

Crucially, because all elements of the intermediate matrix W5 contribute to the computation of w;;
regardless of (i, j), gradients of different observed entries will propagate through and update these
shared elements in W5. This inherently couples their training dynamics, a structural feature distinct
from the depth-2 case, where coupling is primarily determined by the observation pattern. Such
inherent coupling, in turn, implies a potential intrinsic bias towards low-rank solutions for deep
models. To formalize this notion, we introduce the following definition of coupled dynamics.

Definition 2 (Coupled/Decoupled Dynamics). Consider the matrix completion setup with the model
Wra(t) = Wi(t)--- Wi(t) € RX4. Let O(t) be the vector of all trainable parameters evolving
according to the gradient flow dynamics (defined in (3)). The gradient flow dynamics are decoupled

if there exists a partition of §) into non-empty, disjoint subsets Qy,...,Qx (K > 2) such that
Ule Qi = Q and the following condition holds for any (i, j) € Qi and (p,q) € Q with k # 1:
<v9wij (t), Vowpg(t)) =0, Vt>0. (6)

The gradient flow dynamics are coupled if they are not decoupled.

While Bai et al. (2024) introduce similar terminology in Definition A.5, their definition is restricted
to depth-2 networks. We extend this notion to networks of arbitrary depth. For depth-2 matrices, it is
straightforward to verify that coupled and decoupled dynamics typically correspond to connected
and disconnected graphs, respectively, based on Definitions 1 and 2. For depth > 3 matrices, any
initialization with an absolutely continuous distribution (e.g., Gaussian, uniform) yields gradient flow
dynamics that are coupled with probability one (see Proposition B.1 in Appendix B), irrespective of
the observation pattern. However, special cases exist where training dynamics are decoupled even for
L > 3. Refer to Appendix B for further discussion.

3.2.1 IMPLICIT BiAS OF DEPTH UNDER DIAGONAL OBSERVATIONS

To gain deeper theoretical insight into how coupled dynamics induce low-rank bias as depth increases,
we further investigate the diagonal observation setting. As highlighted in the 2 x 2 example (cf.
Figure 1b), this setting reveals a stark difference between shallow and deep networks despite being a
disconnected observation pattern. To investigate this further, we now turn to the general d x d case.
Specifically, we consider a d x d ground truth matrix W* with positive and identical diagonal
observations w* £ wi, = --- = w,; > 0 where Qécil;g 2 {(i,4) | i € [d]}. We factorize the model
with depth-L: W1 (t) = W (t)Wr_1(t)--- Wy (t) where W, € R¥*? forall [ € [L].

To investigate how dynamic coupling affects the low-rank bias, we consider a family of initializations
where, for parameters « > 0 and m > 1, each factor matrix W;(0) is initialized as follows:

a  a/m - a/m
a/m o - a/m dnd
Wi (0) = : , ) e R vilelL]. 7
oz/m a/m G

Remark. Random Gaussian initialization allows coupling but introduces Ld? degrees of freedom,
making it impossible to track individual training trajectories. For this reason, prior work often adopts
deterministic initializations such as «eI; (Gunasekar et al., 2017; Arora et al., 2019; Razin & Cohen,
2020). We follow this approach but adopt a more general deterministic family that is adequate for
establishing our theoretical claims. Our initialization interpolates between a]ld]ldT (asm — 1) and
aly (as m — 00), and the parameter m allows direct control over the initial numerical rank.

Using this initialization scheme with diagonal observations, the following proposition specifies how
parameters m and network depth L determine if training dynamics are coupled or decoupled:
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Figure 2: Singular values o; of W7,.1(c0) (numerically obtained from Theorem 3.3) against initial-
ization scale o, for the diagonal observation task. Solid lines represent the largest singular value
o1; dashed lines denote the other (identical) singular values o, for » > 2. For finite m, these results
illustrate that both greater depth L and a smaller initial scale o enhance the low-rank bias, in contrast
to the L = 2 case. Conversely, a very large m (e.g., m = 10'°), approximating an oI (rank-d)
initialization, leads to decoupled dynamics and a full-rank solution, independent of both L and .

Proposition 3.2. Consider a depth-L model, where each factor W;(0) € R¥* s initialized with (7)

(d)

trained with diagonal observations, §2 diag- Then, according to Definition 2, the following hold:

o For depth L = 2, the training dynamics are decoupled for all m > 1.
» Fordepth L > 3:

— The training dynamics are coupled if 1 < m < oo.
— The training dynamics are decoupled if m = oo (i.e., initialization with o1 y).

By Proposition D.1 in Appendix D, the loss decays exponentially to zero under the gradient flow
dynamics (3). Building on this zero-loss convergence, our objective is to determine the rank of
solutions found by gradient flow depending on the coupling of dynamics. The theorem below presents
an equation of each singular value of the converged matrix W7,.1(c0), for all L > 2.

Theorem 3.3. Consider the product matrix Wy .1, whose factor matrices W; € R4%4 gre initialized
according to (7). Under the gradient flow dynamics (3), we have {(Wp,.1(00); Qgﬁg) = 0 (Proposi-
tion D.1, Appendix D). Let 01 > --- > 04 > 0 denote the singular values of the converged matrix
W.1(00). Then, for all parameter values o > 0, m > 1, d > 2, and L > 2, the following holds:

-If L = 2 (decoupled dynamics): The singular values are explicitly given by
w*(m+d—1)? w*(m —1)2

— S A = - :2... .
o1 e d—1 oy T d—1 forr yeuyd

-IfL > 3and1 < m < oo (coupled dynamics): The singular values satisfy the implicit equations:

2—L

(0)°7 = (“52) T = Cama ®)
(w*d — (d — 1)0})% - (O’T)% =Com.Ld, forr=2,...,d, 9
where Com. 1.0 = (%)%L (m+d—1)>"L = (m—-1)*75).

-If L > 3 and m = oo (decoupled dynamics): The singular values converge to:

oi=w", fori=1,2,...d.

The proof of the theorem is provided in Appendix D.3. The theorem details the converged singular
values of W7, (00) for our initialization scheme (7). Crucially, it reveals distinct outcomes based
on the nature of the training dynamics. For decoupled dynamics—specifically, when L = 2 (for
sufficiently large m > 1), or when L > 3 and m = oco—all singular values approach w* and are
independent of the scale a. This implies convergence to a full-rank solution. In contrast, for coupled
dynamics (L > 3 with finite m), the outcome becomes a--dependent. To illustrate the implications of
these implicit equations, we present the following corollary.
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Corollary 34. Let1 <m < oo, d > 2, w* > 0, and L > 3 be fixed. Then, as o — 0, the stable
rank of the limit product matrix Wp,.1(00) converges to one; that is,

srank(WL:l (oo)) — 1.

The proof of the corollary is provided in Appendix D.4. Note that, according to Theorem 3.3, the

stable rank of the depth-2 network satisfies srank (Wa;1(00)) = ("”J“d_gzig'fl_)i)zi(d_l), which is
independent of the initialization scale «, and is approximately d when m is large. In contrast, for any
depth L > 3 with finite m, Corollary 3.4 implies that as & — 0, then srank(WLzl (oo)) — 1, so the

depth- L network converges to a nearly rank-one solution.

While the corollary characterizes the limiting rank behavior, fully understanding the dynamics
governed by the implicit equations requires a numerical study. To this end, we solve the implicit
equations (8) and (9), which determine the singular values o; for the coupled L > 3, finite m
case. Before proceeding, we note that both equations admit unique solutions, as established in
Proposition D.2 in Appendix D.3.4. Setting w* = 1 and d = 10, we examine how network depth
(L) and initialization parameters («, m) influence the singular value distribution. To ensure a fair
comparison across depths, we set the initialization scale so that the scale of the W ;.1 (0) is comparable
across depths; concretely, we match the scale of or across different values of L. The results in
Figure 2 confirm that these coupled dynamics in models with L > 3 and finite m indeed induce a
low-rank bias, contrasting with the full-rank outcomes of the decoupled cases. Moreover, this bias
becomes more pronounced as L increases, evidenced by a wider gap between o, and o, for r > 2.

Additional numerical evidences are provided in Figures 5-7 (Appendix C.1). Moreover, Figure 8
in Appendix C.1 shows that these numerical results agree with the outcomes of a gradient descent
with a sufficiently small learning rate. We further train practical neural networks to examine whether
increased depth indeed leads to a low-rank bias. The results shown in Figures 17-20 (SGD with
momentum), 21-24 (Adam), and 25-28 (RMSProp) in Appendix C.1.1 indicate that as depth increases
(e.g., ResNet-18 to 101 and VGG-11 to 19), the average effective rank decreases, highlighting the
emergence of low-rank bias in practical neural networks across these optimizers.

Remark. Our analysis of low-rank bias for a specific family of deterministic initializations resolves
the challenging open problem (1) highlighted in Section 14.1 of Menon (2024). Figure 9 in Ap-
pendix C.1 further demonstrates that our proposed deterministic initialization exhibits qualitative
trends similar to Gaussian initialization. We therefore argue that our results provide foundational
insights into low-rank bias applicable to more general random initializations.

4 UNDERSTANDING LOSS OF PLASTICITY IN DEPTH-2 MATRIX COMPLETION

Studying the inherent tendency towards low-rank solutions in matrix completion can offer further
insights into the loss of plasticity phenomenon. Kleinman et al. (2024) report the emergence of this
phenomenon in matrix completion: models pre-trained on limited observations struggle to adapt
when training continues on augmented observations. Notably, they observe that loss of plasticity is
further intensified with increasing network depth, a conclusion they reached by measuring a “relative
reconstruction loss”” when compared to models trained from scratch on the augmented dataset. In
their setup, training is run for a fixed number of iterations without waiting for convergence, whereas
in our experiments we terminate each training phase once the loss falls below a fixed threshold.

However, our findings (Figure 3) offer a more nuanced perspective. We observed that even when
pre-trained with a sparser set of observations, deeper models increasingly favor low-rank solutions
as their depth increases. This aligns with our argument (Section 3.2) that they inherently achieve
low-rank solutions even from limited, disconnected initial data. Consequently, for these deeper
models, further training on augmented data (the post-training stage) does not lead to noticeably higher
rank compared to training equivalent models from scratch on the augmented observations. Therefore,
while their performance might exhibit a relative degradation compared to models trained from scratch,
their absolute solution quality can still surpass that of shallower models. Based on our observations,
we conclude that the low-rank bias of deep models helps them mitigate the loss of plasticity, while
the phenomenon is more pronounced in depth-2 models. To theoretically understand the underlying
cause of this phenomenon itself, we henceforth focus our analysis on depth-2 models.
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Figure 3: Experiments use a 100 x 100 rank-5 ground-truth matrix. pre-training utilizes 2000
randomly sampled entries (Qpre; [Qpre| = 2000), while post-training adds 1000 more, forming 2,04t
(Qpre C Qpost |post| = 3000). The top row of panels displays effective rank, and the bottom row
shows reconstruction error, both measured at convergence. The leftmost panels depict training on
Qpre, and the rightmost on €., both starting from random Gaussian initialization. The middle
panels show warm-start training on §,st, initialized from converged pre-trained models with Q...

In Section 4.1, we study pre-training on diagonal-only observations, i.e., the disconnected index

set ngi -

For the 2 x 2 case, we set Qgé £ ang

We then consider post-training on 2 x 2 (Section 4.2) and d x d (Section 4.3) matrices.

and obtain the post-training set onst by adding a single

off-diagonal entry to ensure connectivity. Likewise, for the d x d case, ng.)e £ Qgﬂg, and QI(DOL

formed by adding additional (off-diagonal) observations; see Section 4.3 for details.

; is

4.1 PRE-TRAINING WITH DIAGONAL OBSERVATIONS

To clearly observe loss of plasticity in a setting consistent with Section 3.2, we pre-train using
only diagonal entries, yielding a disconnected pattern. We consider decoupled-to-coupled scenarios,
where additional data is introduced to induce coupled training dynamics. For depth-2 models, they
correspond to a disconnected-to-connected observation pattern. For the pre-training, closed-form
solutions that depend solely on the network’s initialization can be found in the following proposition:

(d)
diag"

(t) € R?¥4, For each observation

Proposition 4.1. Consider a ground truth matrix W* € R with diagonal observations §)

The model is factorized as W 4 g(t) = A(t)B(t), where A(t), B
(d)

(i,7) € Qg define the constants P; and @Q); based on the initial values:
d
P2 Zam Vi (0) and Qi 23" (ai(0)? + bii(0)?) .
k=1

Furthermore, for each diagonal observation, let the parameter v; be determined from the ground truth
P+
w} +\/w P;
Q((h;g) any entry apq(oo) of the converged
) and any entry by, (00) of the converged matrix B(oo) (for any p, q € [d]) are given by:
apq(00) = apq(0) cosh () — bgy(0) sinh (7) ,
bpq(00) = byq(0) cosh (7q) — agp(0) sinh (7).

entry wj; and the constants defined above, T; = %log ( = ) ) Then, assuming
(%

convergence to a zero-loss solution of the loss {(W 4 B;
matrix A (oo

Remark. The proposition covers arbitrary initializations with distinct w};, which goes beyond
Theorem 3.3 in the L = 2 setting. While the above analysis focuses on diagonal observation cases, it
can be generalized to any fully disconnected case (i.e., a single observation per row and column).
This yields distinct solutions for various types of observation sets, as detailed in Appendix E.1.
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We analyze the scenario where training resumes from a state obtained through pre-training. Let the
pre-training phase conclude at a sufficiently large timestep 77. For simplicity, we assume that the
solution W4 g(T4) has perfectly converged with respect to the pre-training objective, neglecting
any residual error due to the finite duration of this phase. Our subsequent analysis demonstrates that,
starting from W4 g (T7), the model W4 g(t) cannot converge to a low-rank solution.

4.2 POST-TRAINING: 2 BY 2 MATRIX EXAMPLE

We aim to analyze scenarios where training is resumed under coupled dynamics, building upon
solutions obtained from an initial decoupled pre-training phase (Proposition 4.1). To this end, we
first define the specific pre-training setup for an illustrative 2 x 2 case: We observe diagonal entries
(Qg?e), which are identical and positive, i.e., w* £ w}; = w3, > 0. To make loss of plasticity
particularly pronounced during the pre-training, we initialize the model with a5 (for o > 0), which
is the m = oo setting of our initialization scheme in (7). Then, from Proposition 4.1, it follows that:

A(T)) = B(T)) = <\/87 \/?7) . (10)

For the subsequent post-training phase, an additional off-diagonal observation is introduced to
establish connectivity. Without loss of generality, we assume wj, > 0 is revealed, while the
diagonal entries wj; and w3, from the pre-training phase remain observed. Thus, the updated set

of observed entries becomes ng)st ={(1,1),(1,2),(2,2)}. The ground-truth matrix is assumed
to be rank-1, ensuring the setting is non-trivial, and the task is thus to predict the remaining entry

w3, = w*? Jwi, > 0. The following theorem, however, reveals a contrasting outcome for this entry.

Theorem 4.2. Let A(Ty), B(T1) be the factor matrices obtained from the pre-training phase, as
specified by (10). Then, running gradient flow during the subsequent post-training phase (fort > 11 ),
starting from A(T1) and B(T), results in exponential decay of the loss:

1 .
g(WAyB(t);ng)st) < 511)?22672“’ (t=T)

Consequently, a lower bound for the stable rank of the converged matrix W 4 g (c0) is given by:

*

srank(Wa g(00)) > 1+ exp (_811)12> .
w
Furthermore, for all t > T4, w1 (t) of the evolving matrix W g g(t) satisfies w1 (t) < 0.

The theorem indicates that the loss decreases exponentially fast, particularly when starting from
large-norm solutions (at a rate governed by w*). Therefore, since the model converged to high-rank
solutions during pre-training, its singular values remain largely unchanged from this initial state,
as long as w7, has a small magnitude compared to w*. Furthermore, the unobserved entry wa1 (t)
converges to a negative value, which contradicts the positive w3, expected for the true rank-1 solution.

4.3 POST-TRAINING: D BY D MATRIX UNDER LAZY TRAINING REGIME

We attribute Theorem 4.2 primarily to the model’s “lazy training” (Chizat et al., 2019) as large-norm
initializations lead to faster loss decay, causing the model to converge to a nearby global minimum
that may not be a low-rank solution. Drawing on this concept, we extend the preceding analysis of
loss of plasticity to the more general case of d x d ground-truth matrices. The following theorem
states that when the model is initialized with a sufficiently small loss, resulting from warm-starting
that perfectly fits all previously observed data, the model exhibits lazy training. This, in turn, prevents
further learning that would reduce the rank and instead steers the model towards a nearby minimum.

Theorem 4.3. For factor matrices A, B € R%*?, suppose A and B are balanced att = 0, i.e.,
A(0)TA(0) = B(0)B(0)". Let f(A, B) be the function that maps (A, B) to the vector of model

.. . . d .
predictions for a given set of observed entries Q;O)St. We then define omax and omin as the maximum

and minimum singular values, respectively, of the Jacobian of the function f evaluated at the pre-

trained state (at t = Ty). If the loss at time T satisfies { (WA7B(T1); Qg?st) < %, this

max

results in exponential decay of the loss:

1
E(Wan(0:0) < ¢ (Wan(iofh) e (- 5o - 1))
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Consequently, the stable rank of A(t) (which is equal to that of B(t)) remains bounded below by

O min 2
AT F — W)

srank (A(t)) > Y
(4(0) <A(T1)2+43§

The theorem states that if a model has little remaining to learn (achieved via pre-training), it undergoes
lazy training regime. In this regime, the loss converges rapidly, while its stable rank remains largely
unchanged from the initial state. Thus, once a model has converged to a high-rank state, it struggles
to recover a low-rank structure even when new observations are introduced to form connectivity. The
proof of Theorem 4.3 is provided in Appendix E.3.

Example. As an illustrative example, consider a rank-1 ground-truth matrix W* € R%*4,

w* cw* . Cdflw*
Cilw* w* . cd72w* 1
W* = . . . . ) c=0|(-].
: : . : d
cl—d,w* c2—d,w* . w*

We pre-train only on the identical diagonal observations w* using Ql(ﬁ)e, with initialization A(0) =
B(0) = al, up to time T} (see Proposition 4.1 for the pre-training solution). We then reveal the full
upper-triangular set Qg?st ={(4,4) : 1 <i < j < d} to form connectivity and continue training. By

Theorem 4.3, for every ¢t > T7, the stable rank of A(t) is uniformly lower-bounded by Q(d):

srank (A(t)) > <ﬁjg+11>2'

5 CONCLUSION

We demonstrate that in matrix completion, deeper networks (L > 3) inherently exhibit a stronger
low-rank bias than shallow networks, primarily due to their coupled training dynamics, which operate
regardless of observation patterns. For tractable analysis, we consider gradient flow starting at a
family of deterministic initializations, showing in the diagonal observation setting that depth amplifies
the low-rank bias. Furthermore, our theoretical analysis of warm-starting scenarios details the loss of
plasticity phenomenon, revealing how large-norm, high-rank initial states can hinder convergence to
low-rank solutions. We believe the theoretical results from matrix completion provide broader insight
into how depth shapes implicit bias and explains the loss of plasticity in practical deep networks.
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DECLARATION OF LLLM USAGE

Large Language Models (LLM) were used solely to aid or polish writing. They did not generate
ideas, analyses, or conclusions. All LLM-assisted text was reviewed and edited by the authors.
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A FURTHER RELATED WORKS

A.1 IMPLICIT REGULARIZATION IN NEURAL NETWORKS

A substantial body of work investigates the implicit regularization of gradient-based training in
overparameterized models (Gunasekar et al., 2017; Woodworth et al., 2020; Yun et al., 2021; Ji &
Telgarsky, 2019a;b; Andriushchenko et al., 2023; Frei et al., 2023; Jung et al., 2025; Razin et al.,
2021; Hui et al., 2025). For linearly separable classification trained with (S)GD, Soudry et al. (2018)
show that gradient descent on the logistic loss converges in direction to the £5 max-margin classifier.
Building on this result, Nacson et al. (2019b) establish analogous directional convergence guarantees
for SGD, and Nacson et al. (2019a) extend the theory to a broader family of loss functions. For
homogeneous neural networks, gradient descent likewise exhibits directional convergence, and the
limit direction coincides with a KKT point of an appropriate margin-maximization problem (Ji &
Telgarsky, 2020; Lyu & Li, 2020).

For adaptive methods in linearly separable classification, Wang et al. (2022) analyze (S)GD with
momentum and deterministic Adam and show that these methods also converge in direction to the
max-margin solution. This analysis is further extended to homogeneous models by Wang et al. (2021).
More recently, Zhang et al. (2024) demonstrate that when the stability constant is negligible, Adam
exhibits a qualitatively different implicit bias and converges to the maximum ¢, margin rather than
the /5 max-margin direction selected by (S)GD. Along a related line, Cattaneo et al. (2024) use
backward error analysis to study RMSProp and Adam and show that their implicit regularization
depends sensitively on hyperparameters and the training stage. Closely related to our setting, Zhao
(2022) examine matrix completion and show that Adam, when combined with an explicit spectral
ratio penalty, induces a strong low-rank bias even in depth-1 linear networks. However, their analysis
focuses on deriving the flow of Adam and does not characterize the limiting solution.

Several works investigate how depth promotes low-rank solutions (Gissin et al., 2020; Huh et al.,
2021; Timor et al., 2023; Arora et al., 2019; Li et al., 2021; Jacot, 2022). Huh et al. (2021) provide
empirical evidence that deeper networks (both linear and nonlinear) tend to find solutions with lower
effective-rank embeddings. Complementing this, Timor et al. (2023) show theoretically that ReLU
networks trained with squared loss exhibit a bias toward low-rank solutions under the assumption
that gradient flow converges to the solution minimizing the ¢ norm.

Turning to deep linear networks, Gissin et al. (2020) and Li et al. (2021) study depth-induced bias as
a function of initialization scale. They report that, as depth increases, the dependence on initialization
can become weaker, and incremental learning can emerge. However, their analyses consider a matrix
factorization task, which they frame as matrix completion with full observations. Therefore, in their
setting, convergence to a low-rank solution is guaranteed if the model converges to zero-loss, which
does not hold in our matrix completion task settings.

While Arora et al. (2019) investigate the matrix completion task in deep linear networks, offering
insights from derived singular value dynamics, they cannot fully track these dynamics to prove
low-rank convergence as network depth increases. Their analysis is primarily restricted to the regime
where ¢ > t, after which singular vectors are assumed to have stabilized. For ¢ > ¢, they find
that one singular value can be expressed as a function of another, involving a constant term that
emerges from the state at ¢y, (which can be the dominant component). Based on this derivation, they
demonstrate that the gap between these singular values widens with increasing depth. In contrast, our
Theorem 3.3, by precisely tracking the converged values of singular values, rigorously establishes
their ultimate behavior and the resulting low-rank bias.

Closely related to our setting, Razin & Cohen (2020) study a depth L > 2 matrix completion problem
in a 2 X 2 example with three observations (one diagonal and two off diagonal entries). Their
Theorems 1 and 2 show that, as the loss converges, the effective rank converges to its infimum.
However, their analysis does not distinguish between the depth L = 2 and L > 3 regimes, and
therefore does not identify a depth dependent low-rank bias or an underlying mechanism that explains
it. In addition, their guarantees are independent of the initialization scale, so they do not capture the
empirically observed phenomenon that low-rank bias becomes stronger as the initialization scale
decreases. In contrast, our results explicitly separate the L = 2 and L > 3 cases, characterize the
limiting singular values, and show how depth and initialization scale jointly control the emergence of
low rank solutions in matrix completion.
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For depth-2 matrix completion tasks, Bai et al. (2024) introduce the connectivity argument. They
prove that if the observations construct a connected bipartite graph, the model can converge to a
low-rank solution when the initialization scale is infinitesimally small, subject to certain technical
assumptions. Conversely, if the observations form a disconnected graph, the model generally cannot
converge to a low-rank solution. However, a special case occurs if this disconnected graph is
composed of complete bipartite components: here, the model converges to the minimum nuclear
norm solution, again under specific technical assumptions. This characterization of implicit bias does
not readily generalize to matrices with deeper matrices, as depicted in Figure 1.

A.2 LOSS OF PLASTICITY

Loss of plasticity describes a widely observed phenomenon where a model’s ability to adapt to new
information diminishes over time (Shin et al., 2024; Ash & Adams, 2020; Nikishin et al., 2022;
Dohare et al., 2021; Achille et al., 2018; Lee et al., 2025; 2024; Lyle et al., 2025; Springer et al., 2025;
Kim et al., 2025). The phenomenon is frequently observed in scenarios with gradually changing
datasets, such as those encountered in reinforcement learning (Lyle et al., 2023; Nikishin et al., 2022;
Igl et al., 2020) or continual learning (Kumar et al., 2023; Chen et al., 2023; Dohare et al., 2021; Park
et al., 2025; Hernandez-Garcia et al., 2025; Rohani et al., 2025), where the model may struggle to
adapt to new environments.

Although loss of plasticity is typically studied in non-stationary settings, a similar effect arises in
stationary regimes where the dataset grows incrementally while the underlying distribution remains
fixed (Shin et al., 2024; Ash & Adams, 2020; Berariu et al., 2021). In such cases, a model is
first trained to convergence on an initial i.i.d. subset (e.g., a subset of CIFAR-10/100) and then
warm-started for continued training on an expanded sample from the same distribution (e.g., the
full CIFAR-10/100). Perhaps counterintuitively, these warm-started models often generalize worse,
yielding lower test accuracy than models trained from scratch on the combined dataset.

While this phenomenon is problematic in many real-world applications where new data is continuously
added, theoretical studies on it remain scarce. Shin et al. (2024), for instance, offer a theoretical
explanation using an artificial framework. Within this framework, they demonstrate that such behavior
occurs because warm-started models often complete training by memorizing data-dependent noise,
which is not useful for generalization. However, the analytical framework they employ is considered
artificial and limited in its ability to accurately characterize the optimization processes of typical deep
learning models.

Recently, Kleinman et al. (2024) observed loss of plasticity in deep linear networks, identifying
“critical learning periods”: an initial phase of effective learning followed by a significantly reduced
capacity to learn later (Achille et al., 2018; Vock & Meisel, 2025). They employ a matrix completion
framework to further observe this behavior. When observations from matrix completion tasks are
treated as training samples in neural network training, they observed that a model initially trained on
a sparse set of observations and subsequently retrained (i.e., warm-started) on an expanded dataset
typically exhibits a larger performance gap (in terms of reconstruction error) compared to a model
trained from scratch on the entire expanded dataset. However, their work does not offer theoretical
guarantees to account for these observations. Motivated by this, in Section 4, we attempt to explain
this behavior within the specific context of depth-2 matrix completion settings.
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B COUPLED AND DECOUPLED TRAINING DYNAMICS

This section introduces coupled and decoupled training dynamics (Definition 2) and illustrates them
with concrete examples. Before that, we present Proposition B.1, which shows that for deep models
(L > 3), generic (absolutely continuous) initialization yields coupled dynamics almost surely.

Lemma B.1. Define Wy, & W,Wy,_--- W, and Wy, & I; where b > a. For w;;(t) £
e;'—WLtl(t)ej,
Vw,wij(t) = (WL:l+1(t)Tei) (VVl71;1(15)6j)—r € R4,

Hence, for any (i,7) and (p, q),
(Vowi;(t), Vowpg(t)) = Y _ (e Ti(t)ey) (€] Silt)e,) ,

where Ty(t) 2 Wiy 1 (OWiraa(t)T and Si(t) £ Wi_1.1(t) TW,_1.1(t) are symmetric positive
semidefinite matrix.

Proof. Define al(i)(t) 2 Wias1(t) Te; and bl(j)(t) £ W,_1.1(t)e;. By
) = T —aDp b
Wi (t) =e; WL:l—&-l(t)VVl(t)“/l—lzl(t)eJ =q (t) Wi(t) i (t),

we have Vyy,w;; () = a\” ()b (t)T. Furthermore,

(Vowi;(t), Vowpy(t)) = Z (Vw,wij (t), Vi wyg (1)) g

= (al"@pl" ) a p" (1))

F

S CRORRON CRONE0)

which concludes the proof. O

Proposition B.1. Let L > 3 and initialize {W;(0)}E
continuous distribution. For any observation set 2 C [d]

(Vowi;(0), Vowy,(0)) #

with i.i.d. entries from any absolutely
[d

1
X ] where |Q| > 2, with probability 1,

holds for all distinct (i,j), (p,q) € . Consequently, no nontrivial partition Q0 = Uszl Q. with
K > 2 can satisfy the decoupling condition (6) att = 0. Hence, by Definition 2, the gradient flow
dynamics are coupled with probability I irrespective of the observation pattern.

Proof. By Lemma B.1, att = 0 we have

Mm

wij’pq(Wh EER) WL) <V9wzg> vewpq = e 11lep €; Sleq) R

=1

which is a polynomial in the entries of {W;}_ . For any (i, j) # (p, q), we now show that ©;; ,q is
not the zero polynomial.

If i = p, the | = L term reduces to e;'—SLeq. By choosing W71, so that Sy, has a nonzero (7, ¢)
entry, this term evaluates to a nonzero value; hence ;5 4 is not identically zero. By symmetry, the
same argument applies when j = q.
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If i # pand j # g, consider [ = 2. Setting all other layers to I;, choose Wj so that (e Tze,) # 0
and choose W) so that (6;526(1) # 0. Then ¢;; pq = (eiTTgep)(ejTSQeq) # 0. Consequently, in
all cases ¢;; ,,q is not identically zero.

Since ;. is a nonzero polynomial in the entries of {Wj}L ,, its zero set Zj,, =

Wi, ..., Wp5) @ ©iing(W1,...,Wr) = 0} is a proper algebraic set in RZ?* and hence has
{( Pij,pq proper alg
Lebesgue measure zero.

Let the initialization distribution of (W1 (0), ..., W (0)) be absolutely continuous with respect to
Lebesgue measure. Then

PI“[(Wl (O)7 ey WL(O)) S Zij’pq] = 0,
so for this fixed pair (i, ) # (p, q) we have @;; q (W1(0),..., W(0)) # 0 almost surely. There

are only finitely many distinct pairs in €2. A finite union of measure-zero sets still has measure zero;
hence, with probability one,

@ijpg 7 0 for all distinct (4, §), (p, q) € Q. (11)

By Definition 2, a decomposition {2 = Uszl Q. (K > 2) yields decoupled dynamics only if
<V9wij (t), Vowpe(t)) =0

forall (4, 5) € Qu, (p,q) €  with k # [ and for all ¢ > 0.

However, this already fails at ¢ = 0, since every cross-pair inner product is nonzero by (11). Thus, no

such partition exists. Consequently, for L > 3 and any observation set €2, the gradient flow dynamics
are coupled almost surely under any absolutely continuous initialization. O

B.1 CoUPLED DYNAMICS EXAMPLE
B.1.1 DEPTH-2 MODEL

For shallow (L = 2) matrices, coupled dynamics typically correspond to connected observations under
generic initialization, in accordance with Definitions 1 and 2 (the specific case of initialization, such
as zero matrices, which leads to decoupled dynamics, will be further detailed in a later subsection).
We illustrate this principle with an example where the observed entries form the first column of a
2 X 2 matrix.

Consider a 2 x 2 matrix, denoted M, which is to be completed using its first column as observations:
s |wip 7
mes [t 7.

The corresponding observation pattern matrix Pg is:

10
o[l
The associated adjacency matrix A for the bipartite graph is constructed as:
0 011
_ (022 PI|_|0 0 0 O
AC_{PC 020 |1 0 0 0Of”
1 0 0 0

which forms a connected graph as illustrated in Figure 1a. This setup leads to coupled training
dynamics under non-zero initialization. The coupling arises because parameters used to construct
wy1 and woyy overlap. Specifically, elements from the first column of matrix B (i.e., bi1, bo1) are
common to the computation of both wy; and ws;. This shared dependency links the dynamics. The
below illustration highlights these shared (teal) and distinct (red/blue) parameters involved in forming
the observed entries w1 and wa1:

wir wiz| _ |air aiz| [bi1 bi2
w21 W22 ao1  Gg2| |ba1  bao
w11 = a11b11 + a12b2;
wa1 = az1b11 + a2b2;

The shared use of b;; and b2 in reconstructing both observed entries is what couples their learning
dynamics.
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B.1.2 DEPTH> 3 MODEL

For deeper matrices (L > 3), training dynamics are typically coupled, irrespective of the observation
pattern (See Proposition B.1). Consider, for instance, predicting entries from the disconnected matrix
M where only diagonal elements are observed:

w} ?
Mp & |71 .
7w,
Even with such observations, for L > 3, coupling arises because parameters in intermediate layers
are involved in computing multiple observed entries. This is illustrated in the following depth-3

example (W3.; = W1 W, Ws3). Elements of the intermediate matrix W, (colored teal) contribute to
both the computation of wi; and was:

{“«'u w12} _ [(U«’l)n (701)12} {(W)u (’“/‘2)12} {(?U:})u (w3)12]

W21 W22 (w1)21 (w1)22 (’w2)21 ('lL‘2)22

Specifically, the observed entries are formed as:
Wi = ((U' Ji1(w2)11 + (wy )12(7172)21>(U?3)11
+ (('IL'1)11(’1L’2)12 + (Uf'1)12(u’2)22> (w3)a1,
W22 = ((w1)21(71’2)11 + (w1)22(’11«'2)21)(w3)12

+ ((w1)21(?1>2)12 + (w1)22(7172)22> (w3)a22.

The shared involvement of all elements from W5 (the teal matrix) in forming both w1 and w29 leads
to coupled dynamics, provided these elements are non-zero. (Conversely, if some elements were
to become zero, this could potentially lead to decoupled dynamics, as illustrated in the subsequent
subsection.)

B.2 DECOUPLED DYNAMICS EXAMPLE

B.2.1 DEPTH-2 MODEL

For depth-2 models, decoupled dynamics coincide with disconnected observation patterns. Indeed,
by Lemma B.1,

2
(Vowij, Vowpg) :Z e; Tlep e; Sleq)

= (e1 WoW,'e,) 64 + 0ip (e?WFWleq) )

where ., = 1 if a = b and 0 otherwise. Hence, if 7 ## p and j # p, the inner product is identically
zero for all weights, which explains the decoupling for the depth-2 matrix when the observations are
disconnected.

To illustrate the disconnected case, consider the 2 x 2 incomplete matrix example Mp, to be
completed from diagonal-only observations.

* ?

A |W !
MDz[;l w]
: 22

Then the observation matrix Pp can be constructed as:

1 0
PD:|:O 1:|7

and the adjacency matrix Ap can be constructed as:

_ 022 P5| _
Ap = [PD 022

(=N e ]
—_o oo
SO O
oo~k O
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which forms the disconnected graph as illustrated in Figure la. This setup inherently leads to
decoupled training dynamics. The decoupling can be visually understood by examining how distinct
sets of elements in the factor matrices A and B contribute to the observed entries wy; and was.
Specifically, as illustrated below, red-colored entries are exclusively involved in predicting w11, while
blue-colored entries are exclusively involved in predicting wso. These two sets of entries are disjoint,
confirming the decoupled nature of the dynamics:

Wil Wiz2| _ |011  A12 bir b1z
W1 W22 asy G| |ba1  bazl|’
w1 = a11b11 + a12b21,

Wa2 = 21012 + A22b22.

B.2.2 DEPTH> 3 MODEL

For deep (L > 3) matrices, decoupled training dynamics are observed in at least two key scenarios.
First, as detailed in Appendix D.2.3, an a1 initialization combined with diagonal-only observations
leads to decoupled dynamics for any depth-factorized matrix.

To illustrate this for a deeper case, we revisit the Mp observation pattern in a depth-3 context.
Lemma D.1 in Appendix D.2.3 states that with such an initialization and observing only diagonal
entries, all off-diagonal elements of the factor matrices W;(¢) remain zero throughout training.
Consequently, the factor matrices W7, Wy, W3 are diagonal. The product matrix W7p,.; (t) is thus

formed as:
R R A L RN | S

The observed entries are therefore computed as products of the respective diagonal elements:
wi1 = (’LU1)11(wz)n(uﬁs)u?
was = (w1)22(w2)22(ws3)22.

Since wy; depends only on the set of parameters {(W},)11}3_; and w2 depends only on the entirely
disjoint set of parameters {(W},)22};_,, their training dynamics are decoupled.

Second, the training dynamics are also decoupled when all factor matrices are initialized as d X d
zero matrices, 04 4. To see this, note that by the chain rule, we have

Qwpq(1)
A(wi(t))j

where we define the (7,
matrices satisfy Wy, (t)

= (WLOWr_1(t) - Wis1(1)),,; (Wi () Wi—a(t) - -- Wi (1)) (12)

Jjq>

4)-th entry of the factor matrix W;(t) £ (w;(t));;. If at some time ¢ all factor
= 0, then the right-hand side of (12) is the zero matrix, and thus

(m —0 forallp,q.
Therefore, 96 o\ Owpg(t)
ol ~ 2, ) B, =
which implies
(wi(#));; = —a(ffm -0

Since the initial condition is (w;(0));; = 0, uniqueness of ODE solutions guarantees that (w;(t));; =
0 for all ¢ > 0. As this holds for arbitrary [, 7, j, we conclude that W;(¢) = 0 for all [ and all ¢ > 0.

Finally, because Vg(4)wpq(t) = 0 for all p,q and ¢ > 0, the inner product condition
(Vomywij(t), Vaywpe(t)) =0
is satisfied for all (i, 7), (p, q) € Q and for all ¢ > 0. Hence, the dynamics are (trivially) decoupled.
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C ADDITIONAL EXPERIMENTS
This section provides additional experiments omitted from the main text.

C.1 IMPLICIT BIAS EXPERIMENTS

Connected vs Disconnected Observation Patterns. In Figure 1, we present experiments with
specific choices of M and Mp, which are 2 x 2 rank-1 ground-truth matrices illustrating connected
and disconnected examples, respectively. To generalize these observations, we extended our experi-
ments to a 3 X 3 rank-1 ground truth matrix, considering all possible connected and disconnected
observation patterns. After accounting for symmetries to eliminate duplicates, this results in a total of
23 unique observation patterns, which are categorized into 17 connected and 6 disconnected cases.

For each of these 23 observation patterns, the 3 x 3 rank-1 ground truth matrix was generated using
constituent vectors whose entries were sampled from a standard normal distribution. Each factor
matrix was then initialized by sampling its entries from a Gaussian distribution with a mean of zero
and a standard deviation of a.. We performed 10 independent trials for each pattern.

Figure 4 illustrates that, consistent with the findings in Figure 1, a significant discrepancy exists
between the behavior of depth-2 matrices and that of deeper matrices. This discrepancy becomes
notably more pronounced for the disconnected observation patterns.

Connected Observation Disconnected Observation

1.7
—e— Depth 2

Depth 3
—4— Depth 4

161

Effective Rank

le-l le3 les le7 lel le-3 les le-7
Initial Scale Initial Scale

Figure 4: The left panel shows the averaged effective rank of all possible connected patterns as a
function of the initial scale o”. The right panel displays the averaged effective rank of all possible
disconnected patterns.

Numerical Solutions of the Implicit Equations. We next provide a theoretical validation of our
main claim: coupled dynamics induce a low-rank bias, whereas decoupled dynamics do not. This
validation builds on Theorem 3.3, under various conditions, by numerically solving the equations
while varying the ground truth value w* and the dimension d. The results shown in Figure 7 (for
w* = 1,d = 3), Figure 5 (for w* = 10, d = 10), and Figure 6 (for w* = 0.1, d = 10) provide strong
supporting evidence for the claim.

Gradient Descent Validation. Furthermore, we ran gradient descent with a sufficiently small step
size to validate our derived equations. For the results shown in Figure 8, we replicated the setup of
Figure 7 (w* = 1,d = 3), excluding the o = 10~'° case due to prohibitive computation time. The
observed values closely match the theoretical predictions from Theorem 3.3, as illustrated in Figure 7.

Comparison with Gaussian Initialization. To validate that our initialization scheme (7) can
achieve comparable outcomes to Gaussian initialization while offering more control, we conducted
experiments on a 3 X 3 matrix completion task with diagonal observations (i.e., wj; = w3y = Wis =
1). While our scheme allows initial rank properties to be adjusted via the parameter m, Gaussian
initialization’s inherent randomness precludes such direct control. Therefore, for comparison with
Gaussian initialization, we ran 1000 independent seeds and sorted the converged solutions by their
rank. A comparison of the results in Figure 9 suggests that the behavioral trends may appear similar.
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Figure 5: Numerical conditions identical to those in Figure 2, except with ground truth value w* = 10
and dimension d = 10.
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Figure 6: Numerical conditions identical to those in Figure 2, except with ground truth value w* = 0.1
and dimension d = 10.
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Figure 7: Numerical conditions identical to those in Figure 2, except with ground truth value w* =1
and dimension d = 3.
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Figure 8: Gradient descent experiments conducted under conditions identical to those in Figure 7.

In the depth-2 case, both initializations tend to converge to high-rank solutions. Moreover, for both
initializations, a clear gap emerges between L = 2 and L = 3, with the depth-3 model exhibiting a
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Figure 9: (a) Effective rank for the initialization scheme in (7). The x-axis denotes the parameter
m, which controls the initial rank characteristics of the model, while the y-axis represents the corre-
sponding effective rank after convergence. (b) Effective rank distributions for Gaussian initialization.
The results are from 1000 independent trials, sorted by their converged effective rank. The x-axis
denotes the sorted trial index (from lowest to highest converged rank), and the y-axis represents the
corresponding effective rank after convergence.

stronger low-rank bias. For deeper networks (L > 3), the tendency to converge toward lower-rank
solutions becomes increasingly pronounced as depth increases.

Noisy Diagonal Experiments. We also experimented with observing noisy diagonal entries using
gradient descent. In particular, instead of fixing all ground truth diagonal entries to be equal, we
perturbed them as (W*),, = w* + ¢;, where ¢; ~ N (0,0?). We set (w* = 1), dimension (d = 5),
and used the initialization scheme (7) with m = 100. For each configuration, we independently
sampled 10 noise realizations and report the average behavior along with the standard deviations.

As shown in Figure 10, the qualitative trends are consistent with our theory. When L = 2, the
model converges to a high-rank solution largely independently of the initialization scale, whereas for
deeper networks the stable rank decreases as depth increases, indicating a stronger low-rank bias.
We also observe that larger noise levels lead to more pronounced low-rank behavior. This is natural,
since increasing the noise drives the ground truth further away from the identity. Moreover, the
dependence on the noise magnitude appears continuous: in the small noise regime (leftmost panel),
the change in stable rank is relatively mild, while in the larger noise regime (rightmost panel), the gap
becomes more substantial. These experiments suggest that our depth-induced low-rank phenomenon
is empirically robust to moderate perturbations of the diagonal entries.
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Figure 10: Limiting stable rank (y-axis) as a function of o’ (x-axis) under noisy diagonal observations.
Dashed lines indicate the noiseless baseline, and solid lines indicate the noisy case. The noise standard
deviation is set to ¢ = 0.01 (leftmost), 0 = 0.05 (middle), and o = 0.1 (rightmost). The depth
dependent low-rank bias persists and follows a trend similar to the noiseless setting.

Non-Equal Diagonal Experiments. We also experimented with observing non-equal diagonal
entries using gradient descent. In particular, instead of fixing all ground truth diagonal entries to be
equal, we assigned different values to each diagonal entry. We set the dimension to d = 5 and take
the diagonal entries of W* to be 0, 0.5, 1, 1.5, 2, respectively, and used the initialization scheme (7).
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As shown in Figure 11, the qualitative trends are consistent with our theory. When L = 2, the
model converges to a high rank solution independently of the initialization scale, whereas for deeper
networks the stable rank decreases as depth increases. For the case m = oo (rightmost plot), all
models converge to high rank solutions regardless of depth, which is consistent with Theorem 3.3.
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Figure 11: Limiting stable rank (y-axis) as a function of the initialization scale (x-axis) under non-
equal diagonal observations. The low-rank bias induced by coupled training dynamics persists and
closely matches the behavior in the equal-diagonal setting described in Theorem 3.3 and Figure 2.

Additional Optimizer Ablations. We also experimented with other optimizers, including adaptive
methods, such as stochastic gradient descent (SGD), gradient descent with momentum, Adam,
RMSProp, and Adagrad. In this experiment, we fix the dimension to d = 5, use Gaussian initialization
with diagonal observations with w* = 1, and run gradient based optimization with a sufficiently small
step size over 10 random seeds. For each optimizer, we use the default hyperparameters from the
PyTorch implementation, and for SGD we update the model using one observed entry per iteration.

The results in Figures 12-16 align well with our theory: for depth-2 (which induces decoupled
dynamics), the model converges to high-rank solutions across initialization scales, whereas for
depth L > 3 (which induces coupled dynamics) the solutions become increasingly low-rank as the
initialization scale decreases and as depth increases.
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Figure 12: Final stable rank as a function of depth. Each panel corresponds to a different initialization
scale. Results are obtained using SGD.
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Figure 13: Final stable rank as a function of depth. Each panel corresponds to a different initialization
scale. Results are obtained using GD with momentum.
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Figure 14: Final stable rank as a function of depth. Each panel corresponds to a different initialization
scale. Results are obtained using Adam.
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Figure 15: Final stable rank as a function of depth. Each panel corresponds to a different initialization
scale. Results are obtained using RMSProp.
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Figure 16: Final stable rank as a function of depth. Each panel corresponds to a different initialization
scale. Results are obtained using Adagrad.
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C.1.1 EXPERIMENTS IN NEURAL NETWORKS

To study how depth influences low rank bias in practice, we train ResNet and VGG models across
varying depths. While Huh et al. (2021) show that deeper networks yield lower rank embeddings,
their analysis does not address the weight matrices. Following Galanti et al. (2023), we measure
the effective rank of the weight matrices directly and find that deeper networks are biased toward
low-rank solutions.

To be more specific, we train ResNet—18, 34, 50, and 101, as well as VGG-11, 13, 16, and 19,
on CIFAR-10 and CIFAR-100 for 200 epochs with a batch size of 128. Training uses SGD with
momentum, Adam, and RMSProp. The initial learning rates are 0.1 for SGD with momentum, and
0.001 for Adam and RMSProp. We apply weight decay of 0.0005 for SGD with momentum and
le-05 for Adam and RMSProp. A cosine annealing scheduler is used together with standard data
augmentation (horizontal flipping and random cropping).

We measure the effective rank across all layers except the final one and average them to obtain a single
scalar. Following Galanti et al. (2023), each weight tensor Z € R¢n*cout Xk1Xk2 of 3 convolutional
layer, where ¢, and ¢, denote the numbers of input and output channels and (k1, k2) is the kernel
size, is reshaped into a matrix W & R¢n*(coutk1k2) to measure the layer’s effective rank. We report
averages over five runs with 95% confidence intervals.

The results in Figures 17 to 20 for SGD with momentum, Figures 21 to 24 for Adam, and Figures 25
to 28 for RMSProp consistently show that the average effective rank decreases as depth increases.
This trend is consistent with Theorem 3.3, which establishes the depth induced low-rank bias in
matrix completion settings.
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Figure 17: We train CIFAR-10 with ResNet models ranging from 18 to 101 layers using SGD with
momentum, averaging results over five independent runs with 95% confidence intervals. The leftmost
plot reports the training accuracy, the middle plot the test accuracy, and the rightmost plot the average
effective rank. As depth increases, the average effective rank decreases.
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Figure 18: The results for CIFAR-100 with ResNet-18 to 101, under the same conditions as in

Figure 17.
100 A 94 4
> 98 > 92 -
© i ©
z % £ 90
S S
< 94 A
< ; 88
© 92 9]
= = 86
90 A
84
88 - T T T T T T T T
0 50 100 150 200 0 50 10! 150 200
Epochs Epochs

Average Effective Rank

1404 __ yge11 /-—
1204 — VGG-13

— VGG-16 /—
100 4 —— VGG-19
80 -
60 -
40 A

0 50 100 150 200

Epochs

Figure 19: The results for CIFAR-10 with VGG-11 to 19, under the same conditions as in Figure 17.
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Figure 21: We train CIFAR-10 with ResNet models ranging from 18 to 101 layers using Adam,
averaging results over five independent runs with 95% confidence intervals. The leftmost plot reports
the training accuracy, the middle plot the test accuracy, and the rightmost plot the average effective
rank. As depth increases, the average effective rank decreases.
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Figure 22: The results for CIFAR-100 with ResNet-18 to 101, under the same conditions as in
Figure 21.
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Figure 23: The results for CIFAR-10 with VGG-11 to 19, under the same conditions as in Figure 21.
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Figure 24: The results for CIFAR-100 with VGG-11 to 19, under the same conditions as in Figure 21.

31



Under review as a conference paper at ICLR 2026

100 A

Train Accuracy
©o o
o w
. )

e}
[l
L

N\

50 100 150 200
Epochs

92 ~ —— ResNet-18

904 5 80+ —— ResNet-34

oy v —— ResNet-50

£ 88 £ 60 —— ResNet-101
g £
< 86 1 pr
i g
= 844 ©
3
82 <

0 50 100 150 200 0 50 100 150 200

Epochs Epochs

Figure 25: We train CIFAR-10 with ResNet models ranging from 18 to 101 layers using RMSProp,
averaging results over five independent runs with 95% confidence intervals. The leftmost plot reports
the training accuracy, the middle plot the test accuracy, and the rightmost plot the average effective
rank. As depth increases, the average effective rank decreases.
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Figure 26: The results for CIFAR-100 with ResNet-18 to 101, under the same conditions as in

Figure 25.
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Figure 28: The results for CIFAR-100 with VGG-11 to 19, under the same conditions as in Figure 25.
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Coupled vs. Decoupled Dynamics in NN. To examine whether coupled and decoupled training
dynamics intensify low-rank bias in practical neural networks, we conducted an additional experiment
with fully connected networks with ReLLU activations, under both Gaussian and identity-based
initializations, using the CIFAR-10 dataset. For the Gaussian initialization, all layers are initialized
with i.i.d. Gaussian weights. For the identity-based initialization, all hidden layers are initialized as
scaled identity matrices, while the first and last layers are initialized with Gaussian weights, since
these layers are not square.

We train networks of depth L € {2, 3,5} with a fixed hidden width of 512 for 100 epochs, using
SGD with momentum and a constant learning rate of 0.01. The results show that, even when both
initializations successfully achieve low training loss, the low-rank bias is substantially stronger under
Gaussian initialization compared to identity initialization, which indicates that low-rank bias is
intensified under coupled training dynamics in a way that is consistent with our theoretical findings.

Furthermore, as depth increases, the stable rank of the weight matrices decreases under Gaussian
initialization. In contrast, with identity-based initialization, deeper networks tend to converge to
higher rank solutions. A plausible explanation is that, as depth grows, a larger fraction of the layers
are initialized using identity (recall that the first and last layers are initialized under Gaussian), which
makes the overall dynamics closer to a decoupled regime and therefore less biased toward low-rank
solutions.
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Figure 29: Left: training loss (log scale). Right: average stable rank across all layers except the
last. Solid lines correspond to Gaussian initialization and dashed lines to identity-based initialization.
Gaussian initialization (corresponding to coupled training dynamics) converges to noticeably lower
rank than identity-based initialization (corresponding to more decoupled training dynamics).

C.2 LoSS OF PLASTICITY EXPERIMENTS

Section 4.2 discusses a scenario where pre-training employs diagonal entries, after which an off-
diagonal term (specifically, w7,) is introduced to restore connectivity, leading to coupled dynamics.
Theorem 4.2 establishes that, in this situation, the model indeed does not converge to a low-rank
solution. To empirically validate this theoretical finding, we conducted experiments using the family
of initializations (7) tailored to this specific scenario, with results detailed in Figures 30 and 31. These
experiments utilized a depth-2 model to reconstruct the ground-truth matrix, with an initialization
scale set to a = 1073, Notably, if the initialization scale « is set significantly lower, as the dynamics
are coupled, a cold-started model can converge to solutions exhibiting a more pronounced low-rank
structure.

For the case presented in Figure 30, where w* = 1,w], = 0.1, following Theorem 4.2, the
theoretical lower bound on the stable rank for a warm-started model initialized diagonally (m = oo)
is approximately 1.45, while the empirically observed stable rank is approximately 1.8. Even in
scenarios where substantial new information must be learned (e.g., by setting w7, to a large value),
loss of plasticity is empirically observed, primarily manifesting as high test error (i.e., a significant
gap between the target w3; and the converged wo;). While Theorem 4.2’s analysis via stable rank
does not fully explain an accompanying low-rank bias (a point consistent with Figure 31), the theorem
does predict that wo; converges to a negative value, which implies a large test loss.
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Furthermore, we performed additional experiments with different diagonal entry values to investigate
whether this argument extends to other scenarios (results shown in Figure 32), although specific
theoretical guarantees have not been established for these broader cases. We observe that even in
these varied settings, both the effective rank and the stable rank of a warm-started model substantially
exceed one, whereas cold-started models can converge to lower-rank solutions.
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Figure 30: Experimental results for a 2 x 2 rank-1 ground-truth matrix W* with wj; = w3, =1
and wi, = 0.5 (implying w3; = 2 for rank-1 structure). Models, initialized according to (7), are
first pre-trained on diagonal entries. After achieving zero-loss convergence in pre-training, the
off-diagonal element w7, is introduced, and models are subsequently trained on combined diagonal
and off-diagonal observations. The plots display: (Left and Middle) effective rank under different
settings; (Right) converged value of ws;(00). Key observations: (1) Warm-starting with a model that
converged to a high-rank solution during pre-training tends to maintain this high rank, even when
presented with the same subsequent observations as a cold-started model. (2) In the theoretically
analyzed m = oo case, we; (00) < 0 is observed, which correlates with the highest effective rank.
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Figure 31: Experimental conditions identical to those in Figure 30, except with ground truth value
wjy = 10. The model have to predict w3, as 0.1
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Figure 32: Experimental conditions identical to those in Figure 30, except with ground truth value
wi; = 1, w3, = 2, and wi, = 0.5. The model have to predict w3; as 4.
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D PROOF FOR SECTION 3

In this and the following sections, we prove the Propositions and Theorems presented in the main
text. We begin with the proof of Theorem 3.1.

D.1 PROOF FOR THEOREM 3.1

When convergence is guaranteed, we can define the reference vector u* £ ”’;%zgn € R%, which

is entirely determined by their initial values and the targets. Note that u* does not change with
time, since it is defined at ¢ = oo. We decompose a1 (t), as(t), and by (t) into two components: one
parallel to ©w* and one perpendicular to u*:

ai(t) =ay(t) + a1 (t), aat)=ag(t) +az(t), bi(t)=by(t)+b1 (1)
For any vector u € R% | the parallel component is defined as u = (u*Tu)u*, and the perpendicular
component as u| = u — .

We introduce notation to quantify the alignment of each vector with w*:

aa, () =uTar(t), aq,(t) =u"Tast), o, (t) =u" " bi(t). (13)
Additionally, we define notation to measure the magnitude of the perpendicular components:
Bay (t) = lar L (W13, Bas(t) = llaz (D3, B, (t) = b1 (B)]3- (14)

Then, using equation (4), time evolution of each component in equation (13) can be written as:
a(t)
= (wi; —a " ()b (1) u by (1)

é’l‘l (t)

=r1(t)aw, (t). (15)

g, (1) = ut’

Likewise, for o, (t), we derive:

g, (t) = u* T dy(t)
= (w}, — ag (t)by(t)) u* by (1)

=ro (t)

= ra(t)an, (). (16)

Finally, for ap, (), we have:
ab, (1) = u* by (t)

= (wi, — a] (b (D))u " ar(t) + (wh; — a3 ()b (H)u* " as(t)
= r1(t)aa, (t) + ra(t) e, (¢)- (17)

Also, for the perpendicular components, their time evolution can be derived as:
Bay (t) = 2a1 . (t) - @1 (¢)
d * 1 *
=2ay, (1) - P (al(t) - (U 0«1('5)) u )
=2a1, (&) (1 (0b1(8) = () (w " br (1)) w").
Noting that a; | (¢) is perpendicular to w*, the second term in the parenthesis is zero. Thus, we have

Ba, (t) = 2r1(t)ay 1 (t) Tby (t).

Likewise, for 3,4, (t) and B, (t), we can derive their time derivative as:

Bas (1) = 2r2(t)az L (1) "b1 1 (), Py (t) = Ba, () + Bay (2).
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Note that by the definition of u*, we have 3y, (00) = 0. Integrating the identity Bb, (t) = Ba, (t) +
Ba,(t) from ¢t = 0 to co gives:

ﬁﬂ/l (OO) + 5a2 (OO) = ﬂdl (0) + 5112 (0) - Bbl (0) :

£50>0

This equation shows that if the initial value (3 is small, it constrains the total perpendicular magnitude
at convergence. However, since we do not know u* in advance, one natural way to ensure small
perpendicular components is to initialize the entire norms of a1 (0), a2(0) to be sufficiently small.

To develop a more rigorous understanding, we analyze the parallel components. Under the assumption
of convergence, we have:

a1(00) "b1(00) = wiy,  az(00) by(00) = ws;.
Decomposing a1 (c0) and as(0o) leads to:
a;(c0) by (00) = (au_(oo) + u*Ta1(<>o)u*)T b1 (o)
= aal (Oo)abl (OO) = wfm (18)
CLQ(OO)Tbl(OO) = (GQL(OO) + U*TGQ(OO)U*)T b1 (OO)
= Qg, (00)ap, (00) = wi;. (19)

Using equations (15)—(17), and noting that

0, (1) = (02, (1) + 02, (1),

we can integrate both sides of the equation over time from 0 to oo to obtain:

ag, (00) + g, (00) = ag, (00) + ag, (0) + ag, (0) — a3, (0). (20)

A
=«

By solving equations (18), (19), and (20), we can obtain closed-form solutions of g, (00), atg, (00),
and ap, (00) as follows:

0¥ 2 2wk 2
a2, (00) = e . a2, (00) = fz . @
Vo3 + dwiy? + 4ws,® — ag Vo + dwiy® + 4w3,® — ag
2 * 2 * 2
\/O‘o + 4wl +4ws, " — ag
o, (00) = . (22)

2

Thus, we can upper bound the proportion of the perpendicular component of a;(c0) and as(00)
relative to its total magnitude as follows:

a2+4w*2+4w*2—a>
lass COF _ Balo) (o + awi* + a0i” -
lai(c0)? 03, (00) 4 Ba,(o0) ~ 2w}, 2 ’

a2+4w*2+4w*2_a>
oz, 0O)F _ Bayloo) (o + aui? w3 o |
laz(0)[> 03, (00) + Ba,(c0) 2w3,”

To further refine these bounds, we analyze the terms 3 and S(ay) = \/ a2 + dwi,® + 4wy, — ao.

By the definition of Sy, it is upper bounded by |la1(0)||? + ||a2(0)||> = ||A(0)||%. Also, by the
definition of «, we have:
—[6:1(0)[3 < a0 < [ A0)]%-
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Noting that the function f(z) = vz2 4+ C — x (where C > 0) is non-negative and monotonically
decreasing for all z € R, we can upper bound S () using the lower bound of «:

S(ao) < S(~[b1(0)]2)
= (=IIBL(0)]13)% + 4(w7, + w5, 2) — (—[BL(O)]3)
= Ib1(0) 14 + 4(wi,? + w3,%) + b1 0) 3.
lai, ()| ~ BoS(ao)

lai(co)[3 — 2wi,” >
final upper bound for the proportion of the perpendicular component of a; (co):

Substituting these bounds for 5 and S(«ay) into the inequality we obtain the

VA0 (VIO i+ 0s?) + 0 1)
< .

llai (00)
lai(c0)|l3 — 2wj,”

laz, ()|,

A similar bound applies to ACOIEE

laz(c0)[3 ~ 2w,
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D.2 PROOF FOR PROPOSITION 3.2

According to the definition of coupled/decoupled dynamics presented in Deﬁnition 2, for the family

of initializations defined in (7) along with the diagonal observations (Q dlag) we divide the cases to
ensure that all possible scenarios for this family of initializations are covered.

D.2.1 CASEFOR L =2

First, we consider the depth-2 (L = 2) case. Each diagonal observation, w;;(t), is the inner product
of the i-th row of A(t) and the i-th column of B(t). Then, when we take the gradient Vg(;)wy;(t),
where () represents the concatenation of A(t) and B(t), this gradient has non-zero components
only corresponding to the i-th row of A(¢) and the i-th column of B(¢); all other components are
zero for all ¢ > 0. Therefore, for any j # 4, the inner product (Vg(s)wii(t), Vgyw;;(t)) must be

zero. This means that there exists a partition of Qéﬁg into disjoint subsets €21, . .., {4, where each

Q; = {(7,7)}. Therefore, for any initialization, the training dynamics are decoupled.

D.2.2 CASEFORL >3AND1<m < o0

For the deeper matrix case (L > 3), we first note that each diagonal observation wj;(t) can be
expressed as:

d d
wi(t) = Y Y (Wi®))iin (W a(t)ig 1in s (Wi())iy e

ir—1=1 i1=1

Now consider the case 1 < m < oo, where every entry of each weight matrix W;(0) (for
Il =1,...,L) is initialized as a positive value. Since w;;(0) is a sum of products of these pos-
itive entries, its gradient with respect to the parameters 6(0), Vg(o)w;i(0), likewise consist of
components that are sums of positive products (see (23)). Therefore, it is asserted that each relevant
component of Vg gyw;;(0) is positive at initialization. Consequently, for any j # 4, since both
Voywii(0) and Vg()w;;(0) have all their corresponding components positive, their inner product
(Voywii(0), Vg w;;(0)) will be non-zero (specifically, positive). This non-zero inner product
signifies coupled dynamics.

D.2.3 CASEFOR L > 3 AND m = 00

Next, we examine the m = oo case, which corresponds to initializing each factor matrix W;(0) as
a scaled identity, i.e., W;(0) = aI. The following lemma states that under this initialization, and

() 5 all off-diagonal elements of each W (t)

for dynamics driven by diagonal observations (from £;,,

remain zero for all ¢ > 0.

Lemma D.1. For a set of L matrices W1 (t),..., W (t) € R¥*? let W1 (t) = W(t)--- Wy(t).
Following gradient flow dynamics in (3), if each factor matrix Wi (0) is initialized as a diagonal
matrix (e.g., Wi(0) = oyl for scalars o), then all off-diagonal elements of each matrix W(t)
remain zero for all t > 0.

()

Proof. For a given diagonal observation indices (2 if we consider the gradient flow dynamics for

diag’
an (i, j)-th entry of the factor matrix W (t) (£ (wl(f))ij), we have:
dwi(®)y 99
di A(wi(t));
Owpp (t)
a2 oy

p=1
Here, the derivative of a diagonal element wy,,(t) with respect to (w;(t)); is:

Owpp(t)

i)y (WL)Wr_1(t) - Wi (1)), (Wima(OWia(t) --- Wi(2)),,,  (23)
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where the first term is (p, 7)-th element of the product Wy, (t)Wp,_1(t) - - - Wj11(t), and the second
term is (j, p)-th element of the product W;_1(t)W;_o(t) - - - W1 (t). We want to show that if all

W, (t) are diagonal, then % = 0 for any off-diagonal element (w;(t)); (i.e., i # 7).

Assume at a given time ¢ that all factor matrices W;(t) are diagonal. Then, the product P(t) =

H,’;‘:l 1 Wi(t) is diagonal. Similarly, the product S(t) £ 2;11 W.(t) is diagonal. For %
to be non-zero (given all W (t) are diagonal), both (P(t)),; and (S(t)),, must be non-zero. This

requires p = ¢ and j = p, which implies ¢ = j.

However, we are considering an off-diagonal element (w;(t));;, for which ¢ # j. This means that if
all W,(t) are diagonal, then for any p:

Owpy, e
T ify
B0, =
Substituting this into the dynamic equation for (w;(t));;:
d
d(wi(t))i; . N
dt = _Z(wpp(t) W) - 0=0, ifi 7]
p=1

Initially, W;(0) are diagonal, so all off-diagonal elements (w;(t));; are zero for i # j. Since their
time derivatives are zero when they are zero (i.e., when the matrices are diagonal), these off-diagonal
elements remain zero for all ¢ > 0. O

With Lemma D. 1, the factor matrices W;(t) remain diagonal, so w;;(t) = (WL (¢))s - -+ (W1(t))s.
This structure leads to decoupled dynamics because each w;;(t) depends exclusively on the set of
parameters {(W},(t));; }£_,, while w;;(¢) (for j # i) depends on the distinct set {(Wj(¢));; ;.
Consequently, for any j # i, their respective gradients Vg w;;(t) and Vg w;;(t) are orthogonal,
meaning their inner product is zero:

(Voywii(t), Vo w;;(t)) = 0.
This orthogonality implies that the learning for each diagonal entry is independent, allowing a

conceptual partition of Q((jil)g into disjoint subsets 2; = {(i,7)}. Therefore, under this specific

diagonal initialization (the m = oo case), the training dynamics are decoupled.
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D.3 PROOF FOR THEOREM 3.3

Before presenting the proof of Theorem 3.3, we first restate the problem setting. The model is defined
as Wr.1(t) = Wr(t)Wp_1(t) - -- Wi (t), where each factor matrix W;(t) € R?*4 is subject to

@ — {(i,4)},, and follows the gradient flow described in (3). We also

diagonal observations ;" e
. . . A . . .
assume that all diagonal entries are equal, i.e., w* = wyj; = wj, - - - = w ,. To simplify notation, we
11 22 dd

use {(Wp,.1(t)) in place of ¢(Wp.1(t); Qé‘gg) when the context is clear. The explicit gradient flow

dynamics for each factor matrix is then given by:

-1

L
wit) = - [[ W)™ - VeWr. @) - [[wi)7, (24)

i=l+1 =1

where V(W1 (t)) = diag(r1(t),72(t),- -+ ,7a(t)). Here, the residual term is defined as r;(t) =
w;; (t) — w*. To begin, we first present the preliminary lemma required for the following result.

Lemma D.2. Let I,, denote the n x n identity matrix and J,, 21, ]lz denote the n X n matrix with
all entries equal to 1. Then the set

S ={al,, +bJ, | a,beR}

is closed under scalar multiplication, addition, and matrix multiplication. Also, any two matrices
A, B € § commute.
Proof. Let

A=al,+bJ, and B =cl,+dJ,,
with a, b, c,d € R, and let A € R be an arbitrary scalar.
Scalar Multiplication:

AA = Aal, +bJ,) = (Aa)I, + (Ab)J,.
Since Aa, Ab € R, it follows that A\A € S.
Addition:

A+ B = (al, +bJ,) + (cI, +dJ,) = (a+ c)I, + (b+ d)J,.
Sincea+c¢,b+d e R,wehave A+ B € S.
Matrix Multiplication:
AB = (alI,, + bJ,)(cI, + dJ,).
Using the distributive property and the facts that
I.J,=J,0,=J, and J?=nJ,,

we expand:

AB = acl, I, +adl,J, + bcJ, I, +bd J>
=acl, +adJ, +bcd, +bd(nJ,)
= acl, + (ad + bc + nbd)J,,.
Thus, AB is of the form o, + 8J,, with @ = ac and 8 = ad + bc + nbd, and hence AB € S.
Commutativity: By the same procedure as above,
AB = (al, + bJ,)(cI, + dJ,)
= acl, + (ad + be + nbd)J,
= cal,, + (cb + da + ndb)J,
= BA,

which completes the proof. O
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D.3.1 CASEFORL=2& L >3AND1<m < oo

We will first examine two main scenarios: the depth-2 (L = 2) case and deeper networks (L > 3)
where 1 < m < oo. The m = oo case will be considered separately in the later subsection, as its
initialization with oI; warrants distinct treatment.

We now proceed to prove the following auxiliary results, which are used in the proof of Lemma D.4.
Based on Lemmas D.3-D.5, we will show that all diagonal entries across all layers are identical, and
likewise, all off-diagonal entries across layers are also equal.

Lemma D.3. Suppose we have a ground truth matrix W* € R**? whose diagonal entries are
L d .

the same that we are observing, i.e., w* = w}; = wj, = -+ = w}, and Q((ii;g ={(3,9)}¢_,. We

factorize a solution matrix at time t as a product of L matrices,

Wira(t) = Wr(t)Wi_1(t)---Wi(t), Wi(t) € R™? foralll € [L].
Suppose that for all | € [L] and 0 < m < k, the following holds:

VVz(m)(t) =™ I +y"™ (Jy - L),

for some scalars (™) y(™) € R where we denote A¥)(t) as k-th derivative with respect to t of a
matrix A(t). Then, the k-th derivative of the product W1 (t) satisfies

k k k
wiy (1) = wis) (1) = -+ = wy (1),
Proof. Let us denote the m-th derivative of each layer matrix by

A(m) L vvl(m) (t)
Then, the k-th time derivative of the product W7,.1(t) is given by the Leibniz rule:

d* k
—Wi.i(t) = AkL) A1) .. A(k1)
g Ve ) > (klkL>

ki+-+kr=k

By the assumption, each A(™) lies in the span of {I, J,;}, and since this span is closed under matrix
multiplication and scalar multiplication (by Lemma D.2), each term in the sum lies in the same span.
Hence, the entire sum W (*)(¢) also lies in span{I,, J;}, which implies that all diagonal entries of
W (%) (t) are equal. O

Lemma D.4. Under the setting of Lemma D.3 where each factor matrix W (0) is initialized according
to (7), the following identities hold for all k € N U {0} under the gradient flow dynamics defined
in(3):

(W) = (WP) . ijeld b el

(WPO)  =(WPO) . i £ eld ke

1272

Proof. For the base case, when k& = 0, these identities immediately follow from our initialization
assumptions. Now, suppose the induction hypothesis holds for all orders m < k (with & > 1), which
means we have:

(Wi ), = (W) . igeld, b el
(25)
(VVz(lm)(O))iljl = (WZT)(O))M ;i1 # Jiyie # J2 € [d] I, 12 € [L)].

By applying the Leibniz rule to (24), the k-th derivative of W;(t) is given by:

L -1
whi=- ¥ (57 ) I wewr vaw e JIwoe. e
’ r=1

TP )
i1yeip N1 r=l41
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with Zlel iy = k — 1 where each 4; > 0. Given our induction assumption in equation (25) for all
m < k, let z("™)(0) denote the m-th derivative of the diagonal entries and 3" (0) the m-th derivative
of the off-diagonal entries at initialization. Note that at initialization, by Lemma D.3, under the
assumption that W™ (0) lies in the span of {I, J4} leads to w{]” (0) = w{3” (0) - - = w{7” (0).
Therefore, we know V¢(Wp,.1(0))#) = r(@)(0)I, for all 4; < k, where () (0) £ rﬁl)(O) ==
rc(;é) (0). Thus, at initialization, since equation (26) consists of terms involving ("™ (0) and y(™)(0)
for all m < k, we can rewrite the above expression at ¢ = 0 in terms of these derivatives as follows:

w0 = 3 (Z k-1 ) @) (0 H Wi (0

Iye--

i1, L LI\{1}
k—1 .
=- Y ( ,)M“)(O) I (ala+b.da),
inoip N UL relL\{1}

where constants a, and b, are composed of (") (0) and y(")(0). Then, by Lemma D.2, VVl(k) (0) can
be expressed in terms of only two values—one for the diagonal entries and one for the off-diagonal
entries:

W (0) = aly+ BJs, o, BER,
thus concluding the proof. O

Lemma D.5. Under the setting of Lemma D.4, the symmetries are preserved for all time t > 0:
(Wi, (1) = (W/lz(t))jj forall i,j € d], l1,l> € [L],
(Wi, (1));,5, = Wi, (1)), forall iy # ji,iz # j2 € [d], l1,12 € [L].

Proof. By applying Lemma F.6 to the result of Lemma D.4, we can conclude that the symmetries are
preserved for timesteps ¢ > 0. O

By the above lemmas, if the initialization follows the scheme in (7), then all diagonal entries of all
layers are identical, and all off-diagonal entries are also identical. Under this condition, the gradient
flow dynamics can be easily described by the following lemma.

Lemma D.6. Under the same conditions as in Lemma D.4, if the diagonal entries of each layer are
identical at timestep t (denoted by x(t)), and if the off-diagonal entries of each layer are identical at
timestep t (denoted by y(t)), then the time derivative of x(t) and y(t) are given as:

T — L-1 — 1) (x(t) — L—1
s =~ O @ DO+ (= Do) =y

T _ L=1 _ (g(4) — L—1
g0 = ~ O DUO T~ ) =)

Proof. Forl € [L] the gradient flow dynamics of W are written as:

L -1
=— [ wi®)" - VeWrat) - [[W:(r) ", 27)
i=l+1 1=1

where V(W1 (t)) = diag(r(t),--- ,r(t)). Since Wi(t) is comprised of z(¢) in diagonal entries
and y(t) in off-diagonal entries, the above dynamics can be rewritten as follows:
Wi(t) = —r(t) Wi(e)]" ™" - Lo - (W) ™"
= —r(t) W] (28)
If we rewrite W (t) = (x(t) — y(¢t))Iq + y(t)Jq, its eigenvalues are derived as:

/\1 = xz(t) + (d — 1)y(t) for the eigenvector 1,
= z(t) — y(¢) for any eigenvector orthogonal to 1 (multiplicity d — 1).
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Here, we denote \; 2 \;(W7r.1(t)), unless otherwise specified. Then, we can decompose W (t)
with projection matrix P = %J; and P, = I; — %J, as follows:

VVl(t) - >\113H + )\2PL.
Therefore, if we take (L — 1)-th power of W (t), we can derive:
Wi()]F ! = X 1P 4 AL P,
1 1 1
= (a(t) + (d = Dy(t)" - S+ (a(t) - y(t)1 (Id - de)

— (at) — yty)= 1+ EU 1>y<t>>L; — )~y

Recalling that I; has 1 on the diagonal and 0 off-diagonal, and J has 1 in every entry, the entries of
(W, ()11 are:

(w(t) + (d = Dy(£) "™ — (a(t) — y(£) "

(Wi 1), = (@) —y@)* ' + ¥
_ GO+ @y @ DEO -y O )
d 9 )
L—-1 —1
(wiie-),, = EOFEDO @Oy Ly
This concludes the proof by substituting the above equations into equation (28). O

Under the gradient flow dynamics of the diagonal entry z(t) and y(¢), we derive the dynamics of the
singular value of W ().

Lemma D.7. Under the conditions of Lemma D.4, the singular values of W (t), which is defined as
si(t) fori € [d], evolve according to:

5i(t) = —sE7 Y (t)r(t), i=1,2,...d.

Proof. By Lemma D.5, each factor matrix W;(t) is symmetric, having x(t) as its diagonal entries
and y(t) as its off-diagonal entries. The distinct eigenvalues of W (t) are A1 (t) = x(t) + (d — 1)y(t)
and A\ (t) = z(t) — y(t) (where A2(¢) has multiplicity d — 1). Their time derivatives are calculated

by:
i) = =) (),
Note that by setting m > 1, we have )\1(0) > A2(0) > 0. If L = 2, the solution of above equation is

equal to A;(t) = A;(0) exp ( fo ), which means it maintains the positiveness of A;(0) for
allt > 0. For L > 2, its general solution can be written as follows:

() = <>\1-(0)2L (L2 /Ot r(T)dT> o ,

due to its positivity at initialization. Then, \;(¢) stays strictly positive, since it never reaches zero or
changes sign. Therefore, due to the symmetry and positive definiteness of W (t), we further conclude
that \; (t) =S; (t) O]

By the above lemma, we can solve the ODE and find s,.(¢) as follows:

= {rOo ko) ke
' (sr0> F + (L =2) fyr(nyar) ™, L2
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Since s1(0) = z(0) + (d — 1)y(0) = o (1 + %=1) and 5,(0) = z(0) — y(0) = (1 — L) for all
i > 2, we can separate above equation as following:

o) a(l—&-%)exp(—fgr(T)dT), 1 L=2,
o (az—L(1+u)“+(L_z).fgr(T)dT)ﬁ, L>2,
wi=1""" e (=) LT s
A <a2—L(1 )2 Ly (L-2) fo )_L7 L>2.7 I

Then, we can establish a relationship between s () and s, (t), thereby identifying an invariant
property independent of time ¢:

e For L = 2: ) Jo1
S1 m—+d—
= 1
sr(t) m—1 " 6D

e For L > 2:

sf—L(t) - ngL(t) =a? T ((1 + dn_ll>2_L - (1 — ;)2_L> . (32)

Furthermore, we can derive a closed-form solution for the singular values by utilizing the convergence
guarantee. From equation (29), the diagonal entries of the solution matrix can be expressed as:
L L
(z(t) + (d=1Dy(t) " +(d—1) (x(t) — y(t))

wii(t) = ([‘/Vl(t)]L)“ = d , Vie [d]

Since w;;(t) converges to a fixed value w*, and noting that s(t) = x(¢t) + (d — 1)y(¢) and s,-(t) =

z(t) — y(t), we obtain the following convergence equation:

sF(oc) + (d = 1)sk(00) _ 01(66) + (d = 1oy () .
d d ’

where we define o;(t) £ sl(t) to denote the singular values of the product matrix, Wr.1(t).

Combining Equations (31) and (33), we derive a closed-form solution for the singular values of the

depth-2 matrix as ¢ — co:

o) = (

*_

w*(m+d—1)2 %
m2+d—1 ’

w*(m —1)%\ 2
UT(OO)_<7n2+d_1) 5 T:2,3,...,d,

For the case when L > 3, we cannot obtain an exact analytical solution for o,.(c0). Instead, we
derive implicit equations for both o1 (c0) and o,.(c0) that cannot be easily solved without specifying

numerical values:
2—L

2-L w*d —o1(00)\ T
g1 v (OO) - (d—;l[()) = LCa,m,L,d,

— 2—L
(w*d — (d — 1)0}(00))% —or " (0) =Cam,nd, forr=2.....d.,

where Co . 1.d4 = (%)Q_L ((m +d—12*"F—(m- 1)2_L). If we specify the values of o >
0,m > 1,d > 2,L > 3 and w* > 0 for ground-truth value, we can derive o1 (o0) and o, (c0) of

solution matrix of depth-L by substituting the values to above equations.

Remark. The L > 3 and m = oo case could arguably fall under the preceding analysis when
other parameters are held fixed, as m = oo implies that all singular values are identical. However,
a slight dependency on the specific value of « persists; for instance, tracking the overall result
becomes challenging if v approaches zero while m = oo. Therefore, we will restrict the scope of the
aforementioned analysis to finite m. Consequently, the L > 3 and m = oo case will be analyzed
separately in the following subsection.
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D.3.2 CASEFOR L > 3 AND M = o0

We now examine the m = oo case, which corresponds to an initialization scheme like W;(0) = aly.
By Lemma D.1, the factor matrices W;(t) remain diagonal for all ¢ > 0, and thus the diagonal
entries of the product matrix are w;; (t) = (WL (¢)) s (Wr_1(t))ii - - - (W1(t))s;. Assuming zero-loss
convergence is achieved for any initial choice of « > 0, it follows that w;;(c0) = w™* for all 4, and
consequently, the overall matrix Wr.;(0o) is diagonal with entries w*.

Furthermore, let us consider the implications of Lemmas D.3-D.5. These lemmas hold under a
condition y(t) = 0, thereby belonging to span{I,, J4}, this leads to the result that each diagonal
element of the factor matrices at convergence is (W;(c0))s; = (w*)Y/L foralli € [d] and | € [L].
This means each layer W;(co) becomes (w*)/~I,, and thus has identical singular values equal to
(w*)l/ L (assuming w* > 0). This, in turn, leads to the final claim that for the overall product matrix
W,.1(00), its singular values o;(00) satisty o;(c0) = w* for all ¢ € [d].

D.3.3 Loss CONVERGENCE

We further establish loss convergence in the following proposition.

Proposition D.1. Let W* € R4*? be a ground-truth matrix with identical positive diagonal entries

w* £ wj = =wh, >0, and let Qgﬁg = {(i,4)}%_,. Consider gradient flow (3) on the product

W .1, where each factor W; € R4*? is initialized as in (7). Define K from the initialization scale o
by

K_{L(wii(()))“f, 0 < wy(0) < w*,

L) T, wig(0) > w,
where () @ (m 1)2;(617 D(m—1)")

Then, for all t > 0, the loss decays exponentially:
f(WLzl(t)) S E(WL:] (0))6_2Kt.

Proof. Recall that the eigenvalues are given by A1 (¢) = x(t) + (d — 1)y(t) and A2 (t) = z(t) — y(t).
From Lemma D.6, their time derivatives are

Ai(t) = =AM () (),

Aa(t) = =M () (h).
The diagonal entries w; () of W.1(¢) can be written as
(x(t) + (d = Dy()" + (d — 1)(x(t) —y(t)"

d
AL(t) + (d=1)AJ(2)
7 .

Define the residual () = w;; (t) — w*, where w* is a constant. Differentiating r(¢) and substituting
the expressions for A1 (¢) and A\a(¢) yields

wy;(t) =

1) = 5 (ilt) = w)
= Do + L 0
= B (A8 orm) + 20 (5 o)
_ L oo L(d—1) o1 9
- - ( Ly + B2y <t>>r<t>. en
LK (t)
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Thus 7(t) = — K (¢)r(t), whose solution is

r(t) = (0) exp (— /0 t K(T)dr) . (35)

2L—2

Consequently, 7(t) preserves the sign of r(0) for all ¢ > 0. Also, by noting that the map u > u™ =
is convex on R, we can lower-bound K (¢) using Jensen’s inequality for any fixed ¢:

K) =L (A?”Q(t) +d- mé“w)
L [GR) T @-n (b))
B d
- 1 (A0 D)
= L(wis(1) 7. (36)
Case 1 (r(0) < 0). Assume
w*dm®
0<al<

(m+d—1DE+(d-1)(m—1)~L’

which implies 7(0) < 0 and hence 7(t) < 0 by (35). For any 7 € {1, 2} with A;(0) > 0 we then have
Xi(t) = =AMt = 0,

s0 A;(t) > A;(0) > 0 for all ¢ > 0, which in turn implies w;;(¢) > w;;(0). Therefore, we can lower

bound (36) with w;;(0):

2L—2

K(t) > L(w;(0)) "~

Case 2 (r(0) > 0). If
L w*dm®
T (mAd-1DE+(d-1)(m—-1E
then 7(0) > 0 hence r(t) > 0 for all ¢ > 0 by (35). Therefore, w;;(t) > w*, then we lower bound
(36)

«

—2

K(t) > L(w*) T

Moreover, since A;(t) = —A71(t)r(t) < 0, each \;(t) is non-increasing. If it reaches 0 at some
time, then \;(¢) = O there, so it cannot cross into the negative region; thus \;(¢) > 0 for all ¢ > 0.
This justifies the use of (36).

By upper-bounding the absolute value of (35), we derive:
[r@)] < |r(0)] exp(=K1),

where K = L(w“-(O))% inCase 1 and K = L(w*)¥ in Case 2. Since {(Wy.1(t)) = 4r2(t),
we obtain the exponential decay of the loss:

(W (t) < €(Wr.a(0)) exp(—2K1).
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D.3.4 UNIQUENESS OF THE LIMITING SINGULAR VALUES

Proposition D.2. Under the setting of Theorem 3.3,

filo) = o T — <wdd_—10)

strictly decreases in o € (0, w*d). Also,

2—L 2—L

falo)=(w*d—(d—1)o) T —0c T

w*d

d—1

strictly increases in o € (0, ) Therefore, Equations (8) and (9) admit a unique solution (o1, ;).

Proof. By initialization (7), each W;(0) is full rank. The gradient flow (3) is analytic, so det(W(t))
cannot cross zero in finite time. Thus every W (t) remains full rank for all ¢ > 0, and all singular
values of the product matrix stay strictly positive. In particular, the limiting singular values satisfy

o1 >0, o,>0.

Furthermore, (33) in Appendix D.3 shows that the limiting singular values satisfy
o1+ (d—1)o, = w*d. (37)
Combining positivity with (37) gives the bounds
0<op=w'd—(d—1)o, <w'd,

and
w*d — o - w*d
d—1 d—1"
These inequalities identify the domains on which we analyze the scalar functions associated with (8)
and (9).

. . A 9
For notational convenience, we set a = % < 0.

0<o,.=

Uniqueness of ;. For (8), define

w*d — o

11 ) , o€ (0,wd).

fie)=ot (

Differentiating, we obtain

a—1
fN a1 a w'd —o
filo) =ao +d—1<d—1 ) .

" a—1
Since @ < 0 and both ¢! and (wddj”) are positive on (0, w*d), every term in fi(o) is

negative, so
fi(o) <0, forallo € (0,w*d).

At the endpoints we have

lim fi(0) = +o0, lim  fi(0) = —oo.

o—0t o—(w*d)~

Thus f; is continuous, strictly decreasing on (0, w*d), and satisfies range(f;) = R. Consequently,
for any constant Cl, ,, 1.4 € R there exists a unique oq € (0, w*d) such that

fl (Ul) = Ooz,m,L,d-
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Uniqueness of o,.. For (9), define

o) = (w'd— (d— 1)) — 0%, oc (0, ;”1) .

Differentiating gives

fi(o) = —a(d — 1)(w*d — (d — 1))t — ac® L.

Since —a > 0 and both (w*d — (d — 1)0)® ! and o®~ ! are positive on (0, gj[f), we obtain

f5(0) >0, forallo e (0, ;)dl) .

The endpoint limits are

lim fy(0) = —o0, lim  fa(0) = +o0.
o—0+ o—(vrd)-

Therefore f5 is continuous, strictly increasing on (O, %) and satisfies range(fo) = R.

Hence, for any constant Cy, ,,, 1.4 € R there exists a unique o, € (O, g’—:‘f) such that
f2 (Ur) = Ca,m,L7d~

Combining the uniqueness of o and o, with the linear relation (37) shows that the limiting singular
values solving (8) and (9) are uniquely determined by a,m, L,d, and w*. This completes the
proof. O
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D.4 PROOF FOR COROLLARY 3.4

Corollary 34. Let1 < m < oo, d > 2, w* > 0, and L > 3 be fixed. Then, as o — 0, the stable
rank of the limit product matrix Wp,.1(c0) converges to one; that is,

srank(WLzl(oo)) — 1.

Proof. Fixm >1,d > 2, w* > 0,and L > 3. Let
a2-L

— < 0.
aL<

First, we analyze the behavior of
_ (> =L _1\2—-L _ 1\2-L
Camra= ((m+d-1) (m—1)*7")

as a — 0. Since L > 3, we have 2 — L < 0. The map = ~ 22~ is strictly decreasing on (0, c0),
and becausem +d—1>m —1 >0,

(m+d—-1)>*—(m-1)>*t<o.

2-L
Moreover, (£ ) — 400 as a — 0. Hence

o
m
Cam,L,d — —00 asa — 0.
Next, consider the function from (9)
w*d

falo) = (w'd— (d—1)0) — 0%, o€ (o, dl) |

By Proposition D.2, we know that f> is a continuous, strictly increasing bijection from (0, yjf)
onto R, and for each C' € R there is a unique o(C) such that f>(o(C)) = C.
Now we apply this to Cy, ;. 1,4 Since Co 1,1, = —00 as a — 0 and f> is strictly increasing with
lim f3(0) = —oo, it follows that
oc—0t
or(a) >0 asa— 0.
Using the linear constraint (33), we then obtain

o1(a) =w*d— (d—1)o.(a) = w*d asa — 0.

The stable rank of W1 (00) is

k(W (o)) — L@ (A= Dor(@)? o)
S k(WL_l( )) o1 ()2 1+ (d-1) (Ul(a)> .
Since o, (a) — 0 and o1 () — w*d > 0, we have

or(a)

o1 () '

and therefore
srank(WLzl(oo)) —1 asa—0.
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D.5 GENERALIZATION TO BLOCK-DIAGONAL OBSERVATIONS

In this section, we extend Theorem 3.3 to a block-diagonal observation model. Specifically, we
consider a ground truth matrix W* € R4*¢ with observation set

Q= |J {G)ije{lm—Dk+1,...,mk}}.

me[n]

Here k,n € N with d = nk, where k is the block size and n is the number of blocks. By construction,

every diagonal block is fully observed. We assume that all observed entries share the same value:
w* 2 W;;;jl =W, ,, forany (i1,71), (i2, j2) € Q.

Note that this setting recovers the diagonal observation case in Theorem 3.3 when k£ = 1, which

shows that this framework strictly generalizes the diagonal case. Under this setup, we now introduce

the following theorem.

Theorem D.3. Let k,n € N be the block size and number of blocks, respectively, such that d = nk.
Consider the product matrix W1 whose factor matrices W; € R4 qre initialized according to (7).
We define the observation set ) as the block-diagonal entries:

Q= J {@aolpae{d-Dk+1,... 0k}
be(n]

Assume that the training loss converges to zero, i.e., {(Wp.1(00); Q) = 0, under the gradient flow
dynamics (3). Let 01 > 09 > --- > 04 > 0 denote the sorted singular values of the converged
matrix Wr,.1(00). We partition the indices into three groups: the principal index 1, the secondary
indices i € {2,...,n}, and the remaining indices j € {n+ 1,...,d}. Then, for any initialization
parameters o« > 0, m > 1 and depth L > 2, the singular values are determined as follows:

- If L = 2: The singular values are given in closed form by

wrd(m +d —1)?

N mtd—12+(m—1)(m—1)2
o w*d(m — 1)?

7Tt d-1)Z+ (n—)(m - 12’

O'j =0.

-If L > 3and 1 < m < oo: The singular values satisfy the following implicit equations:

x 2—L
2—L — L
o w*d — o B »
— Ya,m,L,

! n—1 ’ ’

2-1 2-L
(w'd—(n—1)o;) * —o0; " =Cam,rLd,
O'j =0.
where Coym 1.4 = (Q)Q_L ((m +d—1)"""—(m- 1)2_L>-

m
-If L > 3 and m = oo: The singular values converges to:

leai:kw*, O'j:().

Here the singular values o; for j € {n+ 1,...,d} always converge to zero. Intuitively, even if
the dynamics are decoupled at the level of the full matrix in the sense of Definition 2, they become
coupled once we apply the same coupling notion to each diagonal block separately, so the training
dynamics are coupled within each block. In the coupled regime of Theorem D.3, the product matrix
W,.1(c0) converges to w™ - ]ld]l}. In the decoupled regime, the limiting matrix has all diagonal
blocks converging to the same value w*, while all off diagonal blocks converge to a common value
that is different from w™.

Therefore, all rows belonging to the same block share identical entries, so the row space is spanned
by at most n distinct row patterns (one per block), and the overall rank is at most n, the number
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of blocks. This block diagonal example therefore further illustrates how coupled versus decoupled
dynamics control the strength of the low rank bias.

We solve the implicit equations derived from the theorem above. Since all o; are zero, it suffices to
compute o and o;. In Figure 33, we set w* = 1, d = 10, and choose the number of blocks as n = 5
(so k = 2). Consistent with the diagonal case, the decoupled dynamics lead to a high-rank solution,
whereas under coupled dynamics with sufficiently small initialization, the solution converges to
low-rank.

m=10 m =100 m=1000 m=1le+10

—_—

Singular Values
o N & o ®

01 000l 1e05 1e07 le-l0 0.1 0.001 le-05 le-07 1le-l0 0.1 0.001 le-05 le-07 le-10 0.1 0.001 le-05 le-07 le-10
at at at at

—— L=2,0, —— L=3,0, —— L=5,0, —— L=7,0,
-0~ L=2,0; -A- L=3,0 -%- L=5,0 -x- L=17,0

Figure 33: Singular values o; of Wy.;(0c0) (numerically obtained from Theorem D.3) against
initialization scale o” for the block-diagonal observation task. Solid lines represent the largest
singular value o; dashed lines denote the identical singular values o; for i € {2,...,n}. Note that
ojforje{n+1,... d}are all zero. For finite m, these results show that both greater depth L and
a smaller initial scale « strengthen the low-rank bias, in contrast to the L = 2 case. Conversely, when
m is extremely large (e.g., m = 10'?), approximating an I, rank d initialization, the dynamics
decouple and cannot achieve the minimal low-rank solution, regardless of L or a.

D.5.1 PROOF FOR THEOREM D.3.
For a, b, c € R, define

D(a,b) = (a — b)I}.C + bJy,
O(c) = cJy,

where Iy, is the k X k identity matrix and Jy, is the k x k all-ones matrix. Consider the d x d block
matrix

M(a,b,c) =1, ® D(a,b) + (J, — I,,) ® O(c)

D(a,b) O(c) --- O(c)
_ 0.(6) D(fl»b) 0@ € RiXd.
O() O(c) --- D(ab)

which is an n x n block matrix with k£ x k blocks. Define

M E{M{(a,b,c) | a,b,c € R}.

We now state a lemma that captures the key algebraic features of this family.

Lemma D.8. The set M is closed under scalar multiplication and addition, and it is also closed under
matrix multiplication. Moreover, for any (a1,b1, ¢1) and (ag, by, c2), the matrices M (a1, by, ¢1) and
M (ag, ba, c2) commute.

Proof. Note that by Lemma D.2, D(a, b) is closed under scalar multiplication, addition, and matrix
multiplication. Since J}, is also closed under these operations, the same holds for O(c).
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Scalar multiplication. For any scalar A € R,

AM (a,b,¢) = A1, ® D(a,b) + (J, — I,,) ® O(c)]
=1, ® (AD(a,b)) + (J, — I,,) ® (AO(c))
= I, ® D(Aa, \b) + (J, — I,) ® O(Xc)
= M (\a, A\b, Ac) € M.

Addition. For any (a1, b1, ¢1) and (a2, ba, c2),
M (ay,by,c1) + M(ag,ba,co) = [I, @ D(ay,by) + (J, — I,) ® O(cq)]
+ I, ® D(az,bs) + (J, — I,) ® O(c3)]
=1I, ® (D(a1,b1) + D(az,b2)) + (Jn — 1) @ (O(c1) + O(c2))
=1I,® D(ay +az,by + b)) + (J, — I,) @ O(c1 + ¢2)
= M(a; + az, by +ba,c1 + c2) € M.

Matrix multiplication. First observe that
.D((J,l7 bl).D((J,Q7 bg) = D(alag + (k — 1)b1b2, aibs + asby + (k — 2)b1b2),
O(c1)O(c2) = O(kcyco),
D(a,b)O(c) = O(¢)D(a,b) = O(ac + (k — 1)be).
Multiplying M (a1, b1, ¢1) and M (az, ba, c2) gives

Tl T2 T2

T2 CZ—’1 T2
M(alablacl)M(GQaanCQ) = : : .. : )

fl"2 T2 fl"1

where
T, = D(ay,b1)D(az,b2) + (n — 1)O(c1)O(c2),
Ts = O(c1)D(az,b2) + D(a1,b1)O0(c2) + (n —2)O(c1)O(c2).
Using the identities above, we can rewrite T and T5 as
T, = D(ajaz + (k — 1)b1ba, arbs + asby + (k — 2)b1ba) + O((n — 1)keica)
= D(araz + (k — 1)biba + (n — Dkcyca, arbs + asby + (k — 2)bibs + (n — 1)kerca),
To = O(azcy + (k — 1)baey) + O(ares + (K — 1)bics) + O((n — 2)keyca)
= O(a162 + ager + (k= 1)biea + (k — 1)bacr + (n — Q)kclcg).
Hence M (ay, b1, c1)M (ag, b, co) again has the same block structure as M (-, -, -), so M is closed

under matrix multiplication.

Commutativity. The expressions for T and T5 above are symmetric in (a1, b1, ¢1) and (as, be, ¢2).
In particular, if we interchange (a1, b1, ¢1) and (a9, ba, ¢2) in the formulas for T and 75, we obtain
the same matrices. Therefore

M (ay,b1,c1)M(az, bz, c2) = M (ag, b, c2) M (a1, b1, c1),

and the matrices in M commute pairwise. U

Using the above lemma, we show that if all factor matrices W are initialized according to (7), then
Wi (t) stays in M for every ¢t > 0.

Lemma D.9. Let k,n € N and set d = nk. Consider a ground truth matrix W* € R4*¢ with

observation set
Q= |J {Gj)]ije{lm—-Dk+1,... mk}}.
me(n]
Assume that all observed entries share the same value, i.e.,
w* EWS L =W . forany (i1, j1), (i2, j2) € Q.

11,71 12,72

Consider the product matrix W1, where the factor matrices W; € R4*¢ are initialized according
to (7). Under the gradient flow dynamics (3), W (t) remains in the family M for all t > 0 and all
lel[L].
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Proof. First note that the initialization in (7) belongs to the family M, since each factor is of the
form
Wi(0) = M(a,a/m,a/m), 1€ [L].

We will show that M is invariant under the gradient flow.

Fix any time ¢ > 0 and assume that W;(t) € M for all [ € [L]. By Lemma D.8, M is closed
under matrix multiplication and every matrix in M is symmetric, so it is also closed under transpose.
Hence the product matrix Wp,.1 (t) = Wi (t) - - - Wi (¢) lies in M. In particular, there exist scalars
A, B,C € Rsuch that Wp,.1(t) = M (A, B,C

By the definition of the observation set {2 and the assumption that all observed entries share the same
ground-truth value w*, the loss has the form
1 o2
tWia) =5 > (W) —w*)”

(i.4)€Q

Since 2 contains exactly the entries inside each diagonal block, and Wp.;(t) = M (A, B, C) has
diagonal blocks with diagonal entries A and off-diagonal entries B, a direct computation gives

VK(WL;l(t)) = M(A —w*, B — w*,O) e M.

The gradient flow dynamics for each factor matrix are

——(ﬁWi( )wwL1 <HW ) Le[L].

i=l+1

Each factor in the products on the right-hand side belongs to M, and by Lemma D.8 the product of
matrices in M remains in M. Since VI(Wp,.1(t)) € M as well, it follows that

W(t) e M foralll € [L].
Since the initial condition satisfies W;(0) € M for all [ € [L], we conclude that
W, (t) e M forallt > 0,1 € [L].
O

Beyond showing that every factor matrix remains in the family M, we further establish that all layers
evolve identically with below lemma:

Lemma D.10. Under the setting of Lemma D.9,
Wr(t)=Wr_1(t) = = Wi(t)
holds for all t > 0.

Proof. By Lemma D.9 and Lemma D.8, we know that for all ¢ > 0 and all [ € [L] we have
W, (t) € M, and that matrices in M are closed under matrix multiplication, transpose, and commute
pairwise. Moreover, as shown in the proof of Lemma D.9, the loss gradient V(W71 (%)) also lies in

M.

Fix any time ¢ and suppose that
Wi(t)=Wr_1(t) =---=Wi(t) = U(1).

Then the product matrix satisfies Wy.1(t) = U (¢)”, and the gradient flow dynamics for each layer
can be written as

Wi(t) —(ﬁ Wi (t) )VZW“ (HW )

i=l+1
=-U)'ve(umr)u@).
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Since U (t) and V/(U (t)*) both lie in M and matrices in M commute pairwise, we can reorder the
factors to obtain

Wi(t) = -Ve(U@®)F)U @)= foralll € [L].
Thus, whenever Wi (t) = --- = W (¢) holds at some time ¢, the time derivatives of all layers
coincide at that time:

WL(t) = Wi i(t) = = Wi(t).
By the initialization scheme (7) we have
W (0) =W.,_1(0) =--- = W7y(0).

Since the gradient flow admits a unique solution for this initial condition, it follows that the equalities
between the layers are preserved for all times ¢ > 0, that is,

WL(t) = WLfl(t) == Wl(t) for all ¢ > 0.
O

Using the lemma above, we can parameterize every factor matrix as Wy (t) = M (a(t), b(t), c(t)) for
all | € [L], where (a(t), b(t), c(t)) are shared coefficients. Likewise, we write the product matrix as
Wra(t) = M(A(t), B(t),C(t)). We now derive the eigenvalues of each factor matrix.

Lemma D.11. Let k,n € Nand d = nk. For a,b,c € R, let M (a, b, c) € R?*9 be the block matrix
defined by

M(a,b,c) =1, ® D(a,b) + (J, — I,) ® O(c),
where D(a,b) = (a — b)I + bJy, and O(c) = cJi. The eigenvalues of M (a,b,c) and their
corresponding multiplicities are:

A =a+ (k= 1)b+ k(n — 1)c with multiplicity 1,
A2 = a+ (k= 1)b — ke with multiplicity n — 1,
A3 = a — b with multiplicity n(k — 1).

Proof. First, we express M (a, b, ¢) in terms of Kronecker products of identity matrices I and all-ones
matrices J. Substituting the definitions of D and O:

M=1I,® ((a—bI;+bJy)+ (J, — I,) ® (cJ)
= (a—b)(I, ® I;)) + b(I, ® Jy,) + c(J,, @ Jy,) — c(I,, @ Jy,)
=(a=b0)I, 1)+ (b—c)(I, ® J) + c(Jn, @ Jp,).
The matrix J,,, has two distinct eigenvalues: m (corresponding to eigenvector 1,,) and 0 (correspond-
ing to the orthogonal complement 1:-). We construct the eigenbasis of M using tensor products of
the eigenvectors of J,, and Jy.
Case 1. Consider the eigenvector v; = 1,, ® 1. Since J,,1,, = nl,, and J1; = k1, we have:
Moy = ((a—b) + (b— )k + c(nk)) vy
=(a+(k—1b+k(n—1)c)v.
This subspace has dimension 1 x 1 = 1.

Case 2. Consider eigenvectors vy = u® 1, where u € ]lf; C R™. Here J,u = 0and J 1, = k1.
Thus:

Muy = ((a—b) + (b )k +c(0- k) vs
= (a+ (k= 1)b— kc) vs.
The dimension of 1;- is n — 1, so the multiplicity is (n — 1) x 1 =n — 1.

Case 3. Consider eigenvectors vz = w ® 2, where w € R" is arbitrary and z € 13- C R*. Here
Jiz = 0. Consequently, any term containing .J; in the Kronecker product sends this vector to zero:
(A Jp)(w®z)=Aw R Jypz=Aw®0=0.

Therefore, only the identity term remains:
Muvs = (a—0b)I,,v3+0+0
= (a — b)vs.

The dimension of R" is n and the dimension of 13- is k — 1. Thus, the multiplicity is n(k — 1). O
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Lemma D.12. Let \;(t) for i € {1,2,3} denote the eigenvalues of the factor matrix W (t) from
Lemma D.11. Under gradient flow (3), the evolution of these eigenvalues is governed by the following

system of ODE:
/'\1 (t) — _ ()‘%(ﬁ) + (7;_ 1)/\%(t) _ kw*) )\{Jfl(t%

AL(t) + (n = 1)AZ(t)

n

Aao(t) = — (
As(t) = =25 H).

— kw*) M),

Proof. Given that the factor matrices W (t) share the same form (Lemma D.10), let \;(¢) denote
their eigenvalues. We omit the time dependence ¢ when the context is clear. Consequently, the
eigenvalues of the product matrix W1 (t) are A (¢). Using Lemma D.11 to invert the eigenvalue
relations, we can express the parameters of of Wp,.1 (t) = M (A, B, C) as follows:

A+ (= DAE (k- 1A

A
nk
B Af—f—(n—l))\%—n)\gL
nk ’
AL \L
c="2_2
nk

Recall from the proof of Lemma D.9 that the gradient takes the form V/(Wp.1) = M(A —
w*, B —w*,0). Let ~; denote the eigenvalue of V/(W7,.;) corresponding to the i-th index defined
in Lemma D.11. Note that for the gradient matrix, the off-diagonal block parameter is zero (¢ = 0).
Consequently, the eigenvalues for v; and 7, coincide. Specifically:
n=A-w")+(k-1)(B-w)+k(n-1)0)
=(A-w’)+ (k-1)(B-w"),
Y2 = (A—w") + (k= 1)(B —w") = k(0)
=71,
73 =(A—w")— (B —w").
Substituting the expressions for A and B into the equations above yields ~; in terms of AL:

L 1L 1L L 1L oL
=y = ()\1 +(n— DAz +n(k—1)A3 —w*> b E—1) ()\1 + (n—1)AF — nA3 —w*)

nk nk
A — 1)}
_ M +(n— 1Ay ~ kw*,
n
. Mo+ (n =DM +n(k— 1)\ ) Mot (= DAY —nAf ot
nk nk
=k

Finally, recall that the gradient flow dynamics for each layer are governed by

L 1-1
Wit)=—| [[ w,®)" | veWra) | [[W; )"

j=l+1 j=1
Since the weight matrices W;(¢) and the gradient matrix V/(Wp.1(t)) belong to M, they are
commutative and simultaneously diagonalizable. Let P € R?*? be the common orthogonal matrix
such that W;(t) = PA(t)P " and V{(Wp,.1(t)) = PI'(t)P", where A(t) and T'(t) are diagonal
matrices containing the eigenvalues \; () and ~; (¢), respectively.

Projecting the gradient flow dynamics onto the eigenspace spanned by the ¢-th eigenvector, we obtain
the evolution of the eigenvalues. Using the fact that W ()T = W;(t) due to symmetry, the dynamics
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for the [-th layer become:
Wi(t) = PA®)PT = — (PA@Q)PT) " (PT()PT) (PA(t)PT) "
=—P (A" ')A @) P
Multiplying by P'T on the left and P on the right yields the diagonal evolution:
A(t) = =T (A1 (t).
For each distinct eigenvalue index i € {1, 2, 3}, the scalar dynamics simplify to:
Ai(t) = =N (B).

Substituting the values of ~; derived previously, we obtain the specific evolution equations for each
eigenvalue:

)\2(t) _ _72(15))\571“) — _ (Af(t) + (n — 1)/\5(15) o kw*) )\éil(t),

A3(t) = —y3(OAETL() = —N2E71(e).

L n— 1AL
du(e) = (N0 = - (HEEZDNO )i,

Building on the lemma above, we can identify a conserved quantity that depends on the depth.
Lemma D.13. Under the gradient flow dynamics defined in Lemma D.12, the eigenvalues \1(t) and
Ao (t) satisfy the following conservation laws for all t > 0:

1. If L = 2, the ratio of the eigenvalues is conserved:

A(t) — M(0)
Aa(t) n A2(0)°

2. If L > 3, the difference of the negated powers is conserved:
MTE®) = A3 () = ATTH0) = A3TE(0).

Proof. From Lemma D.12, the scalar dynamics for the first two eigenvalues are given by:
Ai(t) = =y (A TH(E) fori € {1,2},
MO +H(n=DAz ()"

where v(t) = — kw*. We consider the two cases based on the depth L.

Case 1: (L = 2). In this case, the dynamics simplify to \;(t) = —v(£)A;(t). Rearranging the terms
to separate variables, we have:

Ai(t) Ao(t)
= —(t), = —y(t).
WO Y(t) WO V(1)
Subtracting the second equation from the first eliminates v(t):

d

Slog|n(0)] — 5 loga(0)] =0
i oe ||
at %)

This implies that the ratio A1 (t)/A2(t) is constant in time.

Case 2: (L > 3). Consider the time derivative of the quantity Q(t) = X2~ (t) — A2~ %(t). Applying
the chain rule:

L 0) = 2~ DNHD - A

= 2L\ ) (AT
=—(2-L)n().
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Similarly, for the second term:

9 057H0) = @ DMHO - (@M ()

—(2—=L)v(@®).

Subtracting the two derivatives yields:

% (AT =X 7H () = (=2 = L)y(1) = (=2 = L)(t) = 0.

Since the time derivative is zero, the quantity is conserved throughout the training, proving the
statement.

We are now ready to prove Theorem D.3.

Proof. Using the inverse relations from Lemma D.11, we express the parameters A(t) and B(t) in
terms of the eigenvalues:

M)+ (0= DAF() + n(k — DAK (1)

Alt) nk ’
L —1\L(4) — L
By = MO+ (= D) — b)),
nk
Consider the difference between the parameters:
nAE(t) 1
A(t) — B(t) = =322 = _)2\E(1).
(1) = B(t) = "2 = 22k (0)

The assumption that the loss converges to zero implies global optimality, which requires A(co) =
B(00) = w*. Taking the limit ¢ — oo, the difference vanishes, yielding:

Next, substituting A\3(c0) = 0 and A(co) = w™ into the expression for A(t), we obtain:

o M) + (= 1))k (o0)

nk
Multiplying by nk = d, we arrive at the first constraint:
Mo(oo) 4+ (n = 1)\ (00) = dw™. (38)

Let 01 > 09 > - -+ > 04 denote the singular values of the limiting product matrix Wp,.1 (c0). Under

our initialization scheme and Lemma F.3, the factor matrices remain positive definite, implying that

the singular values of the product matrix coincide with the L-th power of the eigenvalues. Based on

the multiplicities derived in Lemma D.11, we identify:

o1 =M (0), 0;=M(c0)fori e {2,...,n}, o;=A(c0)=0forj>n.

We now solve for the non-zero singular values by considering two cases based on the depth L.

Case 1: (L = 2). For L = 2, Lemma D.13 states that the ratio of eigenvalues is preserved. Using the

initialization values from (7) and Lemma D.11, this ratio is given by:
)\1(00) . )\1(0) . m+d—1
)\2(00) n A2(O) n m—1 ’

(39)

Substituting )\?(oo) = o; into (38) and combining it with the squared ratio from (39), we can solve
for o1 and o;:

w*d(m +d — 1)?
(m+d—1)2+n-—1)(m-1)%’
w*d(m — 1)?
(m+d—1)2+n-1)(m—1)2

g1 =

o = foralli € {2,...,n}.
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Case 2: (L > 3 and finite m). For L > 3 with 1 < m < oo, Lemma D.13 ensures the conservation
of the difference of negated powers:

A (00) = X7 (00) = ATTE(0) = A3TH(0).
Substituting the initial eigenvalues from (7), the right-hand side becomes:
o

e e = () (Imrd -1 )

Finally, expressing the eigenvalues in terms of singular values via \;(00) = ail /E (implying )\?*L =
2-L
o, ¥ ) and combining (38) with (40), we obtain the system of implicit equations:

2—L

2-L *d — 2
O'lL - (ujn_la.l) = O(,v,m,L,da
2-L
(w*d — (n — 1)Ui) - o; L= a,m,L,d for all i € {27 . ,n},

m

whete Com,t.a 2 (&) ((m+d =1 = (m—1)"™").

Case 3: (L > 3 and m = o0). In this case, the initial eigenvalues of the factor matrices become:

—1
A1(0) = lim « (1—|—dm> = q,

m—ro0
. 1
)\Q(O)zrgg}nooa 1_E =a.

Since the initial eigenvalues are identical, i.e., A\;(0) = A2(0), the conserved quantities derived in
Lemma D.13 dictate that the limiting values must also be identical. When L > 3, the conservation
law states:

N E(0) = 37 (00) = ATE(0) = TH(0) = o —a?E =,

This implies A\ (0c0) = A2(00). Consequently, the singular values of the product matrix satisfy
o1 =o; foralli € {2,,n}
In the case where L = 2, the conservation law states:

)\1(00) - )\1(0) - (6% -

)\2(00) o )\2(0) o (6% o

This also implies A1 (c0) = Ag(oc0) and thus 01 = 0. O
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E PROOF FOR SECTION 4

In this section, we provide the proofs for the propositions and theorems presented in Section 4. First,
Subsection E.1 presents the general form of Proposition 4.1 along with its proof. Next, Subsection E.2
details the proof of Theorem 4.2, focusing on the 2 x 2 matrix case. Lastly, Subsection E.3 generalizes
the core ideas of Theorem 4.2 to d x d matrices and provides the formal statement and the proof of
Theorem 4.3.

E.1 GENERAL FORM AND PROOF OF PROPOSITION 4.1

We first present the general form of Proposition 4.1. This proposition applies to any “fully discon-
nected case”, a scenario that involves the diagonal entries introduced within this same proposition.

For a d x d ground truth matrix W*, the observed entries are given by Q = {(i,, j,)}2_;. Since
we consider the fully disconnected case, i, # m,jn 7 Jjm for all n # m € [d]. We factorize
the solution model at time t as W p(t) = A(t)B(t), where Wa p(t), A(t), B(t) € R4 We
consider the gradient flow dynamics with the loss function defined as in (2).

For a given row index k, since there exists a unique entry (k, j) € €2, we denote this unique column
index by j(*). Thus, w;’;’j(k) and wy, ;) (t) refer to the ground truth weight wy, ; and the time-varying
weight wy, ;(t) respectively, where j = §*). Similarly, for a given column index [, since there exists
aunique entry (4,1) € €, we denote this unique row index by i(". Thus wlyy , and w;) ; refer to the
ground truth weight w}, and the time-varying weight w;, ; (t) respectively, where ¢ = i), Defining
the residuals as r;;(t) :== w;; — w;;(t), we adopt this compact notation for residuals as well. Then,
we can derive a closed-form solution for arbitrary initialization with below proposition.

Proposition E.1. Consider a ground truth matrix W* € R and a set of d fully disconnected
observations Q = {(in, jn)}2_1. The model is factorized as Wa g(t) = A(t)B(t), where the
factors A(t), B(t) € R4 For each observed pair (i, j,) € §Q, define the constants P;, j, and
Qi, ;, based on the initial values A(0) and B(0):

nsJn

d

7/%7]71 Z alna bkdn ) and Qi717jn é Z (ainvk(O)Q + bk7jn (0)2) :

k=1

Furthermore, for each such observed pair (iy, jr), let the parameter 7;,, ; be determined from the

ground truth entry w} . and the constants defined above, as follows:

Qi
B + =5

2
* * 2 p2 Qinin
Wi jn T \/win,jn LOW Ny (7’5 . )

Then, assuming convergence to a zero-loss solution (i.e., w;, j, (00) = wy ; forall (iy,jn) € Q),

any entry ay, 4(00) of the converged matrix A(oco) and any entry b, ,(00) of the converged matrix
B(c0) (for arbitrary indices p, q € [d]) are explicitly given by:

_ a1l
Vi in — B log

ap,q(00) = ap,¢(0) cosh (7, jw ) — by j (0) sinh (7, ) ,
bp,q(00) = bp,q(0) COSh( i<q>,q) - Z‘(q),p(o) sinh( i(q),q) .

Proof. We can express their evolution in the following vector form using the vectorized parameter

_ | vec(A(t)) 2,
0(t) = [VeC(B(t))] € R

)= | gt o | oo @

59



Under review as a conference paper at ICLR 2026

where R(t) € RT %4 is defined as:

7’17-7'(1) (t)e—ru)
rl,j(l)(t)e]‘(l)+d

T‘l j(l) (t)e—r(l)+(d71)d
Rt)=| " J 42
®) T2 (t)el, (42)

712,]'(2) (t)e](2)+d

-
[7a,50 ()€t (414

Odz 7d2 R(t)

‘ P2 N
for e; € R* form the standard basis. Since [ R()T 044

] commutes with any other ¢ values,

the solution is given as:

0(t) = exp (— /O ’ [%d(?fi 01:2(22} dr) .6(0) @3)
—exp (_ [%d&)di (f:(ﬂ d7> 0(0) (44)

where

7717]'(1) (t)e—.r(l)

mim()eja) g

B4 - F17j<1>(t)eg'T<1>+(d—1)d
"~ Jo ERIC) (t)e e
T2,j@ (1)€}e2) 4

[, (@ (t)ejT(d)Hd_nd_
for 7; j(t) = fot r;,;(7)d7. If we assume convergence, we get:
_ 0d2,d2 R(OO)
0(c0) = exp (— [ Roo)T 0pgr| 97) 00 (45)

_ Lz Ogq2| [Opae R(t) +1 RHR()T 04242 46)
042 g2 I,z 12(15)—r 042 g2 2 042 g2 R(t)TR(t)

LIl 0pse  RORETRE] | 1 [(RORET) 0440
5 LR a0+ gy | OB (R(t)(%r;%(t)f] “)
_> - 6(0), (48)
which can be simplified as:
8(c0) = {g ]1,3] 0(0), (49)
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with C, D, FE and F are defined as following:
C = cosh (diag (’Fl,j“)’ ces T T @5y T 2y e s T (s e ey Td’j(d))> ;
F = COSh (dlag (Fi(l)J? Fi(2),27 e 7Fi(d),d7 e ,'F,L'(l),l, 771‘,@),2; e 7ri<d),d>)7
T T T T T
D = —sinh |:T1;j(1)ej(l)""’r17j(1)ej(1)+(d—1)d""’TdJ(d)ej(d)""’rd7j(d)ej<d)+(d—1)d:| s

FE = —sinh (|:r1,j<1)ej(1>7 .. 7'F1’j(1)ej(1)+(d71)d, L. ,fd’j(d) €j(d), .- - ,Fd’j(d) ej(d)Jr(d,l)d} )

Here, for any matrix P, the operations cosh(P) and sinh(P) are performed elementwise. For a
set of d observed indices €2, there exists d corresponding unknown variables, ;, ;, . If convergence
is guaranteed, the model yields d equations relating these variables to the d ground truth values.
This implies that the variables 7;, ;, can be characterized as a closed-form. To characterize more
rigorously, we substitute C', D, E, and F' into (49):

_al’l(oo)— B a1’1(0) COSh(ij(l)) - bl,j(n (O) Slnh(fld(l)) ]
a172<oo> 0172 (0) COSh(FLj(l)) - bQ,j(U (0) Sinh(iju))
a1,4(00) a1,4(0) cosh(Fy ;) — by (0) sinh(7y o))
a271<oo> a271(0) COSh(F27j(2)) - bl,j(2) (0) Sinh(727j(2))
a272(oo) a272 (O) COSh('F27j(2)) — b2,j(2) (O) Sinh(F27](2))
ag,q(00) as,q(0) COSh(FQJ(z)) —bg e (0) sinh(7y j(z))
ad,1 (OO) ad,1 (0) COSh(fdﬁj(d)) - bLj(d) (0) Sinh(fdd(d))

0(00) . advd(oo) _ advd(O) COSh(fd j(d)) — bd (@ (O) Sinh(fdJ(d)) (50)
- 6171(00) o —aiu)’l(()) Sinh(’Fiu)J) + 6171(0) COSh(Fiu)’l) )
b1 2(00) —a;(2 1(0) sinh(7;2) 2) + b1,2(0) cosh(7;c2) o)
bl’d(oo) _ai(d),l(o) Sinh(ﬁ-(d),d) + de(O) COSh(fi(d)7d)
ba,1(00) —a;m) 2(0) sinh(7;a) 1) + b2,1(0) cosh(7;a) ;)
ba,2(00) —a;(2) 5(0) sinh(7;c2) 5) + b2,2(0) cosh(7;c2) )
ba,4(00) —a;) (0) sinh(7;w 4) + b2,4(0) cosh(F;ay 4)
ba,1(00) —a; ¢(0) sinh(7;) 1) + b4,1(0) cosh(Fr) 1)
_bd,d(oo)_ _—ai(d)yd(O) Sinh(ﬁ-(d) ,d) + bd’d(O) COSh(’Fi(d))CD_

Then, assuming convergence, for each observation (i, j,) € 2 (forn = 1,...,d), we obtain the
equation:

*

w; o= w, j,(00) = aj, 1(00)by j, (00) + -+ + a;, a(00)ba,j, (o0)
d

= (aimk(()) COSh(’I_’in 7]‘71’) — bk,j(in) (0) sinh(ﬂmjn))
k=1

* (brj,, (0) cosh(7y, j,) — ai, x(0)sinh(7;, ;) |-
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Let C,, = cosh(7;, j,) and S,, = sinh(7;, ;. ). Then we can rewrite the above equation as:

d

wi 5= (i, k(0)br 3, (0)CF = i, 1(0)*CnSp — brj, (0)°CrS + ai, 1 (0)br 5, (0)S7)
k=1
d d
= (Z @i, 1 (0)br, 5, (0)> (Cr+S7) - (Z (@i £(0)% + b, (0)2)> CnSp
k=1 k=1
= P, j, cosh(2F;, ;) — QTJ sinh (27, ;.), 51)

where P, j, = Y4y @i, k(0)br 5, (0) and Qs 5, = S50 _y (4, (0) + by 5, (0)2).

By solving (51) with respect to 7, ;, , we can get:

s T S
2w:<71 jﬂ = Plnvj‘n (627”1"’]’” + e 2TLTLYJTL) o #‘M (627‘1”,]” - e 2T1nh}n)
27 Qi \J —27;, Qi 5J
= e?Tinin (P)imjn — ;n> +e in,in (Pimjn + % .

Multiply by e27in.in leads to:

2wy i e2Tin.in — e4Tin.in <pi

Qi jn Qi jn

nsJn

Rearrange into a quadratic equation by setting u = €%7in-in

. Qi jn

<P¢mjn - Ql;]") u? = 2w} u+ P, 5 =0

By solving the above equation while noting that P; — QWT“ < 0 by the definition, we can get

explicit solutions for 7; , ;-

nsJn

1 P

Qi i,
+ n,Jn
log 2

nsJn

2
* * 2 _ 2 Q'invjn
Wi T \/ e~ Dinga T (72

Note that each 7;, ;, is solely determined by the initial points 8(0). With 7; ; determined for each
observed entry, we have closed-form expressions characterizing the model’s learned relationship for
these observations. Consequently, by (50), we have:

ap,q(00) = ap 4(0) cosh ('de‘(p)) — by e (0) sinh (Fp’j(,,)) ,
bp,q(00) = by 4(0) cosh (Fﬁtz),q) — @0 ,(0) sinh (ﬂ(q),q) .

Vi jin = 5
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E.2 PROOF OF THEOREM 4.2

In this section, we will provide the analysis of 2 x 2 matrix that starts from pre-trained weights with
diagonal observations w* = w}; = w3y, Wa g(t) cannot converge to a low-rank solution. Let
Ty > tq be the timestep that concludes the pre-train phase. For the sake of simplicity, we omit the €
term introduced in the pre-training phase. Then, we know from Proposition E.1, we have:

A(TY) = B(T}) = <\/87 \/87) . (52)

In the post-train phase, we introduce an additional observation in the off-diagonal entries, specifically
wiy or ws;. Without loss of generality, we assume wj, > 0 is revealed while other observations
remain the same, i.e., Qpost = {(1,1),(1,2),(2,2)}. Note that the gradient of the post-train loss is:

_{wi —w wie —wiy
VI(WaB)= ( 0 Wag — "
_ (anbin +aizbar —w*  ainbiz + aizba — wis
0 a21b12 + azzbay — w* ) -
For simplicity, we again omit the 2 term in the loss specification. We define the residuals for the

*

relevant matrix elements as 711 := w1 — w*, 12 1= Wiz — Wiy, and rag 1= way — w*.

We begin by demonstrating a pairwise symmetry between the entries of A(¢) and B(t), which
simplifies subsequent analysis. To this end, we first provide the time derivatives for the elements

of A(t) and B(t). Given the general gradient flow dynamics A(t) = —V/(Wa g (t))B" (t) and
B(t) = —AT(t)V{(Wa4 p(t)), the component-wise updates are as follows. For A(t):

a12(t) = ba1 (t)(w* — w11 (t)) + baa(t)(wiy — wia(t)), (53)

ao1(t) = bra(t)(w* — waa(t)),

a2 (t) = baa(t) (W™ — waa(t)),

and for B(t):

bi1(t) = ar1(t)(w* —wii(t)),

bia(t) = a11 (t)(wiy — wia(t)) + az1 () (w* — was(t)), 54)
(t) = ar2(t)(w” )
(t) ()( )

) + aga(t)(w* — waa(t)).

Using the equations above, we first present a result showing that the k-th derivative of each element
in A(t) and B(¢) at initialization exhibits a pairwise symmetry:

LemmaE.1. Let W4 g(Ty) = A(Ty)B(T}1) € R?**2 be a product matrix, where A(T1) and B(Ty)
are matrices that are obtained at the end of the pre-training phase. Suppose the ground truth matrix
satisfies wi, = wi,. Then for every k € N U {0}, the following identities hold:

k k E k
Al (1) = b33 (Th), a3 (T1) = b5 (Th), 55
k k k k

agy) (1) = b (T1),  afy)(T1) = b3 (1),
and consequently,

Wi (Ty) = wi) (Th). (56)

Proof. We prove the statement by induction on k. When k& = 0, by the initialization assumption, we
have

a1 (Th) = boa(Th), a12(Th) = bi2(Th), a2 (Th) = bar(T1), age(Th) = b (Th),
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and therefore w11 (7T1) = wae(T1).

Assume that for all orders m < k (with k > 1) the identities
af (1) = b5 (1), af5) (1) = b5 (T1), b (1) = 0517(Th), ol (Th) = b{(Th),

hold, and hence also w§§”> (Th) = wég) (T1). By the Leibniz rule, each element of the k-th derivative
can be written as a finite sum involving derivatives of orders strictly less than k. For A(¢):

)~ -3 ("7 (oo + 5o o).
3=0

B =-3" ("7 oo P ).
J=0

=3 (oo
7=0

. ("7 oo,
3=0

and for B(t):

WH=-> ("7 D aro,
7=0

W =3 (’“ i 1) (e ) + a0 )
=0

b (1) = — kf (k ; 1) aly " (e (@),
7=0

0= (1) (@i + ol 0 0).
=0

By the inductive hypothesis, all derivatives of order less than £ satisfy the symmetric relations at
t = T. Inserting these equalities into the expressions with ¢ = T3 above shows that the symmetry is
maintained at the k-th order:

k k k k k k E K
o (Th) = b5 (Th), a3 (1) =05 (1), af)(Ty) =37 (T1), a3y () = B (Th),
proving equations (55) and (56). O]
Lemma E.2. Under the setting of Lemma E. I, below relationships hold for all t > Ti:

ai1(t) = baa(t), aia(t) = bia(t),
as (t) = bo1(t), aga(t) = b11(t),

which further leads to w11 (t) = waa(t).

(57

Proof. By Lemmas F.6 and E.1, we may conclude that for all ¢ > T, equation (57) holds, and
therefore wi1(t) = waa(t). O

By Lemma E.2, all entries of B(t) can be expressed in terms of the entries of A(t) for all ¢ > T7.
From this point onward, we will represent W4 g(t) solely using the elements of A(t). We begin by
simplifying the time derivative of A(t) as follows:
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a11(t) = ag2(t)(w" —wi1(t)) + ar2(t)(wis — wia(t)),

a12(t) = a2 (t)(w" —wi1(t)) + a11(t)(wis — wia(t)),

o1 (1) = aa(B)(w" — waa(t)), 9
Ga2(t) = a1 (t)(w* — waa(t))

Wa B(t) = A(t)B(t)
an(t) alg(t) CLQQ(t) alg(t)
N <a21(t) azz(t)> <a21(t) all(t)>
a11(t)aso(t ai2(t)as (t 2a11(t)aq2(t
- (OO g0 et )

We can also simplify the time derivative of W4 g(t) as follows:
i (t) = (w* —wi (1)) (af1(8) + afy(t) + a3, (8) + a3y (1))
+ (wiy — wi2(t)) (a11(t)az (t) + ar2(t)ass(t)) ,
tna(t) = 2(wiy — wia(t)) (af; (1) + ais(t)) (60)
+ 2(w" — w11 (1)) (a11(t)az1(t) + ar2(t)asa(t))
wa1(t) = 2(w” — wir(t))(ar1(t)az (t) + ar2(t)azz(t)),
waa(t) = w11 (¢).

Using (59), we state the basic conservation law from Arora et al. (2018): if the matrices are initialized
in a balanced manner, this balancedness is preserved throughout the training process. That is,
A(Ty)"A(Th) = B(T\)B(T1) ",
holds at initialization, this leads to
aty (1) + a3, (t) = a¥y(t) + %y (t), Vi = Th. ©61)

Now, we are going to examine the time derivative of the loss:

WA B(0) = (VAWaB(0), W)

dt
<ve<wAB<>> A(WB() + AWB()

=Tr ( (Wa,s(t) (At)B (t)B(t))>
=T (VT (Wa s (1) A() Bt )) + T (VO (Wa (1) A B())
= —Tr (VLT (Wa (1)) V{(Wa 5(t)B' (t)B(t))
—Tr (VLT (Wag)AAT (#)VEUWa (1))
= —Tr (VW4 B(t)B' (t)Bt)VI{W4 5(t)))
=L (t)
—Tr (VE(W4 g(t)A(t)AT () VE(W 4 B(1)))). (62)

:=Lo(t)

)
(

The third equality follows from the fact that for any two matrices A and B of the same size,
(A, B) = Tr(AT B). The last equation holds due to the cyclic property of the trace. Combining (62)
with Lemma F.7, we can ensure L (t) and Lo(t) are both positive semidefinite, which implies the
loss is monotonically non-increasing for all ¢ > 77.

With Lemma E.2 and the monotonicity of the loss, we can guarantee positiveness of a1, ass, w11,
and wqo after the pre-train phase:
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Lemma E.3. For a product matrix Wa g(t) = A(t)B(t) € R**?, ifa11(T1), aga(Th), w11 (T1),
and wa2(Ty) have all positive values, following inequalities hold for all t > T :

a11(t), age(t) >0, a2(t) > 0.
Furthermore,
w1 (t), waa(t) >0
holds for all t > Tj.

Proof. We will prove the inequalities step by step.

Positiveness of a1 (t). For the sake of contradiction, assume that there exists a timestep 71 > T
where a11(71) = 0 holds. From (59) and Lemma F.3, we must have det(A(7;)) > 0, which implies
that a12(71)az21(71) < 0. Given the monotonicity of ¢, W 4 g (t) must satisfy:

((WaB(t) <UWa p(Th)). (63)

for all ¢ > T;. However, W4 p(71) cannot satisfy (63) because w11 (1), we2(m1) < 0 and
w12(71) = 0 for any 7y > 0. This contradiction implies that such a 71 cannot exist.

Positiveness of az>(t). Similarly, let’s assume there exists a time 75 > T} such that ass(72) = 0 for
the first time. We can express W4 g(72) as:
a12(m2)a21(m2)  2a11(m2)ai2(m2)
1% = .
4.8(72) ( 0 a12(12)az1 (12)

where the diagonal entries are negative due to the condition det(A(72)) > 0. Therefore, the time
derivative of aso at timestep 79 is positive:

a2 (T2) = a11(72)(w* — w1 (72)) > 0.

Since ago(t) is increasing at point T, there exists time ¢’ < 75 such that ass(¢') < 0 (since aga(t) is
continuous and differentiable), which is contradictory. Consequently, there cannot exist a 75 such
that aso (7’2) =0.

Positiveness of a;2(t). Given that ¢ is non-decreasing, we can state:

UWas(0) = 5 [ —wn (1)) + (i — wia(t))? + (0 — waa(t))?]

1
<U(Wap(Th)) = §wT227

for all t > T7. Since (w* — wy1(t))? and (w* — wao(t))? are non-negative, w12 () must be non-
negative for all t > T}. From (59), we know w12(t) = 2aq1 (t)a12(t), which implies a12(¢) > 0 for
all t > Ty with the above conclusion which states a11(t) > 0.

Positiveness of w1 (t), waz(t). Likewise, assume for the sake of contradiction that there exists
atime 73 > Ty when wy;(73) = 0 is first satisfied. This directly implies that a11(73)ag2(73) =
—a12(73)az21(73). Squaring both sides of the equation yields:

aiy(73) a3y (73) = aia(73)a3 (7).
Subtracting a2,(73)a2,(73) from both sides:

a%l(TS)agz(TB) - a%2 (73)a§2(73) = a%z (73)a§1(73) - a%2 (7'3)6132 (73).

Factoring:

a%z(TS) (a%1(73) - Q%Q(TS)) = 0%2(7'3) (agl(TlS) - ‘132(7'3)) .
By the conservation law in (61), we have a?,(73) + a3, (73) = G%Q(Tg) a34(73), which leads to
aiy(73) — afy(73) = a3y(73) — a3y (73). Replacing a3, (73) — ai,(73) with — (a3, (73) — a3y(73)):

—a3y(73) (a3, (73) — a55(73)) = a3a(73) (a3, (73) — a3y(73)) -
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This gives us:
(a%a(73) + ada(73)) (a3(13) — a3y(73)) = 0.

Since ag2(73) > 0 from the previous result, we can conclude that as (73) = Fase(73). To determine
the sign of a21(73), recall that W4 g(73) is written as:

B 0 2a11(73)a12(73)
Wa B(m3) = <2a21(7'3)a22(7'3) 30 2 ) .

Since a11(73) > 0,a12(73) > 0 from the previous result, 2a11(73)a12(73) > 0 holds. Also, given
that det(Wa g(73)) > 0, we can determine that as(73) is negative, which implies a9 (73) =
—ag2(73). Additionally, by the conservation law, we have a?,(73) = a2,(73), which leads to
a11(7'3) = a12<7'3) > 0.
Finally, consider the time derivative of w1 at timestep 73, substituting a11(73) and as; (73) with
a12(73) and —a92(73), respectively:
tny(73) = (w* — wi1(73))(ai; (73) + aia(73) + a3, (73) + a32(73))
+ (wiy — wi2(73))(@11(73)a21(73) + a12(73)az2(73))
= 2w*(afy(73) + a35(73))
> 0,

which contradicts our initial assumption.

O

Given that the time derivative in the (60) includes the term a;;(¢)az21(¢) + a12(t)a22(t), we need to
verify the sign of a11a921 + a12a92 in order to proceed with the analysis. Below lemma shows that as
long as w2 (t) < wi, holds, aq1(t)az1(t) + a12(t)age(t) is always lower bounded by zero.
Lemma E4. For a product matrix W a g(t) = A(t)B(t) € R**?, if at any point t € [Ty, Ts] we
have w1 (t) < wiy, then the following inequality holds throughout the entire interval [Ty, Ts]:

au(t)agl (t) + alg(t)GQQ(t) > 0.

Proof. We first define g(t) £ ay1(t)as; (t) + a1a(t)aze(t). Recall that at T, we have a1o(T}) =
as1(T1) = 0, which implies g(77) = 0 as well. Note that by (58), at timestep T}, we have

a12(T1) = an (Tr)(wiy — wi2(Th)) + a2 (T1)(w* — w11 (11)) > 0,

while other elements remain unchanged. This indicates that g(¢) > 0 immediately after 77. We
now show that if g(7) > 0 for any 7 € (71, T3], then there is no 7" € [, T3] which satisfies both

g(7") =0and £g(t) ‘t_T/ < 0. This implies that g(¢) never becomes negative under the assumption
of wia(t) < wi,.

Suppose, for the sake of contradiction, that there exists a 7/ € [r,Ts] where g(7') = 0 and
4 (t) s < 0. Given g(7') = 0 and the conservation law in (61), and the inequalities from

Lemma E.3, we can determine that there exist two combinations of the solution:

1. all(T/) = (122(7'/), (112(7'/) = 7(121(7'/), (lll(’rl) > alg(T/).

2. all(T/) = G,QQ(T/), (112(7'/) = agl(’l’/) =0.

We take the time derivative of g(t) at timestep 7’ and substitute the values from (58) as follows:

%g(f) = an(m)an (™) + an () () + dra(T)aze(7') + arz(r)aze (')
= 2(w* — w1 (7)) (a11(7")ar2(7") + a2 (7")aga(7"))
+ (wiy — wia(7")) (@11 (") aga(1") + ara(7")agi (7). (64)
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For the first case, substituting equations a1 (7') = ag2(7') and a12(7") = —a21 (7') to (64) leads to:
d X / /
290 _, = (wiy — wiz(7))wna (7).
t t=r1’

Since w11 (¢) > 0 for all t > T, if wi2(7") < wi, holds, then g(¢) cannot take negative values at
time 7’.

For the second case, substituting equations a11(7’) = ag2(7’) and a12(7’) = a21(7") = 0 to (64)
leads to:

d .
—9(t) = (wiy — wia(7))at; (7'),
dt t=r1’
which is again a non-negative value if wi2(7') < wi,, leading to a contradiction. O

Lemma E.5. For a product matrix Wa g(t) = A(t)B(t) € R**2, the following inequalities holds
for all timestep t > T1:

Proof. We will prove this lemma in several steps:
Step 1: wia(t) < wi, forall t > 7.

We know w12(T7) = 0 < w?,. Assume, for the sake of contradiction, that there exists a time ¢’ > T}
where ¢’ is the first timestep such that w12(t') > wi,. If this were true, there must exist a time s
where T < s < t' such that:

U)lz(S) = ’11)1(27 11.112(8) > 0.

For these conditions to be met, w12 (s) must satisfy:

w12(s) = 2(w* — wi1(s))(a11(s)azi(s) + aiz2(s)aza(s)) > 0. (65)

To satisfy (65), there are two possibilities:
(’Llf’< — wn(s)) >0 and (all(s)agl(s) + a12(3)a22(5)) > 0, (66)
or (w*—wi1(s)) <0 and (a11(s)as(s) + a12(s)ass(s)) < 0. (67)

However, neither of these can be true:

1. Equation (67) contradicts Lemma E.4, given that s < t'.

2. Equation (66) cannot be satisfied because there is no s where w* > wi;(s). If there were,
there would be a time s’ where 77 < s’ < s both satisfying w11 (s’) = w*, and w11 (s") < 0.
But we find:

w11(s") = (wiy — wia(s"))(a11(s")ag1(s") + ara(s")aga(s")) > 0.

This is because wi2(s’) < wiy, and thus a11(s")az1(s’) + a12(s")ase(s’) > 0 by Lemma
E.4. Therefore, our initial assumption must be false, implying that w12(t) < w?, for all
t>Ty.

Step 2: Prove wy;(t) > wi, and was(t) > wi, forall t > Ty.

Given wi2(t) < wi, for all t > T4, Lemma E.4 implies a11(t)as1 (t) + a12(t)az2(t) > 0 for all
t > Ty. The evolution of wq; is given by:

1 (t) = (w*—wi1 (1)) (af; () +aiy(t)+a3, () a5 (1) +(wia—wia(t)) (a11 () az: () +a12(t)az(t)).
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By above equation, if there exists a time ¢’ > T} where wy; (¢') = w*, we can conclude w1 (¢ )
and thus wy1(¢) > w* forall ¢t > T. By Lemma E.2, wao has the same value as w11, $0 waa () >
forallt > Tj.

Step 3: Prove wo (¢) < 0 forall t > T.
The evolution of we; is given by:
w1 (t) = 2(w* — w11 (t))(a11(t)az (t) + ar2(t)asa(t)).
Since w11 (t) > w* and a1 (t)as; (t) + a12(t)ags(t) > 0 forall ¢ > Ty, we can conclude way (t) < 0
forallt > Tj.
O

E.2.1 PROOF OF LOSS CONVERGENCE

Recall that the time derivative of the loss function is written as:

%4(WA B(t)) = = Tr(L1(t)) — Tr(L2(?)),

where L1 (t) and Lo (t) are defined in (62). To further our analysis, we can expand the time derivative
of the loss by calculating the trace of L;(t) and Lo (t). We omit the time index ¢ when clear from
context.

2 2
L.— (T T2 a3y + a3z aiiazr +azgaz (rin 0
1 — O 2 2
722 ai11a21 + a12a22 aiy + ais T2  T22
2 2 2 2 2 2 2 C
_ (r11(a3; + agy) + 2riiriz(aiias + a1za2) + 1i5(af; + aiy) 1
- bl

Ch r5y(a3) + aiy)

for some time-dependent value C;. Following a similar process, we calculate Ls:
L,— (™ O afy + af, ai1G1 + a12022 \ (T11  T12
2 T2 T2z ) \ai1a21 + ai2a92 a3, + a3y 0 7
_ ri1(af; + afy) s , Cy o )

& rio(afy + afy) + 2rioraa(aiiagy + a12a22) + rip(as; +ass) )’
again for the time-dependent value C5. With these expressions for L, and Lo, we can now rewrite
equation (62) in a more explicit form:

d
7! Wap(t)) == Tr(Li() - Tr (L2(t))
(a1 () + afa(t) + a3y () + a3, (1))
—2rfy(t) (a} ( ) + a3y (1))
— r35(t) (a1 () + afa(t) + a3y () + a3, (1))
= 2r12(t)raa(t )(an( Jaz1(t) + a12(t)az(t))
= 2r11(t)r12(t) (a11(t)az1 (t) + ar2(t)aza(t)) . (68)

Note that the (68) is the non-positive term. Given that L, and L are positive semi-definite, we can
analyze each diagonal entry separately. This leads us to the following inequalities:

:—rn () (a

r1(a3; + a3y) + 2ruria(annaz + aizaze) +1riy(ai; + biy) 2 0,
11y (at) + afy) + 2riaraa(aiiazn + ai2azz) +135(a3; + a3y) > 0.
By rearranging the above inequalities, we obtain:
—2r11r12(a11a91 + a12a22) < 171 (a3) + a3y) + 1i9(al; + aly),
—2r19792 (@121 + a12a22) < ri5(af) + aiy) + 132 (a3; + a3y).

Substituting these inequalities into equation (68), we derive:

af(WA B(1) < —rfi (1) (a1, (1) + afy(1)) — r35(¢) (afy () + afa(t)) - (69)
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This provides a tighter upper bound on the time derivative of the loss. However, it is still insufficient
to guarantee convergence, as the bound does not depend on the term r12(t). As a result, even though
the right-hand side converges to zero, this alone does not imply that the loss itself converges.

To further tighten the bound, we leverage the positive semidefiniteness of L; and L.
Specifically, note that for both QKQT and Q"KQ to be positive semi-definite, the
only necessary condition is K 3 0. Therefore, we modify Li(t) to Li(t) =
VIWa B(t) (BT (t)B(t) — pu(t) - eseg ) VLT (W4 p(t)), where p(t) is chosen to ensure that
the matrix B (t)B(t) — pu(t) - ese4 remains positive semidefinite. This guarantees that L (¢) = 0.
To ensure this condition, x(¢) must satisfy:
3.(6) +ad,(t)  ann(t)asi(t) + ara(t)ass(t)
BHOTB®) — u(t) - TV — as ( 22 11 21 12 22
(B BE) = ) - ezez ) | ‘(an(t)am(t)+a12(t)a22(t) afy(£) + ady(t) = ult)

— (a3, () + ay(t)) p(t) + (ar1(ana(t) — ar2(t)azn (1))
> 0.

Rearranging this inequality with respect to u(t), we get:

(a11(t)azs(t) — ar2(t)az (¢))*
‘131@) + a32 (t)

 det(B(1))?

~ad () + ad,y(t)

n(t) < (70)

Therefore, if we set u(t) to satisfy the above inequality, we can guarantee j}vl to be a positive
semidefinite matrix. Now, L1 () can be calculated as:

L.— (M1 T2 a3, + a3, ajiagr + ajzazz\ (rin 0
1=1p 2 2
92 a11G21 + a12a92 aiy +ajs — 12 T92
_ (ri(a3 + a3,) + 2ririz(anias + aizaze) +risy(af; +ais — ) C
c r5s(aly + a3y — )’
for some C'. Since the matrix BT B —p1-e5 e, is positive semi-definite, we can ensure a2, +a3, — >
0. This leads to the following inequality from (Ll) :
11

—2r11m12(a11a21 + a12a20) < 75y (a3y +ady) + ria(at; + afy — p).
Finally, substituting this inequality into (68), we arrive at:

d

7#{Wap(t) < - (r11(8) +r5(1)) (afy (8) + afy (1)) — riz(O)u(). (71)

To prove the convergence of the loss, our main remaining goal is to establish a time-invariant lower
bound for

min {a}; (t) + afy(t), u(t)}
to apply Gronwall’s inequality.

Lemma E.6. For a solution matrix W 5 g (t) initialized as W a, g (T1), which represents the state of
the matrix after pre-training up to time 11, the inequality

det (W g(t) > w*?
holds for all t > Tj.

Proof. Since wi2(t) must satisfy |wi2(t) — wiy| < /20(Wa B(t)) < wi, by the monotonic-
ity of the loss, we can ensure that wy2(¢) > 0 for all ¢ > Tj. Also, by Lemma E.5, we have
w1 (t), waa(t) > w*, and way () < 0 for all ¢ > T3. Under these conditions, det(W 4 p(¢)) can be
lower bounded as:

det(WA,B(t)) = wu(t)wgz(t) — wlg(t)wgl (t) Z w*2,
for all timesteps ¢ > T7. O
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Lemma E.7. For pu(t) defined to satisfy (70) and the entries in A(t), the following inequality holds
for all timesteps t > T1:

min {ai, (t) + aly(t), u(t)} > w".

Proof. To prove the lower bound of a?; (t) +a?,(t), Our goal is to demonstrate that a?, (t) +a?,(t) >
w* for all timesteps ¢ after 7. By Lemma E.7, we have |Wa g(t)||» > V/2w*, which leads to:

V2uw* < ||[Was(t)|lr
= [0 (Wan(0) +03 (Wa5(1).
By applying Lemma F.4, we have:
VoA Was(t) + 03 (Was(t) = W;*(A(t)) +od(A(1))
— V(0% (AW) + 03 (A())* — 203 (A(1)) o3 (A(1)
=/ ||A<t>||‘; — 2det(A(1)2. (72)

Rewriting (72) while applying Lemmas F.4 and E.6 leads to:
A5 > 20" + 2det(A(t))?
= 2w*? + 2det(W4 (1))
> dw*?.
Thus, A(t) have to satlsfy ||A(t)|| > 2w* for all timesteps ¢ > T7. Now, assume that there exists a
time ¢’ > T} such that au( "+ a%Q( ") < w*. To satisfy inequality ||A( % > 2w*, we would

need at least a3, (t') + a3, (t') > w* to hold. To verify the value of a3, (t') + a2,(t'), we take its
time derivative using (58):

(31 (t) + aZ(1) = 20 (s (1) + 2as(t)azalt)

dt )
= —2a12(t)az1 (t)r22(t) — 2a11(t)aza(t)ra(t)
= —2ra2(t)(a11(t)a2(t) + ar2(t)az: (1))
= 2w (¢)(w* — w1 (t)).

Since w11 (t) > w* holds by Lemma E.5 for all t > T}, we conclude a3, () + a3,(t) is monotonically

non-increasing from time ¢t > T3. Since a2,(T}) + a3,(11) is initialized as w*, this implies that
g 12 22 p

a3, (t') + a3,(t') < w*. Consequently, there cannot exist a ¢’ > T} such that a3, (') + a3, (t') < w*

holds, which leads to contradiction.

Next, we are now showing that the term det(B(1))” ) is lower bounded by w*. Therefore, if we set

a3, (t)+a3,(t g
w(t) as w*, we can guarantee the positive semidefiniteness of L (t).

By applying Lemma F.4 and the lower bound of det(W 4 g(t)) by Lemma E.6, we have
det (B(t))?  det(Wa p(t)) w*?
a3y (t) +a3y(t)  a3i(t) +a3y(t) ~ a3,(t) +ad,(t)

Also, from the previous result, we have an upper bound on a3, (t) +a3,(t), which is a2, (t) +a3,(t) <
w*. Combining these results, the following inequality holds:

det (W4 B(1)) *
a3, (t) + a3y (t) =

Therefore, if we set u(t) to be w*, u(t) can satisfy the positive semidefiniteness condition. By
combining the results, we can finally guarantee:

min {af; (t) + afy(t), p(t)} > w*.
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Using the results of Lemma E.7, we can rewrite (71) as follows:

L UWa (1) <~ (11(0) +r5(0) (@31 (0) + ado (1)) — o)1)

< o
< = (i () + 17 (1) + r3a(t)) w*
< 2w (W4 g(t)).

Applying Gronwall’s inequality to our previous result, we can now demonstrate loss convergence
where t > T7:

g(WA»B(t)) < K(WAVB(Tl))efﬁu* (t—=T1)

1 "
= iw;fe*?w (t=T1), (73)
This inequality allows us to conclude that /(W 4 g(t)) converges to zero exponentially.

E.2.2 PROOF OF STABLE RANK BOUND

From (73), we know that at convergence, w11 (00) = waz(00) = w* and wi2(00) = wi,. Although
a closed-form expression for w1 (00) is unavailable, Lemma E.5 shows that wo (¢t) < 0 for ¢t > T4,
which implies w1 (00) < 0. This indicates that the test loss remains strictly positive, as the ground-

*2 . ..
truth value w3; = 7= is assumed to be strictly positive.
12

In this section, we leverage the fast convergence rate detailed in (73) to establish bounds on the
singular values of the converged matrix W4 _g(00). Subsequently, these singular value bounds are
used to further bound the stable rank of W4 g(co

Lemma E.8. The singular values of W 4, g(c0) fulfill:

01(Wa p(o0)) <w*-exp (2101*2) ,
w

02(Wa,B(00)) > w™ - exp (—212}1*2> .

Proof. We denote the singular values of W4 g(t) as o,.(t) for simplicity. By Lemma F.1, we can
get general solution of each singular value o,.(t) by solving linear differential equation:

t
7ty =) e (<2 [ GUWanO) ol @)t ). r=12 08
t'=s
where u,.(t) and v,.(t) denotes left and right singular vector of corresponding r-th singular value,
respectively. Since u,-(t) and vr( ) are both unit vectors, applying Cauchy-Schwartz inequality, we
can bound (V{(W 4 5(t)), u,(t)v, (t)) by:
|<W(WA,B(t)),ur(t)v:(t»l < [IVEWasO) - [Jur@)v, (O]
= [VE(Wa B(®)llr

2(Wa B(t)).

we can get bound o (t) as following:

or(8)-exp < VU W4 B(t)) dt> < o.(t) < o.(s)-exp <2\f \/{(Wa B(t)) dt’)
t'=s

(75)

With the setting above, in the pre-train section, after 77 timesteps, we prove that o1(71) = 02(11) =
w*. Starting from T3 with pre-trained weights, we can lower bound o2 (W 4 g (t)) with equations (73)

t'=s
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and (75) when t > T as follows:

oa(t) > o2(T1) - exp (—2\/5 t/t_Tl \/E(WA}B(t’))dt’>

t
> w* - exp <—2wf2/ ew*(t/Tl)dt’>
t'=T4

= w"* - exp <2wi‘2 (1 — ew*(tTl))) .
w

and when ¢ — 00, 02(00) can be lower bounded by:

L wi
o9(00) > w* e W,
In the same way, we can upper bound o1 (c0) by:
9. Wiz

o1(00) < w* e~ w

By Lemma E.8, we can now lower bound the stable rank of a matrix W g (00):

IWas()[2 _ 2 (Wap(x)) + o3(Wan(x)
Was(0)3 77 (Wap(0))

A (Was()

= S Wan(x)

w

which concludes the proof of Theorem 4.2.
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E.3 FORMAL STATEMENT AND PROOF OF THEOREM 4.3

We now extend the preceding analysis to the general case involving a ground truth matrix W* € R4x9,
The solution matrix W4 g € R¥* is again factorized as Wa g = AB, whereboth A, B € Rdxd,
In this section, our detailed presentation and proof of Theorem 4.3 (from the main text) are structured
as follows: we first introduce and prove Theorem E.2, which is then followed by its direct consequence,
Corollary E.3.

We use the slightly modified loss function:

N
Z ((AB, X,) —yn)?, (76)

w\»—*

where the measurement matrix X,, = e;, ean represents a masking matrix, with the n-th observed
entry set to one and all other entries set to zero, and y,, € R denotes the ground truth value of the

. . A X,
n-th observation. Then, by defining ® = {BT] € R2dxd gpd X, = 1 {)?T 0 } € R24x2d_ye

can rewrite the (76) as:

N
~ 1 - 2
L(A.B)=L(©) = 2:: (07, X,) — yn)
1
= LIF(®) ~ g3 )
Here, F'(®) and y represent vectors defined as:
<®@17 ):(1> Y1
ee' X Y2
F(®) 2 < : ? eRY, y2 || eRV. (78)
<®@T, XN> YN

By reparameterizing A, B to ®, and X, to X, we can reduce the parameter matrices into a single
matrix ® while ensuring the symmetry of @@ " . We train the model © via gradient flow, where the
loss evolution is given by:

vee (X,0(t))

—2(FOn) —y) | (Xfe(t)f vee (©(1)) (79)
[vee (Xn (1)

— (F(©(1) ~ )" J(©(1)) vec (O(1)) . (80)
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Here, the Jacobian matrix J(©(t)) is defined as:

vee (Ve (®(H)O(1)T, X, ): vee (X]@(t)):
s .
1) £ a(’iié(@@(@))) _ | vee (V@((-)(t).@(t) , X ) . vec (X2:®(t )  RNx2
vee (Vo (©(H)O(1)T, Xn)) vee (XnO(1)) "
(31)

With the notations defined above, we state the following theorem:

Theorem E.2. Let the combined weight matrix be

A
® L |: T:| c RQdXd
B b

and consider the loss function L defined in (76). Denote

Omin £ Umin(J((a(O)))’ Omax £ UmaX(J(Q(O)))'

If the initialization satisfies:
6
~ o

< min
£(®(0) = 1152do2 .’

max

then for every t > 0 the following hold:

£(©(0) < £(©0)exp (502t

6 \/ﬁamax ~
2

1e(t) - e0)|r < L£(©(0)).

O min

The above theorem tells us that, if the model is initialized with a sufficiently small loss, the model’s
loss will converge to zero quickly, and the parameters will not move significantly from the initializa-
tion. With the above theorem, we can state the following corollary:

Corollary E.3. Suppose A and B are initialized as balanced, i.e.:
A(0)TA(0) = B(0)B(0)".

Under the conditions of Theorem E.2, for every singular index i € [d] and all t > 0:

0i(A(t)) = 0;(B(t)) and |o;(A(t)) — 0;(A0))] < 4\1}1%.

Consequently, the stable rank of A(t) remains bounded below by

LA <|A(0)”F 4"m>2

[ADZ = \ TAO + 22

B!

E.3.1 PROOF OF THEOREM E.2

We begin the proof of the theorem by noting that the Jacobian J(+) is a Lipschitz function, as stated
in the following lemma:

Lemma E.9. The Jacobian matrix J(W), as defined in (81), is Vd-Lipschitz. Specifically, for any
matrices W,V € R2¥%4 the following inequality holds:

[J(W) — J(V)|| < Vd|[vec(W) — vec(V)]|. (82)
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Proof. Note that for each n-th observation,

Jn(©) = 2vec ( )T

el %)@
() e

Let M; denote the I-th row of a matrix M, and let M. ; denote its [-th column. We have
11.(®)F = | X, Al + | X, B"||%
= |lej.el, Allr + [lei, e BT [|r

= [A43,1I3 + |1 B.., 13-

Now, suppose we observe all entries, i.e., N = d2. Then for any fixed n, i,, = i,, can be satisfied for
all m € [d], meaning each element of A is observed d times. Similarly, each element of B is also
observed d times.

Therefore, we can upper bound the Frobenius norm of the Jacobian matrix by the Frobenius norm of
the Jacobian under full observation:

42
I7@)IIF < > (IX, Al + | X.BT|I7)
n=1
=d(|Al% +1Bl%)
= d||®|f}.

By upper-bounding the spectral norm of the difference between two Jacobian matrices and applying
the inequality above, we obtain:

lJ(W) = J(V)||* = [J(W = V)|
< JW = V)l

which concludes the proof. O

Next, we borrow a lemma from Telgarsky (2021), which states that for a Lipschitz function .J, if we
consider a sufficiently small neighborhood around the initialization ®(0), then the singular values of
the Jacobian J(®) remain close to those at initialization:

Lemma E.10 (Lemma 8.3 in Telgarsky (2021)). If we suppose ||[vec(®) — vec(©(0))|| < S, we

have the following:

Omin 3Umax
Fuin(I(©)) 2 T2 g(J(0)) < 2T,

where we denote oy = Tmin(J(©(0)), and omax = Tmax(J(O(0)).

For simplicity, we denote 0 as the vectorized version of ©, i.e., 8 £ vec(@®). We define the time step
7, which is the first time step when the trajectory of 6(t) touches the boundary:

w2t {11160 - 000)] = 72 .

We now demonstrate the convergence of the loss when ¢ € [0, 7] using the following lemma.
Lemma E.11. Forallt € [0, 7], the loss defined in (76) converges as follows:

£(O(1)) < £(8(0)) exp (—;afmnt) ,

where we deﬁne Omin = UmiII(J(Q(O)))'
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Proof. Recall that the time derivative of the loss can be written as follows, according to (80):
5 T .
L(O) =—(F(O) —y) J(O())6()

= —(F(O®) —y)' J(®1)J(OF) (F(O() -y),
noting that

0(t) = Vo) L(O(t)) = —J(O(1) T (F(O(t) — y).
By Lemma E. 10, for any ¢ € [0, 7], we can upper bound the above term as follows:
L(O(t)) < —Amin (J(OF)J(OF)) [F(O()) -yl

1 -
< 502, L(O)).

Applying Gronwall’s inequality gives:
~ ~ 1
L(O(t)) < L(O(0)) exp <—203ﬁnt> fort € [0, 7].
O

The above lemma shows that the loss decays rapidly to zero if 6(t) stays within a small neighborhood
around the initialization. We now show that if the loss converges quickly near initialization, then 0 (t)
does not move far from its initial value:

Lemma E.12. Let 0y 2 0min(J(©(0))) and omax = Omax(J(©(0))). For all t € [0,7], the
distance between the weight vector at time t and the initial weight vector is bounded by:

S 6 \/%Umax A

16(t) — 8(0)ll < — L(©(0)).

min

Proof. We start by evaluating the distance between 8(¢) and 6(0) using Lemma E.10:

/Ot 6(s)ds

- / l7©) " (F(O(s) ~y)|| ds

16(t) — 6(0)]| =

IN

/O e (T(O(5))) | F(O(s)) — y]| ds
< S [ 1F(©() ~ ] ds.

By Lemma E.11, we know that the objective function £(®) satisfies:
IF©() - P < [1F((0) - P exp 502t
Taking the square root of both sides, we obtain:
IF©®) - 3l < |F©O) - ylexp (- okt )

Substituting this into the previous inequality:

3 K 1,
18(2) = 6(0)]| = 5 Omax|[£(©(0)) — yll/0 exp (40mm5) ds

60max
< ——[1F(©(0) -yl

min

where we used the fact that:

, forC > 0.

Ql =

t
/ exp(—C's)ds <
0
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By combining Lemmas E.11 and E.12, we obtain the following results:

£©(0) < £©0) e (~gotut). 83)
lo(t) - 00 < 22, [F(0(0)) o

which hold for ¢ € [0, 7]. If we can demonstrate that 7 = oo, the proof is complete.

Actually, if we initialize ©(0) to satisfy the condition:
6

~ o2,
£ @ 0 < min
(©(0) = 1152do2,
and substitute this condition into (84), we obtain an upper bound for ||@(t) — 8(0)|:
6\/§O—max 0—13;1111 Omin

o(t) — 0(0)|| < - '
16(t) =00l < = 5= =St = 4va

Recall the definition of 7, which is the first time when 6(t) touches the boundary of the small ball
around the initialization:

et {e1 1o0) - 60)] = 2221

However, with the condition £(®(0)) < %, 0(t) cannot ever touch the boundary. This is
because ||@(t) — 0(0)]| is bounded above by S, which s strictly less than 2. Therefore, the

parameter will remain inside the ball indefinitely, meaning 7 = oo. This completes the proof of the
theorem.

E.3.2 PROOF OF COROLLARY E.3

First, we establish the equality o, (A(¢)) = o;(B(t)) for all i € [d]. Corollary E.3 assumes that A(0)
and B(0) are initialized as “balanced”, satisfying A(0)" A(0) = B(0)B(0)". By Lemma F.4, this
balanced condition ensures that the singular values of A(t) and B(t) remain identical for all ¢ > 0:

0i(A(t)) = oi(B(1)).

Second, we address the change in the singular values of a combined parameter matrix © (¢) (related to
A(t) and B(t)). Theorem E.2 states that under a specified condition on the initial loss, £(©(0)) <

6

15555, the deviation of ©(t) from its initialization ©(0) is bounded for all ¢ > 0 by:

() - 8- < T2

Let K = 9=z By Weyl’s inequality, loi(X) — 0:(Y)| < ||X — Y2, and noting that ||-||2 < ||| 7,
we have for all ¢ € [d]:

|0:(©(t)) — 0:(8(0))| < [©(t) — ©(0)])2
<o) -e()|r
<K.

This inequality allows us to establish bounds for ||©(t)|| r (using reverse triangle inequality) and its
largest singular value o1 (©(t)) = ||©(¢)]]2:

e®llr = [©0)F - K,
o1(O(t) < 01(8(0)) + K.
This yields the following lower bound on the stable rank of @ (t):

||®<t>||%>(||®<o>||FK)2 |©0) e — S\ °
>

el c1(©(0)) + K OOz + 222
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Furthermore, the balancedness condition imphes AT QB . By the definition of
O), Ot)TO(t) = A(t)TA(t) + B(t)B(t)T, this leads to @ = 2A(t)T A(t). This
relationship implies o;(©(t)) = v/20;(A(t)) for all i. Substltutlng this 1nto the bounds for ©(t),
we have

IA®)|F = | AO)]F — E/V2,
IA®)2 < [[A©)]2 + K/V2.

This leads to the final lower bound on the stable rank of A(¢) (which, by balancedness, is equal to
that of B(t)):

JA@I <||A<o>||F - K/ﬁf _ (llA(O)lF - r)

A1 = \[A©)> + K/v2 TAQ)2+ J2

79



Under review as a conference paper at ICLR 2026

F USEFUL LEMMAS

Lemma F.1 (Adaptation of Lemma 1 and Theorem 3 in Arora et al. (2019)). For any time t, the
product matrix W (t) € R4 can be decomposed into its singular value decomposition:

d
W(t)=> or(t)u(t)v(t)"

where o.(t) are the singular values of W (t), and u,.(t), v, (t) are the corresponding left and right
singular vectors, respectively. Moreover, if A, B are balanced at initialization, i.e.,

AT(0)A(0) = B(0)B(0),
the time evolution of the singular values o, (t) is represented as:

Gr(t) = =2 0.(t) (VLW (), u, (v, () ), r=1,....d (85)

Lemma F.2. For any real-valued square matrix A € R%*?, the absolute value of its determinant
equals the product of its singular values:

d
|det(A)| =[] o+
r=1
where o, are the singular values of A.

Proof. We express A using SVD: A = UXV ", Applying the determinant to both sides, we get:
det(A) = det(UXV")
= det(U) det(X) det(V' ")

Here, U and V have orthonormal columns, and X is diagonal with singular values along its main
diagonal. Since the determinant of an orthonormal matrix is either +1,

d
|det(A)| = det(X) = [] ov-

O

Lemma F.3 (Determinant of A(t)). Consider a matrix A(t) € R*? initialized as det(A(0)) > 0.
Then, det(A(t)) > 0 forallt > 0.

Proof. This follows directly from Lemma F.1 and F.2. Since the singular values are initialized as
positive, and their evolution is continuous according to the given differential equation, they cannot
become zero or negative. Therefore, A(t) maintains its sign of the determinant at initialization
throughout the optimization process. O

Lemma F.4 (Adaptation of Lemma 8 in Razin & Cohen (2020)). Consider a product matrix
W (t) = A(t)B(t) € R¥9 where A(t) and B(t) are of equal size and balanced at initialization.
Under these conditions, the following equality holds for all t > 0 and all singular values:

or (W(t) = or (A(1))* = o (B(1))*

where o.(-) denotes the r-th singular value of the respective matrix where r € [d]. Moreover, if
det (A(0)) and det (B(0)) are both positive, then by Lemma F.3, we can guarantee that for all
t>0:

det (W (1)) = det (A(t))? = det (B(t))?

Lemma F.5 (Adaptation of Theorem 1 in Arora et al. (2019)). Consider a product matrix W (t) =
A(t)B(t) € R¥? We can guarantee A(t) and B(t) are analytic functions of t. As a result, W (t)
is also an analytic function of t.
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Lemma F.6 (Lemma 10 in Razin & Cohen (2020)). Let f,g : [0,00] — R be real analytic functions
such that f*)(0) = g*(0) for all k € NU{0}. Then, f(t) = g(t) for all t > 0.

Lemma F.7 (Positive Semidefiniteness of ABAT). For matrices A, B € R%?, if B is positive
semi-definite, then both ABA" and A" B A are positive semi-definite.

Proof. For any vector ¢ € R%:
x'ABA'x = (AT2)"B(ATx) >0
since B is a positive semi-definite matrix. In the same way, for any vector € R% we have:
x' ATBAzx = (Az) " B(Azx) >0

which concludes the proof. O
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