

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 IMPLICIT BIAS AND LOSS OF PLASTICITY IN MATRIX COMPLETION: DEPTH PROMOTES LOW-RANKNESS

Anonymous authors

Paper under double-blind review

ABSTRACT

We study matrix completion via deep matrix factorization (a.k.a. deep linear neural networks) as a simplified testbed to examine how network depth influences training dynamics. Despite the simplicity and importance of the problem, prior theory largely focuses on shallow (depth-2) models and does not fully explain the implicit low-rank bias observed in deeper networks. We identify *coupled dynamics* as a key mechanism behind this bias and show that it intensifies with increasing depth. Focusing on gradient flow under diagonal observations, we prove: (a) networks of depth ≥ 3 exhibit coupling unless initialized diagonally, and (b) convergence to rank-1 occurs if and only if the dynamics is coupled—resolving an open question by [Menon \(2024\)](#) for a family of initializations. We also revisit the *loss of plasticity* phenomenon in matrix completion ([Kleinman et al., 2024](#)), where pre-training on few observations and resuming with more degrades performance. We show that deep models avoid plasticity loss due to their low-rank bias, whereas depth-2 networks pre-trained under decoupled dynamics fail to converge to low-rank, even when resumed training (with additional data) satisfies the coupling condition—shedding light on the mechanism behind this phenomenon.

1 INTRODUCTION

Overparameterized neural networks have the capacity to perfectly memorize the training data, even when they are given random labels ([Zhang et al., 2017](#)). Despite their large capacity, neural networks often generalize well to unseen data without any explicit regularization techniques, which challenges conventional statistical wisdom. Recent studies attribute this phenomenon to the implicit bias of neural networks, arguing that among the many possible global minima, first-order algorithms such as (stochastic) gradient descent favor solutions that generalize well ([Neyshabur et al., 2014; 2017; Huh et al., 2021; Timor et al., 2023; Frei et al., 2023; Kou et al., 2023; Galanti et al., 2024; Jacot, 2022](#)).

Matrix completion, a task with practical applications in areas like recommender systems and image restoration, provides a key framework for investigating these implicit biases, particularly the tendency towards low-rank solutions. While matrix completion can be viewed as a special case of the broader matrix sensing framework ([Jin et al., 2023; Soltanolkotabi et al., 2023; Ma & Fattah, 2023; Stöger & Soltanolkotabi, 2021; Li et al., 2018](#)), which offers general tools for understanding recovery from limited data, specific challenges can emerge when applying these general theories directly. Notably, common theoretical assumptions prevalent in matrix sensing analyses, such as the Restricted Isometry Property (RIP) ([Candes & Tao, 2005](#)), often prove too stringent or may not adequately capture the nuances of many practical matrix completion tasks. For instance, even when completing the 2×2 matrix M_C (introduced in Figure 1a), which can successfully converge to a low-rank solution, the RIP condition cannot be satisfied. Therefore, researchers have investigated implicit bias phenomena specifically within matrix completion, without assuming the RIP condition ([Menon, 2024; Bai et al., 2024; Razin & Cohen, 2020; Ma & Fattah, 2024; Kim & Chung, 2023](#)).

The goal of the matrix completion task is to recover a low-rank ground truth matrix \mathbf{W}^* using only a subset of its entries. A common strategy for matrix completion involves matrix factorization, which can also be viewed as linear neural networks. These networks reparameterize the target matrix \mathbf{X} as a product of factors, $\mathbf{X} = \mathbf{W}_L \mathbf{W}_{L-1} \cdots \mathbf{W}_1$, and train these factors \mathbf{W}_i by minimizing the mean squared error on the observed entries via gradient descent. The observed entries constitute the training set, while the unobserved entries act as the test set.

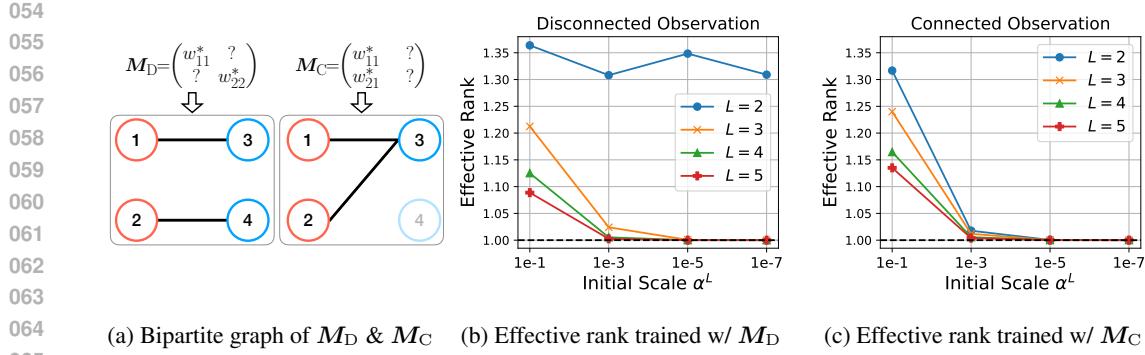


Figure 1: (a) Examples of bipartite graphs corresponding to observation patterns of M_D (disconnected) and M_C (connected). (b-c) Training results showing effective rank (cf. Roy & Vetterli (2007)) for completing rank-1 matrices M_D and M_C , respectively. The rank-1 ground truth matrices were generated via uv^\top , where $u, v \in \mathbb{R}^2$ with entries sampled i.i.d. from a standard normal distribution. We initialized each layer’s entries by sampling from a Gaussian distribution with mean zero and standard deviation α , chosen to ensure the initial scale of the product matrix $W_{L:1}(0)$ is approximately invariant to depth L . Each result shows an average of 300 independent random trials.

The problem of predicting W^* is underdetermined, as infinitely many completions are possible. Nevertheless, both theory and experiments indicate that training even a simple two-layer factorization ($L = 2$) with gradient descent, without explicit rank constraints, typically yields a low-rank solution under reasonable assumptions (Razin & Cohen, 2020; Bai et al., 2024; Ma & Fattah, 2024).

A recent work by Bai et al. (2024) formalizes this phenomenon using the concept of *data connectivity*. They demonstrate that if the observed entries form a connected bipartite graph (meaning any observed entry can be reached from any other via shared rows or columns), a depth-2 factorization initialized at an infinitesimally small scale converges to a low-rank solution. Conversely, the network may converge to a higher-rank matrix if the observations are disconnected (see Definition 1 and Figure 1a).

However, the situation changes significantly for deeper ($L \geq 3$) networks, as empirically demonstrated in Figure 1. Consider the task of completing the 2×2 matrix

$$M_D = \begin{pmatrix} w_{11}^* & ? \\ ? & w_{22}^* \end{pmatrix} \quad (1)$$

where only the diagonal entries are observed. This observation pattern forms a disconnected graph as illustrated in Figure 1a. Consistent with the theory for disconnected graphs, $L = 2$ models fail to find a low-rank solution, empirically converging to rank-2 regardless of initialization scale. In contrast, deeper models ($L \geq 3$) with small initialization tend to converge to a rank-1 solution, as shown in Figure 1b. This specific example highlights that the implicit low-rank bias appears to be strengthened by depth, in a way that *cannot be explained solely by the data connectivity framework* developed for $L = 2$ models. Furthermore, considering connected cases as well, Figure 1c demonstrates that this strong low-rank bias is generally robust, tending to strengthen further as depth increases.

However, a theoretical understanding of this depth-induced bias remains elusive, largely due to the complex, coupled dynamics during training. While Arora et al. (2019) offer insights, their claim that the gap between two arbitrary singular values widens with depth is not fully formal. It stems largely from their analysis assuming stabilized singular vectors, which limits its scope. Indeed, Menon (2024) notes that even for a simple case like (1) with $w_{11}^* = w_{22}^* = 1$, proving that gradient descent with a deep factorization converges to a low-rank solution is still an open problem. Motivated by this gap in understanding, we theoretically analyze such settings, including the example (1).

Investigating the implicit low-rank bias in matrix completion can also shed light on the phenomenon of “*loss of plasticity*”, a challenge widely observed in general neural network training (Shin et al., 2024; Ash & Adams, 2020; Achille et al., 2018; Berariu et al., 2021). The term loss of plasticity describes the tendency of neural networks, particularly after initial training, to lose their adaptability to new information, hindering their generalization capabilities. A recent work by Kleiman et al. (2024) empirically reports this phenomenon even in matrix completion. They observe that models

108 trained with insufficient data often yield high-rank solutions. If these models then warm-start using
 109 augmented data, they frequently struggle to achieve low-rank solutions. To provide a theoretical
 110 explanation for why this loss of plasticity occurs, this paper elucidates the phenomenon.

111 To summarize, here are the main research questions that we address throughout the paper:

- 113 • *What is the fundamental difference between deep ($L \geq 3$) and shallow ($L = 2$) factorizations
 114 regarding their implicit low-rank bias, particularly for disconnected observations?*
- 115 • *Can we theoretically establish that deeper models (i.e., with larger $L \geq 3$) exhibit a stronger
 116 implicit bias toward low-rank solutions?*
- 117 • *What is the underlying cause of the loss of plasticity phenomenon, and how does depth
 118 interplay with it?*

120 In Section 3.1, we begin by examining the depth-2 case to elucidate the key mechanism of connectivity.
 121 We find that *coupled training dynamics* induces a low-rank bias, a phenomenon generalizable to
 122 deeper networks. Section 3.2 further investigates this for all $L \geq 2$ using the diagonal observation
 123 case. Our analysis reveals that, for deep models, this bias distinctively promotes low-rank solutions
 124 compared to depth-2 models, strengthening with depth. Finally, Section 4 explores the loss of
 125 plasticity phenomenon in matrix completion. We observe that deep models typically avoid this
 126 phenomenon due to their low-rank bias. In contrast, we empirically observe and prove that depth-2
 127 networks pre-trained with limited observations (yielding decoupled dynamics) and subsequently
 128 trained with augmented observations (yielding coupled dynamics) fail to find a low-rank solution.
 129 Please refer to Appendix A for further discussion of related work.

130 2 PROBLEM SETTING

131 We consider the problem of estimating a ground truth matrix $\mathbf{W}^* \in \mathbb{R}^{d \times d}$ based on observations of
 132 its entries $\{w_{ij}^*\}_{(i,j) \in \Omega}$, where $\Omega \subseteq [d] \times [d]$ is the set of observed indices. We model the estimate as
 133 a linear network $\mathbf{W}_{L:1} \triangleq \mathbf{W}_L \mathbf{W}_{L-1} \cdots \mathbf{W}_1$, where $\mathbf{W}_l \in \mathbb{R}^{d_l \times d_{l-1}}$ with $d_0 = d_L = d$. We denote
 134 the (i, j) -th entry of the matrix $\mathbf{W}_{L:1}$ as w_{ij} . The factor matrices $\{\mathbf{W}_l\}_{l=1}^L$ are trained by minimizing
 135 an objective function ϕ , defined as the mean squared error ℓ over the observed entries in Ω :

$$137 \quad \phi(\mathbf{W}_1, \dots, \mathbf{W}_L; \Omega) \triangleq \ell(\mathbf{W}_{L:1}; \Omega) = \frac{1}{2} \sum_{(i,j) \in \Omega} (w_{ij} - w_{ij}^*)^2. \quad (2)$$

140 We study the overparameterized regime where the intermediate dimensions satisfy $d_l \geq d$ for all
 141 $l \in [L-1]$, imposing no explicit rank constraints on the product model $\mathbf{W}_{L:1}$. Consistent with prior
 142 works, our analysis focuses on *gradient flow dynamics* (gradient descent with an infinitesimal step
 143 size) for a given objective function ϕ . The dynamics for each layer $\mathbf{W}_l(t)$ evolve according to:

$$144 \quad \dot{\mathbf{W}}_l(t) \triangleq \frac{d}{dt} \mathbf{W}_l(t) = -\frac{\partial}{\partial \mathbf{W}_l(t)} \phi(\mathbf{W}_1(t), \mathbf{W}_2(t), \dots, \mathbf{W}_L(t); \Omega), \quad l \in [L], t \geq 0. \quad (3)$$

147 For depth-2 networks ($L = 2$), the product of factor matrices $\mathbf{A} \in \mathbb{R}^{d \times d_1}$ (representing \mathbf{W}_2) and
 148 $\mathbf{B} \in \mathbb{R}^{d_1 \times d}$ (representing \mathbf{W}_1), we denote $\mathbf{W}_{A,B} \triangleq \mathbf{AB}$. We denote the stable rank of a matrix by
 149 $\text{srank}(\mathbf{W}) \triangleq \|\mathbf{W}\|_F^2 / \|\mathbf{W}\|_2^2$.

150 Bai et al. (2024) introduce the concept of data connectivity for an incomplete matrix \mathbf{M} . Connectivity
 151 is characterized by its set of observed indices $\Omega \subseteq [d] \times [d]$ and the corresponding observation matrix
 152 \mathbf{P} (where $P_{ij} = 1$ if $(i, j) \in \Omega$, and 0 otherwise). The formal definition is as follows:

153 **Definition 1** (Connectivity from Bai et al. (2024)). *An incomplete matrix \mathbf{M} is connected if the bi-
 154 partite graph \mathcal{G}_M , constructed from its observation matrix \mathbf{P} using the adjacency matrix $\begin{bmatrix} \mathbf{0} & \mathbf{P}^\top \\ \mathbf{P} & \mathbf{0} \end{bmatrix}$,
 155 is connected after removing isolated vertices. Otherwise, \mathbf{M} is disconnected.*

158 3 IMPLICIT BIAS OF DEPTH INDUCED BY COUPLED TRAINING DYNAMICS

160 In this section, we extend the connectivity argument of Bai et al. (2024) to general depth factorizations.
 161 We first demonstrate how the *coupling of training dynamics* serves as the key mechanism explaining
 data connectivity's role in depth-2 models, through the completion of two previously introduced

162 2×2 matrices, \mathbf{M}_D and \mathbf{M}_C , as illustrative examples. Building on the insights derived from these
 163 depth-2 model analyses, we hypothesize that deep networks exhibit an intrinsic low-rank bias because
 164 they maintain a high degree of coupled training dynamics, irrespective of observation patterns. This
 165 hypothesis is further corroborated by the diagonal observation results presented in Section 3.2.
 166

167 3.1 WARM-UP: COUPLED DYNAMICS VS. DECOUPLED DYNAMICS IN DEPTH-2 NETWORKS

168 We focus on the simple 2×2 matrix completion of \mathbf{M}_D and \mathbf{M}_C , using depth-2 models $\mathbf{W}_{A,B}(t) =$
 169 $\mathbf{A}(t)\mathbf{B}(t)$. For brevity, let $\mathbf{a}_i(t) \in \mathbb{R}^{d_1}$ be the transpose of the i -th row of $\mathbf{A}(t)$, and let $\mathbf{b}_j(t) \in \mathbb{R}^{d_1}$
 170 be the j -th column of $\mathbf{B}(t)$. Our aim is to see how training dynamics affect the *alignment* of the rows
 171 of $\mathbf{A}(t)$ or the columns of $\mathbf{B}(t)$, as such alignment leads to a rank-1 product matrix $\mathbf{W}_{A,B}(t)$.
 172

173 **Decoupled Dynamics.** In the \mathbf{M}_D case (disconnected observations w_{11}^*, w_{22}^*), the gradient flow
 174 using the objective defined in (2), results in independent dynamics for the pairs $(\mathbf{a}_1, \mathbf{b}_1)$ and $(\mathbf{a}_2, \mathbf{b}_2)$:
 175

$$176 \quad \dot{\mathbf{a}}_i(t) = (w_{ii}^* - \mathbf{a}_i(t)^\top \mathbf{b}_i(t)) \mathbf{b}_i(t), \quad \dot{\mathbf{b}}_i(t) = (w_{ii}^* - \mathbf{a}_i(t)^\top \mathbf{b}_i(t)) \mathbf{a}_i(t) \quad \text{for } i = 1, 2. \\ 177$$

178 Note that while the dynamics couple $\mathbf{a}_1(t)$ with $\mathbf{b}_1(t)$ and $\mathbf{a}_2(t)$ with $\mathbf{b}_2(t)$ within each pair, the two
 179 pairs $(\mathbf{a}_1, \mathbf{b}_1)$ and $(\mathbf{a}_2, \mathbf{b}_2)$ are decoupled. This decoupling means the overall system's dynamics
 180 separate into two independent systems. Consequently, there is no compelling reason to align vectors
 181 from different pairs, typically leading to high-rank solutions with generic initializations (Figure 1b).
 182 Indeed, we can obtain closed-form solutions solely dependent on initialization (see Proposition 4.1).
 183 For instance, with $\mathbf{A}(0) = \mathbf{B}(0) = \alpha \mathbf{I}_2$, we have $\mathbf{W}_{A,B}(\infty) = \text{diag}(w_{11}^*, w_{22}^*)$, a rank-2 solution.
 184

185 **Coupled Dynamics.** In contrast, for the \mathbf{M}_C case (connected observations w_{11}^*, w_{21}^*), the gradient
 186 flow on the objective (2) yields coupled dynamics that do not decompose into independent pairs:
 187

$$188 \quad \dot{\mathbf{a}}_1(t) = (w_{11}^* - \mathbf{a}_1(t)^\top \mathbf{b}_1(t)) \mathbf{b}_1(t), \quad \dot{\mathbf{a}}_2(t) = (w_{21}^* - \mathbf{a}_2(t)^\top \mathbf{b}_1(t)) \mathbf{b}_1(t), \\ 189 \quad \dot{\mathbf{b}}_1(t) = (w_{11}^* - \mathbf{a}_1(t)^\top \mathbf{b}_1(t)) \mathbf{a}_1(t) + (w_{21}^* - \mathbf{a}_2(t)^\top \mathbf{b}_1(t)) \mathbf{a}_2(t). \quad (4)$$

190 An important observation from (4) is that $\mathbf{A}(0) = \mathbf{0}$ ensures rank-1 $\mathbf{W}_{A,B}(t)$ due to persistent
 191 alignment of $\mathbf{a}_1(t)$, $\mathbf{a}_2(t)$ and $\mathbf{b}_1(t)$. Although non-zero initialization leads to more complex behavior
 192 arising from coupled training dynamics, the following theorem demonstrates that sufficiently small
 193 initial norms in $\mathbf{A}(0)$ also result in the alignment of $\mathbf{a}_1(t)$ and $\mathbf{a}_2(t)$ with $\mathbf{b}_1(t)$.
 194

195 **Theorem 3.1.** *For the product model $\mathbf{W}_{A,B}(t) = \mathbf{A}(t)\mathbf{B}(t) \in \mathbb{R}^{2 \times 2}$, we consider the gradient
 196 flow dynamics (4), where the observations are $w_{11}^*(\neq 0)$ and $w_{21}^*(\neq 0)$. We assume convergence
 197 to the zero-loss solution (i.e., $w_{11}(\infty) = w_{11}^*$, $w_{21}(\infty) = w_{21}^*$). Defining $\mathbf{u}^* = \frac{\mathbf{b}_1(\infty)}{\|\mathbf{b}_1(\infty)\|_2}$ and the
 198 orthogonal component $\mathbf{a}_{i\perp}(\infty) = \mathbf{a}_i(\infty) - (\mathbf{a}_i(\infty)^\top \mathbf{u}^*) \mathbf{u}^*$, we have:*

$$199 \quad \frac{\|\mathbf{a}_{i\perp}(\infty)\|_2^2}{\|\mathbf{a}_i(\infty)\|_2^2} \leq \frac{\|\mathbf{A}(0)\|_F^2 \left(\sqrt{\|\mathbf{b}_1(0)\|_2^4 + 4w_{11}^{*2} + 4w_{21}^{*2}} + \|\mathbf{b}_1(0)\|_2^2 \right)}{2w_{i1}^{*2}}, \quad \text{for } i = 1, 2. \\ 200 \\ 201 \\ 202$$

203 The theorem shows that small initial norms for $\mathbf{A}(0)$ lead to the alignment of $\mathbf{a}_1(\infty)$ and $\mathbf{a}_2(\infty)$ with
 204 $\mathbf{b}_1(\infty)$, implying a near rank-1 product matrix $\mathbf{W}_{A,B}(\infty)$. This suggests that for depth-2 networks,
 205 coupled training dynamics (resulting from connected observations) facilitate the emergence of low-
 206 rank solutions under such small initialization, in contrast to the decoupled dynamics of disconnected
 207 observations, where no such bias exists regardless of initialization scale. This connection between
 208 observation connectivity and the coupling of training dynamics in depth-2 models motivates our
 209 investigation into how coupled dynamics manifest and induce low-rank bias in deeper networks,
 210 irrespective of connectivity patterns, as explored in the subsequent sections.
 211

212 **Remark.** Analyzing these dynamics is challenging because the time evolutions of \mathbf{a}_1 , \mathbf{a}_2 , and \mathbf{b}_1
 213 are mutually dependent. We note that Theorem 3.1 is not a direct corollary of Theorem 3 in [Bai et al. \(2024\)](#). We explicitly characterize the degree of misalignment as a function of the initialization scale,
 214 unlike their assumption of an infinitesimal initialization scale with additional conditions.
 215

216 3.2 COUPLED DYNAMICS IN DEEP NETWORKS INDUCE IMPLICIT BIAS TOWARDS LOW RANK
217

218 Section 3.1 illustrated the importance of coupled training dynamics, driven by data connectivity,
219 for achieving low-rank solutions in simple two-layer factorizations ($L = 2$). Building on this
220 understanding, we now extend our analysis to deep networks ($L \geq 3$). For illustrative purposes,
221 consider a depth-3 network $\mathbf{W}_{3:1}$. An arbitrary observed entry w_{ij} from this matrix is given by:

$$222 \quad w_{ij} = \sum_{k=1}^{d_2} \sum_{l=1}^{d_1} (\mathbf{W}_3)_{ik} (\mathbf{W}_2)_{kl} (\mathbf{W}_1)_{lj}. \quad (5)$$

224 Crucially, because all elements of the intermediate matrix \mathbf{W}_2 contribute to the computation of w_{ij}
225 regardless of (i, j) , gradients of different observed entries will propagate through and update these
226 shared elements in \mathbf{W}_2 . This inherently couples their training dynamics, a structural feature distinct
227 from the depth-2 case, where coupling is primarily determined by the observation pattern. Such
228 inherent coupling, in turn, implies a potential intrinsic bias towards low-rank solutions for deep
229 models. To formalize this notion, we introduce the following definition of coupled dynamics.

230 **Definition 2** (Coupled/Decoupled Dynamics). *Consider the matrix completion setup with the model*
231 $\mathbf{W}_{L:1}(t) = \mathbf{W}_L(t) \cdots \mathbf{W}_1(t) \in \mathbb{R}^{d \times d}$. *Let $\theta(t)$ be the vector of all trainable parameters evolving*
232 *according to the gradient flow dynamics (defined in (3)). The gradient flow dynamics are **decoupled***
233 *if there exists a partition of Ω into non-empty, disjoint subsets $\Omega_1, \dots, \Omega_K$ ($K \geq 2$) such that*
234 $\bigcup_{k=1}^K \Omega_k = \Omega$ *and the following condition holds for any $(i, j) \in \Omega_k$ and $(p, q) \in \Omega_l$ with $k \neq l$:*

$$235 \quad \langle \nabla_{\theta} w_{ij}(t), \nabla_{\theta} w_{pq}(t) \rangle = 0, \quad \forall t \geq 0. \quad (6)$$

236 *The gradient flow dynamics are **coupled** if they are not decoupled.*

237 While Bai et al. (2024) introduce similar terminology in Definition A.5, their definition is restricted
238 to depth-2 networks. We extend this notion to networks of arbitrary depth. For depth-2 matrices, it is
239 straightforward to verify that coupled and decoupled dynamics typically correspond to connected
240 and disconnected graphs, respectively, based on Definitions 1 and 2. For depth ≥ 3 matrices, any
241 initialization with an absolutely continuous distribution (e.g., Gaussian, uniform) yields gradient flow
242 dynamics that are coupled with probability one (see Proposition B.1 in Appendix B), irrespective of
243 the observation pattern. However, special cases exist where training dynamics are decoupled even for
244 $L \geq 3$. Refer to Appendix B for further discussion.

245 3.2.1 IMPLICIT BIAS OF DEPTH UNDER DIAGONAL OBSERVATIONS
246

247 To gain deeper theoretical insight into *how coupled dynamics induce low-rank bias as depth increases*,
248 we further investigate the diagonal observation setting. As highlighted in the 2×2 example (cf.
249 Figure 1b), this setting reveals a stark difference between shallow and deep networks despite being a
250 disconnected observation pattern. To investigate this further, we now turn to the general $d \times d$ case.

251 Specifically, we consider a $d \times d$ ground truth matrix \mathbf{W}^* with positive and identical diagonal
252 observations $w^* \triangleq w_{11}^* = \dots = w_{dd}^* > 0$ where $\Omega_{\text{diag}}^{(d)} \triangleq \{(i, i) \mid i \in [d]\}$. We factorize the model
253 with depth- L : $\mathbf{W}_{L:1}(t) = \mathbf{W}_L(t) \mathbf{W}_{L-1}(t) \cdots \mathbf{W}_1(t)$ where $\mathbf{W}_l \in \mathbb{R}^{d \times d}$ for all $l \in [L]$.

254 To investigate how dynamic coupling affects the low-rank bias, we consider a family of initializations
255 where, for parameters $\alpha > 0$ and $m > 1$, each factor matrix $\mathbf{W}_l(0)$ is initialized as follows:

$$257 \quad \mathbf{W}_l(0) = \begin{pmatrix} \alpha & \alpha/m & \cdots & \alpha/m \\ \alpha/m & \alpha & \cdots & \alpha/m \\ \vdots & \vdots & \ddots & \vdots \\ \alpha/m & \alpha/m & \cdots & \alpha \end{pmatrix} \in \mathbb{R}^{d \times d}, \quad \forall l \in [L]. \quad (7)$$

262 **Remark.** Random Gaussian initialization allows coupling but introduces Ld^2 degrees of freedom,
263 making it impossible to track individual training trajectories. For this reason, prior work often adopts
264 deterministic initializations such as $\alpha \mathbf{I}_d$ (Gunasekar et al., 2017; Arora et al., 2019; Razin & Cohen,
265 2020). We follow this approach but adopt a more general deterministic family that is adequate for
266 establishing our theoretical claims. Our initialization interpolates between $\alpha \mathbb{1}_d \mathbb{1}_d^\top$ (as $m \rightarrow 1$) and
267 $\alpha \mathbf{I}_d$ (as $m \rightarrow \infty$), and the parameter m allows direct control over the initial numerical rank.

269 Using this initialization scheme with diagonal observations, the following proposition specifies how
parameters m and network depth L determine if training dynamics are coupled or decoupled:

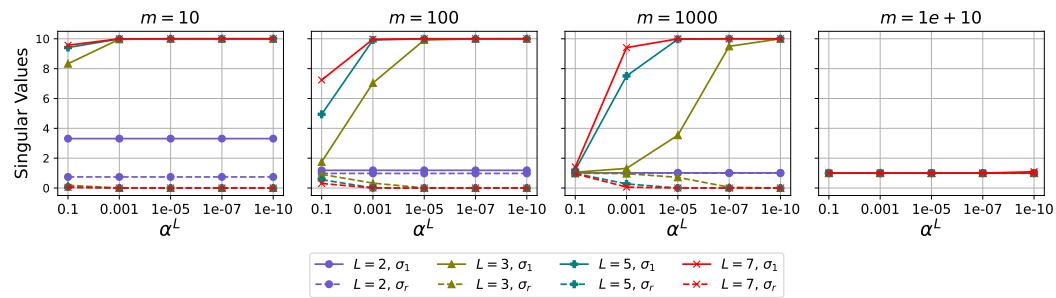


Figure 2: Singular values σ_i of $\mathbf{W}_{L:1}(\infty)$ (numerically obtained from Theorem 3.3) against initialization scale α^L , for the diagonal observation task. Solid lines represent the largest singular value σ_1 ; dashed lines denote the other (identical) singular values σ_r for $r \geq 2$. For finite m , these results illustrate that both greater depth L and a smaller initial scale α enhance the low-rank bias, in contrast to the $L = 2$ case. Conversely, a very large m (e.g., $m = 10^{10}$), approximating an $\alpha \mathbf{I}_d$ (rank- d) initialization, leads to decoupled dynamics and a full-rank solution, independent of both L and α .

Proposition 3.2. Consider a depth- L model, where each factor $\mathbf{W}_l(0) \in \mathbb{R}^{d \times d}$ is initialized with (7) trained with diagonal observations, $\Omega_{\text{diag}}^{(d)}$. Then, according to Definition 2, the following hold:

- For depth $L = 2$, the training dynamics are **decoupled** for all $m > 1$.
- For depth $L \geq 3$.
 - The training dynamics are **coupled** if $1 < m < \infty$.
 - The training dynamics are **decoupled** if $m = \infty$ (i.e., initialization with $\alpha \mathbf{I}_d$).

By Proposition D.1 in Appendix D, the loss decays exponentially to zero under the gradient flow dynamics (3). Building on this zero-loss convergence, our objective is to determine the rank of solutions found by gradient flow depending on the coupling of dynamics. The theorem below presents an equation of each singular value of the converged matrix $\mathbf{W}_{L:1}(\infty)$, for all $L \geq 2$.

Theorem 3.3. Consider the product matrix $\mathbf{W}_{L:1}$, whose factor matrices $\mathbf{W}_l \in \mathbb{R}^{d \times d}$ are initialized according to (7). Under the gradient flow dynamics (3), we have $\ell(\mathbf{W}_{L:1}(\infty); \Omega_{\text{diag}}^{(d)}) = 0$ (Proposition D.1, Appendix D). Let $\sigma_1 \geq \dots \geq \sigma_d \geq 0$ denote the singular values of the converged matrix $\mathbf{W}_{L:1}(\infty)$. Then, for all parameter values $\alpha > 0$, $m > 1$, $d \geq 2$, and $L \geq 2$, the following holds:

- If $L = 2$ (**decoupled dynamics**): The singular values are explicitly given by

$$\sigma_1 = \frac{w^*(m+d-1)^2}{m^2+d-1}, \quad \sigma_r = \frac{w^*(m-1)^2}{m^2+d-1} \quad \text{for } r = 2, \dots, d.$$

- If $L \geq 3$ and $1 < m < \infty$ (**coupled dynamics**): The singular values satisfy the implicit equations:

$$(\sigma_1)^{\frac{2-L}{L}} - \left(\frac{w^*d - \sigma_1}{d-1} \right)^{\frac{2-L}{L}} = C_{\alpha, m, L, d}, \quad (8)$$

$$(w^*d - (d-1)\sigma_r)^{\frac{2-L}{L}} - (\sigma_r)^{\frac{2-L}{L}} = C_{\alpha, m, L, d}, \quad \text{for } r = 2, \dots, d, \quad (9)$$

where $C_{\alpha, m, L, d} \triangleq \left(\frac{\alpha}{m} \right)^{2-L} ((m+d-1)^{2-L} - (m-1)^{2-L})$.

- If $L \geq 3$ and $m = \infty$ (**decoupled dynamics**): The singular values converge to:

$$\sigma_i = w^*, \quad \text{for } i = 1, 2, \dots, d.$$

The proof of the theorem is provided in Appendix D.3. The theorem details the converged singular values of $\mathbf{W}_{L:1}(\infty)$ for our initialization scheme (7). Crucially, it reveals distinct outcomes based on the nature of the training dynamics. For decoupled dynamics—specifically, when $L = 2$ (for sufficiently large $m > 1$), or when $L \geq 3$ and $m = \infty$ —all singular values approach w^* and are independent of the scale α . This implies convergence to a full-rank solution. In contrast, for coupled dynamics ($L \geq 3$ with finite m), the outcome becomes α -dependent. To illustrate the implications of these implicit equations, we present the following corollary.

324 **Corollary 3.4.** *Let $1 < m < \infty$, $d \geq 2$, $w^* > 0$, and $L \geq 3$ be fixed. Then, as $\alpha \rightarrow 0$, the stable*
 325 *rank of the limit product matrix $\mathbf{W}_{L:1}(\infty)$ converges to one; that is,*
 326

$$327 \quad \text{srank}(\mathbf{W}_{L:1}(\infty)) \rightarrow 1.$$
 328

329 The proof of the corollary is provided in Appendix D.4. Note that, according to Theorem 3.3, the
 330 stable rank of the depth-2 network satisfies $\text{srank}(\mathbf{W}_{2:1}(\infty)) = \frac{(m+d-1)^4 + (m-1)^4(d-1)}{(m+d-1)^4}$, which is
 331 independent of the initialization scale α , and is approximately d when m is large. In contrast, for any
 332 depth $L \geq 3$ with finite m , Corollary 3.4 implies that as $\alpha \rightarrow 0$, then $\text{srank}(\mathbf{W}_{L:1}(\infty)) \rightarrow 1$, so the
 333 depth- L network converges to a nearly rank-one solution.
 334

335 While the corollary characterizes the limiting rank behavior, fully understanding the dynamics
 336 governed by the implicit equations requires a numerical study. To this end, we solve the implicit
 337 equations (8) and (9), which determine the singular values σ_i for the coupled $L \geq 3$, finite m
 338 case. Before proceeding, we note that both equations admit unique solutions, as established in
 339 Proposition D.2 in Appendix D.3.4. Setting $w^* = 1$ and $d = 10$, we examine how network depth
 340 (L) and initialization parameters (α, m) influence the singular value distribution. To ensure a fair
 341 comparison across depths, we set the initialization scale so that the scale of the $\mathbf{W}_{L:1}(0)$ is comparable
 342 across depths; concretely, we match the scale of α^L across different values of L . The results in
 343 Figure 2 confirm that these coupled dynamics in models with $L \geq 3$ and finite m indeed induce a
 344 low-rank bias, contrasting with the full-rank outcomes of the decoupled cases. Moreover, this bias
 345 becomes more pronounced as L increases, evidenced by a wider gap between σ_1 and σ_r for $r \geq 2$.

346 Additional numerical evidences are provided in Figures 5–7 (Appendix C.1). Moreover, Figure 8
 347 in Appendix C.1 shows that these numerical results agree with the outcomes of a gradient descent
 348 with a sufficiently small learning rate. We further train practical neural networks to examine whether
 349 increased depth indeed leads to a low-rank bias. The results shown in Figures 17–20 (SGD with
 350 momentum), 21–24 (Adam), and 25–28 (RMSProp) in Appendix C.1.1 indicate that as depth increases
 351 (e.g., ResNet-18 to 101 and VGG-11 to 19), the average effective rank decreases, highlighting the
 352 emergence of low-rank bias in practical neural networks across these optimizers.

353 **Remark.** Our analysis of low-rank bias for a specific family of deterministic initializations resolves
 354 the challenging open problem (1) highlighted in Section 14.1 of Menon (2024). Figure 9 in Ap-
 355 pendix C.1 further demonstrates that our proposed deterministic initialization exhibits qualitative
 356 trends similar to Gaussian initialization. We therefore argue that our results provide foundational
 357 insights into low-rank bias applicable to more general random initializations.
 358

359 4 UNDERSTANDING LOSS OF PLASTICITY IN DEPTH-2 MATRIX COMPLETION

360 Studying the inherent tendency towards low-rank solutions in matrix completion can offer further
 361 insights into the loss of plasticity phenomenon. Kleinman et al. (2024) report the emergence of this
 362 phenomenon in matrix completion: models pre-trained on limited observations struggle to adapt
 363 when training continues on augmented observations. Notably, they observe that loss of plasticity is
 364 further intensified with increasing network depth, a conclusion they reached by measuring a “relative
 365 reconstruction loss” when compared to models trained from scratch on the augmented dataset. In
 366 their setup, training is run for a fixed number of iterations without waiting for convergence, whereas
 367 in our experiments we terminate each training phase once the loss falls below a fixed threshold.
 368

369 However, our findings (Figure 3) offer a more nuanced perspective. We observed that even when
 370 pre-trained with a sparser set of observations, deeper models increasingly favor low-rank solutions
 371 as their depth increases. This aligns with our argument (Section 3.2) that they inherently achieve
 372 low-rank solutions even from limited, disconnected initial data. Consequently, for these deeper
 373 models, further training on augmented data (the post-training stage) does not lead to noticeably higher
 374 rank compared to training equivalent models from scratch on the augmented observations. Therefore,
 375 while their performance might exhibit a relative degradation compared to models trained from scratch,
 376 their absolute solution quality can still surpass that of shallower models. Based on our observations,
 377 we conclude that the low-rank bias of deep models helps them mitigate the loss of plasticity, while
 378 the phenomenon is more pronounced in depth-2 models. To theoretically understand the underlying
 379 cause of this phenomenon itself, we henceforth focus our analysis on depth-2 models.

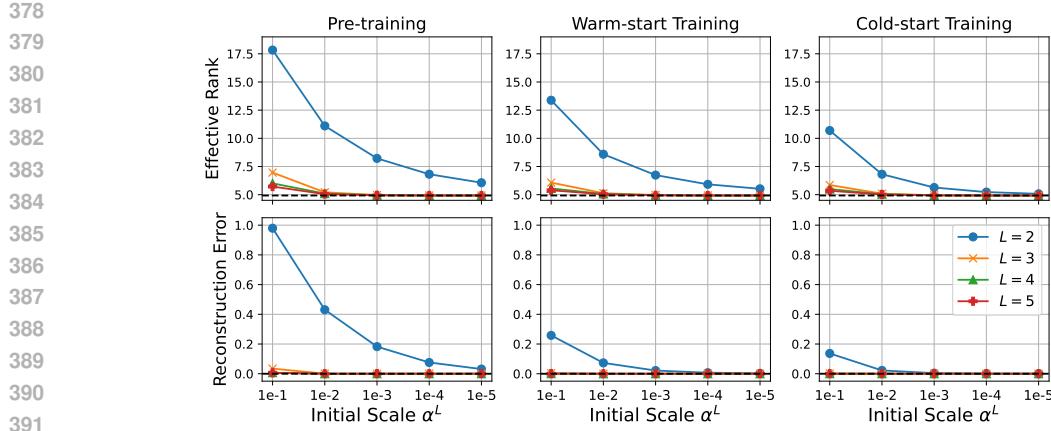


Figure 3: Experiments use a 100×100 rank-5 ground-truth matrix. pre-training utilizes 2000 randomly sampled entries (Ω_{pre} ; $|\Omega_{\text{pre}}| = 2000$), while post-training adds 1000 more, forming Ω_{post} ($\Omega_{\text{pre}} \subset \Omega_{\text{post}}$; $|\Omega_{\text{post}}| = 3000$). The top row of panels displays effective rank, and the bottom row shows reconstruction error, both measured at convergence. The leftmost panels depict training on Ω_{pre} , and the rightmost on Ω_{post} , both starting from random Gaussian initialization. The middle panels show warm-start training on Ω_{post} , initialized from converged pre-trained models with Ω_{pre} .

In Section 4.1, we study pre-training on diagonal-only observations, i.e., the disconnected index set $\Omega_{\text{diag}}^{(d)}$. We then consider post-training on 2×2 (Section 4.2) and $d \times d$ (Section 4.3) matrices. For the 2×2 case, we set $\Omega_{\text{pre}}^{(2)} \triangleq \Omega_{\text{diag}}^{(2)}$ and obtain the post-training set $\Omega_{\text{post}}^{(2)}$ by adding a single off-diagonal entry to ensure connectivity. Likewise, for the $d \times d$ case, $\Omega_{\text{pre}}^{(d)} \triangleq \Omega_{\text{diag}}^{(d)}$, and $\Omega_{\text{post}}^{(d)}$ is formed by adding additional (off-diagonal) observations; see Section 4.3 for details.

4.1 PRE-TRAINING WITH DIAGONAL OBSERVATIONS

To clearly observe loss of plasticity in a setting consistent with Section 3.2, we pre-train using only diagonal entries, yielding a disconnected pattern. We consider decoupled-to-coupled scenarios, where additional data is introduced to induce coupled training dynamics. For depth-2 models, they correspond to a disconnected-to-connected observation pattern. For the pre-training, closed-form solutions that depend *solely* on the network’s initialization can be found in the following proposition:

Proposition 4.1. *Consider a ground truth matrix $\mathbf{W}^* \in \mathbb{R}^{d \times d}$ with diagonal observations $\Omega_{\text{diag}}^{(d)}$. The model is factorized as $\mathbf{W}_{\mathbf{A}, \mathbf{B}}(t) = \mathbf{A}(t)\mathbf{B}(t)$, where $\mathbf{A}(t), \mathbf{B}(t) \in \mathbb{R}^{d \times d}$. For each observation $(i, i) \in \Omega_{\text{diag}}^{(d)}$, define the constants P_i and Q_i based on the initial values:*

$$P_i \triangleq \sum_{k=1}^d a_{ik}(0)b_{ki}(0) \quad \text{and} \quad Q_i \triangleq \sum_{k=1}^d (a_{ik}(0)^2 + b_{ki}(0)^2).$$

Furthermore, for each diagonal observation, let the parameter \bar{r}_i be determined from the ground truth entry w_{ii}^* and the constants defined above, $\bar{r}_i \triangleq \frac{1}{2} \log \left(\frac{P_i + \frac{Q_i}{2}}{w_{ii}^* + \sqrt{w_{ii}^{*2} - P_i^2 + \left(\frac{Q_i}{2}\right)^2}} \right)$. Then, assuming convergence to a zero-loss solution of the loss $\ell(\mathbf{W}_{\mathbf{A}, \mathbf{B}}; \Omega_{\text{diag}}^{(d)})$, any entry $a_{pq}(\infty)$ of the converged matrix $\mathbf{A}(\infty)$ and any entry $b_{pq}(\infty)$ of the converged matrix $\mathbf{B}(\infty)$ (for any $p, q \in [d]$) are given by:

$$a_{pq}(\infty) = a_{pq}(0) \cosh(\bar{r}_p) - b_{qp}(0) \sinh(\bar{r}_p),$$

$$b_{pq}(\infty) = b_{pq}(0) \cosh(\bar{r}_q) - a_{qp}(0) \sinh(\bar{r}_q).$$

Remark. The proposition covers *arbitrary* initializations with *distinct* w_{ii}^* , which goes beyond Theorem 3.3 in the $L = 2$ setting. While the above analysis focuses on diagonal observation cases, it can be generalized to any fully disconnected case (i.e., a single observation per row and column). This yields distinct solutions for various types of observation sets, as detailed in Appendix E.1.

We analyze the scenario where training resumes from a state obtained through pre-training. Let the pre-training phase conclude at a sufficiently large timestep T_1 . For simplicity, we assume that the solution $\mathbf{W}_{\mathbf{A}, \mathbf{B}}(T_1)$ has perfectly converged with respect to the pre-training objective, neglecting any residual error due to the finite duration of this phase. Our subsequent analysis demonstrates that, starting from $\mathbf{W}_{\mathbf{A}, \mathbf{B}}(T_1)$, the model $\mathbf{W}_{\mathbf{A}, \mathbf{B}}(t)$ cannot converge to a low-rank solution.

4.2 POST-TRAINING: 2 BY 2 MATRIX EXAMPLE

We aim to analyze scenarios where training is resumed under coupled dynamics, building upon solutions obtained from an initial decoupled pre-training phase (Proposition 4.1). To this end, we first define the specific pre-training setup for an illustrative 2×2 case: We observe diagonal entries ($\Omega_{\text{pre}}^{(2)}$), which are identical and positive, i.e., $w^* \triangleq w_{11}^* = w_{22}^* > 0$. To make loss of plasticity particularly pronounced during the pre-training, we initialize the model with $\alpha \mathbf{I}_2$ (for $\alpha > 0$), which is the $m = \infty$ setting of our initialization scheme in (7). Then, from Proposition 4.1, it follows that:

$$\mathbf{A}(T_1) = \mathbf{B}(T_1) = \begin{pmatrix} \sqrt{w^*} & 0 \\ 0 & \sqrt{w^*} \end{pmatrix}. \quad (10)$$

For the subsequent post-training phase, an additional off-diagonal observation is introduced to establish connectivity. Without loss of generality, we assume $w_{12}^* > 0$ is revealed, while the diagonal entries w_{11}^* and w_{22}^* from the pre-training phase remain observed. Thus, the updated set of observed entries becomes $\Omega_{\text{post}}^{(2)} = \{(1, 1), (1, 2), (2, 2)\}$. The ground-truth matrix is assumed to be rank-1, ensuring the setting is non-trivial, and the task is thus to predict the remaining entry $w_{21}^* = w^{*2}/w_{12}^* > 0$. The following theorem, however, reveals a contrasting outcome for this entry.

Theorem 4.2. *Let $\mathbf{A}(T_1), \mathbf{B}(T_1)$ be the factor matrices obtained from the pre-training phase, as specified by (10). Then, running gradient flow during the subsequent post-training phase (for $t \geq T_1$), starting from $\mathbf{A}(T_1)$ and $\mathbf{B}(T_1)$, results in exponential decay of the loss:*

$$\ell(\mathbf{W}_{\mathbf{A}, \mathbf{B}}(t); \Omega_{\text{post}}^{(2)}) \leq \frac{1}{2} w_{12}^{*2} e^{-2w^*(t-T_1)}.$$

Consequently, a lower bound for the stable rank of the converged matrix $\mathbf{W}_{\mathbf{A}, \mathbf{B}}(\infty)$ is given by:

$$\text{srank}(\mathbf{W}_{\mathbf{A}, \mathbf{B}}(\infty)) \geq 1 + \exp\left(-8 \frac{w_{12}^*}{w^*}\right).$$

Furthermore, for all $t > T_1$, $w_{21}(t)$ of the evolving matrix $\mathbf{W}_{\mathbf{A}, \mathbf{B}}(t)$ satisfies $w_{21}(t) < 0$.

The theorem indicates that the loss decreases exponentially fast, particularly when starting from large-norm solutions (at a rate governed by w^*). Therefore, since the model converged to high-rank solutions during pre-training, its singular values remain largely unchanged from this initial state, as long as w_{12}^* has a small magnitude compared to w^* . Furthermore, the unobserved entry $w_{21}(t)$ converges to a negative value, which contradicts the positive w_{21}^* expected for the true rank-1 solution.

4.3 POST-TRAINING: D BY D MATRIX UNDER LAZY TRAINING REGIME

We attribute Theorem 4.2 primarily to the model’s “lazy training” (Chizat et al., 2019) as large-norm initializations lead to faster loss decay, causing the model to converge to a nearby global minimum that may not be a low-rank solution. Drawing on this concept, we extend the preceding analysis of loss of plasticity to the more general case of $d \times d$ ground-truth matrices. The following theorem states that when the model is initialized with a sufficiently small loss, resulting from warm-starting that perfectly fits all previously observed data, the model exhibits lazy training. This, in turn, prevents further learning that would reduce the rank and instead steers the model towards a nearby minimum.

Theorem 4.3. *For factor matrices $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{d \times d}$, suppose \mathbf{A} and \mathbf{B} are balanced at $t = 0$, i.e., $\mathbf{A}(0)^\top \mathbf{A}(0) = \mathbf{B}(0)^\top \mathbf{B}(0)$. Let $f(\mathbf{A}, \mathbf{B})$ be the function that maps (\mathbf{A}, \mathbf{B}) to the vector of model predictions for a given set of observed entries $\Omega_{\text{post}}^{(d)}$. We then define σ_{\max} and σ_{\min} as the maximum and minimum singular values, respectively, of the Jacobian of the function f evaluated at the pre-trained state (at $t = T_1$). If the loss at time T_1 satisfies $\ell(\mathbf{W}_{\mathbf{A}, \mathbf{B}}(T_1); \Omega_{\text{post}}^{(d)}) \leq \frac{\sigma_{\min}^6}{1152d\sigma_{\max}^2}$, this results in exponential decay of the loss:*

$$\ell(\mathbf{W}_{\mathbf{A}, \mathbf{B}}(t); \Omega_{\text{post}}^{(d)}) \leq \ell(\mathbf{W}_{\mathbf{A}, \mathbf{B}}(T_1); \Omega_{\text{post}}^{(d)}) \exp\left(-\frac{1}{2}\sigma_{\min}^2(t - T_1)\right).$$

486 Consequently, the stable rank of $\mathbf{A}(t)$ (which is equal to that of $\mathbf{B}(t)$) remains bounded below by
 487

$$488 \text{srank}(\mathbf{A}(t)) \geq \left(\frac{\|\mathbf{A}(T_1)\|_F - \frac{\sigma_{\min}}{4\sqrt{2d}}}{\|\mathbf{A}(T_1)\|_2 + \frac{\sigma_{\min}}{4\sqrt{2d}}} \right)^2. \\ 489 \\ 490$$

491 The theorem states that if a model has little remaining to learn (achieved via pre-training), it undergoes
 492 lazy training regime. In this regime, the loss converges rapidly, while its stable rank remains largely
 493 unchanged from the initial state. Thus, once a model has converged to a high-rank state, it struggles
 494 to recover a low-rank structure even when new observations are introduced to form connectivity. The
 495 proof of Theorem 4.3 is provided in Appendix E.3.
 496

497 **Example.** As an illustrative example, consider a rank-1 ground-truth matrix $\mathbf{W}^* \in \mathbb{R}^{d \times d}$,

$$498 \mathbf{W}^* = \begin{pmatrix} w^* & cw^* & \cdots & c^{d-1}w^* \\ 499 c^{-1}w^* & w^* & \cdots & c^{d-2}w^* \\ 500 \vdots & \vdots & \ddots & \vdots \\ 501 c^{1-d}w^* & c^{2-d}w^* & \cdots & w^* \end{pmatrix}, \quad c = O\left(\frac{1}{d}\right). \\ 502$$

503 We pre-train only on the identical diagonal observations w^* using $\Omega_{\text{pre}}^{(d)}$, with initialization $\mathbf{A}(0) =$
 504 $\mathbf{B}(0) = \alpha \mathbf{I}_d$ up to time T_1 (see Proposition 4.1 for the pre-training solution). We then reveal the full
 505 upper-triangular set $\Omega_{\text{post}}^{(d)} = \{(i, j) : 1 \leq i \leq j \leq d\}$ to form connectivity and continue training. By
 506 Theorem 4.3, for every $t \geq T_1$, the stable rank of $\mathbf{A}(t)$ is uniformly lower-bounded by $\Omega(d)$:
 507

$$508 \text{srank}(\mathbf{A}(t)) \geq \left(\frac{4d - 1}{4\sqrt{d} + 1} \right)^2. \\ 509 \\ 510$$

511 5 CONCLUSION

512 We demonstrate that in matrix completion, deeper networks ($L \geq 3$) inherently exhibit a stronger
 513 low-rank bias than shallow networks, primarily due to their coupled training dynamics, which operate
 514 regardless of observation patterns. For tractable analysis, we consider gradient flow starting at a
 515 family of deterministic initializations, showing in the diagonal observation setting that depth amplifies
 516 the low-rank bias. Furthermore, our theoretical analysis of warm-starting scenarios details the loss of
 517 plasticity phenomenon, revealing how large-norm, high-rank initial states can hinder convergence to
 518 low-rank solutions. We believe the theoretical results from matrix completion provide broader insight
 519 into how depth shapes implicit bias and explains the loss of plasticity in practical deep networks.
 520

521 ETHICS STATEMENT

522 This work is purely theoretical and involves no human subjects, personal data, or new dataset
 523 collection. We foresee no safety, fairness, or privacy risks and confirm that we are in accordance with
 524 the ICLR Code of Ethics.
 525

526 REPRODUCIBILITY STATEMENT

527 The proofs of all theorems and propositions in the main text appear in the corresponding appendices:
 528 Theorem 3.1 in Appendix D.1, Proposition 3.2 in Appendix D.2, Theorem 3.3 in Appendix D.3,
 529 Proposition 4.1 in Appendix E.1, and Theorems 4.2 and 4.3 in Appendices E.2 and E.3, respectively.
 530

531 REFERENCES

532 Alessandro Achille, Matteo Rovere, and Stefano Soatto. Critical learning periods in deep networks.
 533 In *International Conference on Learning Representations*, 2018.
 534 Maksym Andriushchenko, Dara Bahri, Hossein Mobahi, and Nicolas Flammarion. Sharpness-aware
 535 minimization leads to low-rank features. *Advances in Neural Information Processing Systems*, 36:
 536 47032–47051, 2023.

540 Sanjeev Arora, Nadav Cohen, and Elad Hazan. On the optimization of deep networks: Implicit
 541 acceleration by overparameterization. In Jennifer Dy and Andreas Krause (eds.), *Proceedings of*
 542 *the 35th International Conference on Machine Learning*, volume 80 of *Proceedings of Machine*
 543 *Learning Research*, pp. 244–253. PMLR, 10–15 Jul 2018. URL <https://proceedings.mlr.press/v80/arora18a.html>.

544 Sanjeev Arora, Nadav Cohen, Wei Hu, and Yuping Luo. Implicit regularization in deep matrix
 545 factorization. *Advances in Neural Information Processing Systems*, 32, 2019.

546 Jordan Ash and Ryan P Adams. On warm-starting neural network training. *Advances in neural*
 547 *information processing systems*, 33:3884–3894, 2020.

548 Zhiwei Bai, Jiajie Zhao, and Yaoyu Zhang. Connectivity shapes implicit regularization in matrix
 549 factorization models for matrix completion. In *The Thirty-eighth Annual Conference on Neural*
 550 *Information Processing Systems*, 2024.

551 Tudor Berariu, Wojciech Czarnecki, Soham De, Jorg Bornschein, Samuel Smith, Razvan Pascanu, and
 552 Claudia Clopath. A study on the plasticity of neural networks. *arXiv preprint arXiv:2106.00042*,
 553 2021.

554 E.J. Candes and T. Tao. Decoding by linear programming. *IEEE Transactions on Information Theory*,
 555 51(12):4203–4215, 2005.

556 Matias D. Cattaneo, Jason Matthew Klusowski, and Boris Shigida. On the implicit bias of Adam. In
 557 Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett,
 558 and Felix Berkenkamp (eds.), *Proceedings of the 41st International Conference on Machine*
 559 *Learning*, volume 235 of *Proceedings of Machine Learning Research*, pp. 5862–5906. PMLR, 21–
 560 27 Jul 2024. URL <https://proceedings.mlr.press/v235/cattaneo24a.html>.

561 Yihong Chen, Kelly Marchisio, Roberta Raileanu, David Adelani, Pontus Lars Erik Saito Stenetorp,
 562 Sebastian Riedel, and Mikel Artetxe. Improving language plasticity via pretraining with active
 563 forgetting. *Advances in Neural Information Processing Systems*, 36:31543–31557, 2023.

564 Lenaic Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable programming.
 565 *Advances in neural information processing systems*, 32, 2019.

566 Shibhansh Dohare, Richard S Sutton, and A Rupam Mahmood. Continual backprop: Stochastic
 567 gradient descent with persistent randomness. *arXiv preprint arXiv:2108.06325*, 2021.

568 Spencer Frei, Gal Vardi, Peter Bartlett, Nathan Srebro, and Wei Hu. Implicit bias in leaky reLU
 569 networks trained on high-dimensional data. In *The Eleventh International Conference on Learning*
 570 *Representations*, 2023. URL <https://openreview.net/forum?id=JpbLyEI5EwW>.

571 Tomer Galanti, Zachary S Siegel, Aparna Gupte, and Tomaso Poggio. SGD and weight decay
 572 provably induce a low-rank bias in neural networks, 2023. URL <https://openreview.net/forum?id=N7Tv4aZ4Cyx>.

573 Tomer Galanti, Zachary S Siegel, Aparna Gupte, and Tomaso A Poggio. SGD and weight decay
 574 secretly minimize the rank of your neural network. In *NeurIPS 2024 Workshop on Mathematics of*
 575 *Modern Machine Learning*, 2024. URL <https://openreview.net/forum?id=xhW2WyPhRP>.

576 Daniel Gissin, Shai Shalev-Shwartz, and Amit Daniely. The implicit bias of depth: How incremental
 577 learning drives generalization. In *International Conference on Learning Representations*, 2020.
 578 URL <https://openreview.net/forum?id=H11j0nNfwB>.

579 Suriya Gunasekar, Blake E Woodworth, Srinadh Bhojanapalli, Behnam Neyshabur, and Nati Srebro.
 580 Implicit regularization in matrix factorization. *Advances in neural information processing systems*,
 581 30, 2017.

582 J Fernando Hernandez-Garcia, Shibhansh Dohare, Jun Luo, and Rich S Sutton. Reinitializing weights
 583 vs units for maintaining plasticity in neural networks. *arXiv preprint arXiv:2508.00212*, 2025.

594 Minyoung Huh, Hossein Mobahi, Richard Zhang, Brian Cheung, Pulkit Agrawal, and Phillip Isola.
 595 The low-rank simplicity bias in deep networks. *arXiv preprint arXiv:2103.10427*, 2021.
 596

597 Xiangyun Hui, Xiaoxuan Ma, Yixuan Yang, and Song Li. The implicit regularization of gradient
 598 flow on separable datasets in relu networks. *Neurocomputing*, pp. 131367, 2025. ISSN 0925-2312.
 599 doi: <https://doi.org/10.1016/j.neucom.2025.131367>. URL <https://www.sciencedirect.com/science/article/pii/S0925231225020399>.
 600

601 Maximilian Igl, Gregory Farquhar, Jelena Luketina, Wendelin Boehmer, and Shimon Whiteson.
 602 Transient non-stationarity and generalisation in deep reinforcement learning. *arXiv preprint
 603 arXiv:2006.05826*, 2020.

604 Arthur Jacot. Implicit bias of large depth networks: a notion of rank for nonlinear functions. *arXiv
 605 preprint arXiv:2209.15055*, 2022.

606

607 Ziwei Ji and Matus Telgarsky. Gradient descent aligns the layers of deep linear networks. In
 608 *International Conference on Learning Representations*, 2019a. URL <https://openreview.net/forum?id=HJf1g30qKX>.
 609

610 Ziwei Ji and Matus Telgarsky. The implicit bias of gradient descent on nonseparable data. In
 611 *Conference on learning theory*, pp. 1772–1798. PMLR, 2019b.

612

613 Ziwei Ji and Matus Telgarsky. Directional convergence and alignment in deep learning. In
 614 H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), *Advances in Neural
 615 Information Processing Systems*, volume 33, pp. 17176–17186. Curran Associates, Inc.,
 616 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/c76e4b2fa54f8506719a5c0dc14c2eb9-Paper.pdf.
 617

618 Jikai Jin, Zhiyuan Li, Kaifeng Lyu, Simon Shaolei Du, and Jason D Lee. Understanding incremental
 619 learning of gradient descent: A fine-grained analysis of matrix sensing. In *International Conference
 620 on Machine Learning*, pp. 15200–15238. PMLR, 2023.

621 Hyunji Jung, Hanseul Cho, and Chulhee Yun. Convergence and implicit bias of gradient descent on
 622 continual linear classification. In *The Thirteenth International Conference on Learning Representations*,
 623 2025. URL <https://openreview.net/forum?id=DTqx3iqjkz>.
 624

625 Daesung Kim and Hye Won Chung. Rank-1 matrix completion with gradient descent and small
 626 random initialization. *Advances in Neural Information Processing Systems*, 36:10530–10566,
 627 2023.

628 Jiyeon Kim, Hyunji Lee, Hyowon Cho, Joel Jang, Hyeonbin Hwang, Seungpil Won, Youbin Ahn,
 629 Dohaeng Lee, and Minjoon Seo. Knowledge entropy decay during language model pretraining
 630 hinders new knowledge acquisition. In *The Thirteenth International Conference on Learning
 631 Representations*, 2025. URL <https://openreview.net/forum?id=eHehzSDUFp>.
 632

633 Michael Kleinman, Alessandro Achille, and Stefano Soatto. Critical learning periods emerge even in
 634 deep linear networks. In *The Twelfth International Conference on Learning Representations*, 2024.
 635 URL <https://openreview.net/forum?id=Aq35gl2c1k>.
 636

637 Yiwen Kou, Zixiang Chen, and Quanquan Gu. Implicit bias of gradient descent for two-layer relu
 638 and leaky relu networks on nearly-orthogonal data. *Advances in Neural Information Processing
 639 Systems*, 36:30167–30221, 2023.

640 Saurabh Kumar, Henrik Marklund, and Benjamin Van Roy. Maintaining plasticity in continual
 641 learning via regenerative regularization. *arXiv preprint arXiv:2308.11958*, 2023.

642 Hojoon Lee, Hyeonseo Cho, Hyunseung Kim, Donghu Kim, Dugki Min, Jaegul Choo, and Clare
 643 Lyle. Slow and steady wins the race: Maintaining plasticity with hare and tortoise networks. In
 644 *ICML*, 2024. URL <https://openreview.net/forum?id=VF177x7Syw>.
 645

646 Hojoon Lee, Dongyoон Hwang, Donghu Kim, Hyunseung Kim, Jun Jet Tai, Kaushik Subramanian,
 647 Peter R. Wurman, Jaegul Choo, Peter Stone, and Takuma Seno. Simba: Simplicity bias for scaling
 648 up parameters in deep reinforcement learning. In *The Thirteenth International Conference on Learning
 649 Representations*, 2025. URL <https://openreview.net/forum?id=jXLiDKsuDo>.
 650

648 Yanzhi Li, Tengyu Ma, and Hongyang Zhang. Algorithmic regularization in over-parameterized
 649 matrix sensing and neural networks with quadratic activations. In *Conference On Learning Theory*,
 650 pp. 2–47. PMLR, 2018.

651

652 Zhiyuan Li, Yuping Luo, and Kaifeng Lyu. Towards resolving the implicit bias of gradient descent
 653 for matrix factorization: Greedy low-rank learning. In *International Conference on Learning
 654 Representations*, 2021. URL <https://openreview.net/forum?id=AH0s7Sm5H7R>.

655 Clare Lyle, Zeyu Zheng, Evgenii Nikishin, Bernardo Avila Pires, Razvan Pascanu, and Will Dabney.
 656 Understanding plasticity in neural networks. In *International Conference on Machine Learning*,
 657 pp. 23190–23211. PMLR, 2023.

658

659 Clare Lyle, Gharda Sokar, Razvan Pascanu, and Andras Gyorgy. What can grokking teach us about
 660 learning under nonstationarity? *arXiv preprint arXiv:2507.20057*, 2025.

661

662 Kaifeng Lyu and Jian Li. Gradient descent maximizes the margin of homogeneous neural networks.
 663 In *International Conference on Learning Representations*, 2020. URL <https://openreview.net/forum?id=SJeLIgBKPS>.

664

665 Jianhao Ma and Salar Fattah. Global convergence of sub-gradient method for robust matrix recovery:
 666 Small initialization, noisy measurements, and over-parameterization. *Journal of Machine Learning
 667 Research*, 24(96):1–84, 2023.

668

669 Jianhao Ma and Salar Fattah. Convergence of gradient descent with small initialization for unreg-
 670 ularized matrix completion. In *The Thirty Seventh Annual Conference on Learning Theory*, pp.
 671 3683–3742. PMLR, 2024.

672

673 Govind Menon. The geometry of the deep linear network. *arXiv preprint arXiv:2411.09004*, 2024.

674

675 Mor Shpigel Nacson, Jason Lee, Suriya Gunasekar, Pedro Henrique Pamplona Savarese, Nathan
 676 Srebro, and Daniel Soudry. Convergence of gradient descent on separable data. In Kamalika
 677 Chaudhuri and Masashi Sugiyama (eds.), *Proceedings of the Twenty-Second International Con-
 678 ference on Artificial Intelligence and Statistics*, volume 89 of *Proceedings of Machine Learning
 679 Research*, pp. 3420–3428. PMLR, 16–18 Apr 2019a. URL <https://proceedings.mlr.press/v89/nacson19b.html>.

680

681 Mor Shpigel Nacson, Nathan Srebro, and Daniel Soudry. Stochastic gradient descent on separable
 682 data: Exact convergence with a fixed learning rate. In Kamalika Chaudhuri and Masashi Sugiyama
 683 (eds.), *Proceedings of the Twenty-Second International Conference on Artificial Intelligence and
 684 Statistics*, volume 89 of *Proceedings of Machine Learning Research*, pp. 3051–3059. PMLR,
 16–18 Apr 2019b. URL <https://proceedings.mlr.press/v89/nacson19a.html>.

685

686 Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. In search of the real inductive bias: On the
 687 role of implicit regularization in deep learning. *arXiv preprint arXiv:1412.6614*, 2014.

688

689 Behnam Neyshabur, Ryota Tomioka, Ruslan Salakhutdinov, and Nathan Srebro. Geometry of
 690 optimization and implicit regularization in deep learning. *CoRR*, abs/1705.03071, 2017. URL
<http://arxiv.org/abs/1705.03071>.

691

692 Evgenii Nikishin, Max Schwarzer, Pierluca D’Oro, Pierre-Luc Bacon, and Aaron Courville. The
 693 primacy bias in deep reinforcement learning. In *International conference on machine learning*, pp.
 694 16828–16847. PMLR, 2022.

695

696 Sangyeon Park, Isaac Han, Seungwon Oh, and Kyung-Joong Kim. Activation by interval-
 697 wise dropout: A simple way to prevent neural networks from plasticity loss. *arXiv preprint
 698 arXiv:2502.01342*, 2025.

699

700 Noam Razin and Nadav Cohen. Implicit regularization in deep learning may not be explainable by
 701 norms. *Advances in neural information processing systems*, 33:21174–21187, 2020.

702

703 Noam Razin, Asaf Maman, and Nadav Cohen. Implicit regularization in tensor factorization. In
 704 *International Conference on Machine Learning*, pp. 8913–8924. PMLR, 2021.

702 Seyed Roozbeh Razavi Rohani, Khashayar Khajavi, Wesley Chung, Mo Chen, and Sharan Vaswani.
 703 Preserving plasticity in continual learning with adaptive linearity injection. *arXiv preprint*
 704 *arXiv:2505.09486*, 2025.

705 Olivier Roy and Martin Vetterli. The effective rank: A measure of effective dimensionality. In *2007*
 706 *15th European signal processing conference*, pp. 606–610. IEEE, 2007.

708 Baekrok Shin, Junsoo Oh, Hanseul Cho, and Chulhee Yun. Dash: Warm-starting neural network
 709 training in stationary settings without loss of plasticity. *Advances in Neural Information Processing*
 710 *Systems*, 37:43300–43340, 2024.

711 Mahdi Soltanolkotabi, Dominik Stöger, and Changzhi Xie. Implicit balancing and regularization:
 712 Generalization and convergence guarantees for overparameterized asymmetric matrix sensing. In
 713 *The Thirty Sixth Annual Conference on Learning Theory*, pp. 5140–5142. PMLR, 2023.

715 Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro. The implicit
 716 bias of gradient descent on separable data. *Journal of Machine Learning Research*, 19(70):1–57,
 717 2018.

718 Jacob Mitchell Springer, Sachin Goyal, Kaiyue Wen, Tanishq Kumar, Xiang Yue, Sadhika Mal-
 719 ladi, Graham Neubig, and Aditi Raghunathan. Overtrained language models are harder to
 720 fine-tune. In *Forty-second International Conference on Machine Learning*, 2025. URL
 721 <https://openreview.net/forum?id=YW6edSufht>.

722 Dominik Stöger and Mahdi Soltanolkotabi. Small random initialization is akin to spectral learning:
 723 Optimization and generalization guarantees for overparameterized low-rank matrix reconstruction.
 724 *Advances in Neural Information Processing Systems*, 34:23831–23843, 2021.

726 Matus Telgarsky. Deep learning theory lecture notes. *Lecture Notes v0. 0-e7150f2d (alpha)*, Univ.
 727 *Illinois Urbana-Champaign, Champaign, IL, USA*, 2021.

728 Nadav Timor, Gal Vardi, and Ohad Shamir. Implicit regularization towards rank minimization in relu
 729 networks. In *International Conference on Algorithmic Learning Theory*, pp. 1429–1459. PMLR,
 730 2023.

732 Simon Vock and Christian Meisel. Critical dynamics governs deep learning. *arXiv preprint*
 733 *arXiv:2507.08527*, 2025.

734 Bohan Wang, Qi Meng, Wei Chen, and Tie-Yan Liu. The implicit bias for adaptive optimization
 735 algorithms on homogeneous neural networks. In Marina Meila and Tong Zhang (eds.), *Proceedings*
 736 *of the 38th International Conference on Machine Learning*, volume 139 of *Proceedings of Machine*
 737 *Learning Research*, pp. 10849–10858. PMLR, 18–24 Jul 2021. URL <https://proceedings.mlr.press/v139/wang21q.html>.

739 Bohan Wang, Qi Meng, Huishuai Zhang, Ruoyu Sun, Wei Chen, Zhi-Ming Ma, and Tie-Yan Liu. Does
 740 momentum change the implicit regularization on separable data? In Alice H. Oh, Alekh Agarwal,
 741 Danielle Belgrave, and Kyunghyun Cho (eds.), *Advances in Neural Information Processing Systems*,
 742 2022. URL <https://openreview.net/forum?id=i-8uqlurj1f>.

744 Blake Woodworth, Suriya Gunasekar, Jason D Lee, Edward Moroshko, Pedro Savarese, Itay Golan,
 745 Daniel Soudry, and Nathan Srebro. Kernel and rich regimes in overparametrized models. In
 746 *Conference on Learning Theory*, pp. 3635–3673. PMLR, 2020.

747 Chulhee Yun, Shankar Krishnan, and Hossein Mobahi. A unifying view on implicit bias in training
 748 linear neural networks. In *International Conference on Learning Representations*, 2021. URL
 749 <https://openreview.net/forum?id=ZsZM-4iMQkH>.

751 Chenyang Zhang, Difan Zou, and Yuan Cao. The implicit bias of adam on separable data. In
 752 *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024. URL
 753 <https://openreview.net/forum?id=xRQxan3WkM>.

754 Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
 755 deep learning requires rethinking generalization. In *International Conference on Learning*
Representations, 2017. URL <https://openreview.net/forum?id=Sy8gdB9xx>.

756 Dan Zhao. Combining implicit and explicit regularization for efficient learning in deep networks.
757 In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), *Advances in*
758 *Neural Information Processing Systems*, 2022. URL [https://openreview.net/forum?](https://openreview.net/forum?id=sADLR12STMe)
759 [id=sADLR12STMe](https://openreview.net/forum?id=sADLR12STMe).
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810	CONTENTS		
811			
812	1	Introduction	1
813			
814	2	Problem Setting	3
815			
816	3	Implicit Bias of Depth Induced By Coupled Training Dynamics	3
817			
818	3.1	Warm-up: Coupled Dynamics vs. Decoupled Dynamics in Depth-2 Networks	4
819			
820	3.2	Coupled Dynamics in Deep Networks Induce Implicit Bias Towards Low Rank	5
821			
822	4	Understanding Loss of Plasticity in Depth-2 Matrix Completion	7
823			
824	4.1	Pre-training with Diagonal Observations	8
825			
826	4.2	Post-training: 2 by 2 Matrix Example	9
827			
828	4.3	Post-training: d by d Matrix under Lazy Training Regime	9
829			
830	5	Conclusion	10
831			
832	A	Further Related Works	18
833			
834	A.1	Implicit Regularization in Neural Networks	18
835			
836	A.2	Loss of Plasticity	19
837			
838	B	Coupled and Decoupled Training Dynamics	20
839			
840	B.1	Coupled Dynamics Example	21
841			
842	B.2	Decoupled Dynamics Example	22
843			
844	C	Additional Experiments	24
845			
846	C.1	Implicit Bias Experiments	24
847			
848	C.2	Loss of Plasticity Experiments	33
849			
850	D	Proof for Section 3	35
851			
852	D.1	Proof for Theorem 3.1	35
853			
854	D.2	Proof for Proposition 3.2	38
855			
856	D.3	Proof for Theorem 3.3	40
857			
858	D.4	Proof for Corollary 3.4	49
859			
860	D.5	Generalization to Block-Diagonal Observations	50
861			
862	E	Proof for Section 4	59
863			
864	E.1	General Form and Proof of Proposition 4.1	59
865			
866	E.2	Proof of Theorem 4.2	63
867			
868	E.3	Formal Statement and Proof of Theorem 4.3	74
869			
870	F	Useful Lemmas	80
871			

864 **DECLARATION OF LLM USAGE**
865

866 Large Language Models (LLM) were used solely to aid or polish writing. They did not generate
867 ideas, analyses, or conclusions. All LLM-assisted text was reviewed and edited by the authors.
868

869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

918 A FURTHER RELATED WORKS
919920 A.1 IMPLICIT REGULARIZATION IN NEURAL NETWORKS
921

922 A substantial body of work investigates the *implicit regularization* of gradient-based training in
923 overparameterized models (Gunasekar et al., 2017; Woodworth et al., 2020; Yun et al., 2021; Ji &
924 Telgarsky, 2019a;b; Andriushchenko et al., 2023; Frei et al., 2023; Jung et al., 2025; Razin et al.,
925 2021; Hui et al., 2025). For linearly separable classification trained with (S)GD, Soudry et al. (2018)
926 show that gradient descent on the logistic loss converges in direction to the ℓ_2 max-margin classifier.
927 Building on this result, Nacson et al. (2019b) establish analogous directional convergence guarantees
928 for SGD, and Nacson et al. (2019a) extend the theory to a broader family of loss functions. For
929 homogeneous neural networks, gradient descent likewise exhibits directional convergence, and the
930 limit direction coincides with a KKT point of an appropriate margin-maximization problem (Ji &
931 Telgarsky, 2020; Lyu & Li, 2020).

932 For adaptive methods in linearly separable classification, Wang et al. (2022) analyze (S)GD with
933 momentum and deterministic Adam and show that these methods also converge in direction to the
934 max-margin solution. This analysis is further extended to homogeneous models by Wang et al. (2021).
935 More recently, Zhang et al. (2024) demonstrate that when the stability constant is negligible, Adam
936 exhibits a qualitatively different implicit bias and converges to the maximum ℓ_∞ margin rather than
937 the ℓ_2 max-margin direction selected by (S)GD. Along a related line, Cattaneo et al. (2024) use
938 backward error analysis to study RMSProp and Adam and show that their implicit regularization
939 depends sensitively on hyperparameters and the training stage. Closely related to our setting, Zhao
940 (2022) examine matrix completion and show that Adam, when combined with an explicit spectral
941 ratio penalty, induces a strong low-rank bias even in depth-1 linear networks. However, their analysis
942 focuses on deriving the flow of Adam and does not characterize the limiting solution.

943 Several works investigate how depth promotes low-rank solutions (Gissin et al., 2020; Huh et al.,
944 2021; Timor et al., 2023; Arora et al., 2019; Li et al., 2021; Jacot, 2022). Huh et al. (2021) provide
945 empirical evidence that deeper networks (both linear and nonlinear) tend to find solutions with lower
946 effective-rank embeddings. Complementing this, Timor et al. (2023) show theoretically that ReLU
947 networks trained with squared loss exhibit a bias toward low-rank solutions under the assumption
948 that gradient flow converges to the solution minimizing the ℓ_2 norm.

949 Turning to deep linear networks, Gissin et al. (2020) and Li et al. (2021) study depth-induced bias as
950 a function of initialization scale. They report that, as depth increases, the dependence on initialization
951 can become weaker, and incremental learning can emerge. However, their analyses consider a matrix
952 factorization task, which they frame as matrix completion with full observations. Therefore, in their
953 setting, convergence to a low-rank solution is guaranteed if the model converges to zero-loss, which
954 does not hold in our matrix completion task settings.

955 While Arora et al. (2019) investigate the matrix completion task in deep linear networks, offering
956 insights from derived singular value dynamics, they cannot fully track these dynamics to prove
957 low-rank convergence as network depth increases. Their analysis is primarily restricted to the regime
958 where $t \geq t_0$, after which singular vectors are assumed to have stabilized. For $t \geq t_0$, they find
959 that one singular value can be expressed as a function of another, involving a constant term that
960 emerges from the state at t_0 (which can be the dominant component). Based on this derivation, they
961 demonstrate that the gap between these singular values widens with increasing depth. In contrast, our
962 Theorem 3.3, by precisely tracking the converged values of singular values, rigorously establishes
963 their ultimate behavior and the resulting low-rank bias.

963 Closely related to our setting, Razin & Cohen (2020) study a depth $L \geq 2$ matrix completion problem
964 in a 2×2 example with three observations (one diagonal and two off diagonal entries). Their
965 Theorems 1 and 2 show that, as the loss converges, the effective rank converges to its infimum.
966 However, their analysis does not distinguish between the depth $L = 2$ and $L \geq 3$ regimes, and
967 therefore does not identify a depth dependent low-rank bias or an underlying mechanism that explains
968 it. In addition, their guarantees are independent of the initialization scale, so they do not capture the
969 empirically observed phenomenon that low-rank bias becomes stronger as the initialization scale
970 decreases. In contrast, our results explicitly separate the $L = 2$ and $L \geq 3$ cases, characterize the
971 limiting singular values, and show how depth and initialization scale jointly control the emergence of
972 low rank solutions in matrix completion.

972 For depth-2 matrix completion tasks, [Bai et al. \(2024\)](#) introduce the connectivity argument. They
 973 prove that if the observations construct a connected bipartite graph, the model can converge to a
 974 low-rank solution when the initialization scale is infinitesimally small, subject to certain technical
 975 assumptions. Conversely, if the observations form a disconnected graph, the model generally cannot
 976 converge to a low-rank solution. However, a special case occurs if this disconnected graph is
 977 composed of complete bipartite components: here, the model converges to the minimum nuclear
 978 norm solution, again under specific technical assumptions. This characterization of implicit bias does
 979 not readily generalize to matrices with deeper matrices, as depicted in Figure 1.

980 A.2 LOSS OF PLASTICITY

981 Loss of plasticity describes a widely observed phenomenon where a model’s ability to adapt to new
 982 information diminishes over time ([Shin et al., 2024](#); [Ash & Adams, 2020](#); [Nikishin et al., 2022](#);
 983 [Dohare et al., 2021](#); [Achille et al., 2018](#); [Lee et al., 2025](#); [2024](#); [Lyle et al., 2025](#); [Springer et al., 2025](#);
 984 [Kim et al., 2025](#)). The phenomenon is frequently observed in scenarios with gradually changing
 985 datasets, such as those encountered in reinforcement learning ([Lyle et al., 2023](#); [Nikishin et al., 2022](#);
 986 [Igl et al., 2020](#)) or continual learning ([Kumar et al., 2023](#); [Chen et al., 2023](#); [Dohare et al., 2021](#); [Park](#)
 987 [et al., 2025](#); [Hernandez-Garcia et al., 2025](#); [Rohani et al., 2025](#)), where the model may struggle to
 988 adapt to new environments.

989 Although loss of plasticity is typically studied in non-stationary settings, a similar effect arises in
 990 stationary regimes where the dataset grows incrementally while the underlying distribution remains
 991 fixed ([Shin et al., 2024](#); [Ash & Adams, 2020](#); [Berariu et al., 2021](#)). In such cases, a model is
 992 first trained to convergence on an initial i.i.d. subset (e.g., a subset of CIFAR-10/100) and then
 993 warm-started for continued training on an expanded sample from the same distribution (e.g., the
 994 full CIFAR-10/100). Perhaps counterintuitively, these warm-started models often generalize worse,
 995 yielding lower test accuracy than models trained from scratch on the combined dataset.

996 While this phenomenon is problematic in many real-world applications where new data is continuously
 997 added, theoretical studies on it remain scarce. [Shin et al. \(2024\)](#), for instance, offer a theoretical
 998 explanation using an artificial framework. Within this framework, they demonstrate that such behavior
 999 occurs because warm-started models often complete training by memorizing data-dependent noise,
 1000 which is not useful for generalization. However, the analytical framework they employ is considered
 1001 artificial and limited in its ability to accurately characterize the optimization processes of typical deep
 1002 learning models.

1003 Recently, [Kleinman et al. \(2024\)](#) observed loss of plasticity in deep linear networks, identifying
 1004 “critical learning periods”: an initial phase of effective learning followed by a significantly reduced
 1005 capacity to learn later ([Achille et al., 2018](#); [Vock & Meisel, 2025](#)). They employ a matrix completion
 1006 framework to further observe this behavior. When observations from matrix completion tasks are
 1007 treated as training samples in neural network training, they observed that a model initially trained on
 1008 a sparse set of observations and subsequently retrained (i.e., warm-started) on an expanded dataset
 1009 typically exhibits a larger performance gap (in terms of reconstruction error) compared to a model
 1010 trained from scratch on the entire expanded dataset. However, their work does not offer theoretical
 1011 guarantees to account for these observations. Motivated by this, in Section 4, we attempt to explain
 1012 this behavior within the specific context of depth-2 matrix completion settings.

1026 B COUPLED AND DECOUPLED TRAINING DYNAMICS

1028 This section introduces coupled and decoupled training dynamics (Definition 2) and illustrates them
 1029 with concrete examples. Before that, we present Proposition B.1, which shows that for deep models
 1030 ($L \geq 3$), generic (absolutely continuous) initialization yields coupled dynamics almost surely.

1031 **Lemma B.1.** Define $\mathbf{W}_{b:a} \triangleq \mathbf{W}_b \mathbf{W}_{b-1} \cdots \mathbf{W}_a$, and $\mathbf{W}_{a:b} \triangleq \mathbf{I}_d$ where $b \geq a$. For $w_{ij}(t) \triangleq$
 1032 $e_i^\top \mathbf{W}_{L:1}(t) e_j$,

$$1034 \nabla_{\mathbf{W}_i} w_{ij}(t) = (\mathbf{W}_{L:l+1}(t)^\top e_i) (\mathbf{W}_{l-1:1}(t) e_j)^\top \in \mathbb{R}^{d \times d}.$$

1035 Hence, for any (i, j) and (p, q) ,

$$1037 \langle \nabla_{\mathbf{W}} w_{ij}(t), \nabla_{\mathbf{W}} w_{pq}(t) \rangle = \sum_{l=1}^L (e_i^\top \mathbf{T}_l(t) e_p) (e_j^\top \mathbf{S}_l(t) e_q),$$

1040 where $\mathbf{T}_l(t) \triangleq \mathbf{W}_{L:l+1}(t) \mathbf{W}_{L:l+1}(t)^\top$ and $\mathbf{S}_l(t) \triangleq \mathbf{W}_{l-1:1}(t)^\top \mathbf{W}_{l-1:1}(t)$ are symmetric positive
 1041 semidefinite matrix.

1043 *Proof.* Define $\mathbf{a}_l^{(i)}(t) \triangleq \mathbf{W}_{L:l+1}(t)^\top e_i$ and $\mathbf{b}_l^{(j)}(t) \triangleq \mathbf{W}_{l-1:1}(t) e_j$. By
 1044

$$1045 w_{ij}(t) = e_i^\top \mathbf{W}_{L:l+1}(t) \mathbf{W}_l(t) \mathbf{W}_{l-1:1}(t) e_j = \mathbf{a}_l^{(i)}(t)^\top \mathbf{W}_l(t) \mathbf{b}_l^{(j)}(t),$$

1047 we have $\nabla_{\mathbf{W}_i} w_{ij}(t) = \mathbf{a}_l^{(i)}(t) \mathbf{b}_l^{(j)}(t)^\top$. Furthermore,

$$1049 \begin{aligned} \langle \nabla_{\mathbf{W}} w_{ij}(t), \nabla_{\mathbf{W}} w_{pq}(t) \rangle &= \sum_{l=1}^L \langle \nabla_{\mathbf{W}_i} w_{ij}(t), \nabla_{\mathbf{W}_l} w_{pq}(t) \rangle_F \\ 1050 &= \sum_{l=1}^L \left\langle \mathbf{a}_l^{(i)}(t) \mathbf{b}_l^{(j)}(t)^\top, \mathbf{a}_l^{(p)}(t) \mathbf{b}_l^{(q)}(t)^\top \right\rangle_F \\ 1051 &= \sum_{i=1}^L \left(\mathbf{a}_l^{(i)}(t)^\top \mathbf{a}_l^{(p)}(t) \right) \left(\mathbf{b}_l^{(j)}(t)^\top \mathbf{b}_l^{(q)}(t) \right) \\ 1052 &= \sum_{i=1}^L (e_i^\top \mathbf{T}_l(t) e_p) (e_j^\top \mathbf{S}_l(t) e_q), \end{aligned}$$

1060 which concludes the proof. \square

1062 **Proposition B.1.** Let $L \geq 3$ and initialize $\{\mathbf{W}_l(0)\}_{l=1}^L$ with i.i.d. entries from any absolutely
 1063 continuous distribution. For any observation set $\Omega \subseteq [d] \times [d]$ where $|\Omega| \geq 2$, with probability 1,
 1064

$$1065 \langle \nabla_{\mathbf{W}} w_{ij}(0), \nabla_{\mathbf{W}} w_{pq}(0) \rangle \neq 0$$

1066 holds for all distinct $(i, j), (p, q) \in \Omega$. Consequently, no nontrivial partition $\Omega = \bigcup_{k=1}^K \Omega_k$ with
 1067 $K \geq 2$ can satisfy the decoupling condition (6) at $t = 0$. Hence, by Definition 2, the gradient flow
 1068 dynamics are coupled with probability 1 irrespective of the observation pattern.

1069 *Proof.* By Lemma B.1, at $t = 0$ we have

$$1072 \varphi_{ij,pq}(\mathbf{W}_1, \dots, \mathbf{W}_L) \triangleq \langle \nabla_{\mathbf{W}} w_{ij}, \nabla_{\mathbf{W}} w_{pq} \rangle = \sum_{l=1}^L (e_i^\top \mathbf{T}_l e_p) (e_j^\top \mathbf{S}_l e_q),$$

1075 which is a polynomial in the entries of $\{\mathbf{W}_l\}_{l=1}^L$. For any $(i, j) \neq (p, q)$, we now show that $\varphi_{ij,pq}$ is
 1076 not the zero polynomial.

1078 If $i = p$, the $l = L$ term reduces to $e_j^\top \mathbf{S}_L e_q$. By choosing $\mathbf{W}_{1:L}$ so that \mathbf{S}_L has a nonzero (j, q)
 1079 entry, this term evaluates to a nonzero value; hence $\varphi_{ij,pq}$ is not identically zero. By symmetry, the
 same argument applies when $j = q$.

1080 If $i \neq p$ and $j \neq q$, consider $l = 2$. Setting all other layers to \mathbf{I}_d , choose \mathbf{W}_3 so that $(\mathbf{e}_i^\top \mathbf{T}_2 \mathbf{e}_p) \neq 0$
 1081 and choose \mathbf{W}_1 so that $(\mathbf{e}_j^\top \mathbf{S}_2 \mathbf{e}_q) \neq 0$. Then $\varphi_{ij,pq} = (\mathbf{e}_i^\top \mathbf{T}_2 \mathbf{e}_p)(\mathbf{e}_j^\top \mathbf{S}_2 \mathbf{e}_q) \neq 0$. Consequently, in
 1082 all cases $\varphi_{ij,pq}$ is not identically zero.
 1083

1084 Since $\varphi_{ij,pq}$ is a nonzero polynomial in the entries of $\{\mathbf{W}_l\}_{l=1}^L$, its zero set $Z_{ij,pq} \triangleq$
 1085 $\{(\mathbf{W}_1, \dots, \mathbf{W}_L) : \varphi_{ij,pq}(\mathbf{W}_1, \dots, \mathbf{W}_L) = 0\}$ is a proper algebraic set in \mathbb{R}^{Ld^2} and hence has
 1086 Lebesgue measure zero.

1087 Let the initialization distribution of $(\mathbf{W}_1(0), \dots, \mathbf{W}_L(0))$ be absolutely continuous with respect to
 1088 Lebesgue measure. Then

$$1089 \Pr[(\mathbf{W}_1(0), \dots, \mathbf{W}_L(0)) \in Z_{ij,pq}] = 0,$$

1090 so for this fixed pair $(i, j) \neq (p, q)$ we have $\varphi_{ij,pq}(\mathbf{W}_1(0), \dots, \mathbf{W}_L(0)) \neq 0$ almost surely. There
 1091 are only finitely many distinct pairs in Ω . A finite union of measure-zero sets still has measure zero;
 1092 hence, with probability one,
 1093

$$\varphi_{ij,pq} \neq 0 \quad \text{for all distinct } (i, j), (p, q) \in \Omega. \quad (11)$$

1094 By Definition 2, a decomposition $\Omega = \bigcup_{k=1}^K \Omega_k$ ($K \geq 2$) yields decoupled dynamics only if
 1095 $\langle \nabla_{\boldsymbol{\theta}} w_{ij}(t), \nabla_{\boldsymbol{\theta}} w_{pq}(t) \rangle = 0$

1096 for all $(i, j) \in \Omega_k$, $(p, q) \in \Omega_l$ with $k \neq l$ and for all $t \geq 0$.
 1097

1098 However, this already fails at $t = 0$, since every cross-pair inner product is nonzero by (11). Thus, no
 1099 such partition exists. Consequently, for $L \geq 3$ and any observation set Ω , the gradient flow dynamics
 1100 are *coupled almost surely* under any absolutely continuous initialization. \square
 1101

1102 B.1 COUPLED DYNAMICS EXAMPLE

1104 B.1.1 DEPTH-2 MODEL

1105 For shallow ($L = 2$) matrices, coupled dynamics typically correspond to connected observations under
 1106 generic initialization, in accordance with Definitions 1 and 2 (the specific case of initialization, such
 1107 as zero matrices, which leads to decoupled dynamics, will be further detailed in a later subsection).
 1108 We illustrate this principle with an example where the observed entries form the first column of a
 1109 2×2 matrix.
 1110

1111 Consider a 2×2 matrix, denoted \mathbf{M}_C , which is to be completed using its first column as observations:
 1112

$$1113 \mathbf{M}_C \triangleq \begin{bmatrix} w_{11}^* & ? \\ w_{21}^* & ? \end{bmatrix}.$$

1114 The corresponding observation pattern matrix \mathbf{P}_C is:
 1115

$$1116 \mathbf{P}_C = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}.$$

1117 The associated adjacency matrix \mathcal{A}_C for the bipartite graph is constructed as:
 1118

$$1119 \mathcal{A}_C = \begin{bmatrix} \mathbf{0}_{2,2} & \mathbf{P}_C^\top \\ \mathbf{P}_C & \mathbf{0}_{2,2} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix},$$

1120 which forms a connected graph as illustrated in Figure 1a. This setup leads to coupled training
 1121 dynamics under non-zero initialization. The coupling arises because parameters used to construct
 1122 w_{11} and w_{21} overlap. Specifically, elements from the first column of matrix \mathbf{B} (i.e., b_{11}, b_{21}) are
 1123 common to the computation of both w_{11} and w_{21} . This shared dependency links the dynamics. The
 1124 below illustration highlights these shared (teal) and distinct (red/blue) parameters involved in forming
 1125 the observed entries w_{11} and w_{21} :
 1126

$$1127 \begin{bmatrix} w_{11} & w_{12} \\ w_{21} & w_{22} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}$$

$$1128 w_{11} = a_{11}b_{11} + a_{12}b_{21}$$

$$1129 w_{21} = a_{21}b_{11} + a_{22}b_{21}$$

1130 The shared use of b_{11} and b_{21} in reconstructing both observed entries is what couples their learning
 1131 dynamics.
 1132

1134 B.1.2 DEPTH ≥ 3 MODEL
11351136 For deeper matrices ($L \geq 3$), training dynamics are typically coupled, irrespective of the observation
1137 pattern (See Proposition B.1). Consider, for instance, predicting entries from the disconnected matrix
1138 M_D where only diagonal elements are observed:

1139
$$M_D \triangleq \begin{bmatrix} w_{11}^* & ? \\ ? & w_{22}^* \end{bmatrix}.$$

1140
1141

1142 Even with such observations, for $L \geq 3$, coupling arises because parameters in intermediate layers
1143 are involved in computing multiple observed entries. This is illustrated in the following depth-3
1144 example ($\mathbf{W}_{3:1} = \mathbf{W}_1 \mathbf{W}_2 \mathbf{W}_3$). Elements of the intermediate matrix \mathbf{W}_2 (colored teal) contribute to
1145 both the computation of w_{11} and w_{22} :

1146
$$\begin{bmatrix} w_{11} & w_{12} \\ w_{21} & w_{22} \end{bmatrix} = \begin{bmatrix} (w_1)_{11} & (w_1)_{12} \\ (w_1)_{21} & (w_1)_{22} \end{bmatrix} \begin{bmatrix} (w_2)_{11} & (w_2)_{12} \\ (w_2)_{21} & (w_2)_{22} \end{bmatrix} \begin{bmatrix} (w_3)_{11} & (w_3)_{12} \\ (w_3)_{21} & (w_3)_{22} \end{bmatrix}.$$

1147

1148 Specifically, the observed entries are formed as:

1149
1150
$$w_{11} = ((w_1)_{11}(w_2)_{11} + (w_1)_{12}(w_2)_{21})(w_3)_{11}$$

1151
$$+ ((w_1)_{11}(w_2)_{12} + (w_1)_{12}(w_2)_{22})(w_3)_{21},$$

1152
1153
$$w_{22} = ((w_1)_{21}(w_2)_{11} + (w_1)_{22}(w_2)_{21})(w_3)_{12}$$

1154
$$+ ((w_1)_{21}(w_2)_{12} + (w_1)_{22}(w_2)_{22})(w_3)_{22}.$$

1155
1156

1157 The shared involvement of all elements from \mathbf{W}_2 (the teal matrix) in forming both w_{11} and w_{22} leads
1158 to coupled dynamics, provided these elements are non-zero. (Conversely, if some elements were
1159 to become zero, this could potentially lead to decoupled dynamics, as illustrated in the subsequent
1160 subsection.)1161 B.2 DECOUPLED DYNAMICS EXAMPLE
11621163 B.2.1 DEPTH-2 MODEL
11641165 For depth-2 models, decoupled dynamics coincide with disconnected observation patterns. Indeed,
1166 by Lemma B.1,

1167
1168
$$\langle \nabla_{\theta} w_{ij}, \nabla_{\theta} w_{pq} \rangle = \sum_{l=1}^2 (\mathbf{e}_i^\top \mathbf{T}_l \mathbf{e}_p) (\mathbf{e}_j^\top \mathbf{S}_l \mathbf{e}_q)$$

1169
1170
$$= (\mathbf{e}_1^\top \mathbf{W}_2 \mathbf{W}_2^\top \mathbf{e}_p) \delta_{jq} + \delta_{ip} (\mathbf{e}_j^\top \mathbf{W}_1^\top \mathbf{W}_1 \mathbf{e}_q),$$

1171

1172 where $\delta_{ab} = 1$ if $a = b$ and 0 otherwise. Hence, if $i \neq p$ and $j \neq q$, the inner product is identically
1173 zero for all weights, which explains the decoupling for the depth-2 matrix when the observations are
1174 disconnected.1175 To illustrate the disconnected case, consider the 2×2 incomplete matrix example M_D , to be
1176 completed from diagonal-only observations.

1177
1178
$$M_D \triangleq \begin{bmatrix} w_{11}^* & ? \\ ? & w_{22}^* \end{bmatrix}.$$

1179

1180 Then the observation matrix \mathbf{P}_D can be constructed as:

1181
1182
$$\mathbf{P}_D = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix},$$

1183

1184 and the adjacency matrix \mathcal{A}_D can be constructed as:

1185
1186
$$\mathcal{A}_D = \begin{bmatrix} \mathbf{0}_{2,2} & \mathbf{P}_D^\top \\ \mathbf{P}_D & \mathbf{0}_{2,2} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix},$$

1187

1188 which forms the disconnected graph as illustrated in Figure 1a. This setup inherently leads to
 1189 decoupled training dynamics. The decoupling can be visually understood by examining how distinct
 1190 sets of elements in the factor matrices \mathbf{A} and \mathbf{B} contribute to the observed entries w_{11} and w_{22} .
 1191 Specifically, as illustrated below, red-colored entries are exclusively involved in predicting w_{11} , while
 1192 blue-colored entries are exclusively involved in predicting w_{22} . These two sets of entries are disjoint,
 1193 confirming the decoupled nature of the dynamics:

$$\begin{bmatrix} w_{11} & w_{12} \\ w_{21} & w_{22} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix},$$

$$w_{11} = a_{11}b_{11} + a_{12}b_{21},$$

$$w_{22} = a_{21}b_{12} + a_{22}b_{22}.$$

B.2.2 DEPTH ≥ 3 MODEL

1201 For deep ($L \geq 3$) matrices, decoupled training dynamics are observed in at least two key scenarios.
 1202 First, as detailed in Appendix D.2.3, an $\alpha\mathbf{I}_d$ initialization combined with diagonal-only observations
 1203 leads to decoupled dynamics for any depth-factorized matrix.

1204 To illustrate this for a deeper case, we revisit the \mathbf{M}_D observation pattern in a depth-3 context.
 1205 Lemma D.1 in Appendix D.2.3 states that with such an initialization and observing only diagonal
 1206 entries, all off-diagonal elements of the factor matrices $\mathbf{W}_l(t)$ remain zero throughout training.
 1207 Consequently, the factor matrices $\mathbf{W}_1, \mathbf{W}_2, \mathbf{W}_3$ are diagonal. The product matrix $\mathbf{W}_{L:1}(t)$ is thus
 1208 formed as:

$$\begin{bmatrix} w_{11} & w_{12} \\ w_{21} & w_{22} \end{bmatrix} = \begin{bmatrix} (w_1)_{11} & 0 \\ 0 & (w_1)_{22} \end{bmatrix} \begin{bmatrix} (w_2)_{11} & 0 \\ 0 & (w_2)_{22} \end{bmatrix} \begin{bmatrix} (w_3)_{11} & 0 \\ 0 & (w_3)_{22} \end{bmatrix}.$$

1212 The observed entries are therefore computed as products of the respective diagonal elements:

$$w_{11} = (w_1)_{11}(w_2)_{11}(w_3)_{11},$$

$$w_{22} = (w_1)_{22}(w_2)_{22}(w_3)_{22}.$$

1216 Since w_{11} depends only on the set of parameters $\{(W_k)_{11}\}_{k=1}^3$ and w_{22} depends only on the entirely
 1217 disjoint set of parameters $\{(W_k)_{22}\}_{k=1}^3$, their training dynamics are decoupled.

1219 Second, the training dynamics are also decoupled when all factor matrices are initialized as $d \times d$
 1220 zero matrices, $\mathbf{0}_{d \times d}$. To see this, note that by the chain rule, we have

$$\frac{\partial w_{pq}(t)}{\partial (w_l(t))_{ij}} = (\mathbf{W}_L(t)\mathbf{W}_{L-1}(t) \cdots \mathbf{W}_{l+1}(t))_{pi} (\mathbf{W}_{l-1}(t)\mathbf{W}_{l-2}(t) \cdots \mathbf{W}_1(t))_{jq}, \quad (12)$$

1224 where we define the (i, j) -th entry of the factor matrix $\mathbf{W}_l(t) \triangleq (w_l(t))_{ij}$. If at some time t all factor
 1225 matrices satisfy $\mathbf{W}_k(t) = \mathbf{0}$, then the right-hand side of (12) is the zero matrix, and thus

$$\frac{\partial w_{pq}(t)}{\partial (w_l(t))_{ij}} = 0 \quad \text{for all } p, q.$$

1229 Therefore,

$$\frac{\partial \phi}{\partial (w_l(t))_{ij}} = \sum_{(p,q) \in \Omega} (w_{pq}(t) - w_{pq}^*) \frac{\partial w_{pq}(t)}{\partial (w_l(t))_{ij}} = 0,$$

1233 which implies

$$(w_l(t))_{ij} = -\frac{\partial \phi}{\partial (w_l(t))_{ij}} = 0.$$

1236 Since the initial condition is $(w_l(0))_{ij} = 0$, uniqueness of ODE solutions guarantees that $(w_l(t))_{ij} \equiv$
 1237 0 for all $t \geq 0$. As this holds for arbitrary l, i, j , we conclude that $\mathbf{W}_l(t) \equiv \mathbf{0}$ for all l and all $t \geq 0$.

1238 Finally, because $\nabla_{\theta(t)} w_{pq}(t) = \mathbf{0}$ for all p, q and $t \geq 0$, the inner product condition

$$\langle \nabla_{\theta(t)} w_{ij}(t), \nabla_{\theta(t)} w_{pq}(t) \rangle = 0$$

1240 is satisfied for all $(i, j), (p, q) \in \Omega$ and for all $t \geq 0$. Hence, the dynamics are (trivially) decoupled.

1242 **C ADDITIONAL EXPERIMENTS**
 1243

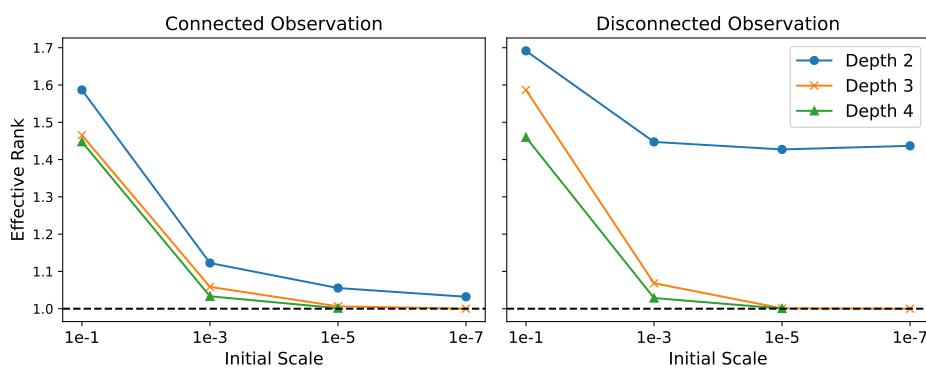
1244 This section provides additional experiments omitted from the main text.
 1245

1246 **C.1 IMPLICIT BIAS EXPERIMENTS**
 1247

1248 **Connected vs Disconnected Observation Patterns.** In Figure 1, we present experiments with
 1249 specific choices of M_C and M_D , which are 2×2 rank-1 ground-truth matrices illustrating connected
 1250 and disconnected examples, respectively. To generalize these observations, we extended our experi-
 1251 ments to a 3×3 rank-1 ground truth matrix, considering all possible connected and disconnected
 1252 observation patterns. After accounting for symmetries to eliminate duplicates, this results in a total of
 1253 23 unique observation patterns, which are categorized into 17 connected and 6 disconnected cases.
 1254

1255 For each of these 23 observation patterns, the 3×3 rank-1 ground truth matrix was generated using
 1256 constituent vectors whose entries were sampled from a standard normal distribution. Each factor
 1257 matrix was then initialized by sampling its entries from a Gaussian distribution with a mean of zero
 1258 and a standard deviation of α . We performed 10 independent trials for each pattern.
 1259

1260 Figure 4 illustrates that, consistent with the findings in Figure 1, a significant discrepancy exists
 1261 between the behavior of depth-2 matrices and that of deeper matrices. This discrepancy becomes
 1262 notably more pronounced for the disconnected observation patterns.
 1263



1274 Figure 4: The left panel shows the averaged effective rank of all possible connected patterns as a
 1275 function of the initial scale α^L . The right panel displays the averaged effective rank of all possible
 1276 disconnected patterns.
 1277

1278 **Numerical Solutions of the Implicit Equations.** We next provide a theoretical validation of our
 1279 main claim: coupled dynamics induce a low-rank bias, whereas decoupled dynamics do not. This
 1280 validation builds on Theorem 3.3, under various conditions, by numerically solving the equations
 1281 while varying the ground truth value w^* and the dimension d . The results shown in Figure 7 (for
 1282 $w^* = 1, d = 3$), Figure 5 (for $w^* = 10, d = 10$), and Figure 6 (for $w^* = 0.1, d = 10$) provide strong
 1283 supporting evidence for the claim.
 1284

1285 **Gradient Descent Validation.** Furthermore, we ran gradient descent with a sufficiently small step
 1286 size to validate our derived equations. For the results shown in Figure 8, we replicated the setup of
 1287 Figure 7 ($w^* = 1, d = 3$), excluding the $\alpha = 10^{-10}$ case due to prohibitive computation time. The
 1288 observed values closely match the theoretical predictions from Theorem 3.3, as illustrated in Figure 7.
 1289

1290 **Comparison with Gaussian Initialization.** To validate that our initialization scheme (7) can
 1291 achieve comparable outcomes to Gaussian initialization while offering more control, we conducted
 1292 experiments on a 3×3 matrix completion task with diagonal observations (i.e., $w_{11}^* = w_{22}^* = w_{33}^* =$
 1293 1). While our scheme allows initial rank properties to be adjusted via the parameter m , Gaussian
 1294 initialization's inherent randomness precludes such direct control. Therefore, for comparison with
 1295 Gaussian initialization, we ran 1000 independent seeds and sorted the converged solutions by their
 rank. A comparison of the results in Figure 9 suggests that the behavioral trends may appear similar.
 1296

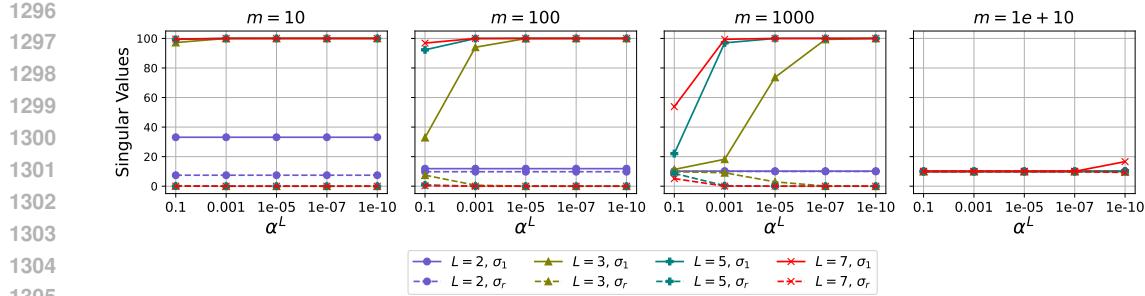


Figure 5: Numerical conditions identical to those in Figure 2, except with ground truth value $w^* = 10$ and dimension $d = 10$.

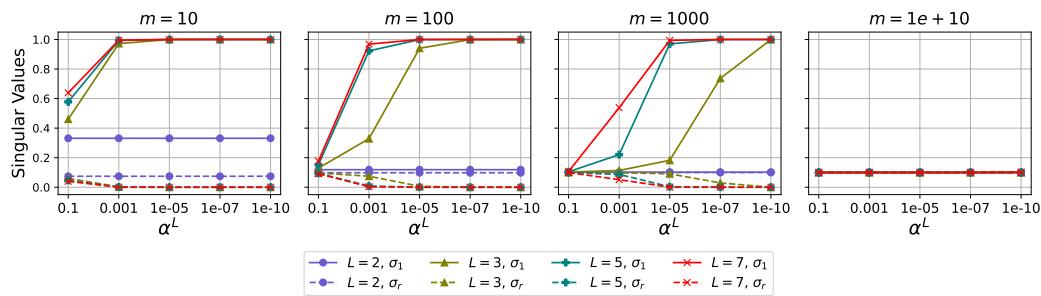


Figure 6: Numerical conditions identical to those in Figure 2, except with ground truth value $w^* = 0.1$ and dimension $d = 10$.

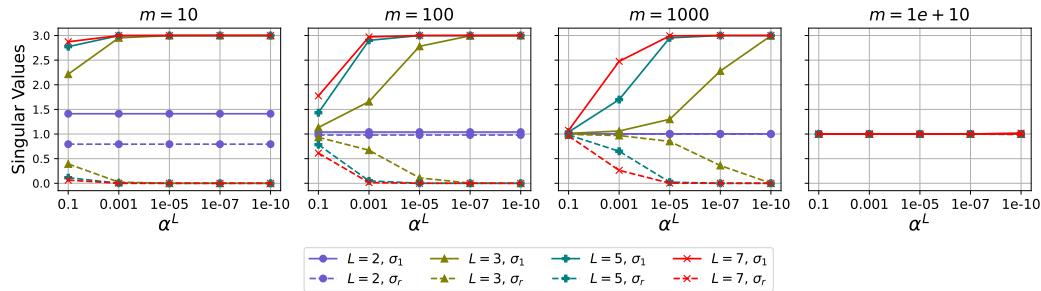


Figure 7: Numerical conditions identical to those in Figure 2, except with ground truth value $w^* = 1$ and dimension $d = 3$.

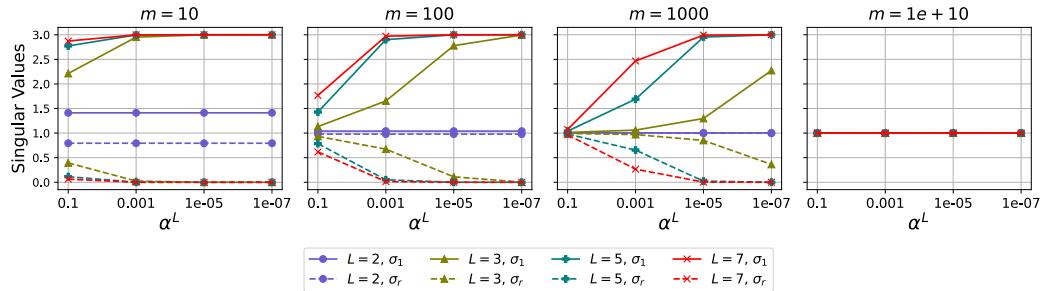


Figure 8: Gradient descent experiments conducted under conditions identical to those in Figure 7.

In the depth-2 case, both initializations tend to converge to high-rank solutions. Moreover, for both initializations, a clear gap emerges between $L = 2$ and $L = 3$, with the depth-3 model exhibiting a

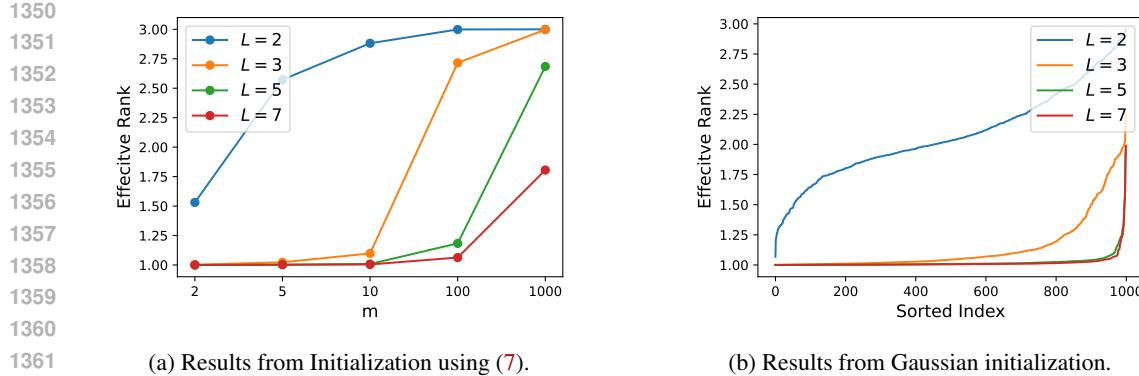


Figure 9: (a) Effective rank for the initialization scheme in (7). The x-axis denotes the parameter m , which controls the initial rank characteristics of the model, while the y-axis represents the corresponding effective rank after convergence. (b) Effective rank distributions for Gaussian initialization. The results are from 1000 independent trials, sorted by their converged effective rank. The x-axis denotes the sorted trial index (from lowest to highest converged rank), and the y-axis represents the corresponding effective rank after convergence.

stronger low-rank bias. For deeper networks ($L \geq 3$), the tendency to converge toward lower-rank solutions becomes increasingly pronounced as depth increases.

Noisy Diagonal Experiments. We also experimented with observing noisy diagonal entries using gradient descent. In particular, instead of fixing all ground truth diagonal entries to be equal, we perturbed them as $(\mathbf{W}^*)_{ii} = w^* + \epsilon_i$, where $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$. We set ($w^* = 1$), dimension ($d = 5$), and used the initialization scheme (7) with $m = 100$. For each configuration, we independently sampled 10 noise realizations and report the average behavior along with the standard deviations.

As shown in Figure 10, the qualitative trends are consistent with our theory. When $L = 2$, the model converges to a high-rank solution largely independently of the initialization scale, whereas for deeper networks the stable rank decreases as depth increases, indicating a stronger low-rank bias. We also observe that larger noise levels lead to more pronounced low-rank behavior. This is natural, since increasing the noise drives the ground truth further away from the identity. Moreover, the dependence on the noise magnitude appears continuous: in the small noise regime (leftmost panel), the change in stable rank is relatively mild, while in the larger noise regime (rightmost panel), the gap becomes more substantial. These experiments suggest that our depth-induced low-rank phenomenon is empirically robust to moderate perturbations of the diagonal entries.

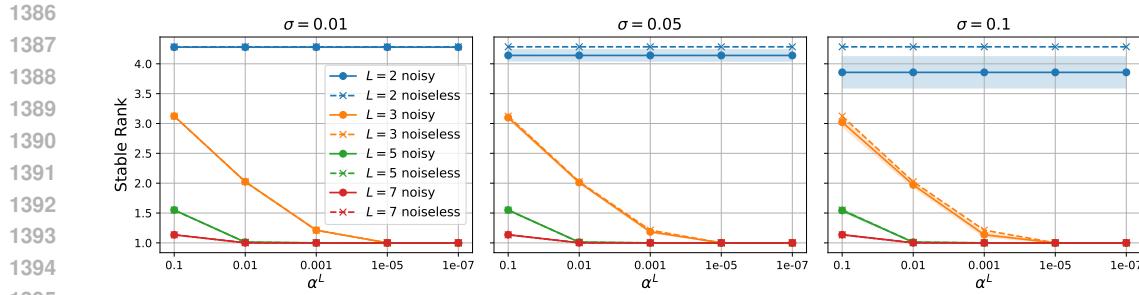


Figure 10: Limiting stable rank (y-axis) as a function of α^L (x-axis) under noisy diagonal observations. Dashed lines indicate the noiseless baseline, and solid lines indicate the noisy case. The noise standard deviation is set to $\sigma = 0.01$ (leftmost), $\sigma = 0.05$ (middle), and $\sigma = 0.1$ (rightmost). The depth dependent low-rank bias persists and follows a trend similar to the noiseless setting.

Non-Equal Diagonal Experiments. We also experimented with observing non-equal diagonal entries using gradient descent. In particular, instead of fixing all ground truth diagonal entries to be equal, we assigned different values to each diagonal entry. We set the dimension to $d = 5$ and take the diagonal entries of \mathbf{W}^* to be $0, 0.5, 1, 1.5, 2$, respectively, and used the initialization scheme (7).

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

As shown in Figure 11, the qualitative trends are consistent with our theory. When $L = 2$, the model converges to a high rank solution independently of the initialization scale, whereas for deeper networks the stable rank decreases as depth increases. For the case $m = \infty$ (rightmost plot), all models converge to high rank solutions regardless of depth, which is consistent with Theorem 3.3.

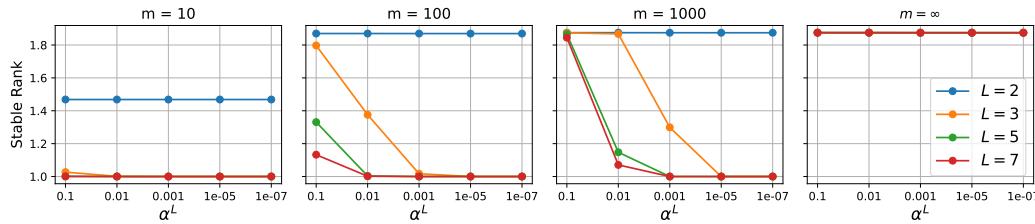


Figure 11: Limiting stable rank (y-axis) as a function of the initialization scale (x-axis) under non-equal diagonal observations. The low-rank bias induced by coupled training dynamics persists and closely matches the behavior in the equal-diagonal setting described in Theorem 3.3 and Figure 2.

Additional Optimizer Ablations. We also experimented with other optimizers, including adaptive methods, such as stochastic gradient descent (SGD), gradient descent with momentum, Adam, RMSProp, and Adagrad. In this experiment, we fix the dimension to $d = 5$, use Gaussian initialization with diagonal observations with $w^* = 1$, and run gradient based optimization with a sufficiently small step size over 10 random seeds. For each optimizer, we use the default hyperparameters from the PyTorch implementation, and for SGD we update the model using one observed entry per iteration.

The results in Figures 12-16 align well with our theory: for depth-2 (which induces decoupled dynamics), the model converges to high-rank solutions across initialization scales, whereas for depth $L \geq 3$ (which induces coupled dynamics) the solutions become increasingly low-rank as the initialization scale decreases and as depth increases.

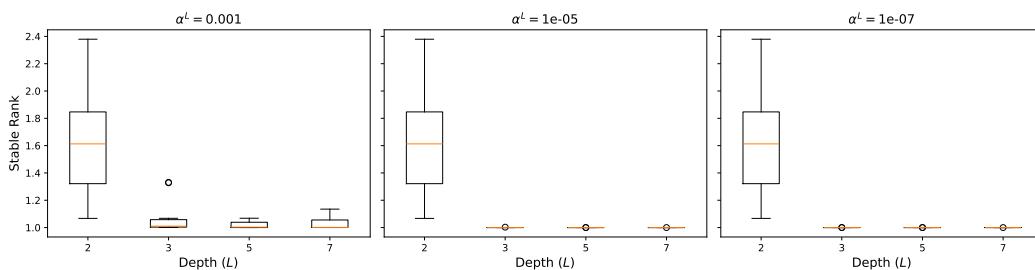


Figure 12: Final stable rank as a function of depth. Each panel corresponds to a different initialization scale. Results are obtained using SGD.

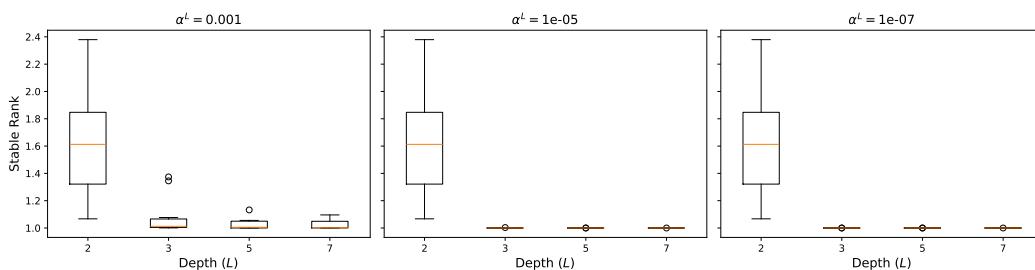
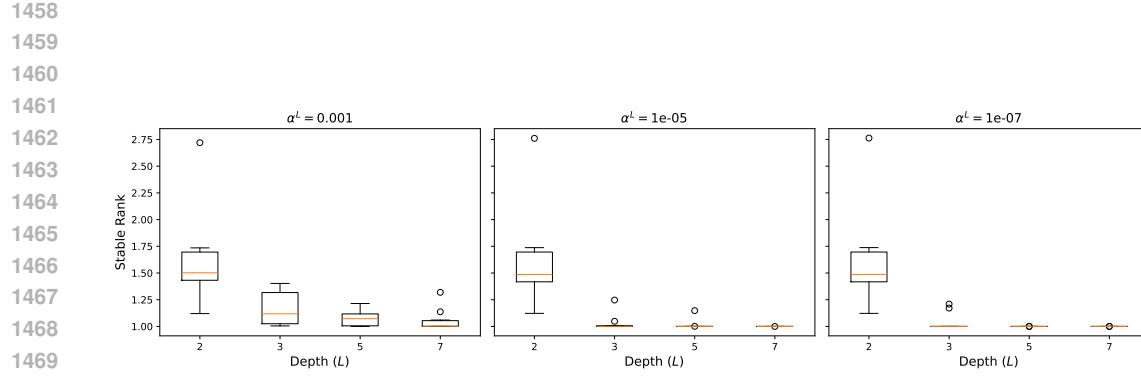
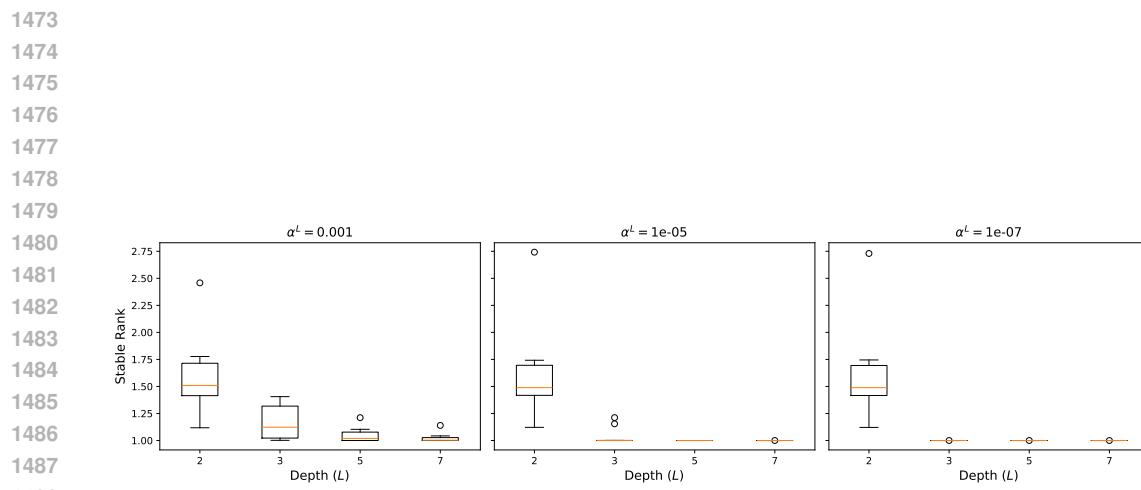


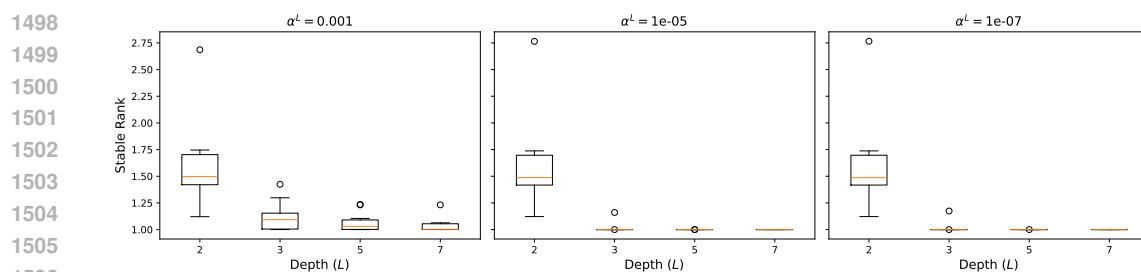
Figure 13: Final stable rank as a function of depth. Each panel corresponds to a different initialization scale. Results are obtained using GD with momentum.



1471 Figure 14: Final stable rank as a function of depth. Each panel corresponds to a different initialization
1472 scale. Results are obtained using Adam.



1489 Figure 15: Final stable rank as a function of depth. Each panel corresponds to a different initialization
1490 scale. Results are obtained using RMSProp.



1508 Figure 16: Final stable rank as a function of depth. Each panel corresponds to a different initialization
1509 scale. Results are obtained using Adagrad.

1510
1511

1512 C.1.1 EXPERIMENTS IN NEURAL NETWORKS
1513

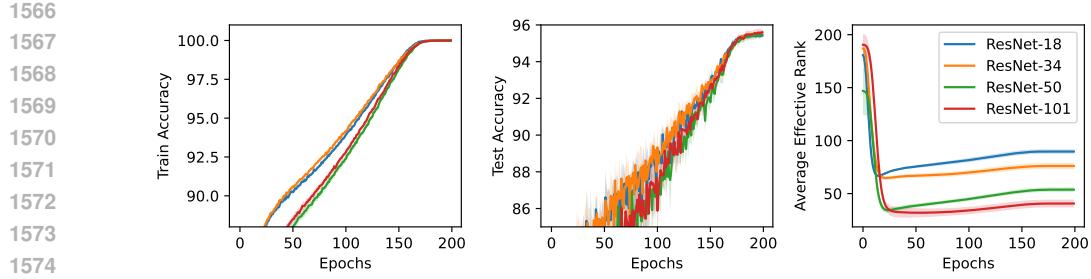
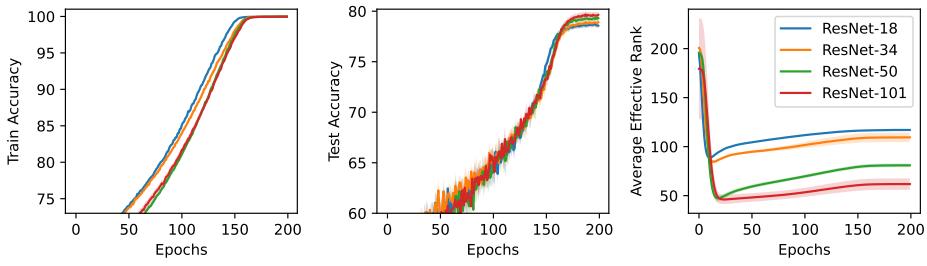
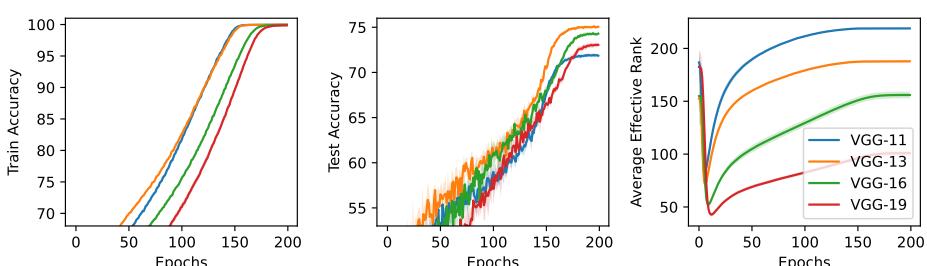
1514 To study how depth influences low rank bias in practice, we train ResNet and VGG models across
 1515 varying depths. While Huh et al. (2021) show that deeper networks yield lower rank embeddings,
 1516 their analysis does not address the weight matrices. Following Galanti et al. (2023), we measure
 1517 the effective rank of the weight matrices directly and find that deeper networks are biased toward
 1518 low-rank solutions.

1519 To be more specific, we train ResNet-18, 34, 50, and 101, as well as VGG-11, 13, 16, and 19,
 1520 on CIFAR-10 and CIFAR-100 for 200 epochs with a batch size of 128. Training uses SGD with
 1521 momentum, Adam, and RMSProp. The initial learning rates are 0.1 for SGD with momentum, and
 1522 0.001 for Adam and RMSProp. We apply weight decay of 0.0005 for SGD with momentum and
 1523 1e-05 for Adam and RMSProp. A cosine annealing scheduler is used together with standard data
 1524 augmentation (horizontal flipping and random cropping).

1525 We measure the effective rank across all layers except the final one and average them to obtain a single
 1526 scalar. Following Galanti et al. (2023), each weight tensor $\mathbf{Z} \in \mathbb{R}^{c_{\text{in}} \times c_{\text{out}} \times k_1 \times k_2}$ of a convolutional
 1527 layer, where c_{in} and c_{out} denote the numbers of input and output channels and (k_1, k_2) is the kernel
 1528 size, is reshaped into a matrix $\mathbf{W} \in \mathbb{R}^{c_{\text{in}} \times (c_{\text{out}} k_1 k_2)}$ to measure the layer’s effective rank. We report
 1529 averages over five runs with 95% confidence intervals.

1530 The results in Figures 17 to 20 for SGD with momentum, Figures 21 to 24 for Adam, and Figures 25
 1531 to 28 for RMSProp consistently show that the average effective rank decreases as depth increases.
 1532 This trend is consistent with Theorem 3.3, which establishes the depth induced low-rank bias in
 1533 matrix completion settings.

1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565



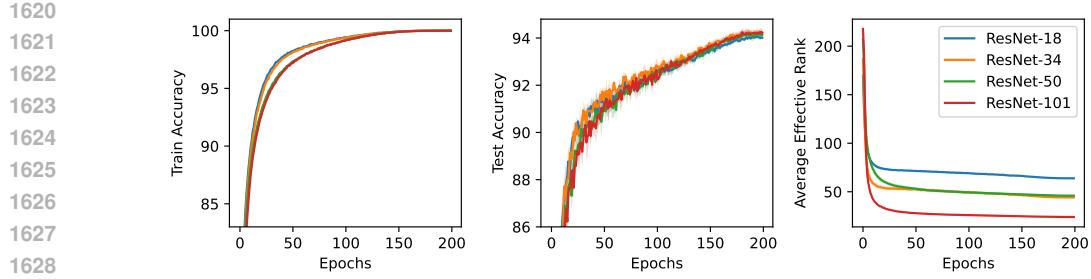


Figure 21: We train CIFAR-10 with ResNet models ranging from 18 to 101 layers using Adam, averaging results over five independent runs with 95% confidence intervals. The leftmost plot reports the training accuracy, the middle plot the test accuracy, and the rightmost plot the average effective rank. As depth increases, the average effective rank decreases.

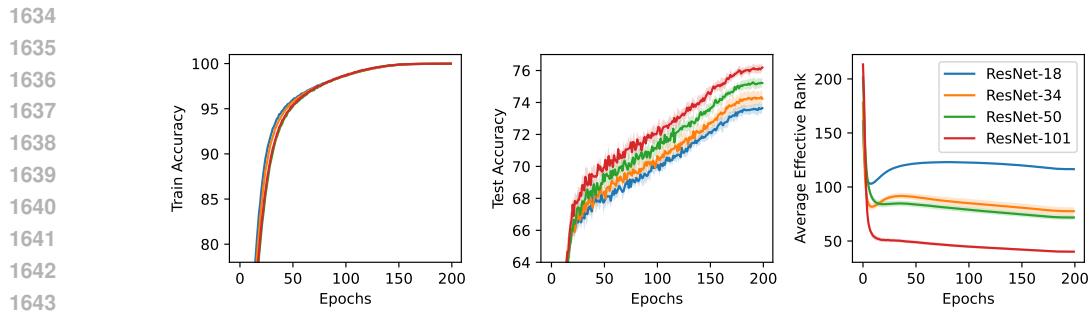


Figure 22: The results for CIFAR-100 with ResNet-18 to 101, under the same conditions as in Figure 21.

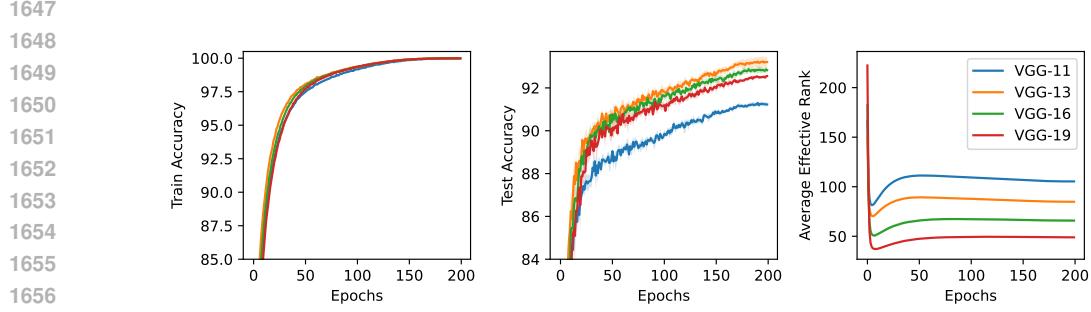


Figure 23: The results for CIFAR-10 with VGG-11 to 19, under the same conditions as in Figure 21.

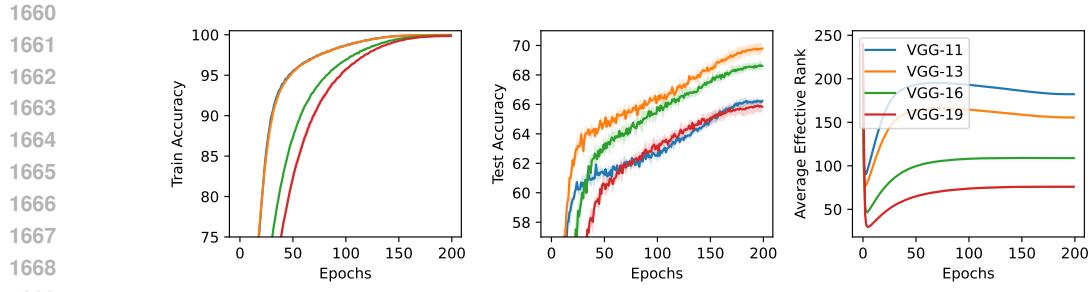


Figure 24: The results for CIFAR-100 with VGG-11 to 19, under the same conditions as in Figure 21.

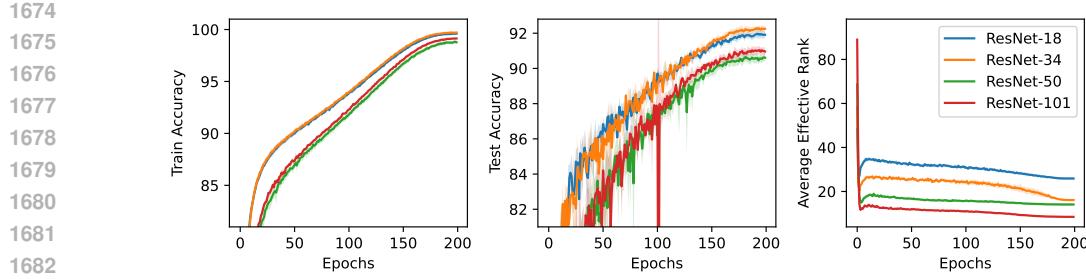


Figure 25: We train CIFAR-10 with ResNet models ranging from 18 to 101 layers using RMSProp, averaging results over five independent runs with 95% confidence intervals. The leftmost plot reports the training accuracy, the middle plot the test accuracy, and the rightmost plot the average effective rank. As depth increases, the average effective rank decreases.

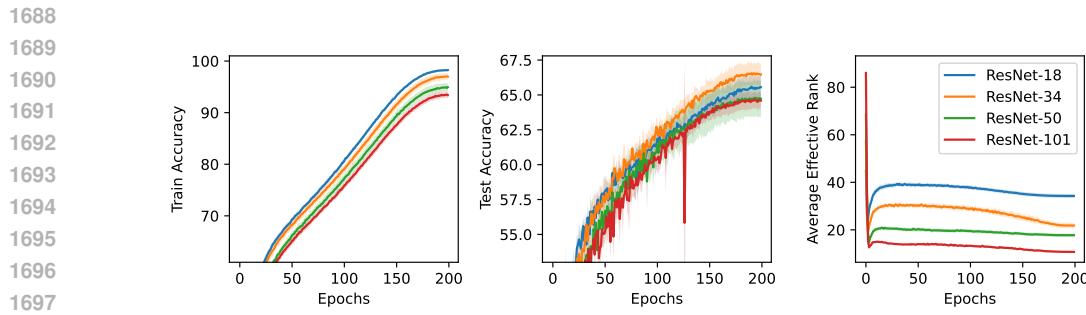


Figure 26: The results for CIFAR-100 with ResNet-18 to 101, under the same conditions as in Figure 25.

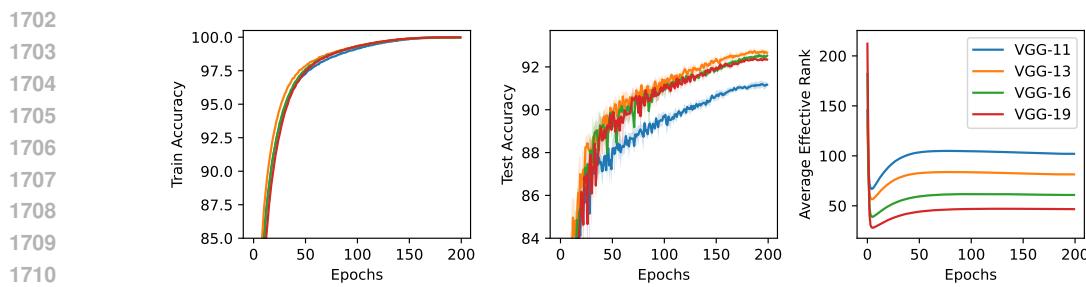


Figure 27: The results for CIFAR-10 with VGG-11 to 19, under the same conditions as in Figure 25.

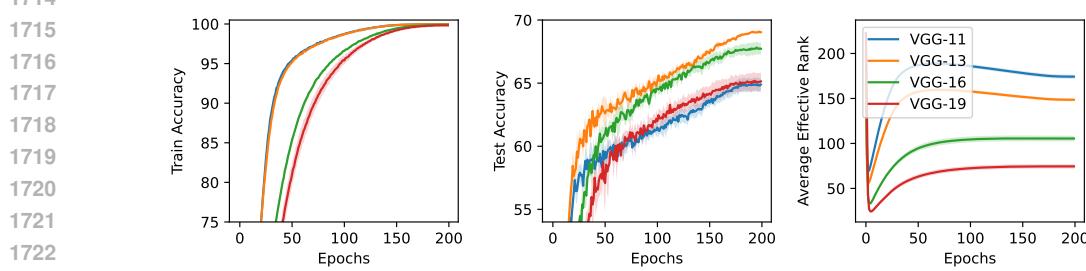


Figure 28: The results for CIFAR-100 with VGG-11 to 19, under the same conditions as in Figure 25.

1728
1729

Coupled vs. Decoupled Dynamics in NN. To examine whether coupled and decoupled training dynamics intensify low-rank bias in practical neural networks, we conducted an additional experiment with fully connected networks with ReLU activations, under both Gaussian and identity-based initializations, using the CIFAR-10 dataset. For the Gaussian initialization, all layers are initialized with i.i.d. Gaussian weights. For the identity-based initialization, all hidden layers are initialized as scaled identity matrices, while the first and last layers are initialized with Gaussian weights, since these layers are not square.

We train networks of depth $L \in \{2, 3, 5\}$ with a fixed hidden width of 512 for 100 epochs, using SGD with momentum and a constant learning rate of 0.01. The results show that, even when both initializations successfully achieve low training loss, the low-rank bias is substantially stronger under Gaussian initialization compared to identity initialization, which indicates that low-rank bias is intensified under coupled training dynamics in a way that is consistent with our theoretical findings.

Furthermore, as depth increases, the stable rank of the weight matrices decreases under Gaussian initialization. In contrast, with identity-based initialization, deeper networks tend to converge to higher rank solutions. A plausible explanation is that, as depth grows, a larger fraction of the layers are initialized using identity (recall that the first and last layers are initialized under Gaussian), which makes the overall dynamics closer to a decoupled regime and therefore less biased toward low-rank solutions.

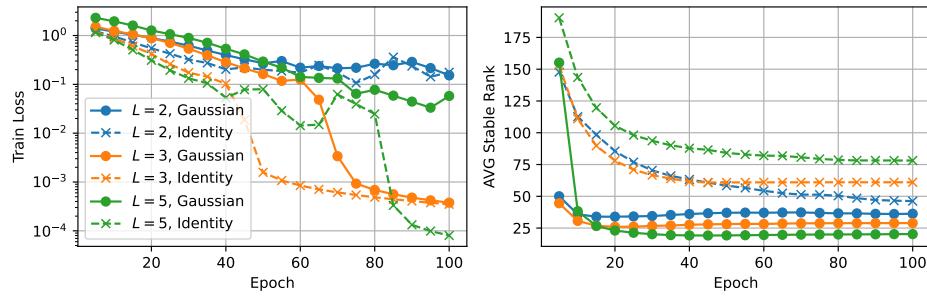


Figure 29: Left: training loss (log scale). Right: average stable rank across all layers except the last. Solid lines correspond to Gaussian initialization and dashed lines to identity-based initialization. Gaussian initialization (corresponding to coupled training dynamics) converges to noticeably lower rank than identity-based initialization (corresponding to more decoupled training dynamics).

C.2 LOSS OF PLASTICITY EXPERIMENTS

Section 4.2 discusses a scenario where pre-training employs diagonal entries, after which an off-diagonal term (specifically, w_{12}^*) is introduced to restore connectivity, leading to coupled dynamics. Theorem 4.2 establishes that, in this situation, the model indeed does not converge to a low-rank solution. To empirically validate this theoretical finding, we conducted experiments using the family of initializations (7) tailored to this specific scenario, with results detailed in Figures 30 and 31. These experiments utilized a depth-2 model to reconstruct the ground-truth matrix, with an initialization scale set to $\alpha = 10^{-35}$. Notably, if the initialization scale α is set significantly lower, as the dynamics are coupled, a cold-started model can converge to solutions exhibiting a more pronounced low-rank structure.

For the case presented in Figure 30, where $w^* = 1, w_{12}^* = 0.1$, following Theorem 4.2, the theoretical lower bound on the stable rank for a warm-started model initialized diagonally ($m = \infty$) is approximately 1.45, while the empirically observed stable rank is approximately 1.8. Even in scenarios where substantial new information must be learned (e.g., by setting w_{12}^* to a large value), loss of plasticity is empirically observed, primarily manifesting as high test error (i.e., a significant gap between the target w_{21}^* and the converged w_{21}). While Theorem 4.2’s analysis via stable rank does not fully explain an accompanying low-rank bias (a point consistent with Figure 31), the theorem does predict that w_{21} converges to a negative value, which implies a large test loss.

Furthermore, we performed additional experiments with different diagonal entry values to investigate whether this argument extends to other scenarios (results shown in Figure 32), although specific theoretical guarantees have not been established for these broader cases. We observe that even in these varied settings, both the effective rank and the stable rank of a warm-started model substantially exceed one, whereas cold-started models can converge to lower-rank solutions.

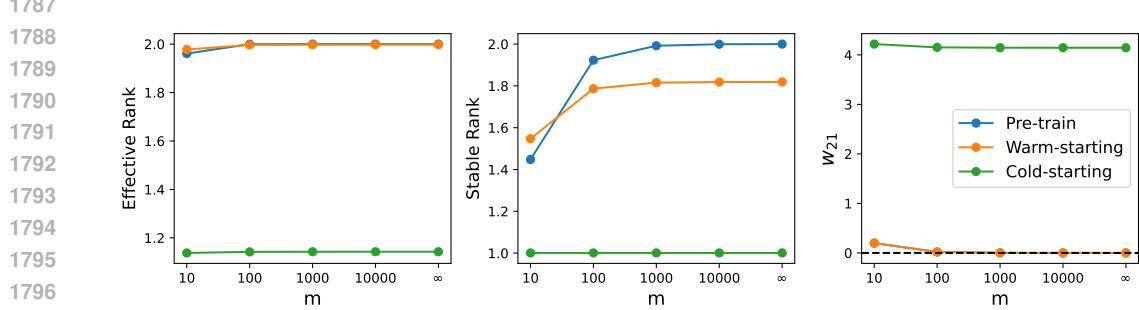


Figure 30: Experimental results for a 2×2 rank-1 ground-truth matrix \mathbf{W}^* with $w_{11}^* = w_{22}^* = 1$ and $w_{12}^* = 0.5$ (implying $w_{21}^* = 2$ for rank-1 structure). Models, initialized according to (7), are first pre-trained on diagonal entries. After achieving zero-loss convergence in pre-training, the off-diagonal element w_{12}^* is introduced, and models are subsequently trained on combined diagonal and off-diagonal observations. The plots display: (Left and Middle) effective rank under different settings; (Right) converged value of $w_{21}(\infty)$. Key observations: (1) Warm-starting with a model that converged to a high-rank solution during pre-training tends to maintain this high rank, even when presented with the same subsequent observations as a cold-started model. (2) In the theoretically analyzed $m = \infty$ case, $w_{21}(\infty) < 0$ is observed, which correlates with the highest effective rank.

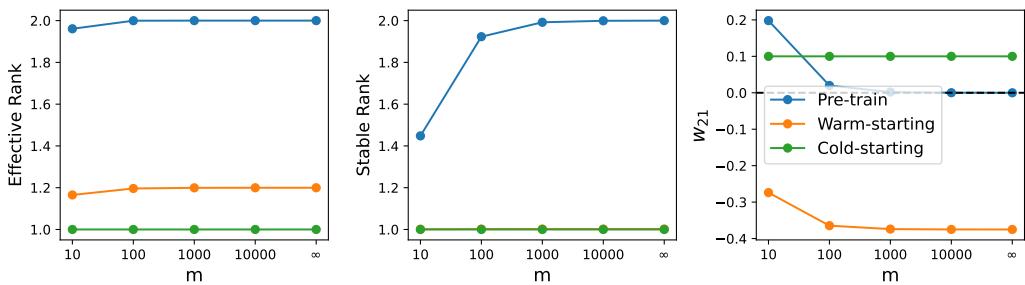


Figure 31: Experimental conditions identical to those in Figure 30, except with ground truth value $w_{12}^* = 10$. The model have to predict w_{21}^* as 0.1

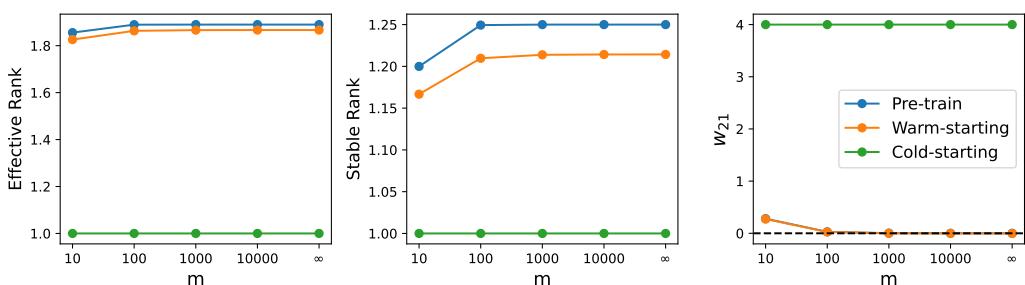


Figure 32: Experimental conditions identical to those in Figure 30, except with ground truth value $w_{11}^* = 1, w_{22}^* = 2$, and $w_{12}^* = 0.5$. The model have to predict w_{21}^* as 4.

1836 **D PROOF FOR SECTION 3**

1838 In this and the following sections, we prove the Propositions and Theorems presented in the main
 1839 text. We begin with the proof of Theorem 3.1.

1841 **D.1 PROOF FOR THEOREM 3.1**

1843 When convergence is guaranteed, we can define the reference vector $\mathbf{u}^* \triangleq \frac{\mathbf{b}_1(\infty)}{\|\mathbf{b}_1(\infty)\|} \in \mathbb{R}^{d_1}$, which
 1844 is entirely determined by their initial values and the targets. Note that \mathbf{u}^* does not change with
 1845 time, since it is defined at $t = \infty$. We decompose $\mathbf{a}_1(t)$, $\mathbf{a}_2(t)$, and $\mathbf{b}_1(t)$ into two components: one
 1846 parallel to \mathbf{u}^* and one perpendicular to \mathbf{u}^* :

1847
$$\mathbf{a}_1(t) = \mathbf{a}_{1\parallel}(t) + \mathbf{a}_{1\perp}(t), \quad \mathbf{a}_2(t) = \mathbf{a}_{2\parallel}(t) + \mathbf{a}_{2\perp}(t), \quad \mathbf{b}_1(t) = \mathbf{b}_{1\parallel}(t) + \mathbf{b}_{1\perp}(t).$$

1849 For any vector $\mathbf{u} \in \mathbb{R}^{d_1}$, the parallel component is defined as $\mathbf{u}_{\parallel} = (\mathbf{u}^* \mathbf{u}) \mathbf{u}^*$, and the perpendicular
 1850 component as $\mathbf{u}_{\perp} = \mathbf{u} - \mathbf{u}_{\parallel}$.

1851 We introduce notation to quantify the alignment of each vector with \mathbf{u}^* :

1853
$$\alpha_{\mathbf{a}_1}(t) = \mathbf{u}^* \mathbf{a}_1(t), \quad \alpha_{\mathbf{a}_2}(t) = \mathbf{u}^* \mathbf{a}_2(t), \quad \alpha_{\mathbf{b}_1}(t) = \mathbf{u}^* \mathbf{b}_1(t). \quad (13)$$

1854 Additionally, we define notation to measure the magnitude of the perpendicular components:

1856
$$\beta_{\mathbf{a}_1}(t) = \|\mathbf{a}_{1\perp}(t)\|_2^2, \quad \beta_{\mathbf{a}_2}(t) = \|\mathbf{a}_{2\perp}(t)\|_2^2, \quad \beta_{\mathbf{b}_1}(t) = \|\mathbf{b}_{1\perp}(t)\|_2^2. \quad (14)$$

1857 Then, using equation (4), time evolution of each component in equation (13) can be written as:

1859
$$\begin{aligned} \dot{\alpha}_{\mathbf{a}_1}(t) &= \mathbf{u}^* \mathbf{a}_1(t) \\ 1860 &= \underbrace{(\mathbf{w}_{11}^* - \mathbf{a}_1^\top(t) \mathbf{b}_1(t))}_{\triangleq r_1(t)} \mathbf{u}^* \mathbf{b}_1(t) \\ 1861 &= r_1(t) \alpha_{\mathbf{b}_1}(t). \end{aligned} \quad (15)$$

1864 Likewise, for $\alpha_{\mathbf{a}_2}(t)$, we derive:

1866
$$\begin{aligned} \dot{\alpha}_{\mathbf{a}_2}(t) &= \mathbf{u}^* \mathbf{a}_2(t) \\ 1867 &= \underbrace{(\mathbf{w}_{21}^* - \mathbf{a}_2^\top(t) \mathbf{b}_1(t))}_{\triangleq r_2(t)} \mathbf{u}^* \mathbf{b}_1(t) \\ 1868 &= r_2(t) \alpha_{\mathbf{b}_1}(t). \end{aligned} \quad (16)$$

1872 Finally, for $\alpha_{\mathbf{b}_1}(t)$, we have:

1873
$$\begin{aligned} \dot{\alpha}_{\mathbf{b}_1}(t) &= \mathbf{u}^* \mathbf{b}_1(t) \\ 1874 &= (\mathbf{w}_{11}^* - \mathbf{a}_1^\top(t) \mathbf{b}_1(t)) \mathbf{u}^* \mathbf{a}_1(t) + (\mathbf{w}_{21}^* - \mathbf{a}_2^\top(t) \mathbf{b}_1(t)) \mathbf{u}^* \mathbf{a}_2(t) \\ 1875 &= r_1(t) \alpha_{\mathbf{a}_1}(t) + r_2(t) \alpha_{\mathbf{a}_2}(t). \end{aligned} \quad (17)$$

1878 Also, for the perpendicular components, their time evolution can be derived as:

1879
$$\begin{aligned} \dot{\beta}_{\mathbf{a}_1}(t) &= 2 \mathbf{a}_{1\perp}(t) \cdot \dot{\mathbf{a}}_{1\perp}(t) \\ 1880 &= 2 \mathbf{a}_{1\perp}(t) \cdot \frac{d}{dt} (\mathbf{a}_1(t) - (\mathbf{u}^* \mathbf{a}_1(t)) \mathbf{u}^*) \\ 1881 &= 2 \mathbf{a}_{1\perp}(t) \cdot (r_1(t) \mathbf{b}_1(t) - r_1(t) (\mathbf{u}^* \mathbf{b}_1(t)) \mathbf{u}^*). \end{aligned}$$

1885 Noting that $\mathbf{a}_{1\perp}(t)$ is perpendicular to \mathbf{u}^* , the second term in the parenthesis is zero. Thus, we have

1886
$$\dot{\beta}_{\mathbf{a}_1}(t) = 2 r_1(t) \mathbf{a}_{1\perp}(t)^\top \mathbf{b}_{1\perp}(t).$$

1888 Likewise, for $\beta_{\mathbf{a}_2}(t)$ and $\beta_{\mathbf{b}_1}(t)$, we can derive their time derivative as:

1889
$$\dot{\beta}_{\mathbf{a}_2}(t) = 2 r_2(t) \mathbf{a}_{2\perp}(t)^\top \mathbf{b}_{1\perp}(t), \quad \dot{\beta}_{\mathbf{b}_1}(t) = \dot{\beta}_{\mathbf{a}_1}(t) + \dot{\beta}_{\mathbf{a}_2}(t).$$

1890 Note that by the definition of \mathbf{u}^* , we have $\beta_{\mathbf{b}_1}(\infty) = 0$. Integrating the identity $\dot{\beta}_{\mathbf{b}_1}(t) = \dot{\beta}_{\mathbf{a}_1}(t) +$
 1891 $\dot{\beta}_{\mathbf{a}_2}(t)$ from $t = 0$ to ∞ gives:
 1892

$$1893 \quad \beta_{\mathbf{a}_1}(\infty) + \beta_{\mathbf{a}_2}(\infty) = \underbrace{\beta_{\mathbf{a}_1}(0) + \beta_{\mathbf{a}_2}(0) - \beta_{\mathbf{b}_1}(0)}_{\triangleq \beta_0 \geq 0}.$$

1896 This equation shows that if the initial value β_0 is small, it constrains the total perpendicular magnitude
 1897 at convergence. However, since we do not know \mathbf{u}^* in advance, one natural way to ensure small
 1898 perpendicular components is to initialize the entire norms of $\mathbf{a}_1(0), \mathbf{a}_2(0)$ to be sufficiently small.

1899 To develop a more rigorous understanding, we analyze the parallel components. Under the assumption
 1900 of convergence, we have:

$$1901 \quad \mathbf{a}_1(\infty)^\top \mathbf{b}_1(\infty) = w_{11}^*, \quad \mathbf{a}_2(\infty)^\top \mathbf{b}_1(\infty) = w_{21}^*.$$

1903 Decomposing $\mathbf{a}_1(\infty)$ and $\mathbf{a}_2(\infty)$ leads to:
 1904

$$1905 \quad \mathbf{a}_1(\infty)^\top \mathbf{b}_1(\infty) = \left(\mathbf{a}_{1\perp}(\infty) + \mathbf{u}^{*\top} \mathbf{a}_1(\infty) \mathbf{u}^* \right)^\top \mathbf{b}_1(\infty) \\ 1906 \quad = \alpha_{\mathbf{a}_1}(\infty) \alpha_{\mathbf{b}_1}(\infty) = w_{11}^*, \quad (18)$$

$$1908 \quad \mathbf{a}_2(\infty)^\top \mathbf{b}_1(\infty) = \left(\mathbf{a}_{2\perp}(\infty) + \mathbf{u}^{*\top} \mathbf{a}_2(\infty) \mathbf{u}^* \right)^\top \mathbf{b}_1(\infty) \\ 1909 \quad = \alpha_{\mathbf{a}_2}(\infty) \alpha_{\mathbf{b}_1}(\infty) = w_{21}^*. \quad (19)$$

1912 Using equations (15)–(17), and noting that

$$1914 \quad \frac{d}{dt} \alpha_{\mathbf{b}_1}^2(t) = \frac{d}{dt} (\alpha_{\mathbf{a}_1}^2(t) + \alpha_{\mathbf{a}_2}^2(t)),$$

1916 we can integrate both sides of the equation over time from 0 to ∞ to obtain:

$$1917 \quad \alpha_{\mathbf{a}_1}^2(\infty) + \alpha_{\mathbf{a}_2}^2(\infty) = \alpha_{\mathbf{b}_1}^2(\infty) + \underbrace{\alpha_{\mathbf{a}_1}^2(0) + \alpha_{\mathbf{a}_2}^2(0) - \alpha_{\mathbf{b}_1}^2(0)}_{\triangleq \alpha_0}. \quad (20)$$

1920 By solving equations (18), (19), and (20), we can obtain closed-form solutions of $\alpha_{\mathbf{a}_1}(\infty), \alpha_{\mathbf{a}_2}(\infty)$,
 1921 and $\alpha_{\mathbf{b}_1}(\infty)$ as follows:
 1922

$$1923 \quad \alpha_{\mathbf{a}_1}^2(\infty) = \frac{2w_{11}^{*2}}{\sqrt{\alpha_0^2 + 4w_{11}^{*2} + 4w_{21}^{*2}} - \alpha_0}, \quad \alpha_{\mathbf{a}_2}^2(\infty) = \frac{2w_{21}^{*2}}{\sqrt{\alpha_0^2 + 4w_{11}^{*2} + 4w_{21}^{*2}} - \alpha_0}, \quad (21)$$

$$1926 \quad \alpha_{\mathbf{b}_1}^2(\infty) = \frac{\sqrt{\alpha_0^2 + 4w_{11}^{*2} + 4w_{21}^{*2}} - \alpha_0}{2}. \quad (22)$$

1929 Thus, we can upper bound the proportion of the perpendicular component of $\mathbf{a}_1(\infty)$ and $\mathbf{a}_2(\infty)$
 1930 relative to its total magnitude as follows:
 1931

$$1932 \quad \frac{\|\mathbf{a}_{1\perp}(\infty)\|^2}{\|\mathbf{a}_1(\infty)\|^2} = \frac{\beta_{\mathbf{a}_1}(\infty)}{\alpha_{\mathbf{a}_1}^2(\infty) + \beta_{\mathbf{a}_1}(\infty)} \leq \frac{\beta_0 \left(\sqrt{\alpha_0^2 + 4w_{11}^{*2} + 4w_{21}^{*2}} - \alpha_0 \right)}{2w_{11}^{*2}},$$

$$1936 \quad \frac{\|\mathbf{a}_{2\perp}(\infty)\|^2}{\|\mathbf{a}_2(\infty)\|^2} = \frac{\beta_{\mathbf{a}_2}(\infty)}{\alpha_{\mathbf{a}_2}^2(\infty) + \beta_{\mathbf{a}_2}(\infty)} \leq \frac{\beta_0 \left(\sqrt{\alpha_0^2 + 4w_{11}^{*2} + 4w_{21}^{*2}} - \alpha_0 \right)}{2w_{21}^{*2}}.$$

1940 To further refine these bounds, we analyze the terms β_0 and $S(\alpha_0) \triangleq \sqrt{\alpha_0^2 + 4w_{11}^{*2} + 4w_{21}^{*2}} - \alpha_0$.
 1941 By the definition of β_0 , it is upper bounded by $\|\mathbf{a}_1(0)\|^2 + \|\mathbf{a}_2(0)\|^2 = \|\mathbf{A}(0)\|_F^2$. Also, by the
 1942 definition of α_0 , we have:
 1943

$$-\|\mathbf{b}_1(0)\|_2^2 \leq \alpha_0 \leq \|\mathbf{A}(0)\|_F^2.$$

1944 Noting that the function $f(x) = \sqrt{x^2 + C} - x$ (where $C > 0$) is non-negative and monotonically
 1945 decreasing for all $x \in \mathbb{R}$, we can upper bound $S(\alpha_0)$ using the lower bound of α_0 :
 1946

$$\begin{aligned} 1947 \quad S(\alpha_0) &\leq S(-\|\mathbf{b}_1(0)\|_2^2) \\ 1948 \quad &= \sqrt{(-\|\mathbf{b}_1(0)\|_2^2)^2 + 4(w_{11}^{*2} + w_{21}^{*2})} - (-\|\mathbf{b}_1(0)\|_2^2) \\ 1949 \quad &= \sqrt{\|\mathbf{b}_1(0)\|_2^4 + 4(w_{11}^{*2} + w_{21}^{*2})} + \|\mathbf{b}_1(0)\|_2^2. \\ 1950 \quad & \\ 1951 \quad & \end{aligned}$$

1952 Substituting these bounds for β_0 and $S(\alpha_0)$ into the inequality $\frac{\|\mathbf{a}_{1\perp}(\infty)\|^2}{\|\mathbf{a}_1(\infty)\|_2^2} \leq \frac{\beta_0 S(\alpha_0)}{2w_{11}^{*2}}$, we obtain the
 1953 final upper bound for the proportion of the perpendicular component of $\mathbf{a}_1(\infty)$:
 1954

$$\begin{aligned} 1955 \quad \frac{\|\mathbf{a}_{1\perp}(\infty)\|^2}{\|\mathbf{a}_1(\infty)\|_2^2} &\leq \frac{\|\mathbf{A}(0)\|_F^2 \left(\sqrt{\|\mathbf{b}_1(0)\|_2^4 + 4(w_{11}^{*2} + w_{21}^{*2})} + \|\mathbf{b}_1(0)\|_2^2 \right)}{2w_{11}^{*2}}. \\ 1956 \quad & \\ 1957 \quad & \\ 1958 \quad & \end{aligned}$$

1959 A similar bound applies to $\frac{\|\mathbf{a}_{2\perp}(\infty)\|^2}{\|\mathbf{a}_2(\infty)\|_2^2}$:
 1960

$$\begin{aligned} 1961 \quad \frac{\|\mathbf{a}_{2\perp}(\infty)\|^2}{\|\mathbf{a}_2(\infty)\|_2^2} &\leq \frac{\|\mathbf{A}(0)\|_F^2 \left(\sqrt{\|\mathbf{b}_1(0)\|_2^4 + 4(w_{11}^{*2} + w_{21}^{*2})} + \|\mathbf{b}_1(0)\|_2^2 \right)}{2w_{21}^{*2}}. \\ 1962 \quad & \\ 1963 \quad & \\ 1964 \quad & \end{aligned}$$

1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

D.2 PROOF FOR PROPOSITION 3.2

According to the definition of coupled/decoupled dynamics presented in Definition 2, for the family of initializations defined in (7) along with the diagonal observations $(\Omega_{\text{diag}}^{(d)})$, we divide the cases to ensure that all possible scenarios for this family of initializations are covered.

D.2.1 CASE FOR $L = 2$

First, we consider the depth-2 ($L = 2$) case. Each diagonal observation, $w_{ii}(t)$, is the inner product of the i -th row of $\mathbf{A}(t)$ and the i -th column of $\mathbf{B}(t)$. Then, when we take the gradient $\nabla_{\theta(t)} w_{ii}(t)$, where $\theta(t)$ represents the concatenation of $\mathbf{A}(t)$ and $\mathbf{B}(t)$, this gradient has non-zero components only corresponding to the i -th row of $\mathbf{A}(t)$ and the i -th column of $\mathbf{B}(t)$; all other components are zero for all $t \geq 0$. Therefore, for any $j \neq i$, the inner product $\langle \nabla_{\theta(t)} w_{ii}(t), \nabla_{\theta(t)} w_{jj}(t) \rangle$ must be zero. This means that there exists a partition of $\Omega_{\text{diag}}^{(d)}$ into disjoint subsets $\Omega_1, \dots, \Omega_d$, where each $\Omega_i = \{(i, i)\}$. Therefore, for any initialization, the training dynamics are **decoupled**.

D.2.2 CASE FOR $L \geq 3$ AND $1 < m < \infty$

For the deeper matrix case ($L \geq 3$), we first note that each diagonal observation $w_{ii}(t)$ can be expressed as:

$$w_{ii}(t) = \sum_{i_{L-1}=1}^d \cdots \sum_{i_1=1}^d (\mathbf{W}_L(t))_{i,i_{L-1}} (\mathbf{W}_{L-1}(t))_{i_{L-1},i_{L-2}} \cdots (\mathbf{W}_1(t))_{i_1,i}.$$

Now consider the case $1 < m < \infty$, where every entry of each weight matrix $\mathbf{W}_l(0)$ (for $l = 1, \dots, L$) is initialized as a positive value. Since $w_{ii}(0)$ is a sum of products of these positive entries, its gradient with respect to the parameters $\theta(0)$, $\nabla_{\theta(0)} w_{ii}(0)$, likewise consist of components that are sums of positive products (see (23)). Therefore, it is asserted that each relevant component of $\nabla_{\theta(0)} w_{ii}(0)$ is positive at initialization. Consequently, for any $j \neq i$, since both $\nabla_{\theta(0)} w_{ii}(0)$ and $\nabla_{\theta(0)} w_{jj}(0)$ have all their corresponding components positive, their inner product $\langle \nabla_{\theta(0)} w_{ii}(0), \nabla_{\theta(0)} w_{jj}(0) \rangle$ will be non-zero (specifically, positive). This non-zero inner product signifies **coupled dynamics**.

D.2.3 CASE FOR $L \geq 3$ AND $m = \infty$

Next, we examine the $m = \infty$ case, which corresponds to initializing each factor matrix $\mathbf{W}_l(0)$ as a scaled identity, i.e., $\mathbf{W}_l(0) = \alpha_l \mathbf{I}_d$. The following lemma states that under this initialization, and for dynamics driven by diagonal observations (from $\Omega_{\text{diag}}^{(d)}$), all off-diagonal elements of each $\mathbf{W}_l(t)$ remain zero for all $t \geq 0$.

Lemma D.1. *For a set of L matrices $\mathbf{W}_1(t), \dots, \mathbf{W}_L(t) \in \mathbb{R}^{d \times d}$, let $\mathbf{W}_{L:1}(t) = \mathbf{W}_L(t) \cdots \mathbf{W}_1(t)$. Following gradient flow dynamics in (3), if each factor matrix $\mathbf{W}_l(0)$ is initialized as a diagonal matrix (e.g., $\mathbf{W}_l(0) = \alpha_l \mathbf{I}_d$ for scalars α_l), then all off-diagonal elements of each matrix $\mathbf{W}_l(t)$ remain zero for all $t \geq 0$.*

Proof. For a given diagonal observation indices $\Omega_{\text{diag}}^{(d)}$, if we consider the gradient flow dynamics for an (i, j) -th entry of the factor matrix $\mathbf{W}_l(t)$ ($\triangleq (w_l(t))_{ij}$), we have:

$$\begin{aligned} \frac{d(w_l(t))_{ij}}{dt} &= -\frac{\partial \phi}{\partial (w_l(t))_{ij}} \\ &= -\sum_{p=1}^d (w_{pp}(t) - w_{pp}^*) \frac{\partial w_{pp}(t)}{\partial (w_l(t))_{ij}}, \end{aligned}$$

Here, the derivative of a diagonal element $w_{pp}(t)$ with respect to $(w_l(t))_{ij}$ is:

$$\frac{\partial w_{pp}(t)}{\partial (w_l(t))_{ij}} = (\mathbf{W}_L(t) \mathbf{W}_{L-1}(t) \cdots \mathbf{W}_{l+1}(t))_{pi} (\mathbf{W}_{l-1}(t) \mathbf{W}_{l-2}(t) \cdots \mathbf{W}_1(t))_{jp}, \quad (23)$$

2052 where the first term is (p, i) -th element of the product $\mathbf{W}_L(t)\mathbf{W}_{L-1}(t)\cdots\mathbf{W}_{l+1}(t)$, and the second
 2053 term is (j, p) -th element of the product $\mathbf{W}_{l-1}(t)\mathbf{W}_{l-2}(t)\cdots\mathbf{W}_1(t)$. We want to show that if all
 2054 $\mathbf{W}_l(t)$ are diagonal, then $\frac{d(w_l(t))_{ij}}{dt} = 0$ for any off-diagonal element $(w_l(t))_{ij}$ (i.e., $i \neq j$).
 2055

2056 Assume at a given time t that all factor matrices $\mathbf{W}_l(t)$ are diagonal. Then, the product $P(t) \triangleq$
 2057 $\prod_{k=l+1}^L \mathbf{W}_k(t)$ is diagonal. Similarly, the product $S(t) \triangleq \prod_{k=1}^{l-1} \mathbf{W}_k(t)$ is diagonal. For $\frac{\partial w_{pp}(t)}{\partial(w_l(t))_{ij}}$
 2058 to be non-zero (given all $\mathbf{W}_l(t)$ are diagonal), both $(P(t))_{pi}$ and $(S(t))_{jp}$ must be non-zero. This
 2059 requires $p = i$ and $j = p$, which implies $i = j$.
 2060

2061 However, we are considering an off-diagonal element $(w_l(t))_{ij}$, for which $i \neq j$. This means that if
 2062 all $\mathbf{W}_l(t)$ are diagonal, then for any p :

$$\frac{\partial w_{pp}}{\partial(w_l(t))_{ij}} = 0, \quad \text{if } i \neq j$$

2063 Substituting this into the dynamic equation for $(w_l(t))_{ij}$:

$$\frac{d(w_l(t))_{ij}}{dt} = -\sum_{p=1}^d (w_{pp}(t) - w_{pp}^*) \cdot 0 = 0, \quad \text{if } i \neq j$$

2064 Initially, $\mathbf{W}_l(0)$ are diagonal, so all off-diagonal elements $(w_l(t))_{ij}$ are zero for $i \neq j$. Since their
 2065 time derivatives are zero when they are zero (i.e., when the matrices are diagonal), these off-diagonal
 2066 elements remain zero for all $t \geq 0$. \square
 2067

2068 With Lemma D.1, the factor matrices $\mathbf{W}_l(t)$ remain diagonal, so $w_{ii}(t) = (\mathbf{W}_L(t))_{ii} \cdots (\mathbf{W}_1(t))_{ii}$.
 2069 This structure leads to decoupled dynamics because each $w_{ii}(t)$ depends exclusively on the set of
 2070 parameters $\{(\mathbf{W}_k(t))_{ii}\}_{k=1}^L$, while $w_{jj}(t)$ (for $j \neq i$) depends on the distinct set $\{(\mathbf{W}_k(t))_{jj}\}_{k=1}^L$.
 2071 Consequently, for any $j \neq i$, their respective gradients $\nabla_{\theta(t)} w_{ii}(t)$ and $\nabla_{\theta(t)} w_{jj}(t)$ are orthogonal,
 2072 meaning their inner product is zero:
 2073

$$\langle \nabla_{\theta(t)} w_{ii}(t), \nabla_{\theta(t)} w_{jj}(t) \rangle = 0.$$

2074 This orthogonality implies that the learning for each diagonal entry is independent, allowing a
 2075 conceptual partition of $\Omega_{\text{diag}}^{(d)}$ into disjoint subsets $\Omega_i = \{(i, i)\}$. Therefore, under this specific
 2076 diagonal initialization (the $m = \infty$ case), the training dynamics are **decoupled**.
 2077

2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105

2106 D.3 PROOF FOR THEOREM 3.3
2107

2108 Before presenting the proof of Theorem 3.3, we first restate the problem setting. The model is defined
2109 as $\mathbf{W}_{L:1}(t) = \mathbf{W}_L(t)\mathbf{W}_{L-1}(t)\cdots\mathbf{W}_1(t)$, where each factor matrix $\mathbf{W}_l(t) \in \mathbb{R}^{d \times d}$ is subject to
2110 diagonal observations $\Omega_{\text{diag}}^{(d)} = \{(i, i)\}_{i=1}^d$, and follows the gradient flow described in (3). We also
2111 assume that all diagonal entries are equal, i.e., $w^* \triangleq w_{11}^* = w_{22}^* \cdots = w_{dd}^*$. To simplify notation, we
2112 use $\ell(\mathbf{W}_{L:1}(t))$ in place of $\ell(\mathbf{W}_{L:1}(t); \Omega_{\text{diag}}^{(d)})$ when the context is clear. The explicit gradient flow
2113 dynamics for each factor matrix is then given by:
2114

$$2115 \quad \dot{\mathbf{W}}_l(t) = - \prod_{i=l+1}^L \mathbf{W}_i(t)^\top \cdot \nabla \ell(\mathbf{W}_{L:1}(t)) \cdot \prod_{i=1}^{l-1} \mathbf{W}_i(t)^\top, \quad (24)$$

2118 where $\nabla \ell(\mathbf{W}_{L:1}(t)) = \text{diag}(r_1(t), r_2(t), \dots, r_d(t))$. Here, the residual term is defined as $r_i(t) \triangleq$
2119 $w_{ii}(t) - w^*$. To begin, we first present the preliminary lemma required for the following result.
2120

2121 **Lemma D.2.** *Let \mathbf{I}_n denote the $n \times n$ identity matrix and $\mathbf{J}_n \triangleq \mathbf{1}_n \mathbf{1}_n^\top$ denote the $n \times n$ matrix with
2122 all entries equal to 1. Then the set*

$$2123 \quad \mathcal{S} = \{a\mathbf{I}_n + b\mathbf{J}_n \mid a, b \in \mathbb{R}\}$$

2124 *is closed under scalar multiplication, addition, and matrix multiplication. Also, any two matrices
2125 $\mathbf{A}, \mathbf{B} \in \mathcal{S}$ commute.*

2127 *Proof.* Let
2128

$$2129 \quad \mathbf{A} = a\mathbf{I}_n + b\mathbf{J}_n \quad \text{and} \quad \mathbf{B} = c\mathbf{I}_n + d\mathbf{J}_n,$$

2130 with $a, b, c, d \in \mathbb{R}$, and let $\lambda \in \mathbb{R}$ be an arbitrary scalar.
2131

2132 **Scalar Multiplication:**

$$2133 \quad \lambda \mathbf{A} = \lambda(a\mathbf{I}_n + b\mathbf{J}_n) = (\lambda a)\mathbf{I}_n + (\lambda b)\mathbf{J}_n.$$

2135 Since $\lambda a, \lambda b \in \mathbb{R}$, it follows that $\lambda \mathbf{A} \in \mathcal{S}$.
2136

2137 **Addition:**

$$2138 \quad \mathbf{A} + \mathbf{B} = (a\mathbf{I}_n + b\mathbf{J}_n) + (c\mathbf{I}_n + d\mathbf{J}_n) = (a + c)\mathbf{I}_n + (b + d)\mathbf{J}_n.$$

2139 Since $a + c, b + d \in \mathbb{R}$, we have $\mathbf{A} + \mathbf{B} \in \mathcal{S}$.
2140

2141 **Matrix Multiplication:**

$$2142 \quad \mathbf{AB} = (a\mathbf{I}_n + b\mathbf{J}_n)(c\mathbf{I}_n + d\mathbf{J}_n).$$

2143 Using the distributive property and the facts that
2144

$$2145 \quad \mathbf{I}_n \mathbf{J}_n = \mathbf{J}_n \mathbf{I}_n = \mathbf{J}_n \quad \text{and} \quad \mathbf{J}_n^2 = n\mathbf{J}_n,$$

2146 we expand:
2147

$$2148 \quad \begin{aligned} \mathbf{AB} &= ac\mathbf{I}_n \mathbf{I}_n + ad\mathbf{I}_n \mathbf{J}_n + bc\mathbf{J}_n \mathbf{I}_n + bd\mathbf{J}_n^2 \\ 2149 &= ac\mathbf{I}_n + ad\mathbf{J}_n + bc\mathbf{J}_n + bd(n\mathbf{J}_n) \\ 2150 &= ac\mathbf{I}_n + (ad + bc + nbd)\mathbf{J}_n. \end{aligned}$$

2151 Thus, \mathbf{AB} is of the form $\alpha\mathbf{I}_n + \beta\mathbf{J}_n$ with $\alpha = ac$ and $\beta = ad + bc + nbd$, and hence $\mathbf{AB} \in \mathcal{S}$.
2152

2153 **Commutativity:** By the same procedure as above,
2154

$$2155 \quad \begin{aligned} \mathbf{AB} &= (a\mathbf{I}_n + b\mathbf{J}_n)(c\mathbf{I}_n + d\mathbf{J}_n) \\ 2156 &= ac\mathbf{I}_n + (ad + bc + nbd)\mathbf{J}_n \\ 2157 &= ca\mathbf{I}_n + (cb + da + nbd)\mathbf{J}_n \\ 2158 &= \mathbf{BA}, \end{aligned}$$

2159 which completes the proof. \square

2160 D.3.1 CASE FOR $L = 2$ & $L \geq 3$ AND $1 < m < \infty$

2161
 2162 We will first examine two main scenarios: the depth-2 ($L = 2$) case and deeper networks ($L \geq 3$)
 2163 where $1 < m < \infty$. The $m = \infty$ case will be considered separately in the later subsection, as its
 2164 initialization with $\alpha \mathbf{I}_d$ warrants distinct treatment.

2165 We now proceed to prove the following auxiliary results, which are used in the proof of Lemma D.4.
 2166 Based on Lemmas D.3–D.5, we will show that all diagonal entries across all layers are identical, and
 2167 likewise, all off-diagonal entries across layers are also equal.

2168 **Lemma D.3.** *Suppose we have a ground truth matrix $\mathbf{W}^* \in \mathbb{R}^{d \times d}$ whose diagonal entries are
 2169 the same that we are observing, i.e., $w^* \triangleq w_{11}^* = w_{22}^* = \dots = w_{dd}^*$ and $\Omega_{\text{diag}}^{(d)} = \{(i, i)\}_{i=1}^d$. We
 2170 factorize a solution matrix at time t as a product of L matrices,*

$$2172 \mathbf{W}_{L:1}(t) = \mathbf{W}_L(t) \mathbf{W}_{L-1}(t) \cdots \mathbf{W}_1(t), \quad \mathbf{W}_l(t) \in \mathbb{R}^{d \times d} \quad \text{for all } l \in [L].$$

2173 Suppose that for all $l \in [L]$ and $0 \leq m \leq k$, the following holds:

$$2175 \mathbf{W}_l^{(m)}(t) = x^{(m)} \mathbf{I}_d + y^{(m)} (\mathbf{J}_d - \mathbf{I}_d),$$

2177 for some scalars $x^{(m)}, y^{(m)} \in \mathbb{R}$ where we denote $\mathbf{A}^{(k)}(t)$ as k -th derivative with respect to t of a
 2178 matrix $\mathbf{A}(t)$. Then, the k -th derivative of the product $\mathbf{W}_{L:1}(t)$ satisfies

$$2179 w_{11}^{(k)}(t) = w_{22}^{(k)}(t) = \dots = w_{dd}^{(k)}(t).$$

2181 *Proof.* Let us denote the m -th derivative of each layer matrix by

$$2183 \mathbf{A}^{(m)} \triangleq \mathbf{W}_l^{(m)}(t).$$

2184 Then, the k -th time derivative of the product $\mathbf{W}_{L:1}(t)$ is given by the Leibniz rule:

$$2186 \frac{d^k}{dt^k} \mathbf{W}_{L:1}(t) = \sum_{k_1 + \dots + k_L = k} \binom{k}{k_1, \dots, k_L} \mathbf{A}^{(k_L)} \mathbf{A}^{(k_{L-1})} \dots \mathbf{A}^{(k_1)}.$$

2189 By the assumption, each $\mathbf{A}^{(m)}$ lies in the span of $\{\mathbf{I}_d, \mathbf{J}_d\}$, and since this span is closed under matrix
 2190 multiplication and scalar multiplication (by Lemma D.2), each term in the sum lies in the same span.
 2191 Hence, the entire sum $\mathbf{W}^{(k)}(t)$ also lies in span $\{\mathbf{I}_d, \mathbf{J}_d\}$, which implies that all diagonal entries of
 2192 $\mathbf{W}^{(k)}(t)$ are equal. \square

2193 **Lemma D.4.** *Under the setting of Lemma D.3 where each factor matrix $\mathbf{W}_l(0)$ is initialized according
 2194 to (7), the following identities hold for all $k \in \mathbb{N} \cup \{0\}$ under the gradient flow dynamics defined
 2195 in (3):*

$$2197 \begin{aligned} \left(\mathbf{W}_{l_1}^{(k)}(0) \right)_{ii} &= \left(\mathbf{W}_{l_2}^{(k)}(0) \right)_{jj}, \quad i, j \in [d], l_1, l_2 \in [L], \\ 2199 \left(\mathbf{W}_{l_1}^{(k)}(0) \right)_{i_1 j_1} &= \left(\mathbf{W}_{l_2}^{(k)}(0) \right)_{i_2 j_2}, \quad i_1 \neq j_1, i_2 \neq j_2 \in [d], l_1, l_2 \in [L]. \end{aligned}$$

2201
 2202 *Proof.* For the base case, when $k = 0$, these identities immediately follow from our initialization
 2203 assumptions. Now, suppose the induction hypothesis holds for all orders $m < k$ (with $k \geq 1$), which
 2204 means we have:

$$2206 \begin{aligned} \left(\mathbf{W}_{l_1}^{(m)}(0) \right)_{ii} &= \left(\mathbf{W}_{l_2}^{(m)}(0) \right)_{jj}, \quad i, j \in [d], l_1, l_2 \in [L], \\ 2208 \left(\mathbf{W}_{l_1}^{(m)}(0) \right)_{i_1 j_1} &= \left(\mathbf{W}_{l_2}^{(m)}(0) \right)_{i_2 j_2}, \quad i_1 \neq j_1, i_2 \neq j_2 \in [d], l_1, l_2 \in [L]. \end{aligned} \tag{25}$$

2210 By applying the Leibniz rule to (24), the k -th derivative of $\mathbf{W}_l(t)$ is given by:

$$2212 \mathbf{W}_l^{(k)}(t) = - \sum_{i_1, \dots, i_L} \binom{k-1}{i_1, \dots, i_L} \prod_{r=l+1}^L \mathbf{W}_r^{(i_r)}(t)^\top \cdot \nabla \ell(\mathbf{W}_{L:1}(t))^{(i_l)} \cdot \prod_{r=1}^{l-1} \mathbf{W}_r^{(i_r)}(t)^\top, \tag{26}$$

with $\sum_{l=1}^L i_l = k - 1$ where each $i_l \geq 0$. Given our induction assumption in equation (25) for all $m < k$, let $x^{(m)}(0)$ denote the m -th derivative of the diagonal entries and $y^{(m)}(0)$ the m -th derivative of the off-diagonal entries at initialization. Note that at initialization, by Lemma D.3, under the assumption that $\mathbf{W}_l^{(m)}(0)$ lies in the span of $\{\mathbf{I}_d, \mathbf{J}_d\}$ leads to $w_{11}^{(m)}(0) = w_{22}^{(m)}(0) = \dots = w_{dd}^{(m)}(0)$. Therefore, we know $\nabla \ell(\mathbf{W}_{L:1}(0))^{(i_l)} = r^{(i_l)}(0)\mathbf{I}_d$ for all $i_l < k$, where $r^{(i_l)}(0) \triangleq r_{11}^{(i_l)}(0) = \dots = r_{dd}^{(i_l)}(0)$. Thus, at initialization, since equation (26) consists of terms involving $x^{(m)}(0)$ and $y^{(m)}(0)$ for all $m < k$, we can rewrite the above expression at $t = 0$ in terms of these derivatives as follows:

$$\begin{aligned}\mathbf{W}_l^{(k)}(0) &= - \sum_{i_1, \dots, i_L} \binom{k-1}{i_1, \dots, i_L} r^{(i_l)}(0) \prod_{r \in [L] \setminus \{l\}} \mathbf{W}_r^{(i_r)}(0) \\ &= - \sum_{i_1, \dots, i_L} \binom{k-1}{i_1, \dots, i_L} r^{(i_l)}(0) \prod_{r \in [L] \setminus \{l\}} (a_r \mathbf{I}_d + b_r \mathbf{J}_d),\end{aligned}$$

where constants a_r and b_r are composed of $x^{(r)}(0)$ and $y^{(r)}(0)$. Then, by Lemma D.2, $\mathbf{W}_l^{(k)}(0)$ can be expressed in terms of only two values—one for the diagonal entries and one for the off-diagonal entries:

$$\mathbf{W}_l^{(k)}(0) = \alpha \mathbf{I}_d + \beta \mathbf{J}_d, \quad \alpha, \beta \in \mathbb{R},$$

thus concluding the proof. \square

Lemma D.5. *Under the setting of Lemma D.4, the symmetries are preserved for all time $t \geq 0$:*

$$\begin{aligned}(\mathbf{W}_{l_1}(t))_{ii} &= (\mathbf{W}_{l_2}(t))_{jj} \quad \text{for all } i, j \in [d], l_1, l_2 \in [L], \\ (\mathbf{W}_{l_1}(t))_{i_1 j_1} &= (\mathbf{W}_{l_2}(t))_{i_2 j_2} \quad \text{for all } i_1 \neq j_1, i_2 \neq j_2 \in [d], l_1, l_2 \in [L].\end{aligned}$$

Proof. By applying Lemma F.6 to the result of Lemma D.4, we can conclude that the symmetries are preserved for timesteps $t \geq 0$. \square

By the above lemmas, if the initialization follows the scheme in (7), then all diagonal entries of all layers are identical, and all off-diagonal entries are also identical. Under this condition, the gradient flow dynamics can be easily described by the following lemma.

Lemma D.6. *Under the same conditions as in Lemma D.4, if the diagonal entries of each layer are identical at timestep t (denoted by $x(t)$), and if the off-diagonal entries of each layer are identical at timestep t (denoted by $y(t)$), then the time derivative of $x(t)$ and $y(t)$ are given as:*

$$\begin{aligned}\dot{x}(t) &= -\frac{(x(t) + (d-1)y(t))^{L-1} + (d-1)(x(t) - y(t))^{L-1}}{d} r(t), \\ \dot{y}(t) &= -\frac{(x(t) + (d-1)y(t))^{L-1} - (x(t) - y(t))^{L-1}}{d} r(t).\end{aligned}$$

Proof. For $l \in [L]$ the gradient flow dynamics of \mathbf{W}_l are written as:

$$\dot{\mathbf{W}}_l(t) = - \prod_{i=l+1}^L \mathbf{W}_i(t)^\top \cdot \nabla \ell(\mathbf{W}_{L:1}(t)) \cdot \prod_{i=1}^{l-1} \mathbf{W}_i(t)^\top, \quad (27)$$

where $\nabla \ell(\mathbf{W}_{L:1}(t)) = \text{diag}(r(t), \dots, r(t))$. Since $\mathbf{W}_l(t)$ is comprised of $x(t)$ in diagonal entries and $y(t)$ in off-diagonal entries, the above dynamics can be rewritten as follows:

$$\begin{aligned}\dot{\mathbf{W}}_l(t) &= -r(t) [\mathbf{W}_l(t)]^{L-l} \cdot \mathbf{I}_d \cdot [\mathbf{W}_l(t)]^{l-1} \\ &= -r(t) [\mathbf{W}_l(t)]^{L-1}.\end{aligned} \quad (28)$$

If we rewrite $\mathbf{W}_l(t) = (x(t) - y(t))\mathbf{I}_d + y(t)\mathbf{J}_d$, its eigenvalues are derived as:

$$\begin{aligned}\lambda_1 &= x(t) + (d-1)y(t) \text{ for the eigenvector } \mathbb{1}, \\ \lambda_2 &= x(t) - y(t) \text{ for any eigenvector orthogonal to } \mathbb{1} \text{ (multiplicity } d-1\text{).}\end{aligned}$$

2268 Here, we denote $\lambda_i \triangleq \lambda_i(\mathbf{W}_{L:1}(t))$, unless otherwise specified. Then, we can decompose $\mathbf{W}_l(t)$
 2269 with projection matrix $\mathbf{P}_{\parallel} = \frac{1}{d}\mathbf{J}_d$ and $\mathbf{P}_{\perp} = \mathbf{I}_d - \frac{1}{d}\mathbf{J}_d$ as follows:
 2270

$$2271 \quad \mathbf{W}_l(t) = \lambda_1 \mathbf{P}_{\parallel} + \lambda_2 \mathbf{P}_{\perp}.$$

2272 Therefore, if we take $(L - 1)$ -th power of $\mathbf{W}_l(t)$, we can derive:
 2273

$$2274 \quad [\mathbf{W}_l(t)]^{L-1} = \lambda_1^{L-1} \mathbf{P}_{\parallel} + \lambda_2^{L-1} \mathbf{P}_{\perp} \\ 2275 \quad = (x(t) + (d-1)y(t))^{L-1} \cdot \frac{1}{d} \mathbf{J}_d + (x(t) - y(t))^{L-1} \left(\mathbf{I}_d - \frac{1}{d} \mathbf{J}_d \right) \\ 2276 \quad = (x(t) - y(t))^{L-1} \mathbf{I}_d + \frac{(x(t) + (d-1)y(t))^{L-1} - (x(t) - y(t))^{L-1}}{d} \mathbf{J}_d.$$

2280 Recalling that \mathbf{I}_d has 1 on the diagonal and 0 off-diagonal, and \mathbf{J}_d has 1 in every entry, the entries of
 2281 $[\mathbf{W}_l(t)]^{L-1}$ are:
 2282

$$2283 \quad ([\mathbf{W}_l(t)]^{L-1})_{ii} = (x(t) - y(t))^{L-1} + \frac{(x(t) + (d-1)y(t))^{L-1} - (x(t) - y(t))^{L-1}}{d} \\ 2284 \quad = \frac{(x(t) + (d-1)y(t))^{L-1} + (d-1)(x(t) - y(t))^{L-1}}{d}, \quad \forall i \in [d], \quad (29)$$

$$2285 \quad ([\mathbf{W}_l(t)]^{L-1})_{ij} = \frac{(x(t) + (d-1)y(t))^{L-1} - (x(t) - y(t))^{L-1}}{d}, \quad \forall i \neq j \in [d]. \quad (30)$$

2290 This concludes the proof by substituting the above equations into equation (28). \square
 2291

2292 Under the gradient flow dynamics of the diagonal entry $x(t)$ and $y(t)$, we derive the dynamics of the
 2293 singular value of $\mathbf{W}_l(t)$.
 2294

2295 **Lemma D.7.** *Under the conditions of Lemma D.4, the singular values of $\mathbf{W}_l(t)$, which is defined as
 2296 $s_i(t)$ for $i \in [d]$, evolve according to:*

$$2297 \quad s_i(t) = -s_i^{L-1}(t)r(t), \quad i = 1, 2, \dots, d.$$

2300 *Proof.* By Lemma D.5, each factor matrix $\mathbf{W}_l(t)$ is symmetric, having $x(t)$ as its diagonal entries
 2301 and $y(t)$ as its off-diagonal entries. The distinct eigenvalues of $\mathbf{W}_l(t)$ are $\lambda_1(t) = x(t) + (d-1)y(t)$
 2302 and $\lambda_2(t) = x(t) - y(t)$ (where $\lambda_2(t)$ has multiplicity $d-1$). Their time derivatives are calculated
 2303 by:

$$2304 \quad \dot{\lambda}_i(t) = -\lambda_i^{L-1}(t)r(t),$$

2306 Note that by setting $m > 1$, we have $\lambda_1(0) \geq \lambda_2(0) > 0$. If $L = 2$, the solution of above equation is
 2307 equal to $\lambda_i(t) = \lambda_i(0) \exp\left(-\int_0^t r(\tau)d\tau\right)$, which means it maintains the positiveness of $\lambda_i(0)$ for
 2308 all $t \geq 0$. For $L > 2$, its general solution can be written as follows:
 2309

$$2310 \quad \lambda_i(t) = \left(\lambda_i(0)^{2-L} + (L-2) \int_0^t r(\tau)d\tau \right)^{\frac{1}{2-L}},$$

2313 due to its positivity at initialization. Then, $\lambda_i(t)$ stays strictly positive, since it never reaches zero or
 2314 changes sign. Therefore, due to the symmetry and positive definiteness of $\mathbf{W}_l(t)$, we further conclude
 2315 that $\lambda_i(t) \equiv s_i(t)$. \square
 2316

2317 By the above lemma, we can solve the ODE and find $s_r(t)$ as follows:
 2318

$$2319 \quad s_r(t) = \begin{cases} s_r(0) \exp\left(-\int_0^t r(\tau)d\tau\right), & L = 2, \\ \left(s_r(0)^{2-L} + (L-2) \cdot \int_0^t r(\tau)d\tau\right)^{\frac{1}{2-L}}, & L > 2. \end{cases}$$

2322 Since $s_1(0) = x(0) + (d-1)y(0) = \alpha(1 + \frac{d-1}{m})$ and $s_r(0) = x(0) - y(0) = \alpha(1 - \frac{1}{m})$ for all
 2323 $i \geq 2$, we can separate above equation as following:

$$2325 s_1(t) = \begin{cases} \alpha(1 + \frac{d-1}{m}) \exp\left(-\int_0^t r(\tau)d\tau\right), & L = 2, \\ 2326 \left(\alpha^{2-L}(1 + \frac{d-1}{m})^{2-L} + (L-2) \cdot \int_0^t r(\tau)d\tau\right)^{\frac{1}{2-L}}, & L > 2, \end{cases}$$

$$2328 s_r(t) = \begin{cases} \alpha(1 - \frac{1}{m}) \exp\left(-\int_0^t r(\tau)d\tau\right), & L = 2, \\ 2329 \left(\alpha^{2-L}(1 - \frac{1}{m})^{2-L} + (L-2) \cdot \int_0^t r(\tau)d\tau\right)^{\frac{1}{2-L}}, & L > 2. \end{cases}, \quad r = 2, 3, \dots, d.$$

2332 Then, we can establish a relationship between $s_1(t)$ and $s_r(t)$, thereby identifying an invariant
 2333 property independent of time t :

- 2334 • For $L = 2$:

$$2335 \frac{s_1(t)}{s_r(t)} = \frac{m+d-1}{m-1}, \quad (31)$$

- 2338 • For $L > 2$:

$$2339 s_1^{2-L}(t) - s_r^{2-L}(t) = \alpha^{2-L} \left(\left(1 + \frac{d-1}{m}\right)^{2-L} - \left(1 - \frac{1}{m}\right)^{2-L} \right). \quad (32)$$

2342 Furthermore, we can derive a closed-form solution for the singular values by utilizing the convergence
 2343 guarantee. From equation (29), the diagonal entries of the solution matrix can be expressed as:

$$2344 w_{ii}(t) = ([\mathbf{W}_i(t)]^L)_{ii} = \frac{(x(t) + (d-1)y(t))^L + (d-1)(x(t) - y(t))^L}{d}, \quad \forall i \in [d].$$

2347 Since $w_{ii}(t)$ converges to a fixed value w^* , and noting that $s(t) = x(t) + (d-1)y(t)$ and $s_r(t) = x(t) - y(t)$, we obtain the following convergence equation:

$$2349 w^* = \frac{s_1^L(\infty) + (d-1)s_r^L(\infty)}{d} = \frac{\sigma_1(\infty) + (d-1)\sigma_r(\infty)}{d}, \quad (33)$$

2351 where we define $\sigma_i(t) \triangleq s_i^L(t)$ to denote the singular values of the product matrix, $\mathbf{W}_{L:1}(t)$.
 2352 Combining Equations (31) and (33), we derive a closed-form solution for the singular values of the
 2353 depth-2 matrix as $t \rightarrow \infty$:

$$2354 \sigma_1(\infty) = \left(\frac{w^*(m+d-1)^2}{m^2+d-1} \right)^{\frac{L}{2}},$$

$$2358 \sigma_r(\infty) = \left(\frac{w^*(m-1)^2}{m^2+d-1} \right)^{\frac{L}{2}}, \quad r = 2, 3, \dots, d,$$

2359 For the case when $L \geq 3$, we cannot obtain an exact analytical solution for $\sigma_r(\infty)$. Instead, we
 2360 derive implicit equations for both $\sigma_1(\infty)$ and $\sigma_r(\infty)$ that cannot be easily solved without specifying
 2361 numerical values:

$$2363 \sigma_1^{\frac{2-L}{L}}(\infty) - \left(\frac{w^*d - \sigma_1(\infty)}{d-1} \right)^{\frac{2-L}{L}} = C_{\alpha,m,L,d},$$

$$2365 (w^*d - (d-1)\sigma_r(\infty))^{\frac{2-L}{L}} - \sigma_r^{\frac{2-L}{L}}(\infty) = C_{\alpha,m,L,d}, \quad \text{for } r = 2, \dots, d,$$

2367 where $C_{\alpha,m,L,d} \triangleq \left(\frac{\alpha}{m}\right)^{2-L} \left((m+d-1)^{2-L} - (m-1)^{2-L}\right)$. If we specify the values of $\alpha >$
 2368 $0, m > 1, d \geq 2, L \geq 3$ and $w^* > 0$ for ground-truth value, we can derive $\sigma_1(\infty)$ and $\sigma_r(\infty)$ of
 2369 solution matrix of depth- L by substituting the values to above equations.

2371 **Remark.** The $L \geq 3$ and $m = \infty$ case could arguably fall under the preceding analysis when
 2372 other parameters are held fixed, as $m = \infty$ implies that all singular values are identical. However,
 2373 a slight dependency on the specific value of α persists; for instance, tracking the overall result
 2374 becomes challenging if α approaches zero while $m = \infty$. Therefore, we will restrict the scope of the
 2375 aforementioned analysis to finite m . Consequently, the $L \geq 3$ and $m = \infty$ case will be analyzed
 separately in the following subsection.

2376 D.3.2 CASE FOR $L \geq 3$ AND $m = \infty$
2377

2378 We now examine the $m = \infty$ case, which corresponds to an initialization scheme like $\mathbf{W}_l(0) = \alpha \mathbf{I}_d$.
 2379 By Lemma D.1, the factor matrices $\mathbf{W}_l(t)$ remain diagonal for all $t \geq 0$, and thus the diagonal
 2380 entries of the product matrix are $w_{ii}(t) = (\mathbf{W}_L(t))_{ii} (\mathbf{W}_{L-1}(t))_{ii} \cdots (\mathbf{W}_1(t))_{ii}$. Assuming zero-loss
 2381 convergence is achieved for any initial choice of $\alpha > 0$, it follows that $w_{ii}(\infty) = w^*$ for all i , and
 2382 consequently, the overall matrix $\mathbf{W}_{L:1}(\infty)$ is diagonal with entries w^* .

2383 Furthermore, let us consider the implications of Lemmas D.3–D.5. These lemmas hold under a
 2384 condition $y(t) = 0$, thereby belonging to $\text{span}\{\mathbf{I}_d, \mathbf{J}_d\}$, this leads to the result that each diagonal
 2385 element of the factor matrices at convergence is $(\mathbf{W}_l(\infty))_{ii} = (w^*)^{1/L}$ for all $i \in [d]$ and $l \in [L]$.
 2386 This means each layer $\mathbf{W}_l(\infty)$ becomes $(w^*)^{1/L} \mathbf{I}_d$, and thus has identical singular values equal to
 2387 $(w^*)^{1/L}$ (assuming $w^* \geq 0$). This, in turn, leads to the final claim that for the overall product matrix
 2388 $\mathbf{W}_{L:1}(\infty)$, its singular values $\sigma_i(\infty)$ satisfy $\sigma_i(\infty) = w^*$ for all $i \in [d]$.
 2389

2390 D.3.3 LOSS CONVERGENCE
2391

2392 We further establish loss convergence in the following proposition.

2393 **Proposition D.1.** *Let $\mathbf{W}^* \in \mathbb{R}^{d \times d}$ be a ground-truth matrix with identical positive diagonal entries
 2394 $w^* \triangleq w_{11}^* = \cdots = w_{dd}^* > 0$, and let $\Omega_{\text{diag}}^{(d)} = \{(i, i)\}_{i=1}^d$. Consider gradient flow (3) on the product
 2395 $\mathbf{W}_{L:1}$, where each factor $\mathbf{W}_l \in \mathbb{R}^{d \times d}$ is initialized as in (7). Define K from the initialization scale α
 2396 by*

$$2397 K = \begin{cases} L(w_{ii}(0))^{\frac{2L-2}{L}}, & 0 < w_{ii}(0) \leq w^*, \\ L(w^*)^{\frac{2L-2}{L}}, & w_{ii}(0) \geq w^*, \end{cases}$$

2400 where

$$2401 w_{ii}(0) = \frac{\alpha^L ((m+d-1)^L + (d-1)(m-1)^L)}{dm^L}.$$

2402 Then, for all $t \geq 0$, the loss decays exponentially:

$$2403 \ell(\mathbf{W}_{L:1}(t)) \leq \ell(\mathbf{W}_{L:1}(0)) e^{-2Kt}.$$

2404 *Proof.* Recall that the eigenvalues are given by $\lambda_1(t) = x(t) + (d-1)y(t)$ and $\lambda_2(t) = x(t) - y(t)$.
 2405 From Lemma D.6, their time derivatives are

$$2406 \dot{\lambda}_1(t) = -\lambda_1^{L-1}(t)r(t), \\ 2407 \dot{\lambda}_2(t) = -\lambda_2^{L-1}(t)r(t).$$

2412 The diagonal entries $w_{ii}(t)$ of $\mathbf{W}_{L:1}(t)$ can be written as

$$2413 w_{ii}(t) = \frac{(x(t) + (d-1)y(t))^L + (d-1)(x(t) - y(t))^L}{d} \\ 2414 = \frac{\lambda_1^L(t) + (d-1)\lambda_2^L(t)}{d}.$$

2418 Define the residual $r(t) = w_{ii}(t) - w^*$, where w^* is a constant. Differentiating $r(t)$ and substituting
 2419 the expressions for $\lambda_1(t)$ and $\lambda_2(t)$ yields

$$2420 \dot{r}(t) = \frac{d}{dt} (w_{ii}(t) - w^*) \\ 2421 = \frac{L}{d} \lambda_1^{L-1}(t) \dot{\lambda}_1(t) + \frac{L(d-1)}{d} \lambda_2^{L-1}(t) \dot{\lambda}_2(t) \\ 2422 = \frac{L}{d} \lambda_1^{L-1}(t) (-\lambda_1^{L-1}(t)r(t)) + \frac{L(d-1)}{d} \lambda_2^{L-1}(t) (-\lambda_2^{L-1}(t)r(t)) \\ 2423 = -\left(\underbrace{\frac{L}{d} \lambda_1^{2L-2}(t) + \frac{L(d-1)}{d} \lambda_2^{2L-2}(t)}_{\triangleq K(t)} \right) r(t). \quad (34)$$

2430 Thus $\dot{r}(t) = -K(t)r(t)$, whose solution is
 2431

$$2432 \quad r(t) = r(0) \exp \left(- \int_0^t K(\tau) d\tau \right). \quad (35)$$

2433 Consequently, $r(t)$ preserves the sign of $r(0)$ for all $t \geq 0$. Also, by noting that the map $u \mapsto u^{\frac{2L-2}{L}}$
 2434 is convex on \mathbb{R}_+ , we can lower-bound $K(t)$ using Jensen's inequality for any fixed t :
 2435

$$\begin{aligned} 2436 \quad K(t) &= L \left(\frac{\lambda_1^{2L-2}(t) + (d-1)\lambda_2^{2L-2}(t)}{d} \right) \\ 2437 \quad &= L \left(\frac{(\lambda_1^L(t))^{\frac{2L-2}{L}} + (d-1)(\lambda_2^L(t))^{\frac{2L-2}{L}}}{d} \right) \\ 2438 \quad &\geq L \left(\frac{\lambda_1^L(t) + (d-1)\lambda_2^L(t)}{d} \right)^{\frac{2L-2}{L}} \\ 2439 \quad &= L(w_{ii}(t))^{\frac{2L-2}{L}}. \end{aligned} \quad (36)$$

2440 **Case 1** ($r(0) \leq 0$). Assume
 2441

$$2442 \quad 0 < \alpha^L \leq \frac{w^* dm^L}{(m+d-1)^L + (d-1)(m-1)^L},$$

2443 which implies $r(0) \leq 0$ and hence $r(t) \leq 0$ by (35). For any $i \in \{1, 2\}$ with $\lambda_i(0) > 0$ we then have
 2444

$$2445 \quad \dot{\lambda}_i(t) = -\lambda_i^{L-1}(t)r(t) \geq 0,$$

2446 so $\lambda_i(t) \geq \lambda_i(0) > 0$ for all $t \geq 0$, which in turn implies $w_{ii}(t) \geq w_{ii}(0)$. Therefore, we can lower
 2447 bound (36) with $w_{ii}(0)$:

$$2448 \quad K(t) \geq L(w_{ii}(0))^{\frac{2L-2}{L}}.$$

2449 **Case 2** ($r(0) \geq 0$). If
 2450

$$2451 \quad \alpha^L \geq \frac{w^* dm^L}{(m+d-1)^L + (d-1)(m-1)^L},$$

2452 then $r(0) \geq 0$ hence $r(t) \geq 0$ for all $t \geq 0$ by (35). Therefore, $w_{ii}(t) \geq w^*$, then we lower bound
 2453 (36)

$$2454 \quad K(t) \geq L(w^*)^{\frac{2L-2}{L}}.$$

2455 Moreover, since $\dot{\lambda}_i(t) = -\lambda_i^{L-1}(t)r(t) \leq 0$, each $\lambda_i(t)$ is non-increasing. If it reaches 0 at some
 2456 time, then $\dot{\lambda}_i(t) = 0$ there, so it cannot cross into the negative region; thus $\lambda_i(t) \geq 0$ for all $t \geq 0$.
 2457 This justifies the use of (36).

2458 By upper-bounding the absolute value of (35), we derive:
 2459

$$2460 \quad |r(t)| \leq |r(0)| \exp(-Kt),$$

2461 where $K = L(w_{ii}(0))^{\frac{2L-2}{L}}$ in Case 1 and $K = L(w^*)^{\frac{2L-2}{L}}$ in Case 2. Since $\ell(\mathbf{W}_{L:1}(t)) = \frac{d}{2}r^2(t)$,
 2462 we obtain the exponential decay of the loss:
 2463

$$2464 \quad \ell(\mathbf{W}_{L:1}(t)) \leq \ell(\mathbf{W}_{L:1}(0)) \exp(-2Kt).$$

2465 \square

2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483

2484 D.3.4 UNIQUENESS OF THE LIMITING SINGULAR VALUES
24852486 **Proposition D.2.** *Under the setting of Theorem 3.3,*

2487
2488
$$f_1(\sigma) = \sigma^{\frac{2-L}{L}} - \left(\frac{w^*d - \sigma}{d-1} \right)^{\frac{2-L}{L}}$$

2489

2490 *strictly decreases in $\sigma \in (0, w^*d)$. Also,*

2491
2492
$$f_2(\sigma) = (w^*d - (d-1)\sigma)^{\frac{2-L}{L}} - \sigma^{\frac{2-L}{L}}$$

2493

2494 *strictly increases in $\sigma \in \left(0, \frac{w^*d}{d-1}\right)$. Therefore, Equations (8) and (9) admit a unique solution (σ_1, σ_r) .*
24952496
2497 *Proof.* By initialization (7), each $\mathbf{W}_l(0)$ is full rank. The gradient flow (3) is analytic, so $\det(\mathbf{W}_l(t))$
2498 cannot cross zero in finite time. Thus every $\mathbf{W}_l(t)$ remains full rank for all $t \geq 0$, and all singular
2499 values of the product matrix stay strictly positive. In particular, the limiting singular values satisfy
2500

2501
$$\sigma_1 > 0, \quad \sigma_r > 0.$$

2502

2503 Furthermore, (33) in Appendix D.3 shows that the limiting singular values satisfy
2504

2505
$$\sigma_1 + (d-1)\sigma_r = w^*d. \quad (37)$$

2506

2507 Combining positivity with (37) gives the bounds
2508

2509
$$0 < \sigma_1 = w^*d - (d-1)\sigma_r < w^*d,$$

2510 and

2511
$$0 < \sigma_r = \frac{w^*d - \sigma_1}{d-1} < \frac{w^*d}{d-1}.$$

2512

2513 These inequalities identify the domains on which we analyze the scalar functions associated with (8)
2514 and (9).2515 For notational convenience, we set $a \triangleq \frac{2-L}{L} < 0$.
25162517 **Uniqueness of σ_1 .** For (8), define
2518

2519
$$f_1(\sigma) = \sigma^a - \left(\frac{w^*d - \sigma}{d-1} \right)^a, \quad \sigma \in (0, w^*d).$$

2520

2521 Differentiating, we obtain
2522

2523
2524
$$f'_1(\sigma) = a\sigma^{a-1} + \frac{a}{d-1} \left(\frac{w^*d - \sigma}{d-1} \right)^{a-1}.$$

2525

2526 Since $a < 0$ and both σ^{a-1} and $\left(\frac{w^*d - \sigma}{d-1}\right)^{a-1}$ are positive on $(0, w^*d)$, every term in $f'_1(\sigma)$ is
2527 negative, so
2528

2529
$$f'_1(\sigma) < 0, \quad \text{for all } \sigma \in (0, w^*d).$$

2530

2531 At the endpoints we have
2532

2533
$$\lim_{\sigma \rightarrow 0^+} f_1(\sigma) = +\infty, \quad \lim_{\sigma \rightarrow (w^*d)^-} f_1(\sigma) = -\infty.$$

2534

2535 Thus f_1 is continuous, strictly decreasing on $(0, w^*d)$, and satisfies $\text{range}(f_1) = \mathbb{R}$. Consequently,
2536 for any constant $C_{\alpha, m, L, d} \in \mathbb{R}$ there exists a unique $\sigma_1 \in (0, w^*d)$ such that
2537

2538
$$f_1(\sigma_1) = C_{\alpha, m, L, d}.$$

2538 **Uniqueness of σ_r .** For (9), define
 2539

2540
$$f_2(\sigma) = (w^*d - (d-1)\sigma)^a - \sigma^a, \quad \sigma \in \left(0, \frac{w^*d}{d-1}\right).$$

 2541

2542 Differentiating gives
 2543

2544
$$f'_2(\sigma) = -a(d-1)(w^*d - (d-1)\sigma)^{a-1} - a\sigma^{a-1}.$$

 2545

2546 Since $-a > 0$ and both $(w^*d - (d-1)\sigma)^{a-1}$ and σ^{a-1} are positive on $\left(0, \frac{w^*d}{d-1}\right)$, we obtain
 2547

2548
$$f'_2(\sigma) > 0, \quad \text{for all } \sigma \in \left(0, \frac{w^*d}{d-1}\right).$$

 2549

2550 The endpoint limits are
 2551

2552
$$\lim_{\sigma \rightarrow 0^+} f_2(\sigma) = -\infty, \quad \lim_{\sigma \rightarrow (\frac{w^*d}{d-1})^-} f_2(\sigma) = +\infty.$$

 2553

2554 Therefore f_2 is continuous, strictly increasing on $\left(0, \frac{w^*d}{d-1}\right)$ and satisfies $\text{range}(f_2) = \mathbb{R}$.
 2555

2556 Hence, for any constant $C_{\alpha,m,L,d} \in \mathbb{R}$ there exists a unique $\sigma_r \in \left(0, \frac{w^*d}{d-1}\right)$ such that
 2557

2558
$$f_2(\sigma_r) = C_{\alpha,m,L,d}.$$

 2559

2560 Combining the uniqueness of σ_1 and σ_r with the linear relation (37) shows that the limiting singular
 2561 values solving (8) and (9) are uniquely determined by α, m, L, d , and w^* . This completes the
 2562 proof. \square
 2563

2564
 2565
 2566
 2567
 2568
 2569
 2570
 2571
 2572
 2573
 2574
 2575
 2576
 2577
 2578
 2579
 2580
 2581
 2582
 2583
 2584
 2585
 2586
 2587
 2588
 2589
 2590
 2591

2592 D.4 PROOF FOR COROLLARY 3.4
25932594 **Corollary 3.4.** *Let $1 < m < \infty$, $d \geq 2$, $w^* > 0$, and $L \geq 3$ be fixed. Then, as $\alpha \rightarrow 0$, the stable*
2595 *rank of the limit product matrix $\mathbf{W}_{L:1}(\infty)$ converges to one; that is,*

2596
$$\text{srank}(\mathbf{W}_{L:1}(\infty)) \rightarrow 1.$$

2597

2598 *Proof.* Fix $m > 1$, $d \geq 2$, $w^* > 0$, and $L \geq 3$. Let
2599

2600
$$a \triangleq \frac{2-L}{L} < 0.$$

2601

2602 First, we analyze the behavior of
2603

2604
$$C_{\alpha,m,L,d} = \left(\frac{\alpha}{m}\right)^{2-L} ((m+d-1)^{2-L} - (m-1)^{2-L})$$

2605

2606 as $\alpha \rightarrow 0$. Since $L \geq 3$, we have $2-L < 0$. The map $x \mapsto x^{2-L}$ is strictly decreasing on $(0, \infty)$,
2607 and because $m+d-1 > m-1 > 0$,
2608

2609
$$(m+d-1)^{2-L} - (m-1)^{2-L} < 0.$$

2610

2611 Moreover, $\left(\frac{\alpha}{m}\right)^{2-L} \rightarrow +\infty$ as $\alpha \rightarrow 0$. Hence
2612

2613
$$C_{\alpha,m,L,d} \rightarrow -\infty \quad \text{as } \alpha \rightarrow 0.$$

2614 Next, consider the function from (9)
2615

2616
$$f_2(\sigma) = (w^*d - (d-1)\sigma)^a - \sigma^a, \quad \sigma \in \left(0, \frac{w^*d}{d-1}\right).$$

2617

2618 By Proposition D.2, we know that f_2 is a continuous, strictly increasing bijection from $\left(0, \frac{w^*d}{d-1}\right)$
2619 onto \mathbb{R} , and for each $C \in \mathbb{R}$ there is a unique $\sigma(C)$ such that $f_2(\sigma(C)) = C$.
26202621 Now we apply this to $C_{\alpha,m,L,d}$. Since $C_{\alpha,m,L,d} \rightarrow -\infty$ as $\alpha \rightarrow 0$ and f_2 is strictly increasing with
2622 $\lim_{\sigma \rightarrow 0^+} f_2(\sigma) = -\infty$, it follows that
2623

2624
$$\sigma_r(\alpha) \rightarrow 0 \quad \text{as } \alpha \rightarrow 0.$$

2625

2626 Using the linear constraint (33), we then obtain
2627

2628
$$\sigma_1(\alpha) = w^*d - (d-1)\sigma_r(\alpha) \rightarrow w^*d \quad \text{as } \alpha \rightarrow 0.$$

2629 The stable rank of $\mathbf{W}_{L:1}(\infty)$ is
2630

2631
$$\text{srank}(\mathbf{W}_{L:1}(\infty)) = \frac{\sigma_1(\alpha)^2 + (d-1)\sigma_r(\alpha)^2}{\sigma_1(\alpha)^2} = 1 + (d-1) \left(\frac{\sigma_r(\alpha)}{\sigma_1(\alpha)}\right)^2.$$

2632

2633 Since $\sigma_r(\alpha) \rightarrow 0$ and $\sigma_1(\alpha) \rightarrow w^*d > 0$, we have
2634

2635
$$\frac{\sigma_r(\alpha)}{\sigma_1(\alpha)} \rightarrow 0,$$

2636

2637 and therefore
2638

2639
$$\text{srank}(\mathbf{W}_{L:1}(\infty)) \rightarrow 1 \quad \text{as } \alpha \rightarrow 0.$$

2640 \square
2641

2646
2647

D.5 GENERALIZATION TO BLOCK-DIAGONAL OBSERVATIONS

2648
2649
2650

In this section, we extend Theorem 3.3 to a block-diagonal observation model. Specifically, we consider a ground truth matrix $\mathbf{W}^* \in \mathbb{R}^{d \times d}$ with observation set

2651
2652

$$\Omega = \bigcup_{m \in [n]} \{(i, j) \mid i, j \in \{(m-1)k+1, \dots, mk\}\}.$$

2653
2654

Here $k, n \in \mathbb{N}$ with $d = nk$, where k is the block size and n is the number of blocks. By construction, every diagonal block is fully observed. We assume that all observed entries share the same value:

2655
2656

$$w^* \triangleq \mathbf{W}_{i_1, j_1}^* = \mathbf{W}_{i_2, j_2}^* \quad \text{for any } (i_1, j_1), (i_2, j_2) \in \Omega.$$

2657
2658
2659

Note that this setting recovers the diagonal observation case in Theorem 3.3 when $k = 1$, which shows that this framework strictly generalizes the diagonal case. Under this setup, we now introduce the following theorem.

2660
2661
2662

Theorem D.3. *Let $k, n \in \mathbb{N}$ be the block size and number of blocks, respectively, such that $d = nk$. Consider the product matrix $\mathbf{W}_{L:1}$ whose factor matrices $\mathbf{W}_l \in \mathbb{R}^{d \times d}$ are initialized according to (7). We define the observation set Ω as the block-diagonal entries:*

2663
2664
2665

$$\Omega = \bigcup_{b \in [n]} \{(p, q) \mid p, q \in \{(b-1)k+1, \dots, bk\}\}.$$

2666
2667
2668
2669
2670

Assume that the training loss converges to zero, i.e., $\ell(\mathbf{W}_{L:1}(\infty); \Omega) = 0$, under the gradient flow dynamics (3). Let $\sigma_1 \geq \sigma_2 \geq \dots \geq \sigma_d \geq 0$ denote the sorted singular values of the converged matrix $\mathbf{W}_{L:1}(\infty)$. We partition the indices into three groups: the principal index 1, the secondary indices $i \in \{2, \dots, n\}$, and the remaining indices $j \in \{n+1, \dots, d\}$. Then, for any initialization parameters $\alpha > 0, m > 1$ and depth $L \geq 2$, the singular values are determined as follows:

2671
2672
2673
2674
2675
2676
2677
2678

- If $L = 2$: The singular values are given in closed form by

$$\begin{aligned} \sigma_1 &= \frac{w^* d(m+d-1)^2}{(m+d-1)^2 + (n-1)(m-1)^2}, \\ \sigma_i &= \frac{w^* d(m-1)^2}{(m+d-1)^2 + (n-1)(m-1)^2}, \\ \sigma_j &= 0. \end{aligned}$$

2679
2680

- If $L \geq 3$ and $1 < m < \infty$: The singular values satisfy the following implicit equations:

2681
2682
2683
2684
2685

$$\begin{aligned} \sigma_1^{\frac{2-L}{L}} - \left(\frac{w^* d - \sigma_1}{n-1} \right)^{\frac{2-L}{L}} &= C_{\alpha, m, L, d}, \\ (w^* d - (n-1)\sigma_i)^{\frac{2-L}{L}} - \sigma_i^{\frac{2-L}{L}} &= C_{\alpha, m, L, d}, \\ \sigma_j &= 0. \end{aligned}$$

2686
2687
2688
2689

where $C_{\alpha, m, L, d} \triangleq \left(\frac{\alpha}{m}\right)^{2-L} \left((m+d-1)^{2-L} - (m-1)^{2-L}\right)$.

2690
2691

- If $L \geq 3$ and $m = \infty$: The singular values converges to:

$$\sigma_1 = \sigma_i = kw^*, \quad \sigma_j = 0.$$

2692
2693
2694
2695
2696
2697
2698
2699

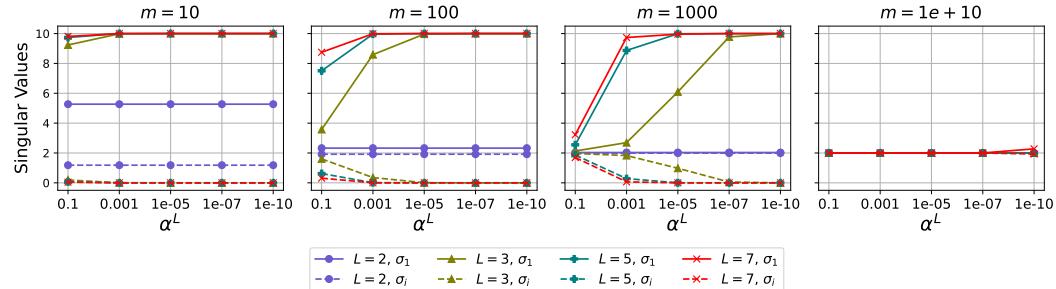
Here the singular values σ_j for $j \in \{n+1, \dots, d\}$ always converge to zero. Intuitively, even if the dynamics are decoupled at the level of the full matrix in the sense of Definition 2, they become coupled once we apply the same coupling notion to each diagonal block separately, so the training dynamics are coupled within each block. In the coupled regime of Theorem D.3, the product matrix $\mathbf{W}_{L:1}(\infty)$ converges to $w^* \cdot \mathbb{1}_d \mathbb{1}_d^\top$. In the decoupled regime, the limiting matrix has all diagonal blocks converging to the same value w^* , while all off diagonal blocks converge to a common value that is different from w^* .

2700
2701

Therefore, all rows belonging to the same block share identical entries, so the row space is spanned by at most n distinct row patterns (one per block), and the overall rank is at most n , the number

2700 of blocks. This block diagonal example therefore further illustrates how coupled versus decoupled
 2701 dynamics control the strength of the low rank bias.

2702 We solve the implicit equations derived from the theorem above. Since all σ_j are zero, it suffices to
 2703 compute σ_1 and σ_i . In Figure 33, we set $w^* = 1$, $d = 10$, and choose the number of blocks as $n = 5$
 2704 (so $k = 2$). Consistent with the diagonal case, the decoupled dynamics lead to a high-rank solution,
 2705 whereas under coupled dynamics with sufficiently small initialization, the solution converges to
 2706 low-rank.



2707
 2708
 2709 Figure 33: Singular values σ_i of $\mathbf{W}_{L:1}(\infty)$ (numerically obtained from Theorem D.3) against
 2710 initialization scale α^L for the block-diagonal observation task. Solid lines represent the largest
 2711 singular value σ_1 ; dashed lines denote the identical singular values σ_i for $i \in \{2, \dots, n\}$. Note that
 2712 σ_j for $j \in \{n+1, \dots, d\}$ are all zero. For finite m , these results show that both greater depth L and
 2713 a smaller initial scale α strengthen the low-rank bias, in contrast to the $L = 2$ case. Conversely, when
 2714 m is extremely large (e.g., $m = 10^{10}$), approximating an $\alpha \mathbf{I}_d$ rank d initialization, the dynamics
 2715 decouple and cannot achieve the minimal low-rank solution, regardless of L or α .

2718 D.5.1 PROOF FOR THEOREM D.3.

2719 For $a, b, c \in \mathbb{R}$, define

$$2720 \mathbf{D}(a, b) = (a - b)\mathbf{I}_k + b\mathbf{J}_k, \\ 2721 \mathbf{O}(c) = c\mathbf{J}_k,$$

2722 where \mathbf{I}_k is the $k \times k$ identity matrix and \mathbf{J}_k is the $k \times k$ all-ones matrix. Consider the $d \times d$ block
 2723 matrix

$$2724 \mathbf{M}(a, b, c) = \mathbf{I}_n \otimes \mathbf{D}(a, b) + (\mathbf{J}_n - \mathbf{I}_n) \otimes \mathbf{O}(c) \\ 2725 = \begin{bmatrix} \mathbf{D}(a, b) & \mathbf{O}(c) & \cdots & \mathbf{O}(c) \\ \mathbf{O}(c) & \mathbf{D}(a, b) & \cdots & \mathbf{O}(c) \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{O}(c) & \mathbf{O}(c) & \cdots & \mathbf{D}(a, b) \end{bmatrix} \in \mathbb{R}^{d \times d},$$

2726 which is an $n \times n$ block matrix with $k \times k$ blocks. Define

$$2727 \mathcal{M} \triangleq \{\mathbf{M}(a, b, c) \mid a, b, c \in \mathbb{R}\}.$$

2728 We now state a lemma that captures the key algebraic features of this family.

2729 **Lemma D.8.** *The set \mathcal{M} is closed under scalar multiplication and addition, and it is also closed under
 2730 matrix multiplication. Moreover, for any (a_1, b_1, c_1) and (a_2, b_2, c_2) , the matrices $\mathbf{M}(a_1, b_1, c_1)$ and
 2731 $\mathbf{M}(a_2, b_2, c_2)$ commute.*

2732 *Proof.* Note that by Lemma D.2, $\mathbf{D}(a, b)$ is closed under scalar multiplication, addition, and matrix
 2733 multiplication. Since \mathbf{J}_k is also closed under these operations, the same holds for $\mathbf{O}(c)$.

2754 **Scalar multiplication.** For any scalar $\lambda \in \mathbb{R}$,

$$\begin{aligned} 2755 \quad \lambda \mathbf{M}(a, b, c) &= \lambda [\mathbf{I}_n \otimes \mathbf{D}(a, b) + (\mathbf{J}_n - \mathbf{I}_n) \otimes \mathbf{O}(c)] \\ 2756 \quad &= \mathbf{I}_n \otimes (\lambda \mathbf{D}(a, b)) + (\mathbf{J}_n - \mathbf{I}_n) \otimes (\lambda \mathbf{O}(c)) \\ 2757 \quad &= \mathbf{I}_n \otimes \mathbf{D}(\lambda a, \lambda b) + (\mathbf{J}_n - \mathbf{I}_n) \otimes \mathbf{O}(\lambda c) \\ 2758 \quad &= \mathbf{M}(\lambda a, \lambda b, \lambda c) \in \mathcal{M}. \\ 2759 \end{aligned}$$

2760 **Addition.** For any (a_1, b_1, c_1) and (a_2, b_2, c_2) ,

$$\begin{aligned} 2761 \quad \mathbf{M}(a_1, b_1, c_1) + \mathbf{M}(a_2, b_2, c_2) &= [\mathbf{I}_n \otimes \mathbf{D}(a_1, b_1) + (\mathbf{J}_n - \mathbf{I}_n) \otimes \mathbf{O}(c_1)] \\ 2762 \quad &\quad + [\mathbf{I}_n \otimes \mathbf{D}(a_2, b_2) + (\mathbf{J}_n - \mathbf{I}_n) \otimes \mathbf{O}(c_2)] \\ 2763 \quad &= \mathbf{I}_n \otimes (\mathbf{D}(a_1, b_1) + \mathbf{D}(a_2, b_2)) + (\mathbf{J}_n - \mathbf{I}_n) \otimes (\mathbf{O}(c_1) + \mathbf{O}(c_2)) \\ 2764 \quad &= \mathbf{I}_n \otimes \mathbf{D}(a_1 + a_2, b_1 + b_2) + (\mathbf{J}_n - \mathbf{I}_n) \otimes \mathbf{O}(c_1 + c_2) \\ 2765 \quad &= \mathbf{M}(a_1 + a_2, b_1 + b_2, c_1 + c_2) \in \mathcal{M}. \\ 2766 \end{aligned}$$

2767 **Matrix multiplication.** First observe that

$$\begin{aligned} 2768 \quad \mathbf{D}(a_1, b_1) \mathbf{D}(a_2, b_2) &= \mathbf{D}(a_1 a_2 + (k-1)b_1 b_2, a_1 b_2 + a_2 b_1 + (k-2)b_1 b_2), \\ 2769 \quad \mathbf{O}(c_1) \mathbf{O}(c_2) &= \mathbf{O}(k c_1 c_2), \\ 2770 \quad \mathbf{D}(a, b) \mathbf{O}(c) &= \mathbf{O}(c) \mathbf{D}(a, b) = \mathbf{O}(a c + (k-1) b c). \\ 2771 \end{aligned}$$

2772 Multiplying $\mathbf{M}(a_1, b_1, c_1)$ and $\mathbf{M}(a_2, b_2, c_2)$ gives

$$2773 \quad \mathbf{M}(a_1, b_1, c_1) \mathbf{M}(a_2, b_2, c_2) = \begin{bmatrix} \mathbf{T}_1 & \mathbf{T}_2 & \cdots & \mathbf{T}_2 \\ \mathbf{T}_2 & \mathbf{T}_1 & \cdots & \mathbf{T}_2 \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{T}_2 & \mathbf{T}_2 & \cdots & \mathbf{T}_1 \end{bmatrix},$$

2774 where

$$\begin{aligned} 2775 \quad \mathbf{T}_1 &= \mathbf{D}(a_1, b_1) \mathbf{D}(a_2, b_2) + (n-1) \mathbf{O}(c_1) \mathbf{O}(c_2), \\ 2776 \quad \mathbf{T}_2 &= \mathbf{O}(c_1) \mathbf{D}(a_2, b_2) + \mathbf{D}(a_1, b_1) \mathbf{O}(c_2) + (n-2) \mathbf{O}(c_1) \mathbf{O}(c_2). \\ 2777 \end{aligned}$$

2778 Using the identities above, we can rewrite \mathbf{T}_1 and \mathbf{T}_2 as

$$\begin{aligned} 2779 \quad \mathbf{T}_1 &= \mathbf{D}(a_1 a_2 + (k-1)b_1 b_2, a_1 b_2 + a_2 b_1 + (k-2)b_1 b_2) + \mathbf{O}((n-1)k c_1 c_2) \\ 2780 \quad &= \mathbf{D}(a_1 a_2 + (k-1)b_1 b_2 + (n-1)k c_1 c_2, a_1 b_2 + a_2 b_1 + (k-2)b_1 b_2 + (n-1)k c_1 c_2), \\ 2781 \quad \mathbf{T}_2 &= \mathbf{O}(a_2 c_1 + (k-1)b_2 c_1) + \mathbf{O}(a_1 c_2 + (k-1)b_1 c_2) + \mathbf{O}((n-2)k c_1 c_2) \\ 2782 \quad &= \mathbf{O}(a_1 c_2 + a_2 c_1 + (k-1)b_1 c_2 + (k-1)b_2 c_1 + (n-2)k c_1 c_2). \\ 2783 \end{aligned}$$

2784 Hence $\mathbf{M}(a_1, b_1, c_1) \mathbf{M}(a_2, b_2, c_2)$ again has the same block structure as $\mathbf{M}(\cdot, \cdot, \cdot)$, so \mathcal{M} is closed
2785 under matrix multiplication.

2786 **Commutativity.** The expressions for \mathbf{T}_1 and \mathbf{T}_2 above are symmetric in (a_1, b_1, c_1) and (a_2, b_2, c_2) .
2787 In particular, if we interchange (a_1, b_1, c_1) and (a_2, b_2, c_2) in the formulas for \mathbf{T}_1 and \mathbf{T}_2 , we obtain
2788 the same matrices. Therefore

$$2789 \quad \mathbf{M}(a_1, b_1, c_1) \mathbf{M}(a_2, b_2, c_2) = \mathbf{M}(a_2, b_2, c_2) \mathbf{M}(a_1, b_1, c_1),$$

2790 and the matrices in \mathcal{M} commute pairwise. \square

2791 Using the above lemma, we show that if all factor matrices \mathbf{W}_l are initialized according to (7), then
2792 $\mathbf{W}_l(t)$ stays in \mathcal{M} for every $t \geq 0$.

2793 **Lemma D.9.** Let $k, n \in \mathbb{N}$ and set $d = nk$. Consider a ground truth matrix $\mathbf{W}^* \in \mathbb{R}^{d \times d}$ with
2794 observation set

$$2795 \quad \Omega = \bigcup_{m \in [n]} \{(i, j) \mid i, j \in \{(m-1)k + 1, \dots, mk\}\}.$$

2796 Assume that all observed entries share the same value, i.e.,

$$2797 \quad w^* \triangleq \mathbf{W}_{i_1, j_1}^* = \mathbf{W}_{i_2, j_2}^* \quad \text{for any } (i_1, j_1), (i_2, j_2) \in \Omega.$$

2798 Consider the product matrix $\mathbf{W}_{L:1}$, where the factor matrices $\mathbf{W}_l \in \mathbb{R}^{d \times d}$ are initialized according
2799 to (7). Under the gradient flow dynamics (3), $\mathbf{W}_l(t)$ remains in the family \mathcal{M} for all $t \geq 0$ and all
2800 $l \in [L]$.

2808 *Proof.* First note that the initialization in (7) belongs to the family \mathcal{M} , since each factor is of the
 2809 form

$$2810 \quad \mathbf{W}_l(0) = \mathbf{M}(\alpha, \alpha/m, \alpha/m), \quad l \in [L].$$

2811 We will show that \mathcal{M} is invariant under the gradient flow.
 2812

2813 Fix any time $t \geq 0$ and assume that $\mathbf{W}_l(t) \in \mathcal{M}$ for all $l \in [L]$. By Lemma D.8, \mathcal{M} is closed
 2814 under matrix multiplication and every matrix in \mathcal{M} is symmetric, so it is also closed under transpose.
 2815 Hence the product matrix $\mathbf{W}_{L:1}(t) = \mathbf{W}_L(t) \cdots \mathbf{W}_1(t)$ lies in \mathcal{M} . In particular, there exist scalars
 2816 $A, B, C \in \mathbb{R}$ such that $\mathbf{W}_{L:1}(t) = \mathbf{M}(A, B, C)$.

2817 By the definition of the observation set Ω and the assumption that all observed entries share the same
 2818 ground-truth value w^* , the loss has the form

$$2819 \quad \ell(\mathbf{W}_{L:1}) = \frac{1}{2} \sum_{(i,j) \in \Omega} ((\mathbf{W}_{L:1})_{ij} - w^*)^2.$$

2820 Since Ω contains exactly the entries inside each diagonal block, and $\mathbf{W}_{L:1}(t) = \mathbf{M}(A, B, C)$ has
 2821 diagonal blocks with diagonal entries A and off-diagonal entries B , a direct computation gives
 2822

$$2823 \quad \nabla \ell(\mathbf{W}_{L:1}(t)) = \mathbf{M}(A - w^*, B - w^*, 0) \in \mathcal{M}.$$

2824 The gradient flow dynamics for each factor matrix are

$$2825 \quad \dot{\mathbf{W}}_l(t) = - \left(\prod_{i=l+1}^L \mathbf{W}_i(t)^\top \right) \nabla \ell(\mathbf{W}_{L:1}(t)) \left(\prod_{i=1}^{l-1} \mathbf{W}_i(t)^\top \right), \quad l \in [L].$$

2826 Each factor in the products on the right-hand side belongs to \mathcal{M} , and by Lemma D.8 the product of
 2827 matrices in \mathcal{M} remains in \mathcal{M} . Since $\nabla \ell(\mathbf{W}_{L:1}(t)) \in \mathcal{M}$ as well, it follows that

$$2828 \quad \dot{\mathbf{W}}_l(t) \in \mathcal{M} \quad \text{for all } l \in [L].$$

2829 Since the initial condition satisfies $\mathbf{W}_l(0) \in \mathcal{M}$ for all $l \in [L]$, we conclude that

$$2830 \quad \mathbf{W}_l(t) \in \mathcal{M} \quad \text{for all } t \geq 0, l \in [L].$$

2831 \square

2832 Beyond showing that every factor matrix remains in the family \mathcal{M} , we further establish that all layers
 2833 evolve identically with below lemma:

2834 **Lemma D.10.** *Under the setting of Lemma D.9,*

$$2835 \quad \mathbf{W}_L(t) = \mathbf{W}_{L-1}(t) = \cdots = \mathbf{W}_1(t)$$

2836 *holds for all $t \geq 0$.*

2837 *Proof.* By Lemma D.9 and Lemma D.8, we know that for all $t \geq 0$ and all $l \in [L]$ we have
 2838 $\mathbf{W}_l(t) \in \mathcal{M}$, and that matrices in \mathcal{M} are closed under matrix multiplication, transpose, and commute
 2839 pairwise. Moreover, as shown in the proof of Lemma D.9, the loss gradient $\nabla \ell(\mathbf{W}_{L:1}(t))$ also lies in
 2840 \mathcal{M} .

2841 Fix any time t and suppose that

$$2842 \quad \mathbf{W}_L(t) = \mathbf{W}_{L-1}(t) = \cdots = \mathbf{W}_1(t) =: \mathbf{U}(t).$$

2843 Then the product matrix satisfies $\mathbf{W}_{L:1}(t) = \mathbf{U}(t)^L$, and the gradient flow dynamics for each layer
 2844 can be written as

$$2845 \quad \dot{\mathbf{W}}_l(t) = - \left(\prod_{i=l+1}^L \mathbf{W}_i(t)^\top \right) \nabla \ell(\mathbf{W}_{L:1}(t)) \left(\prod_{i=1}^{l-1} \mathbf{W}_i(t)^\top \right)$$

$$2846 \quad = -\mathbf{U}(t)^{L-l} \nabla \ell(\mathbf{U}(t)^L) \mathbf{U}(t)^{l-1}.$$

2862 Since $\mathbf{U}(t)$ and $\nabla \ell(\mathbf{U}(t)^L)$ both lie in \mathcal{M} and matrices in \mathcal{M} commute pairwise, we can reorder the
 2863 factors to obtain

$$2864 \quad \dot{\mathbf{W}}_l(t) = -\nabla \ell(\mathbf{U}(t)^L) \mathbf{U}(t)^{L-1} \quad \text{for all } l \in [L].$$

2865 Thus, whenever $\mathbf{W}_1(t) = \dots = \mathbf{W}_L(t)$ holds at some time t , the time derivatives of all layers
 2866 coincide at that time:

$$2867 \quad \dot{\mathbf{W}}_L(t) = \dot{\mathbf{W}}_{L-1}(t) = \dots = \dot{\mathbf{W}}_1(t).$$

2868 By the initialization scheme (7) we have

$$2869 \quad \mathbf{W}_L(0) = \mathbf{W}_{L-1}(0) = \dots = \mathbf{W}_1(0).$$

2870 Since the gradient flow admits a unique solution for this initial condition, it follows that the equalities
 2871 between the layers are preserved for all times $t \geq 0$, that is,

$$2872 \quad \mathbf{W}_L(t) = \mathbf{W}_{L-1}(t) = \dots = \mathbf{W}_1(t) \quad \text{for all } t \geq 0.$$

□

2873 Using the lemma above, we can parameterize every factor matrix as $\mathbf{W}_l(t) = \mathbf{M}(a(t), b(t), c(t))$ for
 2874 all $l \in [L]$, where $(a(t), b(t), c(t))$ are shared coefficients. Likewise, we write the product matrix as
 2875 $\mathbf{W}_{L:1}(t) = \mathbf{M}(A(t), B(t), C(t))$. We now derive the eigenvalues of each factor matrix.

2876 **Lemma D.11.** *Let $k, n \in \mathbb{N}$ and $d = nk$. For $a, b, c \in \mathbb{R}$, let $\mathbf{M}(a, b, c) \in \mathbb{R}^{d \times d}$ be the block matrix
 2877 defined by*

$$2878 \quad \mathbf{M}(a, b, c) = \mathbf{I}_n \otimes \mathbf{D}(a, b) + (\mathbf{J}_n - \mathbf{I}_n) \otimes \mathbf{O}(c),$$

2879 where $\mathbf{D}(a, b) = (a - b)\mathbf{I}_k + b\mathbf{J}_k$ and $\mathbf{O}(c) = c\mathbf{J}_k$. The eigenvalues of $\mathbf{M}(a, b, c)$ and their
 2880 corresponding multiplicities are:

$$2881 \quad \lambda_1 = a + (k - 1)b + k(n - 1)c \text{ with multiplicity 1,}$$

$$2882 \quad \lambda_2 = a + (k - 1)b - kc \text{ with multiplicity } n - 1,$$

$$2883 \quad \lambda_3 = a - b \text{ with multiplicity } n(k - 1).$$

2884 *Proof.* First, we express $\mathbf{M}(a, b, c)$ in terms of Kronecker products of identity matrices \mathbf{I} and all-ones
 2885 matrices \mathbf{J} . Substituting the definitions of \mathbf{D} and \mathbf{O} :

$$2886 \begin{aligned} \mathbf{M} &= \mathbf{I}_n \otimes ((a - b)\mathbf{I}_k + b\mathbf{J}_k) + (\mathbf{J}_n - \mathbf{I}_n) \otimes (c\mathbf{J}_k) \\ 2887 &= (a - b)(\mathbf{I}_n \otimes \mathbf{I}_k) + b(\mathbf{I}_n \otimes \mathbf{J}_k) + c(\mathbf{J}_n \otimes \mathbf{J}_k) - c(\mathbf{I}_n \otimes \mathbf{J}_k) \\ 2888 &= (a - b)(\mathbf{I}_n \otimes \mathbf{I}_k) + (b - c)(\mathbf{I}_n \otimes \mathbf{J}_k) + c(\mathbf{J}_n \otimes \mathbf{J}_k). \end{aligned}$$

2889 The matrix \mathbf{J}_m has two distinct eigenvalues: m (corresponding to eigenvector $\mathbb{1}_m$) and 0 (corresponding
 2890 to the orthogonal complement $\mathbb{1}_m^\perp$). We construct the eigenbasis of \mathbf{M} using tensor products of
 2891 the eigenvectors of \mathbf{J}_n and \mathbf{J}_k .

2892 **Case 1.** Consider the eigenvector $\mathbf{v}_1 = \mathbb{1}_n \otimes \mathbb{1}_k$. Since $\mathbf{J}_n \mathbb{1}_n = n\mathbb{1}_n$ and $\mathbf{J}_k \mathbb{1}_k = k\mathbb{1}_k$, we have:

$$2893 \begin{aligned} \mathbf{M}\mathbf{v}_1 &= ((a - b) + (b - c)k + c(nk)) \mathbf{v}_1 \\ 2894 &= (a + (k - 1)b + k(n - 1)c) \mathbf{v}_1. \end{aligned}$$

2895 This subspace has dimension $1 \times 1 = 1$.

2896 **Case 2.** Consider eigenvectors $\mathbf{v}_2 = \mathbf{u} \otimes \mathbb{1}_k$, where $\mathbf{u} \in \mathbb{1}_n^\perp \subset \mathbb{R}^n$. Here $\mathbf{J}_n \mathbf{u} = \mathbf{0}$ and $\mathbf{J}_k \mathbb{1}_k = k\mathbb{1}_k$.
 2897 Thus:

$$2898 \begin{aligned} \mathbf{M}\mathbf{v}_2 &= ((a - b) + (b - c)k + c(0 \cdot k)) \mathbf{v}_2 \\ 2899 &= (a + (k - 1)b - kc) \mathbf{v}_2. \end{aligned}$$

2900 The dimension of $\mathbb{1}_n^\perp$ is $n - 1$, so the multiplicity is $(n - 1) \times 1 = n - 1$.

2901 **Case 3.** Consider eigenvectors $\mathbf{v}_3 = \mathbf{w} \otimes \mathbf{z}$, where $\mathbf{w} \in \mathbb{R}^n$ is arbitrary and $\mathbf{z} \in \mathbb{1}_k^\perp \subset \mathbb{R}^k$. Here
 2902 $\mathbf{J}_k \mathbf{z} = \mathbf{0}$. Consequently, any term containing \mathbf{J}_k in the Kronecker product sends this vector to zero:

$$2903 \quad (\mathbf{A} \otimes \mathbf{J}_k)(\mathbf{w} \otimes \mathbf{z}) = \mathbf{A}\mathbf{w} \otimes \mathbf{J}_k\mathbf{z} = \mathbf{A}\mathbf{w} \otimes \mathbf{0} = \mathbf{0}.$$

2904 Therefore, only the identity term remains:

$$2905 \begin{aligned} \mathbf{M}\mathbf{v}_3 &= (a - b)\mathbf{I}_{nk}\mathbf{v}_3 + \mathbf{0} + \mathbf{0} \\ 2906 &= (a - b)\mathbf{v}_3. \end{aligned}$$

2907 The dimension of \mathbb{R}^n is n and the dimension of $\mathbb{1}_k^\perp$ is $k - 1$. Thus, the multiplicity is $n(k - 1)$. □

2916 **Lemma D.12.** Let $\lambda_i(t)$ for $i \in \{1, 2, 3\}$ denote the eigenvalues of the factor matrix $\mathbf{W}_l(t)$ from
 2917 Lemma D.11. Under gradient flow (3), the evolution of these eigenvalues is governed by the following
 2918 system of ODE:

$$\begin{aligned} 2919 \quad \dot{\lambda}_1(t) &= - \left(\frac{\lambda_1^L(t) + (n-1)\lambda_2^L(t)}{n} - kw^* \right) \lambda_1^{L-1}(t), \\ 2920 \quad \dot{\lambda}_2(t) &= - \left(\frac{\lambda_1^L(t) + (n-1)\lambda_2^L(t)}{n} - kw^* \right) \lambda_2^{L-1}(t), \\ 2921 \quad \dot{\lambda}_3(t) &= -\lambda_3^{2L-1}(t). \end{aligned}$$

2926 *Proof.* Given that the factor matrices $\mathbf{W}_l(t)$ share the same form (Lemma D.10), let $\lambda_i(t)$ denote
 2927 their eigenvalues. We omit the time dependence t when the context is clear. Consequently, the
 2928 eigenvalues of the product matrix $\mathbf{W}_{L:1}(t)$ are $\lambda_i^L(t)$. Using Lemma D.11 to invert the eigenvalue
 2929 relations, we can express the parameters of $\mathbf{W}_{L:1}(t) = \mathbf{M}(A, B, C)$ as follows:

$$\begin{aligned} 2931 \quad A &= \frac{\lambda_1^L + (n-1)\lambda_2^L + n(k-1)\lambda_3^L}{nk}, \\ 2932 \quad B &= \frac{\lambda_1^L + (n-1)\lambda_2^L - n\lambda_3^L}{nk}, \\ 2933 \quad C &= \frac{\lambda_1^L - \lambda_2^L}{nk}. \end{aligned}$$

2938 Recall from the proof of Lemma D.9 that the gradient takes the form $\nabla \ell(\mathbf{W}_{L:1}) = \mathbf{M}(A - w^*, B - w^*, 0)$. Let γ_i denote the eigenvalue of $\nabla \ell(\mathbf{W}_{L:1})$ corresponding to the i -th index defined
 2939 in Lemma D.11. Note that for the gradient matrix, the off-diagonal block parameter is zero ($c = 0$).
 2940 Consequently, the eigenvalues for γ_1 and γ_2 coincide. Specifically:

$$\begin{aligned} 2943 \quad \gamma_1 &= (A - w^*) + (k-1)(B - w^*) + k(n-1)(0) \\ 2944 \quad &= (A - w^*) + (k-1)(B - w^*), \\ 2945 \quad \gamma_2 &= (A - w^*) + (k-1)(B - w^*) - k(0) \\ 2946 \quad &= \gamma_1, \\ 2947 \quad \gamma_3 &= (A - w^*) - (B - w^*). \end{aligned}$$

2948 Substituting the expressions for A and B into the equations above yields γ_i in terms of λ_i^L :

$$\begin{aligned} 2951 \quad \gamma_1 = \gamma_2 &= \left(\frac{\lambda_1^L + (n-1)\lambda_2^L + n(k-1)\lambda_3^L}{nk} - w^* \right) + (k-1) \left(\frac{\lambda_1^L + (n-1)\lambda_2^L - n\lambda_3^L}{nk} - w^* \right) \\ 2952 \quad &= \frac{\lambda_1^L + (n-1)\lambda_2^L}{n} - kw^*, \\ 2953 \quad \gamma_3 &= \left(\frac{\lambda_1^L + (n-1)\lambda_2^L + n(k-1)\lambda_3^L}{nk} - w^* \right) - \left(\frac{\lambda_1^L + (n-1)\lambda_2^L - n\lambda_3^L}{nk} - w^* \right) \\ 2954 \quad &= \lambda_3^L. \end{aligned}$$

2959 Finally, recall that the gradient flow dynamics for each layer are governed by

$$2961 \quad \dot{\mathbf{W}}_l(t) = - \left(\prod_{j=l+1}^L \mathbf{W}_j(t)^\top \right) \nabla \ell(\mathbf{W}_{L:1}(t)) \left(\prod_{j=1}^{l-1} \mathbf{W}_j(t)^\top \right).$$

2965 Since the weight matrices $\mathbf{W}_l(t)$ and the gradient matrix $\nabla \ell(\mathbf{W}_{L:1}(t))$ belong to \mathcal{M} , they are
 2966 commutative and simultaneously diagonalizable. Let $\mathbf{P} \in \mathbb{R}^{d \times d}$ be the common orthogonal matrix
 2967 such that $\mathbf{W}_l(t) = \mathbf{P}\Lambda(t)\mathbf{P}^\top$ and $\nabla \ell(\mathbf{W}_{L:1}(t)) = \mathbf{P}\Gamma(t)\mathbf{P}^\top$, where $\Lambda(t)$ and $\Gamma(t)$ are diagonal
 2968 matrices containing the eigenvalues $\lambda_i(t)$ and $\gamma_i(t)$, respectively.

2969 Projecting the gradient flow dynamics onto the eigenspace spanned by the i -th eigenvector, we obtain
 the evolution of the eigenvalues. Using the fact that $\mathbf{W}_l(t)^\top = \mathbf{W}_l(t)$ due to symmetry, the dynamics

2970 for the l -th layer become:

$$\begin{aligned} 2972 \quad \dot{W}_l(t) &= \mathbf{P} \dot{\Lambda}(t) \mathbf{P}^\top = -(\mathbf{P} \Lambda(t) \mathbf{P}^\top)^{L-l} (\mathbf{P} \Gamma(t) \mathbf{P}^\top) (\mathbf{P} \Lambda(t) \mathbf{P}^\top)^{l-1} \\ 2973 \quad &= -\mathbf{P} (\Lambda^{L-l}(t) \Gamma(t) \Lambda^{l-1}(t)) \mathbf{P}^\top. \end{aligned}$$

2974 Multiplying by \mathbf{P}^\top on the left and \mathbf{P} on the right yields the diagonal evolution:

$$2976 \quad \dot{\Lambda}(t) = -\Gamma(t) \Lambda^{L-1}(t).$$

2977 For each distinct eigenvalue index $i \in \{1, 2, 3\}$, the scalar dynamics simplify to:

$$2978 \quad \dot{\lambda}_i(t) = -\gamma_i(t) \lambda_i^{L-1}(t).$$

2980 Substituting the values of γ_i derived previously, we obtain the specific evolution equations for each 2981 eigenvalue:

$$\begin{aligned} 2982 \quad \dot{\lambda}_1(t) &= -\gamma_1(t) \lambda_1^{L-1}(t) = -\left(\frac{\lambda_1^L(t) + (n-1)\lambda_2^L(t)}{n} - kw^*\right) \lambda_1^{L-1}(t), \\ 2983 \quad \dot{\lambda}_2(t) &= -\gamma_2(t) \lambda_2^{L-1}(t) = -\left(\frac{\lambda_1^L(t) + (n-1)\lambda_2^L(t)}{n} - kw^*\right) \lambda_2^{L-1}(t), \\ 2984 \quad \dot{\lambda}_3(t) &= -\gamma_3(t) \lambda_3^{L-1}(t) = -\lambda_3^{2L-1}(t). \end{aligned}$$

2985 \square

2990 Building on the lemma above, we can identify a conserved quantity that depends on the depth.

2991 **Lemma D.13.** *Under the gradient flow dynamics defined in Lemma D.12, the eigenvalues $\lambda_1(t)$ and 2992 $\lambda_2(t)$ satisfy the following conservation laws for all $t \geq 0$:*

2993 *1. If $L = 2$, the ratio of the eigenvalues is conserved:*

$$2995 \quad \frac{\lambda_1(t)}{\lambda_2(t)} = \frac{\lambda_1(0)}{\lambda_2(0)}.$$

2996 *2. If $L \geq 3$, the difference of the negated powers is conserved:*

$$2997 \quad \lambda_1^{2-L}(t) - \lambda_2^{2-L}(t) = \lambda_1^{2-L}(0) - \lambda_2^{2-L}(0).$$

3001 *Proof.* From Lemma D.12, the scalar dynamics for the first two eigenvalues are given by:

$$3003 \quad \dot{\lambda}_i(t) = -\gamma(t) \lambda_i^{L-1}(t) \quad \text{for } i \in \{1, 2\},$$

3004 where $\gamma(t) = \frac{\lambda_1(t)^L + (n-1)\lambda_2(t)^L}{n} - kw^*$. We consider the two cases based on the depth L .

3006 **Case 1:** ($L = 2$). In this case, the dynamics simplify to $\dot{\lambda}_i(t) = -\gamma(t) \lambda_i(t)$. Rearranging the terms 3007 to separate variables, we have:

$$3008 \quad \frac{\dot{\lambda}_1(t)}{\lambda_1(t)} = -\gamma(t), \quad \frac{\dot{\lambda}_2(t)}{\lambda_2(t)} = -\gamma(t).$$

3011 Subtracting the second equation from the first eliminates $\gamma(t)$:

$$\begin{aligned} 3012 \quad \frac{d}{dt} \log |\lambda_1(t)| - \frac{d}{dt} \log |\lambda_2(t)| &= 0 \\ 3013 \quad \frac{d}{dt} \log \left| \frac{\lambda_1(t)}{\lambda_2(t)} \right| &= 0. \end{aligned}$$

3016 This implies that the ratio $\lambda_1(t)/\lambda_2(t)$ is constant in time.

3018 **Case 2:** ($L \geq 3$). Consider the time derivative of the quantity $Q(t) = \lambda_1^{2-L}(t) - \lambda_2^{2-L}(t)$. Applying 3019 the chain rule:

$$\begin{aligned} 3020 \quad \frac{d}{dt} (\lambda_1^{2-L}(t)) &= (2-L)\lambda_1^{1-L}(t) \cdot \dot{\lambda}_1(t) \\ 3021 \quad &= (2-L)\lambda_1^{1-L}(t) \cdot (-\gamma(t)\lambda_1^{L-1}(t)) \\ 3022 \quad &= -(2-L)\gamma(t). \end{aligned}$$

3024 Similarly, for the second term:
 3025

$$\begin{aligned} 3026 \quad \frac{d}{dt} (\lambda_2^{2-L}(t)) &= (2-L)\lambda_2^{1-L}(t) \cdot (-\gamma(t)\lambda_2^{L-1}(t)) \\ 3027 \\ 3028 &= -(2-L)\gamma(t). \end{aligned}$$

3029 Subtracting the two derivatives yields:
 3030

$$\begin{aligned} 3031 \quad \frac{d}{dt} (\lambda_1^{2-L}(t) - \lambda_2^{2-L}(t)) &= (-(2-L)\gamma(t)) - (-(2-L)\gamma(t)) = 0. \\ 3032 \end{aligned}$$

3033 Since the time derivative is zero, the quantity is conserved throughout the training, proving the
 3034 statement. \square
 3035

3036 We are now ready to prove Theorem D.3.
 3037

3038 *Proof.* Using the inverse relations from Lemma D.11, we express the parameters $A(t)$ and $B(t)$ in
 3039 terms of the eigenvalues:
 3040

$$\begin{aligned} A(t) &= \frac{\lambda_1^L(t) + (n-1)\lambda_2^L(t) + n(k-1)\lambda_3^L(t)}{nk}, \\ B(t) &= \frac{\lambda_1^L(t) + (n-1)\lambda_2^L(t) - n\lambda_3^L(t)}{nk}. \end{aligned}$$

3044 Consider the difference between the parameters:
 3045

$$A(t) - B(t) = \frac{n\lambda_3^L(t)}{nk} = \frac{1}{k}\lambda_3^L(t).$$

3048 The assumption that the loss converges to zero implies global optimality, which requires $A(\infty) = B(\infty) = w^*$. Taking the limit $t \rightarrow \infty$, the difference vanishes, yielding:
 3049

$$\lambda_3(\infty) = 0.$$

3052 Next, substituting $\lambda_3(\infty) = 0$ and $A(\infty) = w^*$ into the expression for $A(t)$, we obtain:
 3053

$$w^* = \frac{\lambda_1^L(\infty) + (n-1)\lambda_2^L(\infty)}{nk}.$$

3056 Multiplying by $nk = d$, we arrive at the first constraint:
 3057

$$\lambda_1^L(\infty) + (n-1)\lambda_2^L(\infty) = dw^*. \quad (38)$$

3059 Let $\sigma_1 \geq \sigma_2 \geq \dots \geq \sigma_d$ denote the singular values of the limiting product matrix $\mathbf{W}_{L:1}(\infty)$. Under
 3060 our initialization scheme and Lemma F.3, the factor matrices remain positive definite, implying that
 3061 the singular values of the product matrix coincide with the L -th power of the eigenvalues. Based on
 3062 the multiplicities derived in Lemma D.11, we identify:
 3063

$$\sigma_1 = \lambda_1^L(\infty), \quad \sigma_i = \lambda_2^L(\infty) \text{ for } i \in \{2, \dots, n\}, \quad \sigma_j = \lambda_3^L(\infty) = 0 \text{ for } j > n.$$

3065 We now solve for the non-zero singular values by considering two cases based on the depth L .
 3066

3067 **Case 1:** ($L = 2$). For $L = 2$, Lemma D.13 states that the ratio of eigenvalues is preserved. Using the
 3068 initialization values from (7) and Lemma D.11, this ratio is given by:
 3069

$$\frac{\lambda_1(\infty)}{\lambda_2(\infty)} = \frac{\lambda_1(0)}{\lambda_2(0)} = \frac{m+d-1}{m-1}. \quad (39)$$

3071 Substituting $\lambda_i^2(\infty) = \sigma_i$ into (38) and combining it with the squared ratio from (39), we can solve
 3072 for σ_1 and σ_i :
 3073

$$\begin{aligned} 3074 \quad \sigma_1 &= \frac{w^*d(m+d-1)^2}{(m+d-1)^2 + (n-1)(m-1)^2}, \\ 3075 \\ 3076 \quad \sigma_i &= \frac{w^*d(m-1)^2}{(m+d-1)^2 + (n-1)(m-1)^2} \quad \text{for all } i \in \{2, \dots, n\}. \\ 3077 \end{aligned}$$

3078 **Case 2: ($L \geq 3$ and finite m).** For $L \geq 3$ with $1 < m < \infty$, Lemma D.13 ensures the conservation
 3079 of the difference of negated powers:
 3080

$$3081 \quad \lambda_1^{2-L}(\infty) - \lambda_2^{2-L}(\infty) = \lambda_1^{2-L}(0) - \lambda_2^{2-L}(0).$$

3082 Substituting the initial eigenvalues from (7), the right-hand side becomes:
 3083

$$3084 \quad \lambda_1^{2-L}(\infty) - \lambda_2^{2-L}(\infty) = \left(\frac{\alpha}{m}\right)^{2-L} \left((m+d-1)^{2-L} - (m-1)^{2-L}\right). \quad (40)$$

3086 Finally, expressing the eigenvalues in terms of singular values via $\lambda_i(\infty) = \sigma_i^{1/L}$ (implying $\lambda_i^{2-L} =$
 3087 $\sigma_i^{\frac{2-L}{L}}$) and combining (38) with (40), we obtain the system of implicit equations:
 3088

$$3089 \quad \sigma_1^{\frac{2-L}{L}} - \left(\frac{w^*d - \sigma_1}{n-1}\right)^{\frac{2-L}{L}} = C_{\alpha,m,L,d},$$

$$3090 \quad (w^*d - (n-1)\sigma_i)^{\frac{2-L}{L}} - \sigma_i^{\frac{2-L}{L}} = C_{\alpha,m,L,d} \quad \text{for all } i \in \{2, \dots, n\},$$

3094 where $C_{\alpha,m,L,d} \triangleq \left(\frac{\alpha}{m}\right)^{2-L} \left((m+d-1)^{2-L} - (m-1)^{2-L}\right).$
 3095

3096 **Case 3: ($L \geq 3$ and $m = \infty$).** In this case, the initial eigenvalues of the factor matrices become:
 3097

$$3098 \quad \lambda_1(0) = \lim_{m \rightarrow \infty} \alpha \left(1 + \frac{d-1}{m}\right) = \alpha,$$

$$3099 \quad \lambda_2(0) = \lim_{m \rightarrow \infty} \alpha \left(1 - \frac{1}{m}\right) = \alpha.$$

3102 Since the initial eigenvalues are identical, i.e., $\lambda_1(0) = \lambda_2(0)$, the conserved quantities derived in
 3103 Lemma D.13 dictate that the limiting values must also be identical. When $L \geq 3$, the conservation
 3104 law states:
 3105

$$3106 \quad \lambda_1^{2-L}(\infty) - \lambda_2^{2-L}(\infty) = \lambda_1^{2-L}(0) - \lambda_2^{2-L}(0) = \alpha^{2-L} - \alpha^{2-L} = 0.$$

3107 This implies $\lambda_1(\infty) = \lambda_2(\infty)$. Consequently, the singular values of the product matrix satisfy
 3108 $\sigma_1 = \sigma_i$ for all $i \in \{2, \dots, n\}$.
 3109

3110 In the case where $L = 2$, the conservation law states:
 3111

$$3112 \quad \frac{\lambda_1(\infty)}{\lambda_2(\infty)} = \frac{\lambda_1(0)}{\lambda_2(0)} = \frac{\alpha}{\alpha} = 1.$$

3114 This also implies $\lambda_1(\infty) = \lambda_2(\infty)$ and thus $\sigma_1 = \sigma_i$. □
 3115
 3116
 3117
 3118
 3119
 3120
 3121
 3122
 3123
 3124
 3125
 3126
 3127
 3128
 3129
 3130
 3131

3132 **E PROOF FOR SECTION 4**
 3133

3134 In this section, we provide the proofs for the propositions and theorems presented in Section 4. First,
 3135 Subsection E.1 presents the general form of Proposition 4.1 along with its proof. Next, Subsection E.2
 3136 details the proof of Theorem 4.2, focusing on the 2×2 matrix case. Lastly, Subsection E.3 generalizes
 3137 the core ideas of Theorem 4.2 to $d \times d$ matrices and provides the formal statement and the proof of
 3138 Theorem 4.3.

3140 **E.1 GENERAL FORM AND PROOF OF PROPOSITION 4.1**
 3141

3142 We first present the general form of Proposition 4.1. This proposition applies to any “fully disconnected
 3143 case”, a scenario that involves the diagonal entries introduced within this same proposition.

3144 For a $d \times d$ ground truth matrix \mathbf{W}^* , the observed entries are given by $\Omega = \{(i_n, j_n)\}_{n=1}^d$. Since
 3145 we consider the fully disconnected case, $i_n \neq i_m, j_n \neq j_m$ for all $n \neq m \in [d]$. We factorize
 3146 the solution model at time t as $\mathbf{W}_{\mathbf{A}, \mathbf{B}}(t) = \mathbf{A}(t)\mathbf{B}(t)$, where $\mathbf{W}_{\mathbf{A}, \mathbf{B}}(t), \mathbf{A}(t), \mathbf{B}(t) \in \mathbb{R}^{d \times d}$. We
 3147 consider the gradient flow dynamics with the loss function defined as in (2).

3148 For a given row index k , since there exists a unique entry $(k, j) \in \Omega$, we denote this unique column
 3149 index by $j^{(k)}$. Thus, $w_{k, j^{(k)}}^*$ and $w_{k, j^{(k)}}(t)$ refer to the ground truth weight $w_{k, j}^*$ and the time-varying
 3150 weight $w_{k, j}(t)$ respectively, where $j = j^{(k)}$. Similarly, for a given column index l , since there exists
 3151 a unique entry $(i, l) \in \Omega$, we denote this unique row index by $i^{(l)}$. Thus $w_{i^{(l)}, l}^*$ and $w_{i^{(l)}, l}(t)$ refer to the
 3152 ground truth weight $w_{i, l}^*$ and the time-varying weight $w_{i, l}(t)$ respectively, where $i = i^{(l)}$. Defining
 3153 the residuals as $r_{ij}(t) := w_{ij}^* - w_{ij}(t)$, we adopt this compact notation for residuals as well. Then,
 3154 we can derive a closed-form solution for *arbitrary initialization* with below proposition.

3155 **Proposition E.1.** *Consider a ground truth matrix $\mathbf{W}^* \in \mathbb{R}^{d \times d}$ and a set of d fully disconnected
 3156 observations $\Omega = \{(i_n, j_n)\}_{n=1}^d$. The model is factorized as $\mathbf{W}_{\mathbf{A}, \mathbf{B}}(t) = \mathbf{A}(t)\mathbf{B}(t)$, where the
 3157 factors $\mathbf{A}(t), \mathbf{B}(t) \in \mathbb{R}^{d \times d}$. For each observed pair $(i_n, j_n) \in \Omega$, define the constants P_{i_n, j_n} and
 3158 Q_{i_n, j_n} based on the initial values $\mathbf{A}(0)$ and $\mathbf{B}(0)$:*

$$3161 \quad P_{i_n, j_n} \triangleq \sum_{k=1}^d a_{i_n, k}(0) b_{k, j_n}(0) \quad \text{and} \quad Q_{i_n, j_n} \triangleq \sum_{k=1}^d (a_{i_n, k}(0)^2 + b_{k, j_n}(0)^2).$$

3164 Furthermore, for each such observed pair (i_n, j_n) , let the parameter \bar{r}_{i_n, j_n} be determined from the
 3165 ground truth entry w_{i_n, j_n}^* and the constants defined above, as follows:

$$3166 \quad \bar{r}_{i_n, j_n} \triangleq \frac{1}{2} \log \left(\frac{P_{i_n, j_n} + \frac{Q_{i_n, j_n}}{2}}{w_{i_n, j_n}^* + \sqrt{w_{i_n, j_n}^{*2} - P_{i_n, j_n}^2 + \left(\frac{Q_{i_n, j_n}}{2} \right)^2}} \right).$$

3167 Then, assuming convergence to a zero-loss solution (i.e., $w_{i_n, j_n}(\infty) = w_{i_n, j_n}^*$ for all $(i_n, j_n) \in \Omega$),
 3168 any entry $a_{p, q}(\infty)$ of the converged matrix $\mathbf{A}(\infty)$ and any entry $b_{p, q}(\infty)$ of the converged matrix
 3169 $\mathbf{B}(\infty)$ (for arbitrary indices $p, q \in [d]$) are explicitly given by:

$$3170 \quad a_{p, q}(\infty) = a_{p, q}(0) \cosh(\bar{r}_{p, j^{(p)}}) - b_{q, j^{(p)}}(0) \sinh(\bar{r}_{p, j^{(p)}}),$$

$$3171 \quad b_{p, q}(\infty) = b_{p, q}(0) \cosh(\bar{r}_{i^{(q)}, q}) - a_{i^{(q)}, p}(0) \sinh(\bar{r}_{i^{(q)}, q}).$$

3172 *Proof.* We can express their evolution in the following vector form using the vectorized parameter
 3173 $\theta(t) := \begin{bmatrix} \text{vec}(\mathbf{A}(t)) \\ \text{vec}(\mathbf{B}(t)) \end{bmatrix} \in \mathbb{R}^{2d^2}$:

$$3174 \quad \dot{\theta}(t) = - \begin{bmatrix} \mathbf{0}_{d^2, d^2} & \mathbf{R}(t) \\ \mathbf{R}(t)^\top & \mathbf{0}_{d^2, d^2} \end{bmatrix} \theta(t) \quad (41)$$

3186 where $\mathbf{R}(t) \in \mathbb{R}^{d^2 \times d^2}$ is defined as:
3187

$$3188 \quad 3189 \quad 3190 \quad 3191 \quad 3192 \quad 3193 \quad 3194 \quad 3195 \quad 3196 \quad 3197 \quad 3198 \quad \mathbf{R}(t) = \begin{bmatrix} r_{1,j^{(1)}}(t) \mathbf{e}_{j^{(1)}}^\top \\ r_{1,j^{(1)}}(t) \mathbf{e}_{j^{(1)}+d}^\top \\ \vdots \\ r_{1,j^{(1)}}(t) \mathbf{e}_{j^{(1)}+(d-1)d}^\top \\ r_{2,j^{(2)}}(t) \mathbf{e}_{j^{(2)}}^\top \\ r_{2,j^{(2)}}(t) \mathbf{e}_{j^{(2)}+d}^\top \\ \vdots \\ r_{d,j^{(d)}}(t) \mathbf{e}_{j^{(d)}+(d-1)d}^\top \end{bmatrix} \quad (42)$$

3199 for $\mathbf{e}_i \in \mathbb{R}^{d^2}$ form the standard basis. Since $\begin{bmatrix} \mathbf{0}_{d^2,d^2} & \mathbf{R}(t) \\ \mathbf{R}(t)^\top & \mathbf{0}_{d^2,d^2} \end{bmatrix}$ commutes with any other t values,
3200 the solution is given as:
3201

$$3204 \quad 3205 \quad \theta(t) = \exp \left(- \int_0^\tau \begin{bmatrix} \mathbf{0}_{d^2,d^2} & \mathbf{R}(t) \\ \mathbf{R}(t)^\top & \mathbf{0}_{d^2,d^2} \end{bmatrix} d\tau \right) \cdot \theta(0) \quad (43)$$

$$3206 \quad 3207 \quad = \exp \left(- \begin{bmatrix} \mathbf{0}_{d^2,d^2} & \bar{\mathbf{R}}(t) \\ \mathbf{R}(t)^\top & \mathbf{0}_{d^2,d^2} \end{bmatrix} d\tau \right) \cdot \theta(0) \quad (44)$$

3209 where
3210

$$3211 \quad 3212 \quad 3213 \quad 3214 \quad 3215 \quad 3216 \quad 3217 \quad 3218 \quad 3219 \quad 3220 \quad \bar{\mathbf{R}}(t) := \int_0^t \mathbf{R}(\tau) d\tau = \begin{bmatrix} \bar{r}_{1,j^{(1)}}(t) \mathbf{e}_{j^{(1)}}^\top \\ \bar{r}_{1,j^{(1)}}(t) \mathbf{e}_{j^{(1)}+d}^\top \\ \vdots \\ \bar{r}_{1,j^{(1)}}(t) \mathbf{e}_{j^{(1)}+(d-1)d}^\top \\ \bar{r}_{2,j^{(2)}}(t) \mathbf{e}_{j^{(2)}}^\top \\ \bar{r}_{2,j^{(2)}}(t) \mathbf{e}_{j^{(2)}+d}^\top \\ \vdots \\ \bar{r}_{d,j^{(d)}}(t) \mathbf{e}_{j^{(d)}+(d-1)d}^\top \end{bmatrix}$$

3222 for $\bar{r}_{i,j}(t) = \int_0^t r_{i,j}(\tau) d\tau$. If we assume convergence, we get:
3223

$$3224 \quad 3225 \quad 3226 \quad \theta(\infty) = \exp \left(- \begin{bmatrix} \mathbf{0}_{d^2,d^2} & \bar{\mathbf{R}}(\infty) \\ \bar{\mathbf{R}}(\infty)^\top & \mathbf{0}_{d^2,d^2} \end{bmatrix} d\tau \right) \cdot \theta(0) \quad (45)$$

$$3227 \quad 3228 \quad 3229 \quad = \left(\begin{bmatrix} \mathbf{I}_{d^2} & \mathbf{0}_{d^2,d^2} \\ \mathbf{0}_{d^2,d^2} & \mathbf{I}_{d^2} \end{bmatrix} - \begin{bmatrix} \mathbf{0}_{d^2,d^2} & \bar{\mathbf{R}}(t) \\ \bar{\mathbf{R}}(t)^\top & \mathbf{0}_{d^2,d^2} \end{bmatrix} + \frac{1}{2} \begin{bmatrix} \bar{\mathbf{R}}(t) \bar{\mathbf{R}}(t)^\top & \mathbf{0}_{d^2,d^2} \\ \mathbf{0}_{d^2,d^2} & \bar{\mathbf{R}}(t)^\top \bar{\mathbf{R}}(t) \end{bmatrix} \right) \quad (46)$$

$$3230 \quad 3231 \quad 3232 \quad - \frac{1}{6} \begin{bmatrix} \mathbf{0}_{d^2,d^2} & \bar{\mathbf{R}}(t) \bar{\mathbf{R}}(t)^\top \bar{\mathbf{R}}(t) \\ \bar{\mathbf{R}}(t)^\top \bar{\mathbf{R}}(t)^\top \bar{\mathbf{R}}(t) & \mathbf{0}_{d^2,d^2} \end{bmatrix} + \frac{1}{24} \begin{bmatrix} (\bar{\mathbf{R}}(t) \bar{\mathbf{R}}(t)^\top)^2 & \mathbf{0}_{d^2,d^2} \\ \mathbf{0}_{d^2,d^2} & (\bar{\mathbf{R}}(t)^\top \bar{\mathbf{R}}(t))^2 \end{bmatrix} \quad (47)$$

$$3233 \quad 3234 \quad 3235 \quad - \dots \right) \cdot \theta(0), \quad (48)$$

3236 which can be simplified as:
3237

$$3238 \quad 3239 \quad \theta(\infty) = \begin{bmatrix} \mathbf{C} & \mathbf{D} \\ \mathbf{E} & \mathbf{F} \end{bmatrix} \theta(0), \quad (49)$$

3240 with \mathbf{C} , \mathbf{D} , \mathbf{E} and \mathbf{F} are defined as following:
 3241

$$\begin{aligned} \mathbf{C} &= \cosh \left(\text{diag} \left(\bar{r}_{1,j^{(1)}}, \dots, \bar{r}_{1,j^{(1)}}, \bar{r}_{2,j^{(2)}}, \dots, \bar{r}_{2,j^{(2)}}, \dots, \bar{r}_{d,j^{(d)}}, \dots, \bar{r}_{d,j^{(d)}} \right) \right), \\ \mathbf{F} &= \cosh \left(\text{diag} \left(\bar{r}_{i^{(1)},1}, \bar{r}_{i^{(2)},2}, \dots, \bar{r}_{i^{(d)},d}, \dots, \bar{r}_{i^{(1)},1}, \bar{r}_{i^{(2)},2}, \dots, \bar{r}_{i^{(d)},d} \right) \right), \\ \mathbf{D} &= -\sinh \left(\left[\bar{r}_{1,j^{(1)}} \mathbf{e}_{j^{(1)}}^\top, \dots, \bar{r}_{1,j^{(1)}} \mathbf{e}_{j^{(1)}+(d-1)d}^\top, \dots, \bar{r}_{d,j^{(d)}} \mathbf{e}_{j^{(d)}}^\top, \dots, \bar{r}_{d,j^{(d)}} \mathbf{e}_{j^{(d)}+(d-1)d}^\top \right]^\top \right), \\ \mathbf{E} &= -\sinh \left(\left[\bar{r}_{1,j^{(1)}} \mathbf{e}_{j^{(1)}}, \dots, \bar{r}_{1,j^{(1)}} \mathbf{e}_{j^{(1)}+(d-1)d}, \dots, \bar{r}_{d,j^{(d)}} \mathbf{e}_{j^{(d)}}, \dots, \bar{r}_{d,j^{(d)}} \mathbf{e}_{j^{(d)}+(d-1)d} \right] \right). \end{aligned}$$

3242 Here, for any matrix \mathbf{P} , the operations $\cosh(\mathbf{P})$ and $\sinh(\mathbf{P})$ are performed elementwise. For a
 3243 set of d observed indices Ω , there exists d corresponding unknown variables, \bar{r}_{i_k,j_k} . If convergence
 3244 is guaranteed, the model yields d equations relating these variables to the d ground truth values.
 3245 This implies that the variables \bar{r}_{i_k,j_k} can be characterized as a closed-form. To characterize more
 3246 rigorously, we substitute \mathbf{C} , \mathbf{D} , \mathbf{E} , and \mathbf{F} into (49):
 3247

$$\theta(\infty) = \begin{bmatrix} a_{1,1}(\infty) \\ a_{1,2}(\infty) \\ \vdots \\ a_{1,d}(\infty) \\ a_{2,1}(\infty) \\ a_{2,2}(\infty) \\ \vdots \\ a_{2,d}(\infty) \\ \vdots \\ a_{d,1}(\infty) \\ \vdots \\ a_{d,d}(\infty) \\ b_{1,1}(\infty) \\ b_{1,2}(\infty) \\ \vdots \\ b_{1,d}(\infty) \\ b_{2,1}(\infty) \\ b_{2,2}(\infty) \\ \vdots \\ b_{2,d}(\infty) \\ \vdots \\ b_{d,1}(\infty) \\ \vdots \\ b_{d,d}(\infty) \end{bmatrix} = \begin{bmatrix} a_{1,1}(0) \cosh(\bar{r}_{1,j^{(1)}}) - b_{1,j^{(1)}}(0) \sinh(\bar{r}_{1,j^{(1)}}) \\ a_{1,2}(0) \cosh(\bar{r}_{1,j^{(1)}}) - b_{2,j^{(1)}}(0) \sinh(\bar{r}_{1,j^{(1)}}) \\ \vdots \\ a_{1,d}(0) \cosh(\bar{r}_{1,j^{(1)}}) - b_{d,j^{(1)}}(0) \sinh(\bar{r}_{1,j^{(1)}}) \\ a_{2,1}(0) \cosh(\bar{r}_{2,j^{(2)}}) - b_{1,j^{(2)}}(0) \sinh(\bar{r}_{2,j^{(2)}}) \\ a_{2,2}(0) \cosh(\bar{r}_{2,j^{(2)}}) - b_{2,j^{(2)}}(0) \sinh(\bar{r}_{2,j^{(2)}}) \\ \vdots \\ a_{2,d}(0) \cosh(\bar{r}_{2,j^{(2)}}) - b_{d,j^{(2)}}(0) \sinh(\bar{r}_{2,j^{(2)}}) \\ \vdots \\ a_{d,1}(0) \cosh(\bar{r}_{d,j^{(d)}}) - b_{1,j^{(d)}}(0) \sinh(\bar{r}_{d,j^{(d)}}) \\ \vdots \\ a_{d,d}(0) \cosh(\bar{r}_{d,j^{(d)}}) - b_{d,j^{(d)}}(0) \sinh(\bar{r}_{d,j^{(d)}}) \\ -a_{i^{(1)},1}(0) \sinh(\bar{r}_{i^{(1)},1}) + b_{1,1}(0) \cosh(\bar{r}_{i^{(1)},1}) \\ -a_{i^{(2)},1}(0) \sinh(\bar{r}_{i^{(2)},2}) + b_{1,2}(0) \cosh(\bar{r}_{i^{(2)},2}) \\ \vdots \\ -a_{i^{(d)},1}(0) \sinh(\bar{r}_{i^{(d)},d}) + b_{1,d}(0) \cosh(\bar{r}_{i^{(d)},d}) \\ -a_{i^{(1)},2}(0) \sinh(\bar{r}_{i^{(1)},1}) + b_{2,1}(0) \cosh(\bar{r}_{i^{(1)},1}) \\ -a_{i^{(2)},2}(0) \sinh(\bar{r}_{i^{(2)},2}) + b_{2,2}(0) \cosh(\bar{r}_{i^{(2)},2}) \\ \vdots \\ -a_{i^{(d)},2}(0) \sinh(\bar{r}_{i^{(d)},d}) + b_{2,d}(0) \cosh(\bar{r}_{i^{(d)},d}) \\ \vdots \\ -a_{i^{(1)},d}(0) \sinh(\bar{r}_{i^{(1)},1}) + b_{d,1}(0) \cosh(\bar{r}_{i^{(1)},1}) \\ \vdots \\ -a_{i^{(d)},d}(0) \sinh(\bar{r}_{i^{(d)},d}) + b_{d,d}(0) \cosh(\bar{r}_{i^{(d)},d}) \end{bmatrix}. \quad (50)$$

3248 Then, assuming convergence, for each observation $(i_n, j_n) \in \Omega$ (for $n = 1, \dots, d$), we obtain the
 3249 equation:
 3250

$$\begin{aligned} w_{i_n,j_n}^* &= w_{i_n,j_n}(\infty) = a_{i_n,1}(\infty) b_{1,j_n}(\infty) + \dots + a_{i_n,d}(\infty) b_{d,j_n}(\infty) \\ &= \sum_{k=1}^d \left[(a_{i_n,k}(0) \cosh(\bar{r}_{i_n,j_n}) - b_{k,j^{(i_n)}}(0) \sinh(\bar{r}_{i_n,j_n})) \right. \\ &\quad \left. \cdot (b_{k,j_n}(0) \cosh(\bar{r}_{i_n,j_n}) - a_{i_n,k}(0) \sinh(\bar{r}_{i_n,j_n})) \right]. \end{aligned}$$

3294 Let $C_n = \cosh(\bar{r}_{i_n, j_n})$ and $S_n = \sinh(\bar{r}_{i_n, j_n})$. Then we can rewrite the above equation as:
 3295

$$\begin{aligned}
 3296 \quad w_{i_n, j_n}^* &= \sum_{k=1}^d (a_{i_n, k}(0)b_{k, j_n}(0)C_n^2 - a_{i_n, k}(0)^2C_nS_n - b_{k, j_n}(0)^2C_nS_n + a_{i_n, k}(0)b_{k, j_n}(0)S_n^2) \\
 3297 \quad &= \left(\sum_{k=1}^d a_{i_n, k}(0)b_{k, j_n}(0) \right) (C_n^2 + S_n^2) - \left(\sum_{k=1}^d (a_{i_n, k}(0)^2 + b_{k, j_n}(0)^2) \right) C_nS_n \\
 3298 \quad &= P_{i_n, j_n} \cosh(2\bar{r}_{i_n, j_n}) - \frac{Q_{i_n, j_n}}{2} \sinh(2\bar{r}_{i_n, j_n}),
 \end{aligned} \tag{51}$$

3304 where $P_{i_n, j_n} = \sum_{k=1}^d a_{i_n, k}(0)b_{k, j_n}(0)$ and $Q_{i_n, j_n} = \sum_{k=1}^d (a_{i_n, k}(0)^2 + b_{k, j_n}(0)^2)$.
 3305

3306 By solving (51) with respect to \bar{r}_{i_n, j_n} , we can get:

$$\begin{aligned}
 3307 \quad 2w_{i_n, j_n}^* &= P_{i_n, j_n} (e^{2\bar{r}_{i_n, j_n}} + e^{-2\bar{r}_{i_n, j_n}}) - \frac{Q_{i_n, j_n}}{2} (e^{2\bar{r}_{i_n, j_n}} - e^{-2\bar{r}_{i_n, j_n}}) \\
 3308 \quad &= e^{2\bar{r}_{i_n, j_n}} \left(P_{i_n, j_n} - \frac{Q_{i_n, j_n}}{2} \right) + e^{-2\bar{r}_{i_n, j_n}} \left(P_{i_n, j_n} + \frac{Q_{i_n, j_n}}{2} \right).
 \end{aligned}$$

3312 Multiply by $e^{2\bar{r}_{i_n, j_n}}$ leads to:

$$3313 \quad 2w_{i_n, j_n}^* e^{2\bar{r}_{i_n, j_n}} = e^{4\bar{r}_{i_n, j_n}} \left(P_{i_n, j_n} - \frac{Q_{i_n, j_n}}{2} \right) + P_{i_n, j_n} + \frac{Q_{i_n, j_n}}{2}.$$

3316 Rearrange into a quadratic equation by setting $u = e^{2\bar{r}_{i_n, j_n}}$:

$$3317 \quad \left(P_{i_n, j_n} - \frac{Q_{i_n, j_n}}{2} \right) u^2 - 2w_{i_n, j_n}^* u + P_{i_n, j_n} + \frac{Q_{i_n, j_n}}{2} = 0.$$

3320 By solving the above equation while noting that $P_{i_n, j_n} - \frac{Q_{i_n, j_n}}{2} \leq 0$ by the definition, we can get
 3321 explicit solutions for \bar{r}_{i_n, j_n} :

$$\bar{r}_{i_n, j_n} = \frac{1}{2} \log \left(\frac{P_{i_n, j_n} + \frac{Q_{i_n, j_n}}{2}}{w_{i_n, j_n}^* + \sqrt{w_{i_n, j_n}^{*2} - P_{i_n, j_n}^2 + \left(\frac{Q_{i_n, j_n}}{2} \right)^2}} \right).$$

3323 Note that each \bar{r}_{i_n, j_n} is solely determined by the initial points $\theta(0)$. With \bar{r}_{i_n, j_n} determined for each
 3324 observed entry, we have closed-form expressions characterizing the model's learned relationship for
 3325 these observations. Consequently, by (50), we have:

$$\begin{aligned}
 3326 \quad a_{p, q}(\infty) &= a_{p, q}(0) \cosh(\bar{r}_{p, j^{(p)}}) - b_{q, j^{(p)}}(0) \sinh(\bar{r}_{p, j^{(p)}}), \\
 3327 \quad b_{p, q}(\infty) &= b_{p, q}(0) \cosh(\bar{r}_{i^{(q)}, q}) - a_{i^{(q)}, p}(0) \sinh(\bar{r}_{i^{(q)}, q}).
 \end{aligned}$$

3328 \square

3329
 3330
 3331
 3332
 3333
 3334
 3335
 3336
 3337
 3338
 3339
 3340
 3341
 3342
 3343
 3344
 3345
 3346
 3347

3348 E.2 PROOF OF THEOREM 4.2
3349

3350 In this section, we will provide the analysis of 2×2 matrix that starts from pre-trained weights with
3351 diagonal observations $w^* \triangleq w_{11}^* = w_{22}^*$, $\mathbf{W}_{A,B}(t)$ cannot converge to a low-rank solution. Let
3352 $T_1 > t_1$ be the timestep that concludes the pre-train phase. For the sake of simplicity, we omit the ϵ
3353 term introduced in the pre-training phase. Then, we know from Proposition E.1, we have:

$$3354 \quad 3355 \quad \mathbf{A}(T_1) = \mathbf{B}(T_1) = \begin{pmatrix} \sqrt{w^*} & 0 \\ 0 & \sqrt{w^*} \end{pmatrix}. \quad 3356$$

3357 In the post-train phase, we introduce an additional observation in the off-diagonal entries, specifically
3358 w_{12}^* or w_{21}^* . Without loss of generality, we assume $w_{12}^* > 0$ is revealed while other observations
3359 remain the same, i.e., $\Omega_{\text{post}} = \{(1, 1), (1, 2), (2, 2)\}$. Note that the gradient of the post-train loss is:
3360

$$3361 \quad \nabla \ell(\mathbf{W}_{A,B}) = \begin{pmatrix} w_{11} - w^* & w_{12} - w_{12}^* \\ 0 & w_{22} - w^* \end{pmatrix} \\ 3362 \quad = \begin{pmatrix} a_{11}b_{11} + a_{12}b_{21} - w^* & a_{11}b_{12} + a_{12}b_{22} - w_{12}^* \\ 0 & a_{21}b_{12} + a_{22}b_{22} - w^* \end{pmatrix}. \\ 3365$$

3366 For simplicity, we again omit the Ω term in the loss specification. We define the residuals for the
3367 relevant matrix elements as $r_{11} := w_{11} - w^*$, $r_{12} := w_{12} - w_{12}^*$, and $r_{22} := w_{22} - w^*$.

3368 We begin by demonstrating a pairwise symmetry between the entries of $\mathbf{A}(t)$ and $\mathbf{B}(t)$, which
3369 simplifies subsequent analysis. To this end, we first provide the time derivatives for the elements
3370 of $\mathbf{A}(t)$ and $\mathbf{B}(t)$. Given the general gradient flow dynamics $\dot{\mathbf{A}}(t) = -\nabla \ell(\mathbf{W}_{A,B}(t))\mathbf{B}^\top(t)$ and
3371 $\dot{\mathbf{B}}(t) = -\mathbf{A}^\top(t)\nabla \ell(\mathbf{W}_{A,B}(t))$, the component-wise updates are as follows. For $\mathbf{A}(t)$:
3372

$$3373 \quad \dot{a}_{11}(t) = b_{11}(t)(w^* - w_{11}(t)) + b_{12}(t)(w_{12}^* - w_{12}(t)), \\ 3374 \quad \dot{a}_{12}(t) = b_{21}(t)(w^* - w_{11}(t)) + b_{22}(t)(w_{12}^* - w_{12}(t)), \\ 3375 \quad \dot{a}_{21}(t) = b_{12}(t)(w^* - w_{22}(t)), \\ 3376 \quad \dot{a}_{22}(t) = b_{22}(t)(w^* - w_{22}(t)), \\ 3377$$

3378 and for $\mathbf{B}(t)$:

$$3379 \quad \dot{b}_{11}(t) = a_{11}(t)(w^* - w_{11}(t)), \\ 3380 \quad \dot{b}_{12}(t) = a_{11}(t)(w_{12}^* - w_{12}(t)) + a_{21}(t)(w^* - w_{22}(t)), \\ 3381 \quad \dot{b}_{21}(t) = a_{12}(t)(w^* - w_{11}(t)), \\ 3382 \quad \dot{b}_{22}(t) = a_{12}(t)(w_{12}^* - w_{12}(t)) + a_{22}(t)(w^* - w_{22}(t)). \\ 3384$$

3385 Using the equations above, we first present a result showing that the k -th derivative of each element
3386 in $\mathbf{A}(t)$ and $\mathbf{B}(t)$ at initialization exhibits a pairwise symmetry:

3387 **Lemma E.1.** *Let $\mathbf{W}_{A,B}(T_1) = \mathbf{A}(T_1)\mathbf{B}(T_1) \in \mathbb{R}^{2 \times 2}$ be a product matrix, where $\mathbf{A}(T_1)$ and $\mathbf{B}(T_1)$
3388 are matrices that are obtained at the end of the pre-training phase. Suppose the ground truth matrix
3389 satisfies $w_{11}^* = w_{22}^*$. Then for every $k \in \mathbb{N} \cup \{0\}$, the following identities hold:*

$$3390 \quad 3391 \quad a_{11}^{(k)}(T_1) = b_{22}^{(k)}(T_1), \quad a_{12}^{(k)}(T_1) = b_{12}^{(k)}(T_1), \\ 3392 \quad a_{21}^{(k)}(T_1) = b_{21}^{(k)}(T_1), \quad a_{22}^{(k)}(T_1) = b_{11}^{(k)}(T_1), \\ 3393$$

3394 and consequently,

$$3395 \quad 3396 \quad w_{11}^{(k)}(T_1) = w_{22}^{(k)}(T_1). \quad 3397$$

3398 *Proof.* We prove the statement by induction on k . When $k = 0$, by the initialization assumption, we
3399 have

$$3401 \quad a_{11}(T_1) = b_{22}(T_1), \quad a_{12}(T_1) = b_{12}(T_1), \quad a_{21}(T_1) = b_{21}(T_1), \quad a_{22}(T_1) = b_{11}(T_1),$$

3402 and therefore $w_{11}(T_1) = w_{22}(T_1)$.
 3403

3404 Assume that for all orders $m < k$ (with $k \geq 1$) the identities
 3405

$$a_{11}^{(m)}(T_1) = b_{22}^{(m)}(T_1), \quad a_{12}^{(m)}(T_1) = b_{12}^{(m)}(T_1), \quad a_{21}^{(m)}(T_1) = b_{21}^{(m)}(T_1), \quad a_{22}^{(m)}(T_1) = b_{11}^{(m)}(T_1),$$

3407 hold, and hence also $w_{11}^{(m)}(T_1) = w_{22}^{(m)}(T_1)$. By the Leibniz rule, each element of the k -th derivative
 3408 can be written as a finite sum involving derivatives of orders strictly less than k . For $\mathbf{A}(t)$:
 3409

$$\begin{aligned} a_{11}^{(k)}(t) &= - \sum_{j=0}^{k-1} \binom{k-1}{j} \left(b_{11}^{(k-1-j)}(t) r_{11}^{(j)}(t) + b_{12}^{(k-1-j)}(t) r_{12}^{(j)}(t) \right), \\ a_{12}^{(k)}(t) &= - \sum_{j=0}^{k-1} \binom{k-1}{j} \left(b_{21}^{(k-1-j)}(t) r_{11}^{(j)}(t) + b_{22}^{(k-1-j)}(t) r_{12}^{(j)}(t) \right), \\ a_{21}^{(k)}(t) &= - \sum_{j=0}^{k-1} \binom{k-1}{j} b_{12}^{(k-1-j)}(t) r_{22}^{(j)}(t), \\ a_{22}^{(k)}(t) &= - \sum_{j=0}^{k-1} \binom{k-1}{j} b_{22}^{(k-1-j)}(t) r_{22}^{(j)}(t), \end{aligned}$$

3422 and for $\mathbf{B}(t)$:
 3423

$$\begin{aligned} b_{11}^{(k)}(t) &= - \sum_{j=0}^{k-1} \binom{k-1}{j} a_{11}^{(k-1-j)}(t) r_{11}^{(j)}(t), \\ b_{12}^{(k)}(t) &= - \sum_{j=0}^{k-1} \binom{k-1}{j} \left(a_{11}^{(k-1-j)}(t) r_{12}^{(j)}(t) + a_{21}^{(k-1-j)}(t) r_{22}^{(j)}(t) \right), \\ b_{21}^{(k)}(t) &= - \sum_{j=0}^{k-1} \binom{k-1}{j} a_{12}^{(k-1-j)}(t) r_{11}^{(j)}(t), \\ b_{22}^{(k)}(t) &= - \sum_{j=0}^{k-1} \binom{k-1}{j} \left(a_{12}^{(k-1-j)}(t) r_{12}^{(j)}(t) + a_{22}^{(k-1-j)}(t) r_{22}^{(j)}(t) \right). \end{aligned}$$

3437 By the inductive hypothesis, all derivatives of order less than k satisfy the symmetric relations at
 3438 $t = T_1$. Inserting these equalities into the expressions with $t = T_1$ above shows that the symmetry is
 3439 maintained at the k -th order:

$$a_{11}^{(k)}(T_1) = b_{22}^{(k)}(T_1), \quad a_{12}^{(k)}(T_1) = b_{12}^{(k)}(T_1), \quad a_{21}^{(k)}(T_1) = b_{21}^{(k)}(T_1), \quad a_{22}^{(k)}(T_1) = b_{11}^{(k)}(T_1),$$

3442 proving equations (55) and (56). □
 3443

3444 **Lemma E.2.** *Under the setting of Lemma E.1, below relationships hold for all $t \geq T_1$:*

$$\begin{aligned} a_{11}(t) &= b_{22}(t), & a_{12}(t) &= b_{12}(t), \\ a_{21}(t) &= b_{21}(t), & a_{22}(t) &= b_{11}(t), \end{aligned} \tag{57}$$

3448 which further leads to $w_{11}(t) = w_{22}(t)$.
 3449

3450 *Proof.* By Lemmas F.6 and E.1, we may conclude that for all $t \geq T_1$, equation (57) holds, and
 3451 therefore $w_{11}(t) = w_{22}(t)$. □
 3452

3453 By Lemma E.2, all entries of $\mathbf{B}(t)$ can be expressed in terms of the entries of $\mathbf{A}(t)$ for all $t \geq T_1$.
 3454 From this point onward, we will represent $\mathbf{W}_{\mathbf{A}, \mathbf{B}}(t)$ solely using the elements of $\mathbf{A}(t)$. We begin by
 3455 simplifying the time derivative of $\mathbf{A}(t)$ as follows:

3456
 3457 $\dot{a}_{11}(t) = a_{22}(t)(w^* - w_{11}(t)) + a_{12}(t)(w_{12}^* - w_{12}(t)),$
 3458 $\dot{a}_{12}(t) = a_{21}(t)(w^* - w_{11}(t)) + a_{11}(t)(w_{12}^* - w_{12}(t)),$
 3459 $\dot{a}_{21}(t) = a_{12}(t)(w^* - w_{22}(t)),$
 3460 $\dot{a}_{22}(t) = a_{11}(t)(w^* - w_{22}(t)).$
 3461

3462 Rewriting $\mathbf{W}_{\mathbf{A}, \mathbf{B}}(t)$ in terms of the elements of $\mathbf{A}(t)$ yields:
 3463

3464
$$\begin{aligned} \mathbf{W}_{\mathbf{A}, \mathbf{B}}(t) &= \mathbf{A}(t)\mathbf{B}(t) \\ &= \begin{pmatrix} a_{11}(t) & a_{12}(t) \\ a_{21}(t) & a_{22}(t) \end{pmatrix} \begin{pmatrix} a_{22}(t) & a_{12}(t) \\ a_{21}(t) & a_{11}(t) \end{pmatrix} \\ &= \begin{pmatrix} a_{11}(t)a_{22}(t) + a_{12}(t)a_{21}(t) & 2a_{11}(t)a_{12}(t) \\ 2a_{21}(t)a_{22}(t) & a_{11}(t)a_{22}(t) + a_{12}(t)a_{21}(t) \end{pmatrix}. \end{aligned} \quad (59)$$

 3465
 3466
 3467
 3468
 3469

3470 We can also simplify the time derivative of $\mathbf{W}_{\mathbf{A}, \mathbf{B}}(t)$ as follows:
 3471

3472
$$\begin{aligned} \dot{w}_{11}(t) &= (w^* - w_{11}(t))(a_{11}^2(t) + a_{12}^2(t) + a_{21}^2(t) + a_{22}^2(t)) \\ &\quad + (w_{12}^* - w_{12}(t))(a_{11}(t)a_{21}(t) + a_{12}(t)a_{22}(t)), \\ \dot{w}_{12}(t) &= 2(w_{12}^* - w_{12}(t))(a_{11}^2(t) + a_{12}^2(t)) \\ &\quad + 2(w^* - w_{11}(t))(a_{11}(t)a_{21}(t) + a_{12}(t)a_{22}(t)), \\ \dot{w}_{21}(t) &= 2(w^* - w_{11}(t))(a_{11}(t)a_{21}(t) + a_{12}(t)a_{22}(t)), \\ \dot{w}_{22}(t) &= \dot{w}_{11}(t). \end{aligned} \quad (60)$$

 3473
 3474
 3475
 3476
 3477
 3478

3479 Using (59), we state the basic conservation law from [Arora et al. \(2018\)](#): if the matrices are initialized
 3480 in a balanced manner, this balancedness is preserved throughout the training process. That is,
 3481

3482
$$\mathbf{A}(T_1)^\top \mathbf{A}(T_1) = \mathbf{B}(T_1) \mathbf{B}(T_1)^\top,$$

 3483

3484 holds at initialization, this leads to
 3485

3486
$$a_{11}^2(t) + a_{21}^2(t) = a_{12}^2(t) + a_{22}^2(t), \quad \forall t \geq T_1. \quad (61)$$

3487 Now, we are going to examine the time derivative of the loss:
 3488

3489
$$\begin{aligned} \frac{d}{dt} \ell(\mathbf{W}_{\mathbf{A}, \mathbf{B}}(t)) &= \left\langle \nabla \ell(\mathbf{W}_{\mathbf{A}, \mathbf{B}}(t)), \dot{\mathbf{W}}(t) \right\rangle \\ &= \left\langle \nabla \ell(\mathbf{W}_{\mathbf{A}, \mathbf{B}}(t)), \dot{\mathbf{A}}(t)\mathbf{B}(t) + \mathbf{A}(t)\dot{\mathbf{B}}(t) \right\rangle \\ &= \text{Tr} \left(\nabla \ell^\top(\mathbf{W}_{\mathbf{A}, \mathbf{B}}(t)) \left(\dot{\mathbf{A}}(t)\mathbf{B}(t) + \mathbf{A}(t)\dot{\mathbf{B}}(t) \right) \right) \\ &= \text{Tr} \left(\nabla \ell^\top(\mathbf{W}_{\mathbf{A}, \mathbf{B}}(t)) \dot{\mathbf{A}}(t)\mathbf{B}(t) \right) + \text{Tr} \left(\nabla \ell^\top(\mathbf{W}_{\mathbf{A}, \mathbf{B}}(t)) \mathbf{A}(t)\dot{\mathbf{B}}(t) \right) \\ &= -\text{Tr} \left(\nabla \ell^\top(\mathbf{W}_{\mathbf{A}, \mathbf{B}}(t)) \nabla \ell(\mathbf{W}_{\mathbf{A}, \mathbf{B}}(t)) \mathbf{B}^\top(t) \mathbf{B}(t) \right) \\ &\quad - \text{Tr} \left(\nabla \ell^\top(\mathbf{W}_{\mathbf{A}, \mathbf{B}}(t)) \mathbf{A}(t) \mathbf{A}^\top(t) \nabla \ell(\mathbf{W}_{\mathbf{A}, \mathbf{B}}(t)) \right) \\ &= -\text{Tr} \left(\underbrace{\nabla \ell(\mathbf{W}_{\mathbf{A}, \mathbf{B}}(t)) \mathbf{B}^\top(t) \mathbf{B}(t) \nabla \ell(\mathbf{W}_{\mathbf{A}, \mathbf{B}}^\top(t))}_{:= \mathbf{L}_1(t)} \right) \\ &\quad - \text{Tr} \left(\underbrace{\nabla \ell(\mathbf{W}_{\mathbf{A}, \mathbf{B}}^\top(t)) \mathbf{A}(t) \mathbf{A}^\top(t) \nabla \ell(\mathbf{W}_{\mathbf{A}, \mathbf{B}}(t))}_{:= \mathbf{L}_2(t)} \right). \end{aligned} \quad (62)$$

 3490
 3491
 3492
 3493
 3494
 3495
 3496
 3497
 3498
 3499
 3500
 3501
 3502
 3503
 3504

3505 The third equality follows from the fact that for any two matrices \mathbf{A} and \mathbf{B} of the same size,
 3506 $\langle \mathbf{A}, \mathbf{B} \rangle = \text{Tr}(\mathbf{A}^\top \mathbf{B})$. The last equation holds due to the cyclic property of the trace. Combining (62)
 3507 with Lemma [F.7](#), we can ensure $\mathbf{L}_1(t)$ and $\mathbf{L}_2(t)$ are both positive semidefinite, which implies the
 3508 loss is monotonically non-increasing for all $t \geq T_1$.
 3509

3510 With Lemma [E.2](#) and the monotonicity of the loss, we can guarantee positiveness of a_{11}, a_{22}, w_{11} ,
 3511 and w_{22} after the pre-train phase:
 3512

3510 **Lemma E.3.** For a product matrix $\mathbf{W}_{\mathbf{A}, \mathbf{B}}(t) = \mathbf{A}(t)\mathbf{B}(t) \in \mathbb{R}^{2 \times 2}$, if $a_{11}(T_1), a_{22}(T_1), w_{11}(T_1)$,
 3511 and $w_{22}(T_1)$ have all positive values, following inequalities hold for all $t \geq T_1$:

3512
$$a_{11}(t), a_{22}(t) > 0, \quad a_{12}(t) \geq 0.$$

3513 *Furthermore,*

3514
$$w_{11}(t), w_{22}(t) > 0$$

3515 *holds for all $t \geq T_1$.*

3516 *Proof.* We will prove the inequalities step by step.

3517 **Positiveness of $a_{11}(t)$.** For the sake of contradiction, assume that there exists a timestep $\tau_1 > T_1$
 3518 where $a_{11}(\tau_1) = 0$ holds. From (59) and Lemma F.3, we must have $\det(\mathbf{A}(\tau_1)) > 0$, which implies
 3519 that $a_{12}(\tau_1)a_{21}(\tau_1) < 0$. Given the monotonicity of ℓ , $\mathbf{W}_{\mathbf{A}, \mathbf{B}}(t)$ must satisfy:

3520
$$\ell(\mathbf{W}_{\mathbf{A}, \mathbf{B}}(t)) \leq \ell(\mathbf{W}_{\mathbf{A}, \mathbf{B}}(T_1)). \quad (63)$$

3521 for all $t \geq T_1$. However, $\mathbf{W}_{\mathbf{A}, \mathbf{B}}(\tau_1)$ cannot satisfy (63) because $w_{11}(\tau_1), w_{22}(\tau_1) < 0$ and
 3522 $w_{12}(\tau_1) = 0$ for any $\tau_1 \geq 0$. This contradiction implies that such a τ_1 cannot exist.

3523 **Positiveness of $a_{22}(t)$.** Similarly, let's assume there exists a time $\tau_2 > T_1$ such that $a_{22}(\tau_2) = 0$ for
 3524 the first time. We can express $\mathbf{W}_{\mathbf{A}, \mathbf{B}}(\tau_2)$ as:

3525
$$\mathbf{W}_{\mathbf{A}, \mathbf{B}}(\tau_2) = \begin{pmatrix} a_{12}(\tau_2)a_{21}(\tau_2) & 2a_{11}(\tau_2)a_{12}(\tau_2) \\ 0 & a_{12}(\tau_2)a_{21}(\tau_2) \end{pmatrix}.$$

3526 where the diagonal entries are negative due to the condition $\det(\mathbf{A}(\tau_2)) > 0$. Therefore, the time
 3527 derivative of a_{22} at timestep τ_2 is positive:

3528
$$\dot{a}_{22}(\tau_2) = a_{11}(\tau_2)(w^* - w_{11}(\tau_2)) > 0.$$

3529 Since $a_{22}(t)$ is increasing at point τ_2 , there exists time $t' < \tau_2$ such that $a_{22}(t') < 0$ (since $a_{22}(t)$ is
 3530 continuous and differentiable), which is contradictory. Consequently, there cannot exist a τ_2 such
 3531 that $a_{22}(\tau_2) = 0$.

3532 **Positiveness of $a_{12}(t)$.** Given that ℓ is non-decreasing, we can state:

3533
$$\begin{aligned} \ell(\mathbf{W}_{\mathbf{A}, \mathbf{B}}(t)) &= \frac{1}{2} [(w^* - w_{11}(t))^2 + (w^* - w_{12}(t))^2 + (w^* - w_{22}(t))^2] \\ 3534 &\leq \ell(\mathbf{W}_{\mathbf{A}, \mathbf{B}}(T_1)) = \frac{1}{2} w_{12}^{*2}, \end{aligned}$$

3535 for all $t \geq T_1$. Since $(w^* - w_{11}(t))^2$ and $(w^* - w_{22}(t))^2$ are non-negative, $w_{12}(t)$ must be non-
 3536 negative for all $t \geq T_1$. From (59), we know $w_{12}(t) = 2a_{11}(t)a_{12}(t)$, which implies $a_{12}(t) \geq 0$ for
 3537 all $t \geq T_1$ with the above conclusion which states $a_{11}(t) > 0$.

3538 **Positiveness of $w_{11}(t), w_{22}(t)$.** Likewise, assume for the sake of contradiction that there exists
 3539 a time $\tau_3 \geq T_1$ when $w_{11}(\tau_3) = 0$ is first satisfied. This directly implies that $a_{11}(\tau_3)a_{22}(\tau_3) =$
 3540 $-a_{12}(\tau_3)a_{21}(\tau_3)$. Squaring both sides of the equation yields:

3541
$$a_{11}^2(\tau_3)a_{22}^2(\tau_3) = a_{12}^2(\tau_3)a_{21}^2(\tau_3).$$

3542 Subtracting $a_{12}^2(\tau_3)a_{22}^2(\tau_3)$ from both sides:

3543
$$a_{11}^2(\tau_3)a_{22}^2(\tau_3) - a_{12}^2(\tau_3)a_{22}^2(\tau_3) = a_{12}^2(\tau_3)a_{21}^2(\tau_3) - a_{12}^2(\tau_3)a_{22}^2(\tau_3).$$

3544 *Factoring:*

3545
$$a_{22}^2(\tau_3) (a_{11}^2(\tau_3) - a_{12}^2(\tau_3)) = a_{12}^2(\tau_3) (a_{21}^2(\tau_3) - a_{22}^2(\tau_3)).$$

3546 By the conservation law in (61), we have $a_{11}^2(\tau_3) + a_{21}^2(\tau_3) = a_{12}^2(\tau_3) + a_{22}^2(\tau_3)$, which leads to
 3547 $a_{11}^2(\tau_3) - a_{12}^2(\tau_3) = a_{22}^2(\tau_3) - a_{21}^2(\tau_3)$. Replacing $a_{11}^2(\tau_3) - a_{12}^2(\tau_3)$ with $-(a_{21}^2(\tau_3) - a_{22}^2(\tau_3))$:

3548
$$-a_{22}^2(\tau_3) (a_{21}^2(\tau_3) - a_{22}^2(\tau_3)) = a_{12}^2(\tau_3) (a_{21}^2(\tau_3) - a_{22}^2(\tau_3)).$$

3564 This gives us:

$$3565 \quad (a_{12}^2(\tau_3) + a_{22}^2(\tau_3)) (a_{21}^2(\tau_3) - a_{22}^2(\tau_3)) = 0.$$

3567 Since $a_{22}(\tau_3) > 0$ from the previous result, we can conclude that $a_{21}(\tau_3) = \pm a_{22}(\tau_3)$. To determine
3568 the sign of $a_{21}(\tau_3)$, recall that $\mathbf{W}_{\mathbf{A}, \mathbf{B}}(\tau_3)$ is written as:
3569

$$3570 \quad \mathbf{W}_{\mathbf{A}, \mathbf{B}}(\tau_3) = \begin{pmatrix} 0 & 2a_{11}(\tau_3)a_{12}(\tau_3) \\ 2a_{21}(\tau_3)a_{22}(\tau_3) & 0 \end{pmatrix}.$$

3572 Since $a_{11}(\tau_3) > 0, a_{12}(\tau_3) \geq 0$ from the previous result, $2a_{11}(\tau_3)a_{12}(\tau_3) \geq 0$ holds. Also, given
3574 that $\det(\mathbf{W}_{\mathbf{A}, \mathbf{B}}(\tau_3)) > 0$, we can determine that $a_{21}(\tau_3)$ is negative, which implies $a_{21}(\tau_3) = -a_{22}(\tau_3)$. Additionally, by the conservation law, we have $a_{11}^2(\tau_3) = a_{12}^2(\tau_3)$, which leads to
3575 $a_{11}(\tau_3) = a_{12}(\tau_3) > 0$.
3576

3577 Finally, consider the time derivative of w_{11} at timestep τ_3 , substituting $a_{11}(\tau_3)$ and $a_{21}(\tau_3)$ with
3578 $a_{12}(\tau_3)$ and $-a_{22}(\tau_3)$, respectively:

$$3579 \quad \dot{w}_{11}(\tau_3) = (w^* - w_{11}(\tau_3))(a_{11}^2(\tau_3) + a_{12}^2(\tau_3) + a_{21}^2(\tau_3) + a_{22}^2(\tau_3)) \\ 3580 \quad + (w_{12}^* - w_{12}(\tau_3))(a_{11}(\tau_3)a_{21}(\tau_3) + a_{12}(\tau_3)a_{22}(\tau_3)) \\ 3581 \quad = 2w^*(a_{12}^2(\tau_3) + a_{22}^2(\tau_3)) \\ 3582 \quad > 0,$$

3584 which contradicts our initial assumption.
3585

□

3587 Given that the time derivative in the (60) includes the term $a_{11}(t)a_{21}(t) + a_{12}(t)a_{22}(t)$, we need to
3588 verify the sign of $a_{11}a_{21} + a_{12}a_{22}$ in order to proceed with the analysis. Below lemma shows that as
3589 long as $w_{12}(t) \leq w_{12}^*$ holds, $a_{11}(t)a_{21}(t) + a_{12}(t)a_{22}(t)$ is always lower bounded by zero.
3590

3591 **Lemma E.4.** *For a product matrix $\mathbf{W}_{\mathbf{A}, \mathbf{B}}(t) = \mathbf{A}(t)\mathbf{B}(t) \in \mathbb{R}^{2 \times 2}$, if at any point $t \in [T_1, T_2]$ we
3592 have $w_{12}(t) \leq w_{12}^*$, then the following inequality holds throughout the entire interval $[T_1, T_2]$:*

$$3593 \quad a_{11}(t)a_{21}(t) + a_{12}(t)a_{22}(t) \geq 0.$$

3596 *Proof.* We first define $g(t) \triangleq a_{11}(t)a_{21}(t) + a_{12}(t)a_{22}(t)$. Recall that at T_1 , we have $a_{12}(T_1) = a_{21}(T_1) = 0$, which implies $g(T_1) = 0$ as well. Note that by (58), at timestep T_1 , we have
3597

$$3598 \quad \dot{a}_{12}(T_1) = a_{11}(T_1)(w_{12}^* - w_{12}(T_1)) + a_{21}(T_1)(w^* - w_{11}(T_1)) > 0,$$

3600 while other elements remain unchanged. This indicates that $g(t) > 0$ immediately after T_1 . We
3601 now show that if $g(\tau) > 0$ for any $\tau \in (T_1, T_2]$, then there is no $\tau' \in [\tau, T_2]$ which satisfies both
3602 $g(\tau') = 0$ and $\frac{d}{dt}g(t)\Big|_{t=\tau'} < 0$. This implies that $g(t)$ never becomes negative under the assumption
3603 of $w_{12}(t) \leq w_{12}^*$.
3604

3605 Suppose, for the sake of contradiction, that there exists a $\tau' \in [\tau, T_2]$ where $g(\tau') = 0$ and
3606 $\frac{d}{dt}g(t)\Big|_{t=\tau'} < 0$. Given $g(\tau') = 0$ and the conservation law in (61), and the inequalities from
3607 Lemma E.3, we can determine that there exist two combinations of the solution:
3608

- 3609 1. $a_{11}(\tau') = a_{22}(\tau'), a_{12}(\tau') = -a_{21}(\tau'), a_{11}(\tau') > a_{12}(\tau')$.
- 3610 2. $a_{11}(\tau') = a_{22}(\tau'), a_{12}(\tau') = a_{21}(\tau') = 0$.

3612 We take the time derivative of $g(t)$ at timestep τ' and substitute the values from (58) as follows:
3613

$$3614 \quad \frac{d}{dt}g(t)\Big|_{t=\tau'} = \dot{a}_{11}(\tau')a_{21}(\tau') + a_{11}(\tau')\dot{a}_{21}(\tau') + \dot{a}_{12}(\tau')a_{22}(\tau') + a_{12}(\tau')\dot{a}_{22}(\tau') \\ 3615 \quad = 2(w^* - w_{11}(\tau'))(a_{11}(\tau')a_{12}(\tau') + a_{21}(\tau')a_{22}(\tau')) \\ 3616 \quad + (w_{12}^* - w_{12}(\tau'))(a_{11}(\tau')a_{22}(\tau') + a_{12}(\tau')a_{21}(\tau')). \tag{64}$$

3618 For the first case, substituting equations $a_{11}(\tau') = a_{22}(\tau')$ and $a_{12}(\tau') = -a_{21}(\tau')$ to (64) leads to:
 3619

$$3620 \quad \frac{d}{dt}g(t)\Big|_{t=\tau'} = (w_{12}^* - w_{12}(\tau'))w_{11}(\tau'). \\ 3621$$

3622 Since $w_{11}(t) > 0$ for all $t \geq T_1$, if $w_{12}(\tau') \leq w_{12}^*$ holds, then $g(t)$ cannot take negative values at
 3623 time τ' .

3624 For the second case, substituting equations $a_{11}(\tau') = a_{22}(\tau')$ and $a_{12}(\tau') = a_{21}(\tau') = 0$ to (64)
 3625 leads to:
 3626

$$3627 \quad \frac{d}{dt}g(t)\Big|_{t=\tau'} = (w_{12}^* - w_{12}(\tau'))a_{11}^2(\tau'), \\ 3628$$

3629 which is again a non-negative value if $w_{12}(\tau') \leq w_{12}^*$, leading to a contradiction. \square
 3630

3631 **Lemma E.5.** *For a product matrix $\mathbf{W}_{\mathbf{A}, \mathbf{B}}(t) = \mathbf{A}(t)\mathbf{B}(t) \in \mathbb{R}^{2 \times 2}$, the following inequalities holds
 3632 for all timestep $t \geq T_1$:*

$$3633 \quad w_{12}(t) \leq w_{12}^*, \\ 3634 \quad w_{11}(t), w_{22}(t) \geq w^*, \\ 3635 \quad w_{21}(t) \leq 0. \\ 3636 \\ 3637 \\ 3638$$

3639 *Proof.* We will prove this lemma in several steps:

3640 **Step 1:** $w_{12}(t) \leq w_{12}^*$ for all $t \geq T_1$.

3642 We know $w_{12}(T_1) = 0 \leq w_{12}^*$. Assume, for the sake of contradiction, that there exists a time $t' > T_1$
 3643 where t' is the first timestep such that $w_{12}(t') > w_{12}^*$. If this were true, there must exist a time s
 3644 where $T_1 \leq s < t'$ such that:

$$3645 \quad w_{12}(s) = w_{12}^*, \quad \dot{w}_{12}(s) > 0. \\ 3646$$

3647 For these conditions to be met, $w_{12}(s)$ must satisfy:

$$3648 \quad \dot{w}_{12}(s) = 2(w^* - w_{11}(s))(a_{11}(s)a_{21}(s) + a_{12}(s)a_{22}(s)) > 0. \quad (65)$$

3650 To satisfy (65), there are two possibilities:
 3651

$$3652 \quad (w^* - w_{11}(s)) > 0 \quad \text{and} \quad (a_{11}(s)a_{21}(s) + a_{12}(s)a_{22}(s)) > 0, \quad (66)$$

$$3653 \quad \text{or} \quad (w^* - w_{11}(s)) < 0 \quad \text{and} \quad (a_{11}(s)a_{21}(s) + a_{12}(s)a_{22}(s)) < 0. \quad (67)$$

3655 However, neither of these can be true:
 3656

- 3657 1. Equation (67) contradicts Lemma E.4, given that $s < t'$.
- 3658 2. Equation (66) cannot be satisfied because there is no s where $w^* > w_{11}(s)$. If there were,
 3659 there would be a time s' where $T_1 \leq s' < s$ both satisfying $w_{11}(s') = w^*$, and $\dot{w}_{11}(s') < 0$.
 3660 But we find:

$$3662 \quad \dot{w}_{11}(s') = (w_{12}^* - w_{12}(s'))(a_{11}(s')a_{21}(s') + a_{12}(s')a_{22}(s')) \geq 0. \\ 3663$$

3664 This is because $w_{12}(s') < w_{12}^*$, and thus $a_{11}(s')a_{21}(s') + a_{12}(s')a_{22}(s') \geq 0$ by Lemma
 3665 E.4. Therefore, our initial assumption must be false, implying that $w_{12}(t) \leq w_{12}^*$ for all
 3666 $t \geq T_1$.

3667 **Step 2:** Prove $w_{11}(t) \geq w_{11}^*$ and $w_{22}(t) \geq w_{22}^*$ for all $t \geq T_1$.

3669 Given $w_{12}(t) \leq w_{12}^*$ for all $t \geq T_1$, Lemma E.4 implies $a_{11}(t)a_{21}(t) + a_{12}(t)a_{22}(t) \geq 0$ for all
 3670 $t \geq T_1$. The evolution of w_{11} is given by:

$$3671 \quad \dot{w}_{11}(t) = (w^* - w_{11}(t))(a_{11}^2(t) + a_{12}^2(t) + a_{21}^2(t) + a_{22}^2(t)) + (w_{12}^* - w_{12}(t))(a_{11}(t)a_{21}(t) + a_{12}(t)a_{22}(t)).$$

3672 By above equation, if there exists a time $t' \geq T_1$ where $w_{11}(t') = w^*$, we can conclude $\dot{w}_{11}(t') \geq 0$,
 3673 and thus $w_{11}(t) \geq w^*$ for all $t \geq T_1$. By Lemma E.2, w_{22} has the same value as w_{11} , so $w_{22}(t) \geq w^*$
 3674 for all $t \geq T_1$.

3675 **Step 3:** Prove $w_{21}(t) \leq 0$ for all $t \geq T_1$.

3676 The evolution of w_{21} is given by:

3678
$$\dot{w}_{21}(t) = 2(w^* - w_{11}(t))(a_{11}(t)a_{21}(t) + a_{12}(t)a_{22}(t)).$$

 3679

3680 Since $w_{11}(t) \geq w^*$ and $a_{11}(t)a_{21}(t) + a_{12}(t)a_{22}(t) \geq 0$ for all $t \geq T_1$, we can conclude $\dot{w}_{21}(t) \leq 0$
 3681 for all $t \geq T_1$. □

3682

3683

3684 E.2.1 PROOF OF LOSS CONVERGENCE

3685 Recall that the time derivative of the loss function is written as:

3686
$$\frac{d}{dt} \ell(\mathbf{W}_{\mathbf{A}, \mathbf{B}}(t)) = -\text{Tr}(\mathbf{L}_1(t)) - \text{Tr}(\mathbf{L}_2(t)),$$

3687 where $\mathbf{L}_1(t)$ and $\mathbf{L}_2(t)$ are defined in (62). To further our analysis, we can expand the time derivative
 3688 of the loss by calculating the trace of $\mathbf{L}_1(t)$ and $\mathbf{L}_2(t)$. We omit the time index t when clear from
 3689 context.

3690
$$\begin{aligned} \mathbf{L}_1 &= \begin{pmatrix} r_{11} & r_{12} \\ 0 & r_{22} \end{pmatrix} \begin{pmatrix} a_{21}^2 + a_{22}^2 & a_{11}a_{21} + a_{12}a_{22} \\ a_{11}a_{21} + a_{12}a_{22} & a_{11}^2 + a_{12}^2 \end{pmatrix} \begin{pmatrix} r_{11} & 0 \\ r_{12} & r_{22} \end{pmatrix} \\ &= \begin{pmatrix} r_{11}^2(a_{21}^2 + a_{22}^2) + 2r_{11}r_{12}(a_{11}a_{21} + a_{12}a_{22}) + r_{12}^2(a_{11}^2 + a_{12}^2) & C_1 \\ C_1 & r_{22}^2(a_{11}^2 + a_{12}^2) \end{pmatrix}, \end{aligned}$$

3691 for some time-dependent value C_1 . Following a similar process, we calculate \mathbf{L}_2 :

3692
$$\begin{aligned} \mathbf{L}_2 &= \begin{pmatrix} r_{11} & 0 \\ r_{12} & r_{22} \end{pmatrix} \begin{pmatrix} a_{11}^2 + a_{12}^2 & a_{11}a_{21} + a_{12}a_{22} \\ a_{11}a_{21} + a_{12}a_{22} & a_{21}^2 + a_{22}^2 \end{pmatrix} \begin{pmatrix} r_{11} & r_{12} \\ 0 & r_{22} \end{pmatrix} \\ &= \begin{pmatrix} r_{11}^2(a_{11}^2 + a_{12}^2) & C_2 \\ C_2 & r_{12}^2(a_{11}^2 + a_{12}^2) + 2r_{12}r_{22}(a_{11}a_{21} + a_{12}a_{22}) + r_{22}^2(a_{21}^2 + a_{22}^2) \end{pmatrix}, \end{aligned}$$

3693 again for the time-dependent value C_2 . With these expressions for \mathbf{L}_1 and \mathbf{L}_2 , we can now rewrite
 3694 equation (62) in a more explicit form:

3695
$$\begin{aligned} \frac{d}{dt} \ell(\mathbf{W}_{\mathbf{A}, \mathbf{B}}(t)) &= -\text{Tr}(\mathbf{L}_1) - \text{Tr}(\mathbf{L}_2) \\ &= -r_{11}^2(t)(a_{11}^2(t) + a_{12}^2(t) + a_{21}^2(t) + a_{22}^2(t)) \\ &\quad - 2r_{12}^2(t)(a_{11}^2(t) + a_{12}^2(t)) \\ &\quad - r_{22}^2(t)(a_{11}^2(t) + a_{12}^2(t) + a_{21}^2(t) + a_{22}^2(t)) \\ &\quad - 2r_{12}^2(t)r_{22}^2(t)(a_{11}a_{21}(t) + a_{12}a_{22}(t)) \\ &\quad - 2r_{11}^2(t)r_{12}^2(t)(a_{11}a_{21}(t) + a_{12}a_{22}(t)). \end{aligned} \tag{68}$$

3696 Note that the (68) is the non-positive term. Given that \mathbf{L}_1 and \mathbf{L}_2 are positive semi-definite, we can
 3697 analyze each diagonal entry separately. This leads us to the following inequalities:

3698
$$\begin{aligned} r_{11}^2(a_{21}^2 + a_{22}^2) + 2r_{11}r_{12}(a_{11}a_{21} + a_{12}a_{22}) + r_{12}^2(a_{11}^2 + a_{12}^2) &\geq 0, \\ r_{12}^2(a_{11}^2 + a_{12}^2) + 2r_{12}r_{22}(a_{11}a_{21} + a_{12}a_{22}) + r_{22}^2(a_{21}^2 + a_{22}^2) &\geq 0. \end{aligned}$$

3699 By rearranging the above inequalities, we obtain:

3700
$$\begin{aligned} -2r_{11}r_{12}(a_{11}a_{21} + a_{12}a_{22}) &\leq r_{11}^2(a_{21}^2 + a_{22}^2) + r_{12}^2(a_{11}^2 + a_{12}^2), \\ -2r_{12}r_{22}(a_{11}a_{21} + a_{12}a_{22}) &\leq r_{12}^2(a_{11}^2 + a_{12}^2) + r_{22}^2(a_{21}^2 + a_{22}^2). \end{aligned}$$

3701 Substituting these inequalities into equation (68), we derive:

3702
$$\frac{d}{dt} \ell(\mathbf{W}_{\mathbf{A}, \mathbf{B}}(t)) \leq -r_{11}^2(t)(a_{11}^2(t) + a_{12}^2(t)) - r_{22}^2(t)(a_{21}^2(t) + a_{22}^2(t)). \tag{69}$$

This provides a tighter upper bound on the time derivative of the loss. However, it is still insufficient to guarantee convergence, as the bound does not depend on the term $r_{12}(t)$. As a result, even though the right-hand side converges to zero, this alone does not imply that the loss itself converges.

To further tighten the bound, we leverage the positive semidefiniteness of \mathbf{L}_1 and \mathbf{L}_2 . Specifically, note that for both $\mathbf{Q}\mathbf{K}\mathbf{Q}^\top$ and $\mathbf{Q}^\top\mathbf{K}\mathbf{Q}$ to be positive semi-definite, the only necessary condition is $\mathbf{K} \succcurlyeq 0$. Therefore, we modify $\mathbf{L}_1(t)$ to $\widetilde{\mathbf{L}}_1(t) \triangleq \nabla\ell(\mathbf{W}_{\mathbf{A},\mathbf{B}}(t))(\mathbf{B}^\top(t)\mathbf{B}(t) - \mu(t)\cdot\mathbf{e}_2\mathbf{e}_2^\top)\nabla\ell^\top(\mathbf{W}_{\mathbf{A},\mathbf{B}}(t))$, where $\mu(t)$ is chosen to ensure that the matrix $\mathbf{B}^\top(t)\mathbf{B}(t) - \mu(t)\cdot\mathbf{e}_2\mathbf{e}_2^\top$ remains positive semidefinite. This guarantees that $\widetilde{\mathbf{L}}_1(t) \succcurlyeq 0$. To ensure this condition, $\mu(t)$ must satisfy:

$$\begin{aligned} |\mathbf{B}(t)^\top\mathbf{B}(t) - \mu(t)\cdot\mathbf{e}_2\mathbf{e}_2^\top| &= \left| \begin{pmatrix} a_{21}^2(t) + a_{22}^2(t) & a_{11}(t)a_{21}(t) + a_{12}(t)a_{22}(t) \\ a_{11}(t)a_{21}(t) + a_{12}(t)a_{22}(t) & a_{11}^2(t) + a_{12}^2(t) - \mu(t) \end{pmatrix} \right| \\ &= -(a_{21}^2(t) + a_{22}^2(t))\mu(t) + (a_{11}(t)a_{22}(t) - a_{12}(t)a_{21}(t))^2 \\ &\geq 0. \end{aligned}$$

Rearranging this inequality with respect to $\mu(t)$, we get:

$$\begin{aligned} \mu(t) &\leq \frac{(a_{11}(t)a_{22}(t) - a_{12}(t)a_{21}(t))^2}{a_{21}^2(t) + a_{22}^2(t)} \\ &= \frac{\det(\mathbf{B}(t))^2}{a_{21}^2(t) + a_{22}^2(t)}. \end{aligned} \tag{70}$$

Therefore, if we set $\mu(t)$ to satisfy the above inequality, we can guarantee $\widetilde{\mathbf{L}}_1$ to be a positive semidefinite matrix. Now, $\widetilde{\mathbf{L}}_1(t)$ can be calculated as:

$$\begin{aligned} \widetilde{\mathbf{L}}_1 &= \begin{pmatrix} r_{11} & r_{12} \\ 0 & r_{22} \end{pmatrix} \begin{pmatrix} a_{21}^2 + a_{22}^2 & a_{11}a_{21} + a_{12}a_{22} \\ a_{11}a_{21} + a_{12}a_{22} & a_{11}^2 + a_{12}^2 - \mu \end{pmatrix} \begin{pmatrix} r_{11} & 0 \\ r_{12} & r_{22} \end{pmatrix} \\ &= \begin{pmatrix} r_{11}^2(a_{21}^2 + a_{22}^2) + 2r_{11}r_{12}(a_{11}a_{21} + a_{12}a_{22}) + r_{12}^2(a_{11}^2 + a_{12}^2 - \mu) & \tilde{C} \\ \tilde{C} & r_{22}^2(a_{12}^2 + a_{22}^2 - \mu) \end{pmatrix}, \end{aligned}$$

for some \tilde{C} . Since the matrix $\mathbf{B}^\top\mathbf{B} - \mu\cdot\mathbf{e}_2\mathbf{e}_2^\top$ is positive semi-definite, we can ensure $a_{12}^2 + a_{22}^2 - \mu \geq 0$. This leads to the following inequality from $(\widetilde{\mathbf{L}}_1)_{11}$:

$$-2r_{11}r_{12}(a_{11}a_{21} + a_{12}a_{22}) \leq r_{11}^2(a_{21}^2 + a_{22}^2) + r_{12}^2(a_{11}^2 + a_{12}^2 - \mu).$$

Finally, substituting this inequality into (68), we arrive at:

$$\frac{d}{dt}\ell(\mathbf{W}_{\mathbf{A},\mathbf{B}}(t)) \leq - (r_{11}^2(t) + r_{22}^2(t)) (a_{11}^2(t) + a_{12}^2(t)) - r_{12}^2(t)\mu(t). \tag{71}$$

To prove the convergence of the loss, our main remaining goal is to establish a time-invariant lower bound for

$$\min \{a_{11}^2(t) + a_{12}^2(t), \mu(t)\}$$

to apply Grönwall's inequality.

Lemma E.6. *For a solution matrix $\mathbf{W}_{\mathbf{A},\mathbf{B}}(t)$ initialized as $\mathbf{W}_{\mathbf{A},\mathbf{B}}(T_1)$, which represents the state of the matrix after pre-training up to time T_1 , the inequality*

$$\det(\mathbf{W}_{\mathbf{A},\mathbf{B}}(t)) \geq w^{*2}$$

holds for all $t \geq T_1$.

Proof. Since $w_{12}(t)$ must satisfy $|w_{12}(t) - w_{12}^*| \leq \sqrt{2\ell(\mathbf{W}_{\mathbf{A},\mathbf{B}}(t))} \leq w_{12}^*$ by the monotonicity of the loss, we can ensure that $w_{12}(t) \geq 0$ for all $t \geq T_1$. Also, by Lemma E.5, we have $w_{11}(t), w_{22}(t) \geq w^*$, and $w_{21}(t) \leq 0$ for all $t \geq T_1$. Under these conditions, $\det(\mathbf{W}_{\mathbf{A},\mathbf{B}}(t))$ can be lower bounded as:

$$\det(\mathbf{W}_{\mathbf{A},\mathbf{B}}(t)) = w_{11}(t)w_{22}(t) - w_{12}(t)w_{21}(t) \geq w^{*2},$$

for all timesteps $t \geq T_1$. \square

3780 **Lemma E.7.** For $\mu(t)$ defined to satisfy (70) and the entries in $\mathbf{A}(t)$, the following inequality holds
 3781 for all timesteps $t \geq T_1$:

$$3782 \quad 3783 \quad \min \{a_{11}^2(t) + a_{12}^2(t), \mu(t)\} \geq w^*. \\ 3784 \\ 3785$$

3786 *Proof.* To prove the lower bound of $a_{11}^2(t) + a_{12}^2(t)$, Our goal is to demonstrate that $a_{11}^2(t) + a_{12}^2(t) \geq$
 3787 w^* for all timesteps t after T_1 . By Lemma E.7, we have $\|\mathbf{W}_{\mathbf{A}, \mathbf{B}}(t)\|_F \geq \sqrt{2}w^*$, which leads to:

$$3788 \quad \sqrt{2}w^* \leq \|\mathbf{W}_{\mathbf{A}, \mathbf{B}}(t)\|_F \\ 3789 \quad = \sqrt{\sigma_1^2(\mathbf{W}_{\mathbf{A}, \mathbf{B}}(t)) + \sigma_2^2(\mathbf{W}_{\mathbf{A}, \mathbf{B}}(t))}. \\ 3790 \\ 3791$$

3792 By applying Lemma F.4, we have:

$$3793 \quad \sqrt{\sigma_1^2(\mathbf{W}_{\mathbf{A}, \mathbf{B}}(t)) + \sigma_2^2(\mathbf{W}_{\mathbf{A}, \mathbf{B}}(t))} = \sqrt{\sigma_1^4(\mathbf{A}(t)) + \sigma_2^4(\mathbf{A}(t))} \\ 3794 \quad = \sqrt{(\sigma_1^2(\mathbf{A}(t)) + \sigma_2^2(\mathbf{A}(t)))^2 - 2\sigma_1^2(\mathbf{A}(t))\sigma_2^2(\mathbf{A}(t))} \\ 3795 \quad = \sqrt{\|\mathbf{A}(t)\|_F^4 - 2\det(\mathbf{A}(t))^2}. \\ 3796 \\ 3797 \\ 3798 \quad (72)$$

3799 Rewriting (72) while applying Lemmas F.4 and E.6 leads to:

$$3800 \quad \|\mathbf{A}(t)\|_F^4 \geq 2w^{*2} + 2\det(\mathbf{A}(t))^2 \\ 3801 \quad = 2w^{*2} + 2\det(\mathbf{W}_{\mathbf{A}, \mathbf{B}}(t)) \\ 3802 \quad \geq 4w^{*2}. \\ 3803$$

3804 Thus, $\mathbf{A}(t)$ have to satisfy $\|\mathbf{A}(t)\|_F^2 \geq 2w^*$ for all timesteps $t \geq T_1$. Now, assume that there exists a
 3805 time $t' > T_1$ such that $a_{11}^2(t') + a_{12}^2(t') < w^*$. To satisfy inequality $\|\mathbf{A}(t')\|_F^2 \geq 2w^*$, we would
 3806 need at least $a_{21}^2(t') + a_{22}^2(t') > w^*$ to hold. To verify the value of $a_{21}^2(t') + a_{22}^2(t')$, we take its
 3807 time derivative using (58):

$$3808 \quad \frac{d}{dt}(a_{21}^2(t) + a_{22}^2(t)) = 2a_{21}(t)a_{21}'(t) + 2a_{22}(t)a_{22}'(t) \\ 3809 \quad = -2a_{12}(t)a_{21}(t)r_{22}(t) - 2a_{11}(t)a_{22}(t)r_{22}(t) \\ 3810 \quad = -2r_{22}(t)(a_{11}(t)a_{22}(t) + a_{12}(t)a_{21}(t)) \\ 3811 \quad = 2w_{11}(t)(w^* - w_{11}(t)). \\ 3812 \\ 3813$$

3814 Since $w_{11}(t) \geq w^*$ holds by Lemma E.5 for all $t \geq T_1$, we conclude $a_{21}^2(t) + a_{22}^2(t)$ is monotonically
 3815 non-increasing from time $t \geq T_1$. Since $a_{12}^2(T_1) + a_{22}^2(T_1)$ is initialized as w^* , this implies that
 3816 $a_{21}^2(t') + a_{22}^2(t') \leq w^*$. Consequently, there cannot exist a $t' > T_1$ such that $a_{11}^2(t') + a_{12}^2(t') < w^*$
 3817 holds, which leads to contradiction.

3818 Next, we are now showing that the term $\frac{\det(\mathbf{B}(t))^2}{a_{21}^2(t) + a_{22}^2(t)}$ is lower bounded by w^* . Therefore, if we set
 3819 $\mu(t)$ as w^* , we can guarantee the positive semidefiniteness of $\widetilde{\mathbf{L}}_1(t)$.

3820 By applying Lemma F.4 and the lower bound of $\det(\mathbf{W}_{\mathbf{A}, \mathbf{B}}(t))$ by Lemma E.6, we have

$$3821 \quad \frac{\det(\mathbf{B}(t))^2}{a_{21}^2(t) + a_{22}^2(t)} = \frac{\det(\mathbf{W}_{\mathbf{A}, \mathbf{B}}(t))}{a_{21}^2(t) + a_{22}^2(t)} \geq \frac{w^{*2}}{a_{21}^2(t) + a_{22}^2(t)}. \\ 3822 \\ 3823$$

3824 Also, from the previous result, we have an upper bound on $a_{21}^2(t) + a_{22}^2(t)$, which is $a_{21}^2(t) + a_{22}^2(t) \leq$
 3825 w^* . Combining these results, the following inequality holds:

$$3826 \quad \frac{\det(\mathbf{W}_{\mathbf{A}, \mathbf{B}}(t))}{a_{21}^2(t) + a_{22}^2(t)} \geq w^*. \\ 3827 \\ 3828$$

3829 Therefore, if we set $\mu(t)$ to be w^* , $\mu(t)$ can satisfy the positive semidefiniteness condition. By
 3830 combining the results, we can finally guarantee:

$$3831 \quad \min \{a_{11}^2(t) + a_{12}^2(t), \mu(t)\} \geq w^*. \\ 3832 \\ 3833$$

□

3834 Using the results of Lemma E.7, we can rewrite (71) as follows:
 3835

$$\begin{aligned} 3836 \quad \frac{d}{dt} \ell(\mathbf{W}_{\mathbf{A}, \mathbf{B}}(t)) &\leq - (r_{11}^2(t) + r_{22}^2(t)) (a_{11}^2(t) + a_{12}^2(t)) - r_{12}^2(t) \mu(t) \\ 3837 \\ 3838 \\ 3839 \\ 3840 \end{aligned}$$

$$\begin{aligned} &\leq - (r_{11}^2(t) + r_{12}^2(t) + r_{22}^2(t)) w^* \\ &\leq -2w^* \ell(\mathbf{W}_{\mathbf{A}, \mathbf{B}}(t)). \end{aligned}$$

3841 Applying Grönwall's inequality to our previous result, we can now demonstrate loss convergence
 3842 where $t \geq T_1$:

$$\begin{aligned} 3843 \quad \ell(\mathbf{W}_{\mathbf{A}, \mathbf{B}}(t)) &\leq \ell(\mathbf{W}_{\mathbf{A}, \mathbf{B}}(T_1)) e^{-2w^*(t-T_1)} \\ 3844 \\ 3845 \\ 3846 \end{aligned}$$

$$= \frac{1}{2} w_{12}^{*2} e^{-2w^*(t-T_1)}. \quad (73)$$

3847 This inequality allows us to conclude that $\ell(\mathbf{W}_{\mathbf{A}, \mathbf{B}}(t))$ converges to zero exponentially.
 3848

3849 E.2.2 PROOF OF STABLE RANK BOUND

3850 From (73), we know that at convergence, $w_{11}(\infty) = w_{22}(\infty) = w^*$ and $w_{12}(\infty) = w_{12}^*$. Although
 3851 a closed-form expression for $w_{21}(\infty)$ is unavailable, Lemma E.5 shows that $w_{21}(t) \leq 0$ for $t \geq T_1$,
 3852 which implies $w_{21}(\infty) \leq 0$. This indicates that the test loss remains strictly positive, as the ground-
 3853 truth value $w_{21}^* = \frac{w^{*2}}{w_{12}^*}$ is assumed to be strictly positive.
 3854

3855 In this section, we leverage the fast convergence rate detailed in (73) to establish bounds on the
 3856 singular values of the converged matrix $\mathbf{W}_{\mathbf{A}, \mathbf{B}}(\infty)$. Subsequently, these singular value bounds are
 3857 used to further bound the stable rank of $\mathbf{W}_{\mathbf{A}, \mathbf{B}}(\infty)$.
 3858

3859 **Lemma E.8.** *The singular values of $\mathbf{W}_{\mathbf{A}, \mathbf{B}}(\infty)$ fulfill:*

$$\begin{aligned} 3860 \quad \sigma_1(\mathbf{W}_{\mathbf{A}, \mathbf{B}}(\infty)) &\leq w^* \cdot \exp\left(2\frac{w_{12}^*}{w^*}\right), \\ 3861 \\ 3862 \\ 3863 \quad \sigma_2(\mathbf{W}_{\mathbf{A}, \mathbf{B}}(\infty)) &\geq w^* \cdot \exp\left(-2\frac{w_{12}^*}{w^*}\right). \\ 3864 \\ 3865 \\ 3866 \\ 3867 \end{aligned}$$

3868 *Proof.* We denote the singular values of $\mathbf{W}_{\mathbf{A}, \mathbf{B}}(t)$ as $\sigma_r(t)$ for simplicity. By Lemma F.1, we can
 3869 get general solution of each singular value $\sigma_r(t)$ by solving linear differential equation:

$$3870 \quad \sigma_r(t) = \sigma_r(s) \cdot \exp\left(-2 \int_{t'=s}^t \langle \nabla \ell(\mathbf{W}_{\mathbf{A}, \mathbf{B}}(t')), \mathbf{u}_r(t') \mathbf{v}_r^\top(t') \rangle dt'\right), \quad r = 1, 2, \quad (74)$$

3871 where $\mathbf{u}_r(t)$ and $\mathbf{v}_r(t)$ denotes left and right singular vector of corresponding r -th singular value,
 3872 respectively. Since $\mathbf{u}_r(t)$ and $\mathbf{v}_r(t)$ are both unit vectors, applying Cauchy-Schwartz inequality, we
 3873 can bound $\langle \nabla \ell(\mathbf{W}_{\mathbf{A}, \mathbf{B}}(t)), \mathbf{u}_r(t) \mathbf{v}_r^\top(t) \rangle$ by:
 3874

$$\begin{aligned} 3875 \quad |\langle \nabla \ell(\mathbf{W}_{\mathbf{A}, \mathbf{B}}(t)), \mathbf{u}_r(t) \mathbf{v}_r^\top(t) \rangle| &\leq \|\nabla \ell(\mathbf{W}_{\mathbf{A}, \mathbf{B}}(t))\|_F \cdot \|\mathbf{u}_r(t) \mathbf{v}_r^\top(t)\|_F \\ 3876 \\ 3877 \\ 3878 \\ 3879 \\ 3880 \\ 3881 \end{aligned}$$

$$\begin{aligned} &= \|\nabla \ell(\mathbf{W}_{\mathbf{A}, \mathbf{B}}(t))\|_F \\ &= \sqrt{2\ell(\mathbf{W}_{\mathbf{A}, \mathbf{B}}(t))}. \end{aligned}$$

3882 we can get bound $\sigma_r(t)$ as following:
 3883

$$3884 \quad \sigma_r(s) \cdot \exp\left(-2\sqrt{2} \int_{t'=s}^t \sqrt{\ell(\mathbf{W}_{\mathbf{A}, \mathbf{B}}(t'))} dt'\right) \leq \sigma_r(t) \leq \sigma_r(s) \cdot \exp\left(2\sqrt{2} \int_{t'=s}^t \sqrt{\ell(\mathbf{W}_{\mathbf{A}, \mathbf{B}}(t'))} dt'\right) \quad (75)$$

3885 With the setting above, in the pre-train section, after T_1 timesteps, we prove that $\sigma_1(T_1) = \sigma_2(T_1) =$
 3886 w^* . Starting from T_1 with pre-trained weights, we can lower bound $\sigma_2(\mathbf{W}_{\mathbf{A}, \mathbf{B}}(t))$ with equations (73)

3888 and (75) when $t \geq T_1$ as follows:
 3889

$$\begin{aligned} 3890 \quad \sigma_2(t) &\geq \sigma_2(T_1) \cdot \exp \left(-2\sqrt{2} \int_{t'=T_1}^t \sqrt{\ell(\mathbf{W}_{\mathbf{A}, \mathbf{B}}(t'))} dt' \right) \\ 3891 \\ 3892 \quad &\geq w^* \cdot \exp \left(-2w_{12}^* \int_{t'=T_1}^t e^{-w^*(t'-T_1)} dt' \right) \\ 3893 \\ 3894 \quad &= w^* \cdot \exp \left(-\frac{2w_{12}^*}{w^*} \left(1 - e^{-w^*(t-T_1)} \right) \right). \\ 3895 \\ 3896 \\ 3897 \end{aligned}$$

3898 and when $t \rightarrow \infty$, $\sigma_2(\infty)$ can be lower bounded by:
 3899

$$\sigma_2(\infty) \geq w^* \cdot e^{-2 \cdot \frac{w_{12}^*}{w^*}}.$$

3900 In the same way, we can upper bound $\sigma_1(\infty)$ by:
 3901

$$\sigma_1(\infty) \leq w^* \cdot e^{2 \cdot \frac{w_{12}^*}{w^*}}.$$

3902 \square
 3903

3904 By Lemma E.8, we can now lower bound the stable rank of a matrix $\mathbf{W}_{\mathbf{A}, \mathbf{B}}(\infty)$:
 3905

$$\begin{aligned} 3906 \quad \frac{\|\mathbf{W}_{\mathbf{A}, \mathbf{B}}(\infty)\|_F^2}{\|\mathbf{W}_{\mathbf{A}, \mathbf{B}}(\infty)\|_2^2} &= \frac{\sigma_1^2(\mathbf{W}_{\mathbf{A}, \mathbf{B}}(\infty)) + \sigma_2^2(\mathbf{W}_{\mathbf{A}, \mathbf{B}}(\infty))}{\sigma_1^2(\mathbf{W}_{\mathbf{A}, \mathbf{B}}(\infty))} \\ 3907 \\ 3908 \quad &= 1 + \frac{\sigma_2^2(\mathbf{W}_{\mathbf{A}, \mathbf{B}}(\infty))}{\sigma_1^2(\mathbf{W}_{\mathbf{A}, \mathbf{B}}(\infty))} \\ 3909 \\ 3910 \quad &\geq 1 + \exp \left(-8 \frac{w_{12}^*}{w^*} \right), \\ 3911 \\ 3912 \\ 3913 \\ 3914 \\ 3915 \end{aligned}$$

3916 which concludes the proof of Theorem 4.2.
 3917

3918
 3919
 3920
 3921
 3922
 3923
 3924
 3925
 3926
 3927
 3928
 3929
 3930
 3931
 3932
 3933
 3934
 3935
 3936
 3937
 3938
 3939
 3940
 3941

3942 E.3 FORMAL STATEMENT AND PROOF OF THEOREM 4.3
3943

3944 We now extend the preceding analysis to the general case involving a ground truth matrix $\mathbf{W}^* \in \mathbb{R}^{d \times d}$.
 3945 The solution matrix $\mathbf{W}_{A,B} \in \mathbb{R}^{d \times d}$ is again factorized as $\mathbf{W}_{A,B} = \mathbf{AB}$, where both $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{d \times d}$.
 3946 In this section, our detailed presentation and proof of Theorem 4.3 (from the main text) are structured
 3947 as follows: we first introduce and prove Theorem E.2, which is then followed by its direct consequence,
 3948 Corollary E.3.

3949 We use the slightly modified loss function:
 3950

$$3951 \quad 3952 \quad \mathcal{L}(\mathbf{A}, \mathbf{B}) = \frac{1}{2} \sum_{n=1}^N (\langle \mathbf{AB}, \mathbf{X}_n \rangle - y_n)^2, \quad (76)$$

3955 where the measurement matrix $\mathbf{X}_n = \mathbf{e}_{i_n} \mathbf{e}_{j_n}^\top$ represents a masking matrix, with the n -th observed
 3956 entry set to one and all other entries set to zero, and $y_n \in \mathbb{R}$ denotes the ground truth value of the
 3957 n -th observation. Then, by defining $\Theta = \begin{bmatrix} \mathbf{A} \\ \mathbf{B}^\top \end{bmatrix} \in \mathbb{R}^{2d \times d}$ and $\bar{\mathbf{X}}_n = \frac{1}{2} \begin{bmatrix} \mathbf{0} & \mathbf{X}_n \\ \mathbf{X}_n^\top & \mathbf{0} \end{bmatrix} \in \mathbb{R}^{2d \times 2d}$, we
 3958 can rewrite the (76) as:
 3959

$$3961 \quad 3962 \quad \mathcal{L}(\mathbf{A}, \mathbf{B}) = \tilde{\mathcal{L}}(\Theta) = \frac{1}{2} \sum_{n=1}^N (\langle \Theta \Theta^\top, \bar{\mathbf{X}}_n \rangle - y_n)^2 \\ 3963 \quad 3964 \quad = \frac{1}{2} \|F(\Theta) - \mathbf{y}\|_2^2. \quad (77)$$

3966 Here, $F(\Theta)$ and \mathbf{y} represent vectors defined as:
 3967

$$3968 \quad 3969 \quad F(\Theta) \triangleq \begin{bmatrix} \langle \Theta \Theta^\top, \bar{\mathbf{X}}_1 \rangle \\ \langle \Theta \Theta^\top, \bar{\mathbf{X}}_2 \rangle \\ \vdots \\ \langle \Theta \Theta^\top, \bar{\mathbf{X}}_N \rangle \end{bmatrix} \in \mathbb{R}^N, \quad \mathbf{y} \triangleq \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix} \in \mathbb{R}^N. \quad (78)$$

3974 By reparameterizing \mathbf{A}, \mathbf{B} to Θ , and \mathbf{X}_n to $\bar{\mathbf{X}}_n$, we can reduce the parameter matrices into a single
 3975 matrix Θ while ensuring the symmetry of $\Theta \Theta^\top$. We train the model Θ via gradient flow, where the
 3976 loss evolution is given by:
 3977

$$3978 \quad \dot{\tilde{\mathcal{L}}}(\Theta(t)) = (F(\Theta(t)) - \mathbf{y})^\top \dot{F}(\Theta(t)) \\ 3979 \quad 3980 \quad = (F(\Theta(t)) - \mathbf{y})^\top \begin{bmatrix} \frac{d}{dt} \langle \Theta(t) \Theta(t)^\top, \bar{\mathbf{X}}_1 \rangle \\ \frac{d}{dt} \langle \Theta(t) \Theta(t)^\top, \bar{\mathbf{X}}_2 \rangle \\ \vdots \\ \frac{d}{dt} \langle \Theta(t) \Theta(t)^\top, \bar{\mathbf{X}}_N \rangle \end{bmatrix} \\ 3981 \quad 3982 \quad = 2(F(\Theta(t)) - \mathbf{y})^\top \begin{bmatrix} \langle \bar{\mathbf{X}}_1 \Theta(t), \dot{\Theta}(t) \rangle \\ \langle \bar{\mathbf{X}}_2 \Theta(t), \dot{\Theta}(t) \rangle \\ \vdots \\ \langle \bar{\mathbf{X}}_N \Theta(t), \dot{\Theta}(t) \rangle \end{bmatrix} \\ 3983 \quad 3984 \quad = 2(F(\Theta(t)) - \mathbf{y})^\top \begin{bmatrix} \text{vec}(\bar{\mathbf{X}}_1 \Theta(t))^\top \\ \text{vec}(\bar{\mathbf{X}}_2 \Theta(t))^\top \\ \vdots \\ \text{vec}(\bar{\mathbf{X}}_N \Theta(t))^\top \end{bmatrix} \text{vec}(\dot{\Theta}(t)) \quad (79) \\ 3985 \quad 3986 \quad = (F(\Theta(t)) - \mathbf{y})^\top J(\Theta(t)) \text{vec}(\dot{\Theta}(t)). \quad (80)$$

3996 Here, the Jacobian matrix $J(\Theta(t))$ is defined as:
 3997

$$3998 J(\Theta(t)) \triangleq \frac{\partial F(\Theta(t))}{\partial \text{vec}(\Theta(t))} = \begin{bmatrix} \text{vec}(\nabla_{\Theta} \langle \Theta(t) \Theta(t)^\top, \bar{X}_1 \rangle)^\top \\ \text{vec}(\nabla_{\Theta} \langle \Theta(t) \Theta(t)^\top, \bar{X}_2 \rangle)^\top \\ \vdots \\ \text{vec}(\nabla_{\Theta} \langle \Theta(t) \Theta(t)^\top, \bar{X}_N \rangle)^\top \end{bmatrix} = 2 \begin{bmatrix} \text{vec}(\bar{X}_1 \Theta(t))^\top \\ \text{vec}(\bar{X}_2 \Theta(t))^\top \\ \vdots \\ \text{vec}(\bar{X}_N \Theta(t))^\top \end{bmatrix} \in \mathbb{R}^{N \times 2d^2}. \quad (81)$$

4004 With the notations defined above, we state the following theorem:
 4005

4006 **Theorem E.2.** *Let the combined weight matrix be*

$$4007 \Theta \triangleq \begin{bmatrix} \mathbf{A} \\ \mathbf{B}^\top \end{bmatrix} \in \mathbb{R}^{2d \times d},$$

4010 and consider the loss function $\tilde{\mathcal{L}}$ defined in (76). Denote
 4011

$$4012 \sigma_{\min} \triangleq \sigma_{\min}(J(\Theta(0))), \quad \sigma_{\max} \triangleq \sigma_{\max}(J(\Theta(0))).$$

4014 If the initialization satisfies:

$$4015 \tilde{\mathcal{L}}(\Theta(0)) \leq \frac{\sigma_{\min}^6}{1152d\sigma_{\max}^2},$$

4017 then for every $t \geq 0$ the following hold:
 4018

$$4019 \tilde{\mathcal{L}}(\Theta(t)) \leq \tilde{\mathcal{L}}(\Theta(0)) \exp\left(-\frac{1}{2}\sigma_{\min}^2 t\right),$$

$$4022 \|\Theta(t) - \Theta(0)\|_F \leq \frac{6\sqrt{2}\sigma_{\max}}{\sigma_{\min}^2} \sqrt{\tilde{\mathcal{L}}(\Theta(0))}.$$

4025 The above theorem tells us that, if the model is initialized with a sufficiently small loss, the model's
 4026 loss will converge to zero quickly, and the parameters will not move significantly from the initialization.
 4027 With the above theorem, we can state the following corollary:

4028 **Corollary E.3.** *Suppose \mathbf{A} and \mathbf{B} are initialized as balanced, i.e.:*

$$4030 \mathbf{A}(0)^\top \mathbf{A}(0) = \mathbf{B}(0) \mathbf{B}(0)^\top.$$

4032 Under the conditions of Theorem E.2, for every singular index $i \in [d]$ and all $t \geq 0$:
 4033

$$4034 \sigma_i(\mathbf{A}(t)) = \sigma_i(\mathbf{B}(t)) \quad \text{and} \quad |\sigma_i(\mathbf{A}(t)) - \sigma_i(\mathbf{A}(0))| \leq \frac{\sigma_{\min}}{4\sqrt{2d}}.$$

4036 Consequently, the stable rank of $\mathbf{A}(t)$ remains bounded below by
 4037

$$4038 \frac{\|\mathbf{A}(t)\|_F^2}{\|\mathbf{A}(t)\|_2^2} \geq \left(\frac{\|\mathbf{A}(0)\|_F - \frac{\sigma_{\min}}{4\sqrt{2d}}}{\|\mathbf{A}(0)\|_2 + \frac{\sigma_{\min}}{4\sqrt{2d}}} \right)^2.$$

4043 E.3.1 PROOF OF THEOREM E.2

4044 We begin the proof of the theorem by noting that the Jacobian $J(\cdot)$ is a Lipschitz function, as stated
 4045 in the following lemma:
 4046

4047 **Lemma E.9.** *The Jacobian matrix $J(\mathbf{W})$, as defined in (81), is \sqrt{d} -Lipschitz. Specifically, for any
 4048 matrices $\mathbf{W}, \mathbf{V} \in \mathbb{R}^{2d \times d}$, the following inequality holds:*

$$4049 \|J(\mathbf{W}) - J(\mathbf{V})\| \leq \sqrt{d} \|\text{vec}(\mathbf{W}) - \text{vec}(\mathbf{V})\|. \quad (82)$$

4050 *Proof.* Note that for each n -th observation,
 4051

$$\begin{aligned} 4052 \quad J_n(\Theta) &= 2\text{vec}(\bar{\mathbf{X}}_n \Theta)^\top \\ 4053 \quad &= \text{vec}\left(\begin{pmatrix} 0 & \mathbf{X}_n \\ \mathbf{X}_n^\top & 0 \end{pmatrix} \begin{pmatrix} \mathbf{A} \\ \mathbf{B}^\top \end{pmatrix}\right)^\top \\ 4054 \quad &= \text{vec}\left(\begin{pmatrix} \mathbf{X}_n \mathbf{B}^\top \\ \mathbf{X}_n^\top \mathbf{A} \end{pmatrix}\right)^\top \in \mathbb{R}^{2d^2}. \\ 4055 \end{aligned}$$

4056 Let \mathbf{M}_l denote the l -th row of a matrix \mathbf{M} , and let $\mathbf{M}_{\cdot,l}$ denote its l -th column. We have
 4057

$$\begin{aligned} 4060 \quad \|J_n(\Theta)\|_F^2 &= \|\mathbf{X}_n^\top \mathbf{A}\|_F^2 + \|\mathbf{X}_n \mathbf{B}^\top\|_F^2 \\ 4061 \quad &= \|\mathbf{e}_{j_n} \mathbf{e}_{i_n}^\top \mathbf{A}\|_F + \|\mathbf{e}_{i_n} \mathbf{e}_{j_n}^\top \mathbf{B}^\top\|_F \\ 4062 \quad &= \|\mathbf{A}_{i_n}\|_2^2 + \|\mathbf{B}_{\cdot,j_n}\|_2^2. \\ 4063 \end{aligned}$$

4064 Now, suppose we observe all entries, i.e., $N = d^2$. Then for any fixed n , $i_n = i_m$ can be satisfied for
 4065 all $m \in [d]$, meaning each element of \mathbf{A} is observed d times. Similarly, each element of \mathbf{B} is also
 4066 observed d times.
 4067

4068 Therefore, we can upper bound the Frobenius norm of the Jacobian matrix by the Frobenius norm of
 4069 the Jacobian under full observation:

$$\begin{aligned} 4070 \quad \|J(\Theta)\|_F^2 &\leq \sum_{n=1}^{d^2} (\|\mathbf{X}_n^\top \mathbf{A}\|_F^2 + \|\mathbf{X}_n \mathbf{B}^\top\|_F^2) \\ 4071 \quad &= d(\|\mathbf{A}\|_F^2 + \|\mathbf{B}\|_F^2) \\ 4072 \quad &= d\|\Theta\|_F^2. \\ 4073 \end{aligned}$$

4074 By upper-bounding the spectral norm of the difference between two Jacobian matrices and applying
 4075 the inequality above, we obtain:
 4076

$$\begin{aligned} 4077 \quad \|J(\mathbf{W}) - J(\mathbf{V})\|^2 &= \|J(\mathbf{W} - \mathbf{V})\|^2 \\ 4078 \quad &\leq \|J(\mathbf{W} - \mathbf{V})\|_F^2 \\ 4079 \quad &\leq d\|\mathbf{W} - \mathbf{V}\|_F^2, \\ 4080 \end{aligned}$$

4081 which concludes the proof. □
 4082

4083 Next, we borrow a lemma from [Telgarsky \(2021\)](#), which states that for a Lipschitz function J , if we
 4084 consider a sufficiently small neighborhood around the initialization $\Theta(0)$, then the singular values of
 4085 the Jacobian $J(\Theta)$ remain close to those at initialization:
 4086

4087 **Lemma E.10** (Lemma 8.3 in [Telgarsky \(2021\)](#)). *If we suppose $\|\text{vec}(\Theta) - \text{vec}(\Theta(0))\| \leq \frac{\sigma_{\min}}{2\sqrt{d}}$, we
 4088 have the following:*
 4089

$$\sigma_{\min}(J(\Theta)) \geq \frac{\sigma_{\min}}{2}, \quad \sigma_{\max}(J(\Theta)) \leq \frac{3\sigma_{\max}}{2},$$

4090 where we denote $\sigma_{\min} \triangleq \sigma_{\min}(J(\Theta(0)))$, and $\sigma_{\max} \triangleq \sigma_{\max}(J(\Theta(0)))$.
 4091

4092 For simplicity, we denote θ as the vectorized version of Θ , i.e., $\theta \triangleq \text{vec}(\Theta)$. We define the time step
 4093 τ , which is the first time step when the trajectory of $\theta(t)$ touches the boundary:
 4094

$$\tau \triangleq \inf_{t \geq 0} \left\{ t \mid \|\theta(t) - \theta(0)\| \geq \frac{\sigma_{\min}}{2\sqrt{d}} \right\}.$$

4095 We now demonstrate the convergence of the loss when $t \in [0, \tau]$ using the following lemma.
 4096

4097 **Lemma E.11.** *For all $t \in [0, \tau]$, the loss defined in (76) converges as follows:*
 4098

$$\tilde{\mathcal{L}}(\Theta(t)) \leq \tilde{\mathcal{L}}(\Theta(0)) \exp\left(-\frac{1}{2}\sigma_{\min}^2 t\right),$$

4099 where we define $\sigma_{\min} \triangleq \sigma_{\min}(J(\Theta(0)))$.
 4100

4104 *Proof.* Recall that the time derivative of the loss can be written as follows, according to (80):
 4105

$$\begin{aligned} \dot{\tilde{\mathcal{L}}}(\boldsymbol{\Theta}(t)) &= -(F(\boldsymbol{\Theta}(t)) - \mathbf{y})^\top J(\boldsymbol{\Theta}(t)) \dot{\boldsymbol{\theta}}(t) \\ &= -(F(\boldsymbol{\Theta}(t)) - \mathbf{y})^\top J(\boldsymbol{\Theta}(t)) J(\boldsymbol{\Theta}(t))^\top (F(\boldsymbol{\Theta}(t)) - \mathbf{y}), \end{aligned}$$

4108 noting that

$$\dot{\boldsymbol{\theta}}(t) = -\nabla_{\boldsymbol{\theta}(t)} \tilde{\mathcal{L}}(\boldsymbol{\Theta}(t)) = -J(\boldsymbol{\Theta}(t))^\top (F(\boldsymbol{\Theta}(t)) - \mathbf{y}).$$

4111 By Lemma E.10, for any $t \in [0, \tau]$, we can upper bound the above term as follows:

$$\begin{aligned} \dot{\tilde{\mathcal{L}}}(\boldsymbol{\Theta}(t)) &\leq -\lambda_{\min}(J(\boldsymbol{\Theta}(t)) J(\boldsymbol{\Theta}(t))^\top) \|F(\boldsymbol{\Theta}(t)) - \mathbf{y}\|^2 \\ &\leq -\frac{1}{2} \sigma_{\min}^2 \tilde{\mathcal{L}}(\boldsymbol{\Theta}(t)). \end{aligned}$$

4116 Applying Grönwall's inequality gives:

$$\tilde{\mathcal{L}}(\boldsymbol{\Theta}(t)) \leq \tilde{\mathcal{L}}(\boldsymbol{\Theta}(0)) \exp\left(-\frac{1}{2} \sigma_{\min}^2 t\right) \quad \text{for } t \in [0, \tau].$$

4119 \square

4121 The above lemma shows that the loss decays rapidly to zero if $\boldsymbol{\theta}(t)$ stays within a small neighborhood
 4122 around the initialization. We now show that if the loss converges quickly near initialization, then $\boldsymbol{\theta}(t)$
 4123 does not move far from its initial value:

4124 **Lemma E.12.** *Let $\sigma_{\min} \triangleq \sigma_{\min}(J(\boldsymbol{\Theta}(0)))$ and $\sigma_{\max} \triangleq \sigma_{\max}(J(\boldsymbol{\Theta}(0)))$. For all $t \in [0, \tau]$, the
 4125 distance between the weight vector at time t and the initial weight vector is bounded by:*

$$\|\boldsymbol{\theta}(t) - \boldsymbol{\theta}(0)\| \leq \frac{6\sqrt{2}\sigma_{\max}}{\sigma_{\min}^2} \sqrt{\tilde{\mathcal{L}}(\boldsymbol{\Theta}(0))}.$$

4130 *Proof.* We start by evaluating the distance between $\boldsymbol{\theta}(t)$ and $\boldsymbol{\theta}(0)$ using Lemma E.10:

$$\begin{aligned} \|\boldsymbol{\theta}(t) - \boldsymbol{\theta}(0)\| &= \left\| \int_0^t \dot{\boldsymbol{\theta}}(s) \, ds \right\| \\ &= \int_0^t \|J(\boldsymbol{\Theta}(s))^\top (F(\boldsymbol{\Theta}(s)) - \mathbf{y})\| \, ds \\ &\leq \int_0^t \sigma_{\max}(J(\boldsymbol{\Theta}(s))) \|F(\boldsymbol{\Theta}(s)) - \mathbf{y}\| \, ds \\ &\leq \frac{3}{2} \sigma_{\max} \int_0^t \|F(\boldsymbol{\Theta}(s)) - \mathbf{y}\| \, ds. \end{aligned}$$

4141 By Lemma E.11, we know that the objective function $\tilde{\mathcal{L}}(\boldsymbol{\Theta})$ satisfies:

$$\|F(\boldsymbol{\Theta}(t)) - \mathbf{y}\|^2 \leq \|F(\boldsymbol{\Theta}(0)) - \mathbf{y}\|^2 \exp\left(-\frac{1}{2} \sigma_{\min}^2 t\right).$$

4145 Taking the square root of both sides, we obtain:

$$\|F(\boldsymbol{\Theta}(t)) - \mathbf{y}\| \leq \|F(\boldsymbol{\Theta}(0)) - \mathbf{y}\| \exp\left(-\frac{1}{4} \sigma_{\min}^2 t\right).$$

4149 Substituting this into the previous inequality:

$$\begin{aligned} \|\boldsymbol{\theta}(t) - \boldsymbol{\theta}(0)\| &\leq \frac{3}{2} \sigma_{\max} \|F(\boldsymbol{\Theta}(0)) - \mathbf{y}\| \int_0^t \exp\left(-\frac{1}{4} \sigma_{\min}^2 s\right) \, ds \\ &\leq \frac{6\sigma_{\max}}{\sigma_{\min}^2} \|F(\boldsymbol{\Theta}(0)) - \mathbf{y}\|, \end{aligned}$$

4154 where we used the fact that:

$$\int_0^t \exp(-Cs) \, ds \leq \frac{1}{C}, \quad \text{for } C > 0.$$

4155 \square

4158 By combining Lemmas E.11 and E.12, we obtain the following results:
 4159

$$4160 \quad \tilde{\mathcal{L}}(\boldsymbol{\Theta}(t)) \leq \tilde{\mathcal{L}}(\boldsymbol{\Theta}(0)) \exp\left(-\frac{1}{2}\sigma_{\min}^2 t\right), \quad (83)$$

$$4162 \quad 4163 \quad \|\boldsymbol{\theta}(t) - \boldsymbol{\theta}(0)\| \leq \frac{6\sqrt{2}\sigma_{\max}}{\sigma_{\min}^2} \sqrt{\tilde{\mathcal{L}}(\boldsymbol{\Theta}(0))}, \quad (84)$$

4164 which hold for $t \in [0, \tau]$. If we can demonstrate that $\tau = \infty$, the proof is complete.
 4165

4166 Actually, if we initialize $\boldsymbol{\Theta}(0)$ to satisfy the condition:
 4167

$$4168 \quad 4169 \quad \tilde{\mathcal{L}}(\boldsymbol{\Theta}(0)) \leq \frac{\sigma_{\min}^6}{1152d\sigma_{\max}^2},$$

4170 and substitute this condition into (84), we obtain an upper bound for $\|\boldsymbol{\theta}(t) - \boldsymbol{\theta}(0)\|$:
 4171

$$4172 \quad 4173 \quad \|\boldsymbol{\theta}(t) - \boldsymbol{\theta}(0)\| \leq \frac{6\sqrt{2}\sigma_{\max}}{\sigma_{\min}^2} \frac{\sigma_{\min}^3}{\sqrt{1152d\sigma_{\max}}} = \frac{\sigma_{\min}}{4\sqrt{d}}.$$

4174 Recall the definition of τ , which is the first time when $\boldsymbol{\theta}(t)$ touches the boundary of the small ball
 4175 around the initialization:
 4176

$$4177 \quad \tau \triangleq \inf_{t \geq 0} \left\{ t \mid \|\boldsymbol{\theta}(t) - \boldsymbol{\theta}(0)\| \geq \frac{\sigma_{\min}}{2\sqrt{d}} \right\}.$$

4179 However, with the condition $\tilde{\mathcal{L}}(\boldsymbol{\Theta}(0)) \leq \frac{\sigma_{\min}^6}{1152d\sigma_{\max}^2}$, $\boldsymbol{\theta}(t)$ cannot ever touch the boundary. This is
 4180 because $\|\boldsymbol{\theta}(t) - \boldsymbol{\theta}(0)\|$ is bounded above by $\frac{\sigma_{\min}}{4\sqrt{d}}$, which is strictly less than $\frac{\sigma_{\min}}{2\sqrt{d}}$. Therefore, the
 4181 parameter will remain inside the ball indefinitely, meaning $\tau = \infty$. This completes the proof of the
 4182 theorem.
 4183

4184 E.3.2 PROOF OF COROLLARY E.3

4186 First, we establish the equality $\sigma_i(\mathbf{A}(t)) = \sigma_i(\mathbf{B}(t))$ for all $i \in [d]$. Corollary E.3 assumes that $\mathbf{A}(0)$
 4187 and $\mathbf{B}(0)$ are initialized as ‘‘balanced’’, satisfying $\mathbf{A}(0)^\top \mathbf{A}(0) = \mathbf{B}(0)^\top \mathbf{B}(0)$. By Lemma F.4, this
 4188 balanced condition ensures that the singular values of $\mathbf{A}(t)$ and $\mathbf{B}(t)$ remain identical for all $t \geq 0$:
 4189

$$4190 \quad \sigma_i(\mathbf{A}(t)) = \sigma_i(\mathbf{B}(t)).$$

4191 Second, we address the change in the singular values of a combined parameter matrix $\boldsymbol{\Theta}(t)$ (related to
 4192 $\mathbf{A}(t)$ and $\mathbf{B}(t)$). Theorem E.2 states that under a specified condition on the initial loss, $\tilde{\mathcal{L}}(\boldsymbol{\Theta}(0)) \leq$
 4193 $\frac{\sigma_{\min}^6}{1152d\sigma_{\max}^2}$, the deviation of $\boldsymbol{\Theta}(t)$ from its initialization $\boldsymbol{\Theta}(0)$ is bounded for all $t \geq 0$ by:
 4194

$$4195 \quad 4196 \quad \|\boldsymbol{\Theta}(t) - \boldsymbol{\Theta}(0)\|_F \leq \frac{\sigma_{\min}}{4\sqrt{d}}.$$

4197 Let $K = \frac{\sigma_{\min}}{4\sqrt{d}}$. By Weyl’s inequality, $|\sigma_i(\mathbf{X}) - \sigma_i(\mathbf{Y})| \leq \|\mathbf{X} - \mathbf{Y}\|_2$, and noting that $\|\cdot\|_2 \leq \|\cdot\|_F$,
 4198 we have for all $i \in [d]$:

$$4200 \quad 4201 \quad 4202 \quad 4203 \quad \begin{aligned} |\sigma_i(\boldsymbol{\Theta}(t)) - \sigma_i(\boldsymbol{\Theta}(0))| &\leq \|\boldsymbol{\Theta}(t) - \boldsymbol{\Theta}(0)\|_2 \\ &\leq \|\boldsymbol{\Theta}(t) - \boldsymbol{\Theta}(0)\|_F \\ &\leq K. \end{aligned}$$

4204 This inequality allows us to establish bounds for $\|\boldsymbol{\Theta}(t)\|_F$ (using reverse triangle inequality) and its
 4205 largest singular value $\sigma_1(\boldsymbol{\Theta}(t)) = \|\boldsymbol{\Theta}(t)\|_2$:

$$4206 \quad 4207 \quad 4208 \quad \begin{aligned} \|\boldsymbol{\Theta}(t)\|_F &\geq \|\boldsymbol{\Theta}(0)\|_F - K, \\ \sigma_1(\boldsymbol{\Theta}(t)) &\leq \sigma_1(\boldsymbol{\Theta}(0)) + K. \end{aligned}$$

4209 This yields the following lower bound on the stable rank of $\boldsymbol{\Theta}(t)$:

$$4210 \quad 4211 \quad \frac{\|\boldsymbol{\Theta}(t)\|_F^2}{\|\boldsymbol{\Theta}(t)\|_2^2} \geq \left(\frac{\|\boldsymbol{\Theta}(0)\|_F - K}{\sigma_1(\boldsymbol{\Theta}(0)) + K} \right)^2 = \left(\frac{\|\boldsymbol{\Theta}(0)\|_F - \frac{\sigma_{\min}}{4\sqrt{d}}}{\|\boldsymbol{\Theta}(0)\|_2 + \frac{\sigma_{\min}}{4\sqrt{d}}} \right)^2.$$

Furthermore, the balancedness condition implies $\mathbf{A}(t)^\top \mathbf{A}(t) = \mathbf{B}(t) \mathbf{B}(t)^\top$. By the definition of $\Theta(t)$, $\Theta(t)^\top \Theta(t) = \mathbf{A}(t)^\top \mathbf{A}(t) + \mathbf{B}(t) \mathbf{B}(t)^\top$, this leads to $\Theta(t)^\top \Theta(t) = 2\mathbf{A}(t)^\top \mathbf{A}(t)$. This relationship implies $\sigma_i(\Theta(t)) = \sqrt{2}\sigma_i(\mathbf{A}(t))$ for all i . Substituting this into the bounds for $\Theta(t)$, we have

$$\begin{aligned}\|\mathbf{A}(t)\|_F &\geq \|\mathbf{A}(0)\|_F - K/\sqrt{2}, \\ \|\mathbf{A}(t)\|_2 &\leq \|\mathbf{A}(0)\|_2 + K/\sqrt{2}.\end{aligned}$$

This leads to the final lower bound on the stable rank of $\mathbf{A}(t)$ (which, by balancedness, is equal to that of $\mathbf{B}(t)$):

$$\frac{\|\mathbf{A}(t)\|_F^2}{\|\mathbf{A}(t)\|_2^2} \geq \left(\frac{\|\mathbf{A}(0)\|_F - K/\sqrt{2}}{\|\mathbf{A}(0)\|_2 + K/\sqrt{2}} \right)^2 = \left(\frac{\|\mathbf{A}(0)\|_F - \frac{\sigma_{\min}}{4\sqrt{2d}}}{\|\mathbf{A}(0)\|_2 + \frac{\sigma_{\min}}{4\sqrt{2d}}} \right)^2.$$

4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265

4266 **F USEFUL LEMMAS**
 4267

4268 **Lemma F.1** (Adaptation of Lemma 1 and Theorem 3 in Arora et al. (2019)). *For any time t , the*
 4269 *product matrix $\mathbf{W}(t) \in \mathbb{R}^{d,d}$ can be decomposed into its singular value decomposition:*
 4270

4271
$$\mathbf{W}(t) = \sum_{r=1}^d \sigma_r(t) \mathbf{u}_r(t) \mathbf{v}_r(t)^\top$$

 4272
 4273

4274 *where $\sigma_r(t)$ are the singular values of $\mathbf{W}(t)$, and $\mathbf{u}_r(t)$, $\mathbf{v}_r(t)$ are the corresponding left and right*
 4275 *singular vectors, respectively. Moreover, if \mathbf{A} , \mathbf{B} are balanced at initialization, i.e.,*

4276
$$\mathbf{A}^\top(0)\mathbf{A}(0) = \mathbf{B}(0)\mathbf{B}^\top(0),$$

 4277
 4278

4279 *the time evolution of the singular values $\sigma_r(t)$ is represented as:*
 4280

4281
$$\dot{\sigma}_r(t) = -2 \cdot \sigma_r(t) \cdot \langle \nabla \ell(\mathbf{W}(t)), \mathbf{u}_r(t) \mathbf{v}_r(t)^\top \rangle, \quad r = 1, \dots, d \quad (85)$$

 4282
 4283

4284 **Lemma F.2.** *For any real-valued square matrix $\mathbf{A} \in \mathbb{R}^{d \times d}$, the absolute value of its determinant*
 4285 *equals the product of its singular values:*
 4286

4287
$$|\det(\mathbf{A})| = \prod_{r=1}^d \sigma_r$$

 4288
 4289

4290 *where σ_r are the singular values of \mathbf{A} .*
 4291

4292 *Proof.* We express \mathbf{A} using SVD: $\mathbf{A} = \mathbf{U}\Sigma\mathbf{V}^\top$. Applying the determinant to both sides, we get:

4293
$$\begin{aligned} \det(\mathbf{A}) &= \det(\mathbf{U}\Sigma\mathbf{V}^\top) \\ 4294 &= \det(\mathbf{U}) \det(\Sigma) \det(\mathbf{V}^\top) \end{aligned}$$

 4295

4296 Here, \mathbf{U} and \mathbf{V} have orthonormal columns, and Σ is diagonal with singular values along its main
 4297 diagonal. Since the determinant of an orthonormal matrix is either ± 1 ,
 4298

4299
$$|\det(\mathbf{A})| = \det(\Sigma) = \prod_{r=1}^d \sigma_r. \quad \square$$

 4300

4301 **Lemma F.3** (Determinant of $\mathbf{A}(t)$). *Consider a matrix $\mathbf{A}(t) \in \mathbb{R}^{d,d}$ initialized as $\det(\mathbf{A}(0)) > 0$.
 4302 Then, $\det(\mathbf{A}(t)) > 0$ for all $t \geq 0$.*

4303 *Proof.* This follows directly from Lemma F.1 and F.2. Since the singular values are initialized as
 4304 positive, and their evolution is continuous according to the given differential equation, they cannot
 4305 become zero or negative. Therefore, $\mathbf{A}(t)$ maintains its sign of the determinant at initialization
 4306 throughout the optimization process. \square

4307 **Lemma F.4** (Adaptation of Lemma 8 in Razin & Cohen (2020)). *Consider a product matrix*
 4308 $\mathbf{W}(t) = \mathbf{A}(t)\mathbf{B}(t) \in \mathbb{R}^{d \times d}$, *where $\mathbf{A}(t)$ and $\mathbf{B}(t)$ are of equal size and balanced at initialization.*
 4309 *Under these conditions, the following equality holds for all $t \geq 0$ and all singular values:*

4310
$$\sigma_r(\mathbf{W}(t)) = \sigma_r(\mathbf{A}(t))^2 = \sigma_r(\mathbf{B}(t))^2$$

 4311

4312 *where $\sigma_r(\cdot)$ denotes the r -th singular value of the respective matrix where $r \in [d]$. Moreover, if*
 4313 *$\det(\mathbf{A}(0))$ and $\det(\mathbf{B}(0))$ are both positive, then by Lemma F.3, we can guarantee that for all*
 4314 *$t \geq 0$:*

4315
$$\det(\mathbf{W}(t)) = \det(\mathbf{A}(t))^2 = \det(\mathbf{B}(t))^2$$

 4316
 4317

4318 **Lemma F.5** (Adaptation of Theorem 1 in Arora et al. (2019)). *Consider a product matrix $\mathbf{W}(t) =$
 4319 $\mathbf{A}(t)\mathbf{B}(t) \in \mathbb{R}^{d \times d}$. We can guarantee $\mathbf{A}(t)$ and $\mathbf{B}(t)$ are analytic functions of t . As a result, $\mathbf{W}(t)$
 4320 is also an analytic function of t .*

4320 **Lemma F.6** (Lemma 10 in Razin & Cohen (2020)). *Let $f, g : [0, \infty] \rightarrow \mathbb{R}$ be real analytic functions
4321 such that $f^{(k)}(0) = g^k(0)$ for all $k \in \mathbb{N} \cup \{0\}$. Then, $f(t) = g(t)$ for all $t \geq 0$.*

4322 **Lemma F.7** (Positive Semidefiniteness of \mathbf{ABA}^\top). *For matrices $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{d,d}$, if \mathbf{B} is positive
4323 semi-definite, then both \mathbf{ABA}^\top and $\mathbf{A}^\top \mathbf{BA}$ are positive semi-definite.*

4325 *Proof.* For any vector $\mathbf{x} \in \mathbb{R}^d$:

$$4327 \quad \mathbf{x}^\top \mathbf{ABA}^\top \mathbf{x} = (\mathbf{A}^\top \mathbf{x})^\top \mathbf{B} (\mathbf{A}^\top \mathbf{x}) \geq 0$$

4328 since \mathbf{B} is a positive semi-definite matrix. In the same way, for any vector $\mathbf{x} \in \mathbb{R}^d$ we have:

$$4330 \quad \mathbf{x}^\top \mathbf{A}^\top \mathbf{BAx} = (\mathbf{Ax})^\top \mathbf{B} (\mathbf{Ax}) \geq 0$$

4332 which concludes the proof. □

4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373