
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

OPTIMAL HYPERDIMENSIONAL REPRESENTATION
FOR LEARNING AND COGNITIVE COMPUTATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Hyperdimensional Computing (HDC), as a novel neurally-inspired computing
methodology, uses lightweight and high-dimensional operations to realize ma-
jor brain functionalities. Recent HDC works mainly focus on two aspects: brain-
like learning and cognitive computation. However, it lacks differentiation between
these functions and their requirements for HDC algorithms. We address this gap
by proposing an adaptable hyperdimensional kernel-based encoding method. We
explore how encoding settings impact HDC performance for both tasks, high-
lighting the distinction between learning patterns and retrieving information. We
provide detailed guidance on kernel design, optimizing data points for accurate
decoding or correlated learning. Experimental results with our proposed encoder
significantly boost image classification accuracy from 65% to 95% by consider-
ing pixel correlations and increase decoding accuracy from 85% to 100% by max-
imizing pixel vector separation. Factorization tasks are shown to require highly
exclusive representation to enable accurate convergence.

1 INTRODUCTION

The human brain remains the most sophisticated processing component that has ever existed, albeit
after more than decades of advancement in computer science. The ever-growing research in biolog-
ical vision, cognitive psychology, and neuroscience has given rise to many concepts that have led to
prolific advancement in artificial intelligent accomplishing cognitive tasks (Lindsay, 2020; Indiveri
& Horiuchi, 2011; Mitrokhin et al., 2020). Particularly, brain-inspired machine learning methods
have shown promising leads in realizing crucial brain functionalities thanks to the advancement in
theoretical neuroscience. Among these, a more recent and actively-studied direction is Hyperdimen-
sional Computing (HDC), a computing framework that mimics the brain at abstract and function-
ality level (Kanerva, 2009). HDC uses high-dimensional representations that are holographic, i.e.,
the information encoded is evenly distributed across all dimensions. More importantly, HDC en-
joys the advantages of structured and symbolic vector representations through a well-defined set
of algebraic operations in the high-dimensional space, i.e., Hyperspace. The vector representation
within the hyperspace is usually referred to as Hypervectors. Notable models in the HDC family are
Tensor Product Representations, Holographic Reduced Representations (Tay et al., 2019), Multiply-
Add-Permute (Kleyko et al., 2021), Binary Spatter Codes (Kleyko et al., 2016), and Sparse Binary
Distributed (Rachkovskiy et al., 2005).

Several recent efforts focus on mapping HDC to various learning and cognitive tasks. For exam-
ple, HDC is leveraged for several machine learning tasks, including classification (Najafabadi et al.,
2016), clustering (Imani et al., 2020), regression (Hernández-Cano et al., 2021), fault detection (Po-
duval et al., 2021a; 2022a), and face detection (Imani et al., 2022; Poduval et al., 2021b). Similarly,
HDC shows advances in reasoning and cognitive operations (Poduval et al., 2022b). With a suitable
encoder in each task that maps data into hyperspace, the learning and cognitive computations are
carried out using basic HDC mathematics almost linearly, thereby leading to optimal results.

Even though encoders are crucial for representing knowledge appropriately, researchers nowadays
can only empirically select the HDC encoding method for each task; because it is unclear how dif-
ferent HDC encoder designs should interact with input information and patterns. More specifically,
how should one select a suitable encoding for HDC? Does HDC encoding depend on the desired
task? Can a single encoding support all tasks based on HDC?

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Exclusive Encoding (wide 𝜃)

Inclusive Encoding (narrow 𝜃)

ü Orthogonal patterns
ü Suitable for Attention
ü Low Memorization Capacity

ü Correlated Patterns (Learning)
ü Learnable & Less Decodable
ü High Memorization Capacity

Memorization Capacity Decodability

𝒏 = 𝟓𝟎𝟎

𝒏 = 𝟓𝟎𝟎

No
Margin

Large
Margin

0 1

𝑹 = 𝒁𝟏 + 𝒁𝟐 +⋯+ 𝒁𝒏

Memorized Encoded

In
cl
us
iv
e

Ex
cl
us
iv
e

HDC Encoding

Existing
Non-

Existing

𝑝 𝜃

𝑝 𝜃

a

21%

D=0.5K
W=0.3

100%

D=6K
W=0.05

a b c

Figure 1: Two directions in HDC encoding designs: the correlative one is suitable for learning and
the exclusive one is suitable for cognition.

We first observe that computation in hyperspace may require different representations depending
on the nature of the task, e.g., pattern extraction for learning or accurate information retrieval for
performing cognitive reasoning. For learning tasks, a typical example is an image classification or
object detection task, in which the model identifies the object and predicts its category. The model
focuses on extracting high-level features from images. Therefore, the encoded hypervectors are not
required to store unhelpful or redundant information for learning purposes. In contrast, cognitive
tasks focus more on reasoning, answering questions about relationships between objects, and making
traceable and justifiable decisions. These tasks often require preserving most information of original
data to ensure accurate information retrieval, in other words, decoding. In this work, we try to enable
HDC learning and cognitive computation using the same encoding flow, and the main contributions
of the paper are:

• We propose a universal hyperdimensional encoding method that can be easily adapted toward
high-quality learning or accurate information retrieval. On the contrary, in existing HDC encoder
designs, we observe a large number of empirically selected encoding algorithms that achieve good
results on various tasks. Yet, they are generally not compatible with each other. Our proposed HDC
encoder is more flexible for different applications and saves the design cost.

• We provide the first rigorous theoretic analysis of the fundamental requirement of two tasks of
very different natures: learning and cognition. We define a separation metric that represents how
encoded data points are separated or correlated in the hyperspace. Our analysis suggests that the
learning task requires data to be encoded in a correlated way while decoding in cognitive tasks
requires encoding different data points separately.

• We carry out extensive explorations on our universal encoder, in which we adjust several knobs
according to the derived separation metric. We verify our theoretic analysis by observing how the
quality of learning and decoding changes when the data is encoded with or without correlations.
When the vectors representing each pixel are made orthogonal by tuning down the scale w, the
decoding procedure produced near-accurate results. On the other hand, the learning procedure
produced accurate results only in a high w regime.

In our experiments, we find that the image classification accuracy significantly increases from 65%
to 95% (with separation changing from 0.3 to 1.2) when we take into consideration the correlation
between pixels. On the other hand, the decoding accuracy increases from 85% to 100% when we
maximize the separation of vectors representing the pixels (with corresponding separation changing
from 1.0 to 4.0). In practice, we find that the decoding task requires a higher separation of about 2
to 3 for accurate results because it is highly sensitive to noise while the learning task requires only
a low value of 0.8 to 1.2 for the best accuracy. For factorization of hypvervectors into hyperspace,
the hypervectors require a highly exclusive representation to recover the correct factors, and any
correlations can induce errors in the corresponding factors.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

𝐵𝐵𝑥𝑥 = 𝑒𝑒𝑖𝑖𝜃𝜃1/𝑤𝑤𝑥𝑥 ⋯ 𝑒𝑒𝑖𝑖𝜃𝜃𝐷𝐷/𝑤𝑤𝑥𝑥

𝐵𝐵𝑦𝑦 = [𝑒𝑒𝑖𝑖𝜃𝜃1
′/𝑤𝑤𝑦𝑦 ⋯ 𝑒𝑒𝑖𝑖𝜃𝜃𝐷𝐷

′ /𝑤𝑤𝑦𝑦] 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑒𝑒 𝑓𝑓𝑋𝑋,𝑌𝑌 = 𝑓𝑓𝑋𝑋,𝑌𝑌𝐵𝐵𝑥𝑥𝑋𝑋 ∗ 𝐵𝐵𝑦𝑦𝑌𝑌

𝜃𝜃~𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐸𝐸 (0, 1)
Randomly sampled

𝑓𝑓 = (𝑋𝑋,𝑌𝑌)Data Point:

Base Hypervectors
Correlative Encoding

Larger 𝑤𝑤 Smaller 𝑤𝑤

Exclusive Encoding

(a) Universal HDC Encoding (b) Exclusiveness of Encoding

Length scale 𝑤𝑤𝑥𝑥,𝑤𝑤𝑦𝑦

𝑓𝑓𝑋𝑋,𝑌𝑌

Correlation

N
o Correlation

𝑓𝑓𝑋𝑋,𝑌𝑌 𝑓𝑓𝑋𝑋,𝑌𝑌

Figure 2: Our universal encoding can easily adjust the exclusiveness of the encoding using the knobs
in the Gaussian kernel.

2 HYPERDIMENSIONAL COMPUTING: AN OVERVIEW

HDC uses large dimensional hypervectors to represent information within such a hyperspace us-
ing nearly orthogonal hypervectors (Kanerva, 1998). Information is combined through hypervec-
tors using well-defined vector space operations, e.g., Bundling (+) and Binding (∗). Bundling uses
element-wise addition to represent sets, and binding expresses conjunctive association with element-
wise multiplication. The hypervectors are holographic and (pseudo)random with i.i.d. components,
allowing a holistic representation so that information is spread across all of the components.

In recent years, HDC has been employed in a range of applications, such as classification (Kanerva,
2009), activity recognition (Kim et al., 2018), biomedical signal processing (Moin et al., 2021),
multimodal sensor fusion (Räsänen & Saarinen, 2015), security (Thapa et al., 2021; Zhang et al.,
2021) and distributed sensors (Kleyko et al., 2018). A key HDC advantage lies in the capability of
training in one or few shots, where object categories are learned from a few examples without many
iterations and has achieved SOTA compared to support vector machines (SVMs), gradient boosting,
and convolutional neural networks (CNNs) (Rahimi et al., 2018; Mitrokhin et al., 2019), as well as
lower execution energy on embedded processors (Montagna et al., 2018).

In these successful HDC applications, HDC encoding is essential to the quality of computing. The
encoding determines (1) the distance metric for encoded data points and (2) the level of correlation or
exclusiveness preserved in hyperspace. In this work, we introduce the HDC encoder which can tune
the level of inclusiveness in the encoding to hyperspace, and study the decodability and learning
capabilities of the resulting model. In Fig. 10, we categorize HDC applications into learning and
cognition, then we shed light on two corresponding directions in HDC encoding.

• Learning: aims to capture the general pattern of data. The appropriate encoding should abstract
common information by keeping the similarity of neighboring data points in hyperspace, and we
refer to this as the Correlative Encoding, since it should correlate hypervectors depending on the
underlying correlations in feature space, thus classifying data that are not linearly separable and
avoid overfitting with a smooth boundary. The correlative encoder also theoretically increases the
memorization and learning capacity of hypervectors.

• Cognition: aims to represent structural data using neural patterns, which accordingly enables
brain-like analysis and information extraction, requiring an exclusive representation of data in
hyperspace. We call this the Exclusive Encoding, ensuring accurate knowledge extraction such
that memorized information can be used as prior information for various cognitive computation
tasks. The encoded information needs to be accurately decoded back to the original space to
answer cognitive questions.

As shown in Fig. 10, learning and cognitive computation have different requirements for HDC en-
coders. For learning, the encoding is inclusive and correlative, preserving the similarity of nearby
data. In contrast, encoding is exclusive for cognitive computation, where data points are mapped to
orthogonal space and distinct.

3 UNIVERSAL NEURAL ENCODING

We now discuss the correlative encoder that is most commonly used to encode spatio-temporal data
and sequences in a correlative manner, with the example of image encoding. The encoder works by
introducing a kernel-generated HDC basis vector for each location in the image [Fig. 2(a)]. These

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

0

200

400

600

800

1,000

1,200

-0.19 -0.01 0.17 0.35 0.52 0.70 0.88

𝜹 𝒅𝒊𝒇𝒇 𝜹 𝒔𝒂𝒎𝒆

2

0

-2
-2 0 2

1

0

𝜹
𝑩
𝒙𝑿
∗
𝑩
𝒚𝒀

Co
un

t

Similarity𝑿

𝒀

(a) (b)

Figure 3: (a) The 2D kernel approximated by HDC similarity with length scales wx = 2 and wy =
1, whose shape is wider in the x direction as compared to the y direction (b) The distribution of
similarity for images within the same class and across different classes.

position basis vectors are correlated with each other based on the distance between the location,
and the correlation decays with distance based on two parameters, wx and wy , which are the length
scales over which the kernel decays in the x and y direction, respectively, and are tunable parameters.
If wx and wy are significant, then the kernel (and thus, the HDC basis vectors) remains correlated
over a considerable distance in the image, making the resulting encoding more correlative and better
capture global features necessary for learning [Fig. 2(b)]. A smaller value of wx and wy makes the
basis vectors more exclusive since the position basis vectors are now independent and uncorrelated.
As a result, each data point will end up being uncorrelated in HDC space, allowing the decoding
of data from the hypervector. As a result, there is a natural tradeoff between the correlativeness and
decodability of the HD encoding vector, which is controlled primarily by wx and wy .

In this work, our goal is to analyze the correlative nature and the decodability of the HD encoding
process and characterize its dependendence on the scale of the kernel (wx and wy). First, we formally
define the universal hyperdimensional encoding process that prepares encoded data for learning and
cognition. Suppose that the input of the encoder is a 2D image f , with fX,Y representing the pixel
at position (X,Y). We randomly generate two basis hypervectors B⃗x and B⃗y as B⃗x = eiθ⃗x/wx and
B⃗y = eiθ⃗y/wy , where θ ∈ {N (0, 1)}D is sampled from the D−dimensional normal distribution,
and wi are the length scales which determine the correlation of the position vectors. To represent a
certain position (X1, Y1) in the image, we define the corresponding hypervector BX1

x ∗BY1
y , where

∗ is the elementwise product between the two hypervectors. The resulting basis vectors are cor-

related through the Gaussian kernel, with δ(BX1
x , BX2

x)
D→∞
≈ k(X1−X2

wx
) (where k(r) = e−

r2

2

is the standard Gaussian kernel) and similarly δ(BY1
y , BY2

y)
D→∞
≈ k(Y1−Y2

wy
). The kernel’s exact

form is unimportant; If θ is sampled from a general distribution p(θ), the corresponding kernel is
k(x) =

∫
dθp(θ)eiθx(Bochner, 1946). The kernel ensures that the location hypervectors are corre-

lated between nearby pixels and thus helps maintain spatial information during the encoding. Finally,
the image f is encoded to its corresponding hypervector V⃗f as:

V⃗f =
∑
X,Y

fX,Y B
X
x ∗BY

y . (1)

In Fig. 3, we show the kernel function in 2D with wx = 2 and wy = 1. The kernel spreads further
in the x direction, being closer to 1 for |x| ≲ 1, since the length scale is twice in the x direction as
compared to the y direction. In Fig. 3(b), we show the similarity distribution using a small synthetic
image classification dataset, where the similarities between images of the same class has the average
value significantly larger than 0, signifying that they are closely related. On the other hand, for
images across different classes, the average similarity is generally lower than in the other case,
showing a clear separation between the two distributions.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

0

20

40

60

80

100

-0.12 0.01 0.13 0.25 0.37 0.50 0.62

𝒇𝟑,𝟑𝟎 = 𝟎 𝒇𝟑,𝟑𝟎 = 𝟏

Co
un

t

Recovered Value

0

5

10

15

20

25

30

0.26 0.55 0.83 1.11 1.39 1.67 1.95
0

25

50

75

100

125

1.98 2.35 2.72 3.08 3.45 3.82 4.18

𝒘 = 𝟎. 𝟏 𝒘 = 𝟏. 𝟎 𝒘 = 𝟏𝟎

Figure 4: Distribution of the decoded values for different values of w. As w increases, the separations
between the two distributions decrease.

4 INFORMATION RETRIEVAL FOR COGNITION

In this section, we focus on a crucial step when leveraging HDC for cognitive tasks: accurately
retrieving information from hypervectors. In our example about image datasets, the information
retrieval process aims at decoding the original pixel values fX,Y from the corresponding hypervector
V⃗f . Our method is inspired by the prior work (Poduval et al., 2022b) that uses HDC algorithms for
knowledge extraction and information compression. The decoding is an iterative process, where the
estimates of fX,Y are used to approximate the noise and refine the estimates in the next cycle. In
practice, unless the kernel encoding is highly exclusive, the decoding process is highly error prone
for continuous features. Therefore, the features need to be quantized, with the spacing between the
quantized values in proportion to the noise. For simplicity purposes, we will quantize the pixel values
to binary values of 0 or 1, which will also enable us to understand the decoding noise analytically.
We stress that the binarization procedure does not restrict our experiments or understanding and is
done only for simplicity, and can be easily extended to a general quantization.

The decoding process is described as follows. First, we make an initial estimation of the feature
value, defined as f0

X,Y , and calculated as f0
X,Y = Binarize[δ(BX

x ∗BY
y , V⃗f)], where the binarization

function binarizes the value to 0 if it is less than mean of δ(BX
x ∗ BY

y , V⃗f), and 1 otherwise. Using
this, we construct the first estimate of the encoded vector V⃗f0 as V⃗f0 =

∑
X,Y f0

X,Y B
X
x ∗BY

y . The
first estimate of the encoded hypervector can predict the noise in the encoding and then iteratively
cancel the noise. The corresponding recursive equation to refine the decoded values is given by
fn
X,Y = Binarize[δ(BX

x ∗BY
y , V⃗f − V⃗fn−1) + fn−1

X,Y], which is repeated till convergence.

During information retrieval, the length scale w plays a crucial role in considering the correlations of
nearby pixels. A large w should be used only when correlations are exceptionally high in neighboring
pixels, otherwise, a small w should be used. To explore its effect on the information retrieval process,
we rewrite the initial estimate for pixel fX,Y as the following:

f0
X,Y = fX,Y +

∑
X′ ̸=X,Y ′ ̸=Y

fX′,Y ′δ(BX
x ∗BY

y , BX′

x ∗BY ′

y)︸ ︷︷ ︸
Noise ≈ N(µ,σ)

,

(2)

where fx,y is considered the retrieved information, and the rest of the terms resulting from the
kernel are considered as noise. However, in the presence of correlations, the ”noise” can bet-
ter recover the information. Assuming the worst case of uncorrelated neighouring pixels, the
noise is approximated by the Central Limit Theorem as a normal N(µ, σ) distribution with µ =

1
2

∑
X′ ̸=X,Y ′ ̸=Y k

(
X−X′

wx

)
k
(

Y−Y ′

wy

)
and σ2 = 1

4

∑
X′ ̸=X,Y ′ ̸=Y

[
k
(

X−X′

wx

)
k
(

Y−Y ′

wy

)]2
.

To better understand the meaning behind these equations, we use a tiny image with size 5× 5 as an
example. We consider the cases where the center pixel is either 0 or 1, and randomly generate the rest
of pixels. In Fig. 4, we plot the distribution of the center pixel f0

3,3 based on equation 2. We assume
wx = wy = w and vary it between 0.1 and 10. Our expectation is that the initial estimate f0

3,3 have

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

𝑺
𝒘

𝒘

0

2

4

6

8

10

12

14

0 0.2 0.4 0.6 0.8 1

𝑫 = 𝟓𝟎𝟎 𝑫 = 𝟏, 𝟎𝟎𝟎 𝑫 = 𝟏, 𝟓𝟎𝟎

0

1

2

3

4

5

6

0 10 20 30 40 50

Correlated Random

𝒑

Separation for Decoding Separation for Learning

𝑺
𝒑

(a) (b)

Figure 5: (a) Separation s(w) for different values of dimension D in the case of decoding and (b)
s(p) Separation as a function of number of learning data points for the case of memorization.

a distribution which is well-separated between cases when f3,3 = 0 and f3,3 = 1. Fig. 4 shows that
the separation mainly depends on the length scale w. When w is very small, then the distribution
is well-separated because it is assumed that there is no correlation. However, the distributions get
much closer to each other when w becomes larger. To have minimum overlap, we need the sum
of the standard deviation to be much lower than the difference between their means. Based on this
intuition, we define a separation between two distributions as

s =
µ2 − µ1

σ1 + σ2
, (3)

with µi, σi properties of the signal and noise distribution during the decoding process for i = 2, 1
respectively. They inherently depend on the parameters of the encoding D and w, and for optimizing
our design we study the variation of separation as a function of the encoding parameters. With that
view, plot the separation s(w) as a function of w in Fig. 5(a) and observe that as w increases, the
separation s decreases. In practice, the calculation of the separation metric depends on the data set
of interest, and the distribution followed by the feature values. If some prior distribution can be
assumed about the features of the dataset, then the separation metric can be analytically calculated
to understand the optimum kernel width.

5 HDC MEMORIZATION AND PATTERN EXTRACTION FOR LEARNING

In this section, we introduce the Hyperdimensional learning algorithm and provide insights on how
to adjust the HDC encoder for learning tasks. In HDC classification, we can correctly identify a
class if the noise distribution is well separated from the signal distribution. A heuristic measure for
the separation is if the sum of the standard deviation of both distributions (which can be visualized
as the width of the distributions) is smaller than the difference of the corresponding means of the
distributions.

In order to analyze the capacity of class hypervectors in HDC classification tasks, we can make an
assumption on the prior distributions of the data points. As an example, we consider a image dataset
with two classes, with the corresponding class hypervectors being C⃗1 and C⃗2. The class hypervector
is constructed by bundling vectors of the same class as C⃗i =

∑
j∈Classi H⃗j . The dimensionality of

these hypervectors remains as D. To take into account the correlation, we consider the similarity
between hypervectors of class 1 to follow a distribution D1(µ1, σ1), and similarly a distribution
D2(µ2, σ2) for class 2. The similarity between the two classes is defined as D12(µ12, σ12). We use
Di(µi, σi) to refer to generic distributions characterized by the mean µi and standard deviation σi.
We also make an assumption that µ12 < µ1, µ2; this is because we expect the similarity between
two images belonging to the same class is higher than those belonging to different classes.

During the training, p training images are stored in class hypervectors, i.e., C⃗1 and C⃗2, according
to their labels. For example, if an encoded query Q⃗ belongs to class 1, the similarity to C⃗1 fol-
lows a normal distribution given by N(pµ1,

√
pσ1), because of the central limit theorem with large

sample number p. Recall that the class hypervector C⃗1 is constructed by bundling together p image

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

0

20

40

60

80

100

-0.34 -0.01 0.33 0.66 1.00

Co
un

t

Similarity

0

15

30

45

60

-0.72 -0.23 0.27 0.76 1.25
0

15

30

45

60

-1.12 -0.49 0.14 0.76 1.39

𝒑 = 𝟏𝟎 𝒑 = 𝟓𝟎 𝒑 = 𝟏𝟎𝟎

𝜹 𝒅𝒊𝒇𝒇 𝜹 𝒔𝒂𝒎𝒆

0

40

80

120

160

200

240

-0.55 1.24 3.02 4.81 6.59
0

40

80

120

160

200

-2.64 5.71 14.05 22.40 30.75
0

40

80

120

160

200

-5.31 10.94 27.19 43.45 59.70

𝒑 = 𝟏𝟎 𝒑 = 𝟓𝟎 𝒑 = 𝟏𝟎𝟎

(a)

(b)

Co
un

t

Figure 6: The signal and noise distribution for (a) exclusive encoding suitable for cognition and (b)
correlated encoding for different values of p, suitable for learning.

hypervectors belonging to the training set. Similarly, the similarity of Q⃗ with C⃗2 follows the cross-
class normal distribution N(pµ12,

√
pµ12). Thus, we can measure the noise separation of these two

distributions as follows:

s =
pµ1 − pµ12√
pσ1 +

√
pσ12

=
√
p
µ1 − µ12

σ1 + σ12
. (4)

If the average points are located far away, the distributions have minimum overlap. In other words,
the distributions are well separated. This simple calculation shows that the separation value increases
with the number of training samples as s ∝ √

p. Thus, adding more samples enables us to better
memorize the data if the correlations are well-preserved. We plot the separation for the case of
learning in Fig. 5(b), which shows that in the case of random encoding, the separation decreases to
0 as the number of data points increases. However, in the case of correlated encoding, the separation
remains reasonably large. In Fig. 6(a), we show the signal and noise distribution for a toy-correlated
dataset with random encoding, and in (b) we show the signal and noise distribution with correlated
encoding for different values of p.

6 MEMORISING ASSOCIATIONS

HDC can represent associations in a robust and holographic manner through the process of binding.
If A⃗ and B⃗ are two nearly orthogonal bipolar vectors, then S⃗ = A⃗ ∗ B⃗ will be nearly orthogonal
to both A⃗ and B⃗ due to the inherent randomness, which can be used to represent structures like
key-value pairs(Poduval et al., 2022b), sequences (Zou et al., 2022; Poduval et al., 2021c), and data
with multiple properties(Frady et al., 2020). For example, suppose we want to memorize an ob-
ject, the location it was observed, the time it was observed, and its size in an exclusive manner,
we can represent each feature with a hypervector and bind them together. The objects can be sam-
pled from a codebook O = {O⃗1, .., O⃗n}. Each hypervector could represent an object like a ball,
cat, dog, apple, etc. The position, time and size components are, however, continuous valued. The
corresponding values can be encoded individually using the kernel hypervectors as described in the
previous sections. To encode the position, time and size (x, t, s), we assign randomly sampled base
vectors (BX , BT , BS) to each component, where B⃗i = eiθ⃗i/wi with θ⃗ ∈ {N (0, 1)}D. The encod-
ing of (x, t, s) is then (B⃗x

X , B⃗t
T , B⃗

s
S). Finally, the association between the object O and its features

(x, t, s) is memorised by the hypervector H⃗ = O⃗i ∗ B⃗x
X ∗ B⃗t

T ∗ B⃗s
S .

Given a hypervector H⃗, decomposing it into the factorization H⃗ = O⃗i ∗ B⃗x
X ∗ B⃗t

T ∗ B⃗s
S is a non-

trivial problem. The state of the art approach is the resonator network (Frady et al., 2020), which is
a recurrent network that iteratively calculates a guess for the hypervectors, and uses the guesses to

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

100

500

1k

1.5k

0.1 1.50.5 1.0 2.0
D

80%

100%

A
cc
ur
ac
y

𝒘 ൌ 𝒘𝒙 ൌ 𝒘𝒚

0.1

1.5

0.5

1.0

2.0

0.1 1.50.5 1.0 2.0
𝒘𝒙

𝒘𝒚

85%

90%

A
cc
ur
ac
y

(a) (b)

100

500

1k

1.5k

0.1 1.50.5 1.0 2.0

D

1

4

Se
pa
ra
tio
n

𝒘 ൌ 𝒘𝒙 ൌ 𝒘𝒚

0.1

1.5

0.5

1.0

2.0

0.1 1.50.5 1.0 2.0
𝒘𝒙

𝒘𝒚

1

3

Se
pa
ra
tio
n

(c) (d)

Decoding

Figure 7: The decoding accuracy as (a) function of D and w (b) function of wx and wy; the decoding
separation as (c) function of D and w (d) function of wx and wy

cancel the noise to make subsequent guesses more accurate. Suppose that the possible position, time
and size values are from a list {x1, .., xn}, {t1, .., tn} and {s1, .., sn} respectively. Then, having
calculated a set of factor guesses at the (n− 1)th iteration labelled by G⃗A,n−1 (for A = O,S,X, T),
the subsequent iteration of the guess is calculated by

G⃗A,n = [M]A

(
H⃗ ∗Πi̸=A ∗ G⃗i,n−1

)
(5)

where A = X,S, T and O, and [M]A is the matrix that projects onto the subspace spanned by
the codebook of the objects, location, time and size for A = O,X, T and S respectively. The
process converges to the correct factorization for large D if the hypervectors are sufficiently random.
However, if the lengthscale wi of correlations is large, then the resonator network will converge to
random results.

7 EXPERIMENTAL RESULTS

7.1 EXPERIMENTAL SETUP

We perform experiments for detailed exploration of how various settings in encoding influence the
HDC performance for both learning and cognitive information retrieval. We select MNIST hand-
written digits as our main and run all experiments in the following sections using the PyTorch
framework on the Intel Core i7-12700K platform.

7.2 ENCODING: LEARNING VS. COGNITION

In this section, we discuss our expectations on how learning and decoding efficiency vary as a
function of wi. For a large value of wi, the similarity of the position vector does not change over
large distances. So the feature values are averaged out and would be better for learning. However,
making wi too large would make the learning a full average of the feature which would contain
too little information about the data to learn the differences efficiently. If we consider decoding,
on the other hand, we would like the location ID vectors to be nearly orthogonal. As a result, the
noise term in the decoding would be very low and would enable a perfect recovery of the data
points. The main question thus is, what is the optimal value of wi.To understand this, we can
study the probability distribution of when the feature values are either 1 or 0, alongside the joint
probability distributions of the feature locations. What is most important is how accurately we can
decode where the feature values are 1, since they contain the information about our features. So,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

100

500

1k

1.5k

0.1 1.50.5 1.0 2.0
D

65%

95%

A
cc
ur
ac
y

𝒘 ൌ 𝒘𝒙 ൌ 𝒘𝒚

(a) (b)

(c) (d)

0.1

1.5

0.5

1.0

2.0

0.1 1.50.5 1.0 2.0
𝒘𝒙

𝒘𝒚

85%

95%

A
cc
ur
ac
y

100

500

1k

1.5k

0.1 1.50.5 1.0 2.0

D

0.3

1.2

Se
pa
ra
tio
n

𝒘 ൌ 𝒘𝒙 ൌ 𝒘𝒚

0.1

1.5

0.5

1.0

2.0

0.1 1.50.5 1.0 2.0
𝒘𝒙

𝒘𝒚

0.6

1.4

Se
pa
ra
tio
n

Learning

Figure 8: The learning accuracy as a (a) function of D and w (b) function of wx and wy; the learning
separation as a (c) function of D and w (d) function of wx and wy

we need to study how the locations of 1 are correlated over positions in the image. To do this,
we first consider two coordinates (x, y) and (X,Y). We first construct the probability function
p1(x,X, Y) = P(fx,Y = 1&fX,Y = 1) based on numerical data set. This is the probability that
both the conditions fx,Y = 1 and fX,Y = 1 hold true. This function measures the correlation
between two pixels that are separated horizontally at different x−location, but same vertical coordi-
nate. Similarly, we construct p2(y,X, Y) = P(fX,y = 1&fX,Y = 1), which measures the vertical
correlations of the pixels. Together, these probability distributions show us how the features are cor-
related in a certain direction. Using this, we can calculate the average value of lx = ⟨|x −X|⟩ and
ly = ⟨|y − Y |⟩. Thus, using this we can heuristically estimate that wx = lx and wy = ly would be
the optimal choice for the scale of the kernels.

7.3 COGNITION: HDC DECODABILITY

We present the results of decoding the hypervectors back to feature space as a function of w and
dimension D in Fig. 7(a). We chose w1 = w2 = w. The accuracy ranges from 85% at the lowest to
100% for the highest accuracy. We see that at w = 1.5 there is a boundary, and for w > 0.75 the
decoding accuracy falls sharply. Moreover, for small dimensions, the accuracy decreases.We also
show the accuracy as a function of wx and wy , at a fixed dimension of D = 500 in Fig. 7(b). We
see that wy has a boundary of 1.0 after which the accuracy falls, and wx has a boundary at 1.5.
For small w, the decoding process would be very accurate since it can distinguish between nearby
feature values independently. When w increases, however, the decoding process cannot distinguish
between nearby encoded feature values, resulting in inaccuracies. This is reflected in Fig. 7(a) where
we see that there is a vertical line at w ∼ 1.5 through which the accuracy drastically reduces.

We also show the decoding separation in Fig. 7(c) and (d) for the corresponding accuracy plots.
When the separation metric is low, the accuracy is high. The correlation, however, loses meaning
when the separation is large and the accuracy is high because at these levels the overlap will vary
randomly for different data sets, which we observe at high accuracy (> 85%) where the separation
varies with no corresponding change in accuracy.

7.4 HDC LEARNABILITY

We present the result for the accuracy of learning of the classes from the quantized hypervectors. We
show the heatmap for the accuracy of classification as a function of w and dimension D in Fig. 8(a).
We chose w1 = w2 = w. For a large dimension where the learning model converges to the optimal
capacity, there is a maximum for the accuracy at w = 0.5 We also observe the accuracy as a function

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

𝑺
𝑻
𝑿
𝑶

𝑺
𝑻
𝑿
𝑶Fa

ct
or

s

Es
tim

at
ed

 F
ac

to
rs Co

rr
ec

t F
ac

to
r

In
co

rr
ec

t F
ac

to
rs

Incorrect
Factorization Incorrect

Factorization

Correct
Factorization Correct

Factorization

Iterations

𝒘𝒙 = 𝟏𝟎,𝒘𝑻 = 𝟏𝟎,𝒘𝑺 = 𝟏𝟎 𝒘𝒙 = 𝟏,𝒘𝑻 = 𝟏𝟎,𝒘𝑺 = 𝟏𝟎

𝒘𝒙 = 𝟏,𝒘𝑻 = 𝟏,𝒘𝑺 = 𝟏𝟎 𝒘𝒙 = 𝟏,𝒘𝑻 = 𝟏,𝒘𝑺 = 𝟏

Figure 9: Solution to the resonator network with four factors, with each factor continuously encoded
using the random feature encoding.

of wx and wy in Fig. 8(b), at fixed dimension. We find that a large wx and wy are preferred for good
accuracy. However, the accuracy does not improve very fast by increasing wy , unlike the case of wx.

The trend for learning as a function of w is expected based on theoretical arguments. We focus on
D = 1.5k, which is large enough to avoid noise issues due to low dimensions. Here, for small w, the
encoding maps every data point to an orthogonal vector in the hyperspace and thus takes up a lot of
capacity. As a result, the correlations between the vectors in the same class will be quite low. In this
case, the learning will be inefficient and inaccurate. Conversely, with large w, the encoding maps
every data point to very correlated hypervectors in hyperspace. As a result, the learning process will
not be able to distinguish between the vectors of different classes, which results in low accuracy. We
also show the separation in Fig. 8(c) and (d) for the corresponding learning plots showing a good
correlation at low accuracy and intermediary accuracy regions.

7.5 HDC FACTORIZATION PROBLEM

Finally, we discuss the effect of correlation on the HDC factorization problem using the resonator
network, Sec. 6. The position, location and time values are continuously encoded, with the values
chosen from the set {1, 2, ..., 10}, while the objects are represented by random vectors. We set the
length scale wi = 10 initially for the three continuous factors (so that the vectors representing
various nearby values remain highly correlated), and then change the value to wi = 1 sequentially.

Fig. 9 shows the solution of the resonator network as the function of iteration. Each color represents
a specific index in the codebook for each factor, and the correct factorization is where all the factors
are yellow. For the first experiment, we set all wi = 1, resulting in the S, T,X factors being highly
correlative. Thus resonator network converges onto a random result for those factors since it cannot
distinguish between hypervectors representing different values. Next, we set wX = 1 so that the
hypervectors representing different positions are uncorrelated, while the hypervectors representing
time and size remain highly correlated. In this case, the object and position are correctly decoded,
while the time and size are randomly decoded. In the last two cases, we set wT = 1 and wS = 1,
respectively. The corresponding factors are also correctly decoded, highlighting the importance of
controlling the correlation in HDC factorization.

8 CONCLUSION

This paper proposes a universal hyperdimensional encoding method that can be easily adapted to
both learning and cognitive tasks. We provide an extensive exploration of how various settings in
encoding influence the performance of HDC in both tasks. We highlight the distinction between
learning high-level patterns and information retrieval from the angle of HDC operations. Our en-
coding can optimally separate or correlate encoded data points in high-dimensional space for down-
stream tasks.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

S. Bochner. Vector fields and ricci curvature. Bulletin of the American Mathematical Society, 52(9):
776–797, 1946. doi: 10.1090/s0002-9904-1946-08647-4. URL https://doi.org/10.1090/s0002-
9904-1946-08647-4.

E Paxon Frady, Spencer J Kent, Bruno A Olshausen, and Friedrich T Sommer. Resonator networks,
1: An efficient solution for factoring high-dimensional, distributed representations of data struc-
tures. Neural computation, 32(12):2311–2331, 2020.

Alejandro Hernández-Cano, Cheng Zhuo, Xunzhao Yin, and Mohsen Imani. Reghd: Robust and
efficient regression in hyper-dimensional learning system. In DAC, pp. 7–12. IEEE, 2021.

Mohsen Imani, Ali Zakeri, Hanning Chen, TaeHyun Kim, Prathyush Poduval, Hyunsei Lee, Yeseong
Kim, Elaheh Sadredini, and Farhad Imani. Neural computation for robust and holographic face
detection. In Proceedings of the 59th ACM/IEEE Design Automation Conference, pp. 31–36,
2022.

Mohsen Imani et al. Dual: Acceleration of clustering algorithms using digital-based processing
in-memory. In MICRO, pp. 356–371. IEEE, 2020.

Giacomo Indiveri and Timothy Horiuchi. Frontiers in neuromorphic engineering. Frontiers in
Neuroscience, 5:118, 2011. ISSN 1662-453X. doi: 10.3389/fnins.2011.00118. URL https://
www.frontiersin.org/article/10.3389/fnins.2011.00118.

Pentti Kanerva. Encoding structure in boolean space. In ICANN 98, pp. 387–392. Springer, 1998.

Pentti Kanerva. Hyperdimensional computing: An introduction to computing in distributed repre-
sentation with high-dimensional random vectors. CC, pp. 139–159, 2009.

Yeseong Kim, Mohsen Imani, and Tajana S Rosing. Efficient human activity recognition using
hyperdimensional computing. In Proceedings of the 8th International Conference on the Internet
of Things, pp. 38. ACM, 2018.

Denis Kleyko, Evgeny Osipov, and Dmitri A Rachkovskij. Modification of holographic graph neu-
ron using sparse distributed representations. Procedia Computer Science, 88:39–45, 2016.

Denis Kleyko, Evgeny Osipov, Nikolaos Papakonstantinou, and Valeriy Vyatkin. Hyperdimensional
computing in industrial systems: the use-case of distributed fault isolation in a power plant. IEEE
Access, 6:30766–30777, 2018.

Denis Kleyko et al. A survey on hyperdimensional computing aka vector symbolic architectures,
part i: Models and data transformations. arXiv preprint arXiv:2111.06077, 2021.

Grace W. Lindsay. Convolutional neural networks as a model of the visual system: Past, present,
and future. Journal of Cognitive Neuroscience, pp. 1–15, Feb 2020. ISSN 1530-8898. doi:
10.1162/jocn a 01544. URL http://dx.doi.org/10.1162/jocn a 01544.

A Mitrokhin et al. Learning sensorimotor control with neuromorphic sensors: Toward hyperdimen-
sional active perception. Science Robotics, 2019.

Anton Mitrokhin et al. Symbolic representation and learning with hyperdimensional computing.
Frontiers in Robotics and AI, 7:63, 2020. ISSN 2296-9144. doi: 10.3389/frobt.2020.00063. URL
https://www.frontiersin.org/article/10.3389/frobt.2020.00063.

Ali Moin, Andy Zhou, Abbas Rahimi, Alisha Menon, Simone Benatti, George Alexandrov, Senam
Tamakloe, Jonathan Ting, Natasha Yamamoto, Yasser Khan, et al. A wearable biosensing system
with in-sensor adaptive machine learning for hand gesture recognition. Nature Electronics, 4(1):
54–63, 2021.

Fabio Montagna, Abbas Rahimi, Simone Benatti, Davide Rossi, and Luca Benini. Pulp-hd: Acceler-
ating brain-inspired high-dimensional computing on a parallel ultra-low power platform. In 2018
55th ACM/ESDA/IEEE Design Automation Conference (DAC), pp. 1–6. IEEE, 2018.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Fateme Rasti Najafabadi, Abbas Rahimi, Pentti Kanerva, and Jan M Rabaey. Hyperdimensional
computing for text classification. In DATE, pp. 1–1, 2016.

Prathyush Poduval, Mariam Issa, Farhad Imani, Cheng Zhuo, Xunzhao Yin, Hassan Najafi, and
Mohsen Imani. Robust in-memory computing with hyperdimensional stochastic representation.
In 2021 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH), pp. 1–
6. IEEE, 2021a.

Prathyush Poduval, Zhuowen Zou, Hassan Najafi, Houman Homayoun, and Mohsen Imani. Stochd:
Stochastic hyperdimensional system for efficient and robust learning from raw data. In 2021 58th
ACM/IEEE Design Automation Conference (DAC), pp. 1195–1200. IEEE, 2021b.

Prathyush Poduval, Zhuowen Zou, Xunzhao Yin, Elaheh Sadredini, and Mohsen Imani. Cognitive
correlative encoding for genome sequence matching in hyperdimensional system. In 2021 58th
ACM/IEEE Design Automation Conference (DAC), pp. 781–786. IEEE, 2021c.

Prathyush Poduval, Yang Ni, Yeseong Kim, Kai Ni, Raghavan Kumar, Rossario Cammarota, and
Mohsen Imani. Adaptive neural recovery for highly robust brain-like representation. In Proceed-
ings of the 59th ACM/IEEE Design Automation Conference, pp. 367–372, 2022a.

Prathyush Poduval, Ali Zakeri, Farhad Imani, Haleh Alimohamadi, and Mohsen Imani. Graphd:
Graph-based hyperdimensional memorization for brain-like cognitive learning. Frontiers in Neu-
roscience, pp. 5, 2022b.

Dmitriy A Rachkovskiy, Sergey V Slipchenko, Ernst M Kussul, and Tatyana N Baidyk. Sparse
binary distributed encoding of scalars. Journal of Automation and Information Sciences, 37(6),
2005.

Abbas Rahimi, Pentti Kanerva, Luca Benini, and Jan M Rabaey. Efficient biosignal processing using
hyperdimensional computing: Network templates for combined learning and classification of exg
signals. Proceedings of the IEEE, 107(1):123–143, 2018.

Okko J Räsänen and Jukka P Saarinen. Sequence prediction with sparse distributed hyperdimen-
sional coding applied to the analysis of mobile phone use patterns. IEEE transactions on neural
networks and learning systems, 27(9):1878–1889, 2015.

Yi Tay et al. Holographic factorization machines for recommendation. In AAAI, volume 33, pp.
5143–5150, 2019.

Rahul Thapa, Bikal Lamichhane, Dongning Ma, and Xun Jiao. Spamhd: Memory-efficient text spam
detection using brain-inspired hyperdimensional computing. In 2021 IEEE Computer Society
Annual Symposium on VLSI (ISVLSI), pp. 84–89. IEEE, 2021.

Sizhe Zhang, Ruixuan Wang, Jeff Jun Zhang, Abbas Rahimi, and Xun Jiao. Assessing robustness
of hyperdimensional computing against errors in associative memory. In 2021 IEEE 32nd Inter-
national Conference on Application-specific Systems, Architectures and Processors (ASAP), pp.
211–217. IEEE, 2021.

Zhuowen Zou, Hanning Chen, Prathyush Poduval, Yeseong Kim, Mahdi Imani, Elaheh Sadredini,
Rosario Cammarota, and Mohsen Imani. Biohd: an efficient genome sequence search platform us-
ing hyperdimensional memorization. In Proceedings of the 49th Annual International Symposium
on Computer Architecture, pp. 656–669, 2022.

A HYPERDIMENSIONAL COMPUTING: AN OVERVIEW

The brain’s circuits are massive in numbers of neurons and synapses, suggesting that large circuits
are fundamental to the brain’s computing.

HDC Kanerva (2009) explores this idea by looking at computing with high-dimensional vector
representations, or hypervectors. As the fundamental units of HDC, hypervectors are constructed

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Exclusive Encoding (wide 𝜃)

Inclusive Encoding (narrow 𝜃)

ü Orthogonal patterns
ü Suitable for Attention
ü Low Memorization Capacity

ü Correlated Patterns (Learning)
ü Learnable & Less Decodable
ü High Memorization Capacity

Memorization Capacity Decodability

𝒏 = 𝟓𝟎𝟎

𝒏 = 𝟓𝟎𝟎

No
Margin

Large
Margin

0 1

𝑹 = 𝒁𝟏 + 𝒁𝟐 +⋯+ 𝒁𝒏

Memorized Encoded

In
cl
us
iv
e

Ex
cl
us
iv
e

HDC Encoding

Existing
Non-

Existing

𝑝 𝜃

𝑝 𝜃

a

21%

D=0.5K
W=0.3

100%

D=6K
W=0.05

a b c

Figure 10: Two directions in HDC encoding designs: the correlative one is suitable for learning and
the exclusive one is suitable for cognition.

from raw signals using an encoding procedure. Within a hyperspace, many different, nearly orthog-
onal hypervectors exist with dimensionality in the thousands Kanerva (1998). This lets us com-
bine such hypervectors into a new hypervector using well-defined vector space operations, e.g.,
Bundling (+) and Binding (∗). Bundling uses element-wise addition to represent sets, and binding
expresses conjunctive association with element-wise multiplication. Hypervectors are holographic
and (pseudo)random with i.i.d. components. More specifically, they combine and spread information
across all its components in a full holistic representation so that no element is more responsible for
storing any piece of information than another.

In recent years, HDC has been employed in a range of applications, such as classification Kan-
erva (2009), activity recognition Kim et al. (2018), biomedical signal processing Moin et al. (2021),
multimodal sensor fusion Räsänen & Saarinen (2015), security Thapa et al. (2021); Zhang et al.
(2021) and distributed sensors Kleyko et al. (2018). A key HDC advantage lies in the capability
of training in one or few shots, where object categories are learned from a few examples without
many iterations. HDC has achieved comparable or higher accuracy compared to support vector ma-
chines (SVMs), gradient boosting, and convolutional neural networks (CNNs) Rahimi et al. (2018);
Mitrokhin et al. (2019), as well as lower execution energy on embedded processors compared to
SVMs and CNNs Montagna et al. (2018).

In these successful HDC applications, HDC encoding is essential to the quality of computing. With
a suitable encoding, information from inputs is well maintained to satisfy the needs of tasks. The
encoding determines the following factors: (1) the distance metric for encoded data points and (2)
the level of correlation or exclusiveness preserved after mapping to hyperspace. Despite the general
success in HDC encoding, there are no guidelines on setting these factors in practice. In this work,
we observe that a suitable HDC encoding design is application-specific. In Fig. 10, we categorize
HDC applications into learning and cognition, then we shed light on two corresponding directions
in HDC encoding.

• Learning: aims to capture the general pattern of data. It operates over encoded hypervectors,
where the information of original data is preserved. Therefore, the usefulness of information main-
tained in hypervectors determines the learning quality. For learning, the HDC encoding needs to
be inclusive and correlative. In other words, the encoding should abstract common information
by keeping the similarity of neighboring data points in hyperspace, and we refer to this as the
Correlative Encoding. This encoder correlates hypervectors under a certain distance metric, and
similar data points are coarsely clustered in hyperspace. This clustering effect helps classify data
that are not linearly separable and avoid overfitting with a smoother boundary. The inclusive en-
coder also theoretically increases the memorization and learning capacity of hypervectors (see
Section 5). Generally, HDC encoding for learning does not require the exact decoding of infor-
mation. Instead, it only needs a coarse differentiation between different patterns. Therefore, the
learned models are often much more compact than the original training dataset.

• Cognition: aims to represent structural data using neural patterns, which accordingly enables
brain-like analysis and information extraction. The primary task of encoding in cognitive tasks
is to represent data points exclusively instead of inclusively in hyperspace. We name this kind

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

𝑫 = 𝟔𝑲
𝒘 = 𝟎. 𝟎𝟓

𝑫 = 𝟔𝑲
𝒘 = 𝟎. 𝟑

Original Image

Decoded Image

Di
m

en
si

on
al

ity
 𝑫

Length Scale 𝒘

En
co

de
 &

 D
ec

od
e

𝑫 = 𝟎. 𝟓𝑲
𝒘 = 𝟎. 𝟑

𝑫 = 𝟎. 𝟓𝑲
𝒘 = 𝟎. 𝟎𝟓

Figure 11: Example of the effect of dimensionality and width of the distribution on the decodability
of an image.

of encoding as the Exclusive Encoding. This ensures accurate knowledge extraction such that
memorized information can be used as prior information for various cognitive computation tasks.
For example, prior research shows that exact memorization enables brain-like reasoning Poduval
et al. (2022b) and perception Mitrokhin et al. (2019). To conclude, for cognitive operations, the
key is the invertibility of hypervectors. The encoded information needs to be accurately decoded
back to the original space to answer cognitive questions.

As shown in Fig. 10, learning and cognitive computation have different requirements for HDC en-
coders. For learning, the encoding is inclusive and correlative, preserving the similarity of nearby
data. In contrast, encoding is exclusive for cognitive computation, where data points are mapped
to orthogonal space and distinct. However, data decoding has completely different requirements as
compared to learning. The encoding used for cognitive operation requires preserving enough infor-
mation to ensure high decoding capability.

In Fig. 11, we present the image decoding results using our universal encoder with different tun-
ing. We evaluate our proposed encoder with this practical image of a dog, then we try to accurately
retrieve the original image from the encoded version. We do this however by separating the image
into a few sub-images and performing the encoding-decoding procedure. We scan through different
dimensionality and length scale settings, which determine the capacity and decodability of the en-
coded hypervector. Our results show that the decoding quality is significantly better when D = 6k
and w = 0.05, which is expected from our previous discussion. The larger the dimensionality a
hypervector uses, the larger the decoding capacity it has. On the other hand, a small length scale is
preferred if the capacity is large enough, such that it can maximize the separation. If the capacity is

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

not enough, then the noise from the separated location vectors will be significant and result in a high
error noise.

B HDC WITH RANDOM VECTORS

In this section, we introduce the Hyperdimensional learning algorithm and provide insights on how
to adjust the HDC encoder for learning tasks. Let us assume p random data points in the hyperspace,
{H⃗1, H⃗2, · · · , H⃗p}. Due to the randomness in high-dimension, these hypervectors are nearly orthog-
onal, that is, the similarity δ⟨H⃗i, H⃗j⟩ ≈ 0, where 1 ≤ i ̸= j ≤ p. HDC bundling operation combines
these hypervectors into a single memory hypervector or model hypervector: M⃗ =

∑p
i=1 H⃗i. Its

capacity depends on two factors: (1) the dimensionality of hypervectors, and (2) the correlation be-
tween the encoded data points. The randomness is also reflected within the similarity metric, which
follows a Gaussian distribution with µ = 0 and a non-zero σ = 1√

2D
based on dimensionality D.

Increasing the dimensionality further orthogonalizes these hypervectors, in the sense that the distri-
bution is more squeezed with σ decreasing. As a result, when we check whether a new encoded query
Q⃗ belongs to the memory hypervector M⃗, we calculate the similarity δ(Q⃗,M⃗) =

∑p
i=1 δ(Q⃗, H⃗i).

This leads to a Gaussian distribution with mean values being either 0 or 1 depending on the query:
(1) Q⃗ appears in those p data points, which means that it will correctly match one component in the
memory hypervector (signal) and mismatch with the rest (noise). (2) Q⃗ is not part of p data points,
and the similarity value is essentially the sum of p random values sampled from the Normal distri-
bution. Therefore, the resulting similarity follows the Gaussian distribution with µ = 1 in the case
(1) and µ = 0 in the case (2), with σ =

√
p
2D for both cases.

C SEPARATION FOR LEARNING VS DECODING

The separation is similar to Eq. 6, which also measured the difference between the signal and noise
distribution.

s =
µ2 − µ1

σ1 + σ2
, (6)

However, the context between the two different separation values are very different. The former
separation metric defined the difference of the noise distribution and a specific component of the
feature vector. However, this definition of the separation metric calculates the separation between
the distribution of the similar class element with an element that belongs to the same class, and the
distribution of the similarity of the class element with a element of the different class.

15

