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Abstract

Deep neural networks (DNNs) are nowadays wit-
nessing a major success in solving many pattern
recognition tasks including skeleton-based clas-
sification. The deployment of DNNs on edge-
devices, endowed with limited time and memory
resources, requires designing lightweight and effi-
cient variants of these networks. Pruning is one of
the lightweight network design techniques that op-
erate by removing unnecessary network parts, in
a structured or an unstructured manner, including
individual weights, neurons or even entire chan-
nels. Nonetheless, structured and unstructured
pruning methods, when applied separately, may
either be inefficient or ineffective.
In this paper, we devise a novel semi-structured
method that discards the downsides of structured
and unstructured pruning while gathering their
upsides to some extent. The proposed solution is
based on a differentiable cascaded parametriza-
tion which combines (i) a band-stop mechanism
that prunes weights depending on their magni-
tudes, (ii) a weight-sharing parametrization that
prunes connections either individually or group-
wise, and (iii) a gating mechanism which arbi-
trates between different group-wise and entry-
wise pruning. All these cascaded parametriza-
tions are built upon a common latent tensor which
is trained end-to-end by minimizing a classifica-
tion loss and a surrogate tensor rank regularizer.
Extensive experiments, conducted on the chal-
lenging tasks of action and hand-gesture recog-
nition, show the clear advantage of our proposed
semi-structured pruning approach against both
structured and unstructured pruning, when taken
separately, as well as the related work.
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1. Introduction
Deep neural networks (DNNs) are nowadays becoming
a hotspot in machine learning with increasingly perfor-
mant models used to approach eclectic pattern recognition
tasks (Krizhevsky et al., 2017; He et al., 2016; 2017; Jian
et al., 2020; Ronneberger et al., 2015; Jiu & Sahbi, 2017;
2019). These models are also steadily oversized and this
makes their deployment on cheap devices, endowed with
limited hardware resources, very challenging. In particular,
hand-gesture recognition and human computer interaction
tasks require fast and lightweight DNNs with high recogni-
tion performances. However, DNNs are currently showing
some saturated improvement in accuracy while their com-
putational efficiency remains a major issue. Among these
DNN models, graph convolutional networks (GCNs) are
deemed effective especially on non-euclidean domains in-
cluding skeleton-data (Zhu et al., 2016b). Two families of
GCNs exist in the literature: spectral and spatial. Spec-
tral methods project graph signals from the input to the
Fourier domain, achieve convolution, prior to back-project
the convolved signals in the input domain (Kipf & Welling,
2016; Levie et al., 2018; Li et al., 2018b; Defferrard et al.,
2016; Bruna et al., 2013; Henaff et al., 2015; Chung, 1997;
Sahbi, 2021c; Mazari & Sahbi, 2019b). Spatial methods
proceed differently by aggregating signals through neigh-
boring nodes, using multi-head attention, prior to achieve
convolutions (as inner products) on the resulting node ag-
gregates (Gori et al., 2005; Micheli, 2009; Wu et al., 2020;
Hamilton et al., 2017; Knyazev et al., 2019; Sahbi et al.,
2011; Sahbi, 2021b;a). Spatial GCNs are known to be
more effective compared to spectral ones. Nonetheless,
with multi-head attention, spatial GCNs become oversized,
computationally overwhelming, and their deployment of
cheap devices requires making them lightweight and still
effective (Huang et al., 2018a; Sandler et al., 2018; Howard
et al., 2017; Tan & Le, 2019; Cai et al., 2019; He et al.,
2018a;b; Sahbi, 2021d; 2023).
Several existing works address the issue of lightweight net-
work design, including tensor decomposition (Howard et al.,
2019), quantization (Han et al., 2015a), distillation (Hin-
ton et al., 2015; Mirzadeh et al., 2020; Zhang et al., 2018;
Ahn et al., 2019; Sahbi & Geman, 2006), neural architecture
search (Li et al., 2022) and pruning (LeCun et al., 1989; Has-
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sibi & Stork, 1992; Han et al., 2015b; Sahbi, 2022). Pruning
methods are particularly effective, and their general recipe
consists in removing connections in order to enable reduced
storage and faster inference with a minimal impact on clas-
sification performances. One of the mainstream methods
is magnitude pruning (MP) (Han et al., 2015a) which re-
moves the smallest weight connections before retraining
the pruned networks. Two categories of MP techniques
exist in the literature: unstructured (Han et al., 2015b;a)
and structured (Li et al., 2016; Liu et al., 2017d). Unstruc-
tured methods remove weights individually by ranking them
according to the importance of their magnitudes whilst struc-
tured approaches zero-out groups of weights (belonging to
entire rows, columns, filters or channels) according to the
importance of their aggregated magnitudes. Unstructured
MP results into more flexible, accurate networks, and al-
lows reaching any fine-grained targeted pruning rate but
requires dedicated hardware to actually achieve efficient
computation. In contrast, structured MP offers a more prac-
tical advantage by making the resulting DNNs compatible
with standard hardware for efficient computation. How-
ever, this comes at the expense of a reduced classification
performance and coarse-grained pruning rates. In order to
fully exhibit the potential of these two pruning categories, a
more suitable framework should gather the upsides of both
structured and unstructured pruning while discarding their
downsides to some extent.
In this paper, we introduce a novel variational MP approach
that leverages both structured and unstructured pruning.
This method dubbed as semi-structured is based on a differ-
entiable cascaded weight parametrization composed of (i)
a band-stop mechanism enforcing the prior that the small-
est weights should be removed, (ii) a weight-sharing that
groups mask entries belonging to the same rows, columns,
or channels in a given tensor, and (iii) a gating mechanism
which arbitrates between different mask group assignments
while maximizing the accuracy of the trained lightweight
networks. We also consider a budget loss that allows imple-
menting any targeted fine-grained pruning rate and reducing
further the rank of the pruned tensors, resulting into more
efficient networks while being closely accurate as shown
later in experiments.

2. Related work
The following review discusses the related work in varia-
tional pruning and skeleton-based recognition, highlighting
the limitations that motivate our contributions.

Variational Pruning. The general concept behind varia-
tional pruning is to learn weights and binary masks that
capture the topology of pruned networks. This is achieved
by minimizing a global loss that combines a classification

error and a regularizer that controls the sparsity (or the cost)
of the resulting networks (Liu et al., 2017d; Wen et al.,
2016; Louizos et al., 2017). However, these approaches are
powerless to implement any given targeted pruning rate
without overtrying multiple weighting of the regularizers.
Alternative methods explicitly model the network cost using
ℓ0-based criteria (Louizos et al., 2017; Pan et al., 2016) in
order to minimize the discrepancy between the observed
and the targeted costs. Existing solutions rely on sampling
heuristics or relaxation, which promote sparsity — using
different regularizers (ℓ1/ℓ2-based, entropy, etc. ) (Gordon
et al., 2018; Carreira-Perpinán & Idelbayev, 2018; Koneru
& Vasudevan, 2019; Wiedemann et al., 2019) — but are
powerless to implement any given targeted cost exactly
and result in overpruning effects leading to disconnected
subnetworks. Furthermore, most of the existing solutions,
including magnitude pruning (Han et al., 2015a), decouple
the training of network topology from weights, making
the learning of pruned networks suboptimal. On another
hand, existing pruning methods are either structured (Li
et al., 2016; Liu et al., 2017d) or unstructured (Han et al.,
2015b;a) so their benefit is not fully explored. In contrast to
the aforementioned related work, our contribution in this
paper seeks to leverage the advantage of both structured
and unstructured pruning where the training of masks and
weights are coupled on top of shared latent parameters.

Skeleton-based recognition. This task has gained increas-
ing interest due to the emergence of sensors like Intel Re-
alSense and Microsoft Kinect. Early methods for hand-
gesture and action recognition used RGB (Liu & Yuan, 2018;
Hu et al., 2015; Wang & Sahbi, 2013; Yuan et al., 2012;
Wang & Sahbi, 2014), depth (Ohn-Bar & Trivedi, 2014;
Wang et al., 2015), shape / normals (Oreifej & Liu, 2013;
Rahmani & Mian, 2016; Yun et al., 2012; Ji et al., 2014;
Li et al., 2015; Zanfir et al., 2013; Sahbi, 2007; Sahbi &
Fleuret, 2004), and skeleton-based techniques (Wang et al.,
2018). These methods were based on modeling human
motions using handcrafted features (Xia et al., 2012; Yang
& Tian, 2014), dynamic time warping (Vemulapalli et al.,
2014), temporal information (Zhang et al., 2016; Garcia-
Hernando & Kim, 2017), and temporal pyramids (Zhu et al.,
2016a; Q. De Smedt & Vandeborre, 2016). However, with
the resurgence of deep learning, these methods have been
quickly overtaken by 2D/3D Convolutional Neural Net-
works (CNNs) (Feichtenhofer et al., 2016; Nunez et al.,
2018a; Mazari & Sahbi, 2019a), Recurrent Neural Networks
(RNNs) (Zhu et al., 2016b; Chen et al., 2017; Ke et al., 2017;
Liu et al., 2017c; Liu & Yuan, 2018; Wang et al., 2016; Du
et al., 2015; Wang & Wang, 2017; Liu et al., 2017b; Nunez
et al., 2018b; Shahroudy et al., 2016; Zhang et al., 2017b;
Lee et al., 2017; Liu et al., 2016; Maghoumi & LaViola,
2019; Zhang et al., 2017a; Liu et al., 2017a), manifold learn-
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ing (Huang & Van Gool, 2017; Huang et al., 2018b; Kacem
et al., 2018), attention-based networks (Liu et al., 2021;
Weng et al., 2018; Hou et al., 2018; Chen et al., 2019; Song
et al., 2017), and GCNs (Huang et al., 2017; Li et al., 2018a;
Yan et al., 2018; Wen et al., 2019; Shi et al., 2018; Nguyen
et al., 2019; Li et al., 2019; 2020). The recent emergence
of GCNs, in particular, has led to their increased use in
skeleton-based recognition (Li et al., 2018b). These mod-
els capture spatial and temporal attention among skeleton
joints with better interpretability. However, when tasks in-
volve relatively large input graphs, GCNs (particularly with
multi-head attention) become computationally inefficient
and require lightweight design techniques. In this paper, we
design efficient GCNs that make skeleton-based recognition
highly efficient while also being effective.

3. A Glimpse on Graph Convolutional
Networks

Let S = {Gi = (Vi, Ei)}i denote a collection of graphs
with Vi, Ei being respectively the nodes and the edges of
Gi. Each graph Gi (denoted for short as G = (V, E)) is en-
dowed with a signal {ϕ(u) ∈ Rs : u ∈ V} and associated
with an adjacency matrix A. GCNs aim at learning a set of
C filters F that define convolution on n nodes of G (with
n = |V|) as (G ⋆ F)V = f

(
A U⊤ W

)
, here ⊤ stands for

transpose, U ∈ Rs×n is the graph signal, W ∈ Rs×C is
the matrix of convolutional parameters corresponding to the
C filters and f(.) is a nonlinear activation applied entry-
wise. In (G ⋆ F)V , the input signal U is projected using A
and this provides for each node u, the aggregate set of its
neighbors. Entries of A could be handcrafted or learned
so (G ⋆ F)V corresponds to a convolutional block with two
layers; the first one aggregates signals inN (V) (sets of node
neighbors) by multiplying U with A while the second layer
achieves convolution by multiplying the resulting aggregates
with the C filters in W. Learning multiple adjacency (also
referred to as attention) matrices (denoted as {Ak}Kk=1) al-
lows us to capture different contexts and graph topologies
when achieving aggregation and convolution. With multiple
matrices {Ak}k (and associated convolutional filter parame-
ters {Wk}k), (G⋆F)V is updated as f

(∑K
k=1 A

kU⊤Wk
)
.

Stacking aggregation and convolutional layers, with multi-
ple matrices {Ak}k, makes GCNs accurate but heavy. We
propose, in what follows, a method that makes our networks
lightweight and still effective.

4. Proposed Method: Semi-Structured
Magnitude Pruning

In what follows, we formally subsume a given GCN as
a multi-layered neural network gθ whose weights are de-
fined as θ =

{
W1, . . . ,WL

}
, being L its depth, Wℓ ∈

Rdℓ−1×dℓ its ℓth layer weight tensor, and dℓ the dimen-
sion of ℓ. The output of a given layer ℓ is defined as
ϕℓ = fℓ(W

ℓ⊤ ϕℓ−1), ℓ ∈ {2, . . . , L}, with fℓ an acti-
vation function; without a loss of generality, we omit the
bias in the definition of ϕℓ.
Pruning consists in zeroing-out a subset of weights in θ by
multiplying Wℓ with a binary mask Mℓ ∈ {0, 1}dℓ−1×dℓ .
The binary entries of Mℓ are set depending on whether
the underlying layer connections are pruned, so ϕℓ =
fℓ((M

ℓ ⊙Wℓ)⊤ ϕℓ−1), here ⊙ stands for the element-
wise matrix product. In our definition of semi-structured
pruning, entries of the tensor {Mℓ}ℓ are set depending on
the prominence and also on how the underlying connec-
tions in gθ are grouped; pruning that removes the entire
connections individually (resp. jointly) is referred to as
unstructured (resp. structured) whereas pruning that re-
moves some connections independently and others jointly
is dubbed as semi-structured. However, such pruning (with
{Mℓ}ℓ) suffers from several drawbacks. In the one hand,
optimizing the discrete set of variables {Mℓ}ℓ is deemed
highly combinatorial and intractable especially on large net-
works. In the other hand, the total number of parameters
{Mℓ}ℓ, {Wℓ}ℓ is twice the number of connections in gθ
and this increases training complexity and may also lead to
overfitting.

4.1. Semi-Structured Weight Parametrization

In order to overcome the aforementioned issues, we con-
sider an alternative parametrization that allows finding both
the topology of the pruned networks together with their
weights, without doubling the size of the training parame-
ters, while making magnitude pruning semi-structured and
learning still effective. This parametrization corresponds
to the Hadamard product involving a weight tensor and a
cascaded function applied to the same tensor as

Wℓ = Ŵℓ ⊙
[
ψ3 ◦ ψ2 ◦ ψ1(Ŵ

ℓ)
]
, (1)

being Ŵℓ a latent tensor andψ(Ŵℓ) (withψ = ψ3◦ψ2◦ψ1)
a continuous relaxation of Mℓ which enforces the prior
that (i) smallest weights Ŵℓ should be removed from
the network, (ii) the underlying mask entries ψ(Ŵℓ) are
shared (across tensor rows, columns, channels, etc.) when
pruning is structured, and (iii) any given mask entry in
ψ(Ŵℓ) is either unstructurally or structurally pruned. In
what follows, we detail the different parametrizations used
to define ψ(Ŵℓ); unless explicitly mentioned, we omit ℓ in
the definition of Ŵℓ and we rewrite it simply as Ŵ.

Band-stop Parametrization (ψ1). This parametrization ψ1

is entry-wise applied to the tensor Ŵ and enforces the prior
that smallest weights should be removed from the network.
In order to achieve this goal, ψ1 must be (i) bounded in [0, 1],
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(ii) differentiable, (iii) symmetric, and (iv) ψ1(ω)⇝ 1 when
|ω| is sufficiently large and ψ1(ω)⇝ 0 otherwise. The first
and the fourth properties ensure that the parametrization
is neither acting as a scaling factor greater than one nor
changing the sign of the latent weight, and also acts as the
identity for sufficiently large weights, and as a contraction
factor for small ones. The second property is necessary
to ensure that ψ1 has computable gradient while the third
condition guarantees that only the magnitudes of the latent
weights matter. A choice, used in practice, that satisfies
these four conditions is

ψ1(ω) = 2
(
1 + exp(−σω2)

)−1 − 1, (2)

being σ a scaling factor that controls the crispness (bina-
rization) of mask entries in ψ1(Ŵ). According to Eq. 2,
σ controls the smoothness of ψ1 around the support of the
latent weights. This allows implementing an annealed (soft)
thresholding function that cuts-off all the connections in a
smooth and differentiable manner as training of the latent
parameters evolves. The asymptotic behavior of ψ1 — that
allows selecting the topology of the pruned subnetworks —
is obtained as training reaches the latest epochs, and this
makes mask entries, in ψ1(Ŵ), crisp and (almost) binary.
This mask ψ1(Ŵ) (rewritten for short as ψ1) is used as
input to the subsequent parameterizations ψ2 and ψ3 as
shown below.

Weight-sharing Parametrization (ψ2). This parametriza-
tion ψ2 implements semi-structured pruning by tying mask
entries belonging to the same rows, columns or channels in
the tensor ψ1. More precisely, each mask entry in ψ2(ψ1)
will either be (i) entry-wise evaluated (dependent only on
its underlying weight), or (ii) shared through multiple latent
weights belonging to the same row, column or channel of
ψ1 resulting into the following multi-head parametrization
(see Fig. 1)

ψ2(ψ1) =



ψu
2 (ψ1) = ψ1

unstructured (entry-wise)
ψr
2(ψ1) = vec−1(Pr vec(ψ1))

structured (row-wise)
ψc
2(ψ1) = vec−1(vec(ψ1)

⊤ Pc)

structured (column-wise)
ψb
2(ψ1) = vec−1(PrP

⊤
c vec(ψ1))

structured (block/channel-wise),
(3)

here vec (resp. vec−1) reshapes a matrix into a
vector (resp. vice-versa), and Pr ∈ {0, 1}(dℓ−1×dℓ)

2

,
Pc ∈ {0, 1}(dℓ−1×dℓ)

2

are two (layer-wise fixed) adjacency
matrices that model the neighborhood system across
respectively the rows and the columns of ψ1 (in other words,
[Pr]ij,pq ̸= 0 iff the two connections (i, j), (p, q), in a

given layer, share the same neuron, i.e., i = p) whilst the
product PrP

⊤
c ∈ {0, 1}(dℓ−1×dℓ)

2

models this neighbor-
hood through blocks/channels of ψ1. When composed (with
ψ1), the mask ψ2 inherits all the aforementioned fourth
properties: mask entries in ψ2(ψ1) remain bounded in [0, 1],
differentiable, symmetric, and close to 1 when entries of
the latent tensor Ŵ (i.e., inputs of ψ1) are sufficiently large
and 0 otherwise.

Gating Parametrization (ψ3). As each connection in gθ is
endowed with a multi-head parametrization ψ2, we define
ψ3 as a gating mechanism that selects only one of them.
More precisely, each mask entry can either be (i) entry-
wise pruned, i.e., untied, or (ii) tied to its row, column or
block/channel. Again with ψ3, the composed parametriza-
tion ψ3(ψ2) is bounded in [0, 1], differentiable, symmet-
ric and reaches 1 if the entries of the latent tensor Ŵ are
sufficiently large, and 0 otherwise. Formally, the gating
mechanism ψ3 is defined as

ψ3(ψ2) = ψb
2︸︷︷︸

block-wise

+ (ψ̄b
2)⊙ ψc

2︸ ︷︷ ︸
column-wise

+ (ψ̄b
2 ⊙ ψ̄c

2)⊙ ψr
2︸ ︷︷ ︸

row-wise
+ (ψ̄b

2 ⊙ ψ̄c
2 ⊙ ψ̄r

2)⊙ ψu
2︸ ︷︷ ︸

entry-wise

,

(4)

being ψ̄b
2 = U− ψb

2, and U a tensor of ones with the same
dimensions as ψb

2 (and ψ̄r
2 , ψ̄c

2, ψ̄u
2 are similarly defined). It

is easy to see that when entries in ψ1 (and hence ψ2) are
crisp, at most one of these four terms is activated (i.e., equal
to one) for each connection in gθ. From Eq. 4, block-wise
pruning has the highest priority, followed by column-wise,
row-wise and then entry-wise pruning respectively. This
priority allows designing highly efficient lightweight net-
works with a coarse-granularity budget implementation for
block/column/row-wise (structured) pruning, while entry-
wise (unstructured) pruning is less computationally efficient
but allows reaching any targeted budget with a finer gran-
ularity, and thereby with a better accuracy. Note that this
parametrization acts as a weight regularizer which not only
improves the lightweightness of the pruned networks but
also their generalization performances (as shown later in
experiments). Note also that ψ1 and ψ2 are commutable
in the cascaded parameterization ψ = ψ3 ◦ ψ2 ◦ ψ1 but ψ3

should be applied at the end of the cascade.

4.2. Budget-Aware Variational Pruning

By considering Eq. 1, we define our semi-structured pruning
loss as

Le

(
{ψ3 ◦ ψ2 ◦ ψ1(Ŵ

ℓ)⊙ Ŵℓ}ℓ
)

+λ

( L−1∑
ℓ=1

1⊤dℓ
[ψ3 ◦ ψ2 ◦ ψ1(Ŵ

ℓ)] 1dℓ+1
− c

)2

,
(5)
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Band−stop

Gating

Weight sharing GatingBand−stop

Latent Weights Binary Mask

Block/channel−wise sharing

Column−wise sharing

Row−wise sharing

Entry−wise

ψ1

wi,j

wi,j

wi,j

wi,j

wi,j

Ŵ

wi,j ψb
2

ψc
2

ψr
2

ψu
2

wi,j

ψ3

Figure 1: This figure shows the three stages of the cascaded parametrization including (i) band-stop, (ii) weight-sharing and
(iii) gating. Cyan stands for shared connections, and the triangle for the “not gate” operator. For ease of visualization, only 4
connections are shown during the whole evaluation of the parameterization, and only the outcome (1 or 0) of wi,j is shown
in the final mask tensor.

being 1dℓ
a vector of dℓ ones, and the left-hand side term

is the cross entropy loss that measures the discrepancy be-
tween predicted and ground-truth labels. The right-hand
side term is a budget loss that allows reaching any targeted
pruning cost c. Nonetheless, it’s worth noticing that actual
efficiency is not only related to the pruning rate but also to
the actual dimensionality of the tensors. In order to take
full advantage of the semi-structured setting of our method,
we complement the aforementioned budget function with
another one that minimizes the rank of the pruned tensors
{ψ3 ◦ψ2 ◦ψ1(Ŵ

ℓ
)
}ℓ. However, as the rank is not differen-

tiable, we consider a surrogate function (as an upper bound)
of the rank1. Hence, Eq. 5 becomes

Le

(
ψ3 ◦ ψ2 ◦ ψ1(Ŵ

ℓ
)
⊙ {Ŵℓ}ℓ)

+λ

( L−1∑
ℓ=1

1⊤dℓ
[ψ3 ◦ ψ2 ◦ ψ1(Ŵ

ℓ)] 1dℓ+1
− c

)2

+β

L−1∑
ℓ=1

r[(ψ3 ◦ ψ2 ◦ ψ1(Ŵ
ℓ)],

(6)

being r[W] a surrogate differentiable rank function set in
practice to

r[W] =
[
1⊤dℓ+1

− exp(−γ1⊤dℓ
W)

]
1dℓ+1

+1⊤dℓ

[
1dℓ
− exp(−γW1dℓ+1

)
]
,

(7)

being γ an annealed temperature and exp(.) is entry-wise
applied. Eq. 7 seeks to minimize the number of non-null
rows/columns in a given tensor W, and this allows achiev-
ing higher speedup compared to when only the budget loss
is minimized (see experiments). In Eq. 6, β controls the

1This function is an upper bound of the rank as it corresponds
to the sum of the number of non-zero rows and non-zero columns.

“structureness” of pruning; large β favors stringent tensors
first through blocks, columns and then through rows, while
smaller β leads to mixed structured and unstructured prun-
ing. Once the above loss optimized, actual rank minimiza-
tion requires reordering dimensions layer-wise in order to
fully benefit from compact tensors and eliminate fragmenta-
tion; this is achievable as only outward connections, from
unpruned neurons in each layer, are actually pruned during
optimization.

4.3. Optimization

Let L denote the global loss in Eq. 6, the update of {Ŵℓ}ℓ
is achieved using the gradient of L obtained by propagating
the gradients through gθ. More precisely, considering the
parametrization in Eq. 1, the gradient of the global loss w.r.t.
Ŵℓ is obtained as

∂L
∂Ŵℓ

=
∂L

∂ψ(Ŵℓ)

∂ψ(Ŵℓ)

∂ψ2 ◦ ψ1(Ŵℓ)

∂ψ2 ◦ ψ1(Ŵ
ℓ)

∂ψ1(Ŵℓ)

∂ψ1(Ŵ
ℓ)

∂Ŵℓ
,

(8)
here the original gradient ∂L/∂ψ(Ŵℓ) is obtained from
layer-wise backpropagation, and ∂L

∂Ŵℓ
is obtained by multi-

plying the original gradient by the three rightmost Jacobians
(whose matrix forms are shown in Table 1).
In the above objective function, β = 0.1 and λ is overesti-
mated (to 1000 in practice) in order to make Eq. 6 focusing
on the implementation of the budget. As training reaches its
final epochs, the budget loss reaches its minimum and the
gradient of the global objective function will be dominated
by the gradient of Le (and to some extent by the gradi-
ent of the surrogate rank function); this allows improving
both classification performances and efficiency as shown
subsequently.
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Entry-wise Row-wise Column-wise Block-wise

[J1]ij,pq = 1{ij=pq}ψ
′
1(Ŵpq) NA NA NA

[Ju
2 ]ij,pq = 1{ij=pq} [Jr

2]ij,pq = [Pr]ij,pq [Jc
2]ij,pq = [P′

c]ij,pq [Jb
2]ij,pq = [PrP

′
c]ij,pq

[Ju
3 ]ij,pq = 1{ij=pq} [Jr

3]ij,pq = 1{ij=pq} [Jc
3]ij,pq = 1{ij=pq} [Jb

3]ij,pq = 1{ij=pq}
×[ψ̄b

2 ⊙ ψ̄c
2 ⊙ ψ̄r

2]pq ×[ψ̄b
2 ⊙ ψ̄c

2 ⊙ ψ̄u
2 ]pq ×[ψ̄b

2 ⊙ ψ̄r
2 ⊙ ψ̄u

2 ]pq ×[ψ̄c
2 ⊙ ψ̄r

2 ⊙ ψ̄u
2 ]pq

Table 1: Jacobians of different parametrizations w.r.t. different settings; here [J1]ij,pq = [∂ψ1/∂Ŵ]ij,pq , [Jx
2 ]ij,pq = [∂ψx

2 /
∂ψ1]ij,pq and [Jx

3 ]ij,pq = [∂ψ3/∂ψ
x
2 ]ij,pq with x ∈ {u, r, c, b}; here u, r, c and b stand for entry-wise, row-wise, column-

wise and block-wise respectively. It is easy to see that all these Jacobians are extremely sparse and their evaluation is highly
efficient. In this table, NA stands for not applicable as the Jacobian of the parametrization ψ1 is necessarily entry-wise.

5. Experiments
This section assesses baseline and pruned GCNs’ perfor-
mance in skeleton-based recognition using SBU Interac-
tion (Yun et al., 2012) and the First Person Hand Action
(FPHA) (Garcia-Hernando et al., 2018) datasets, comparing
our lightweight GCNs against related pruning techniques.
SBU is an interaction dataset acquired using the Microsoft
Kinect sensor, it contains 282 moving skeleton sequences
performed by two interacting individuals and belonging
to 8 categories. Each pair of interacting individuals corre-
sponds to two 15 joint skeletons, each one encoded with a
sequence of its 3D coordinates across video frames. The
evaluation protocol follows the train-test split as in the orig-
inal dataset release (Yun et al., 2012). The FPHA dataset
includes 1175 skeletons belonging to 45 action categories
performed by 6 different individuals in 3 scenarios. Ac-
tion categories are highly variable, including various styles,
speed, scale, and viewpoint. Each skeleton includes 21 hand
joints, each one again encoded with a sequence of its 3D
coordinates across video frames. The performances of dif-
ferent methods are evaluated using the 1:1 setting proposed
in (Garcia-Hernando et al., 2018) with 600 action sequences
for training and 575 for testing. The average accuracy over
all classes of actions is reported in all experiments.

Input graphs. Let’s consider a sequence of skeletons {St}t
with St = {p̂t1, . . . , p̂tn} being the 3D skeleton coordinates
at frame t, and {p̂tj}t a joint trajectory through successive
frames. We define an input graph G = (V, E) as a finite
collection of trajectories, with each node vj ∈ V in G being
a trajectory {p̂tj}t, and an edge (vj , vi) ∈ E exists between
two nodes if the underlying trajectories are spatially
neighbors. Each trajectory is processed using temporal
chunking, which splits the total duration of a sequence into
M evenly-sized temporal chunks (with M = 4 in practice).
Then, joint coordinates {p̂tj}t of the trajectory are assigned
to these chunks, based on their time stamps. The averages
of these chunks are concatenated in order to create the raw
description of the trajectory (denoted as ϕ(vj) ∈ Rs with
s = 3×M ). This process preserves the temporal structure

Method Accuracy (%)
Raw Position (Yun et al., 2012) 49.7

Joint feature (Ji et al., 2014) 86.9
CHARM (Li et al., 2015) 86.9
H-RNN (Du et al., 2015) 80.4

ST-LSTM (Liu et al., 2016) 88.6
Co-occurrence-LSTM (Zhu et al., 2016b) 90.4

STA-LSTM (Song et al., 2017) 91.5
ST-LSTM + Trust Gate (Liu et al., 2016) 93.3

VA-LSTM (Zhang et al., 2017a) 97.6
GCA-LSTM (Liu et al., 2017a) 94.9

Riemannian manifold. traj (Kacem et al., 2018) 93.7
DeepGRU (Maghoumi & LaViola, 2019) 95.7

RHCN + ACSC + STUFE (Li et al., 2020) 98.7
Our baseline (unpruned) GCN 98.4

Table 2: Comparison of our baseline GCN against related work
on the SBU database.

Method Color Depth Pose Accuracy (%)
2-stream-color (Feichtenhofer et al., 2016) ✓ ✗ ✗ 61.56
2-stream-flow (Feichtenhofer et al., 2016) ✓ ✗ ✗ 69.91
2-stream-all (Feichtenhofer et al., 2016) ✓ ✗ ✗ 75.30
HOG2-dep (Ohn-Bar & Trivedi, 2014) ✗ ✓ ✗ 59.83

HOG2-dep+pose (Ohn-Bar & Trivedi, 2014) ✗ ✓ ✓ 66.78
HON4D (Oreifej & Liu, 2013) ✗ ✓ ✗ 70.61

Novel View (Rahmani & Mian, 2016) ✗ ✓ ✗ 69.21
1-layer LSTM (Zhu et al., 2016b) ✗ ✗ ✓ 78.73
2-layer LSTM (Zhu et al., 2016b) ✗ ✗ ✓ 80.14
Moving Pose (Zanfir et al., 2013) ✗ ✗ ✓ 56.34

Lie Group (Vemulapalli et al., 2014) ✗ ✗ ✓ 82.69
HBRNN (Du et al., 2015) ✗ ✗ ✓ 77.40

Gram Matrix (Zhang et al., 2016) ✗ ✗ ✓ 85.39
TF (Garcia-Hernando & Kim, 2017) ✗ ✗ ✓ 80.69

JOULE-color (Hu et al., 2015) ✓ ✗ ✗ 66.78
JOULE-depth (Hu et al., 2015) ✗ ✓ ✗ 60.17
JOULE-pose (Hu et al., 2015) ✗ ✗ ✓ 74.60
JOULE-all (Hu et al., 2015) ✓ ✓ ✓ 78.78

Huang et al. (Huang & Van Gool, 2017) ✗ ✗ ✓ 84.35
Huang et al. (Huang et al., 2018b) ✗ ✗ ✓ 77.57

HAN (Liu et al., 2021) ✗ ✗ ✓ 85.74
Our baseline (unpruned) GCN ✗ ✗ ✓ 86.43

Table 3: Comparison of our baseline GCN against related work
on the FPHA database.
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of trajectories while being frame-rate and duration agnostic.

Implementation details & baseline GCNs. All the GCNs
have been trained using the Adam optimizer for 2, 700
epochs with a batch size of 200 for SBU and 600 for
FPHA, a momentum of 0.9, and a global learning rate
(denoted as ν(t)) inversely proportional to the speed of
change of the loss used to train the networks; with ν(t)
decreasing as ν(t) ← ν(t − 1) × 0.99 (resp. increasing
as ν(t) ← ν(t − 1)/0.99) when the speed of change of
the loss in Eq. 6 increases (resp. decreases). Experiments
were run on a GeForce GTX 1070 GPU device with 8
GB memory, without dropout or data augmentation. The
baseline GCN architecture for SBU includes an attention
layer of 8 heads, a convolutional layer of 16 filters, a dense
fully connected layer, and a softmax layer. The baseline
GCN architecture for FPHA is heavier and includes 16
heads, a convolutional layer of 32 filters, a dense fully
connected layer, and a softmax layer. Both the baseline
GCN architectures, on the SBU and the FPHA benchmarks,
are accurate (see tables. 2 and 3), and our goal is to make
them lightweight while maintaining their high accuracy.

Pruning rates Accuracy (%) SpeedUp Observation
0% 98.40 none Baseline (unpruned) GCN

70% 93.84 none Band-stop Weight Param.

90%

87.69 426× Structured
89.23 487× Structured (+ rank optimization)
93.84 none Unstructured
93.84 16× Unstructured (+ rank optimization)
90.76 40× Semi-structured
89.23 52× Semi-structured (+ rank optimization)

95%

87.69 678× Structured
87.69 787× Structured (+ rank optimization)
92.30 none Unstructured
92.30 16× Unstructured (+ rank optimization)
92.30 109× Semi-structured
93.84 106× Semi-structured (+ rank optimization)

98%

81.53 797× Structured
81.53 2195× Structured (+ rank optimization)
89.23 none Unstructured
89.23 106× Unstructured (+ rank optimization)
83.07 135× Semi-structured
86.15 607× Semi-structured (+ rank optimization)

Comparative (regularization-based) pruning

98%

55.38 none MP+ℓ0-reg.
73.84 none MP+ℓ1-reg.
61.53 none MP+Entropy-reg.
75.38 none MP+Cost-aware-reg.

Table 4: This table shows detailed performances and ab-
lation study on SBU for different pruning rates. “none”
stands for no-actual speedup is observed as the underly-
ing tensors/architecture remain shaped identically to the
unpruned network (despite having pruned connections). For
structured, unstructured and semi-structured settings, when
“rank optimization” is not used, only pruning rate is consid-
ered in the loss together with cross entropy. When “rank
optimization” is used, all the three terms are combined in
the loss.

Pruning rates Accuracy (%) SpeedUp Observation
0% 86.43 none Baseline (unpruned) GCN

50% 85.56 none Band-stop Weight Param.

90%

68.00 274× Structured
71.30 547× Structured (+ rank optimization)
83.82 none Unstructured
84.17 16× Unstructured (+ rank optimization)
78.60 33× Semi-structured
80.52 38× Semi-structured (+ rank optimization)

95%

56.69 759× Structured
62.60 931× Structured (+ rank optimization)
78.78 none Unstructured
80.17 29× Unstructured (+ rank optimization)
72.17 197× Semi-structured
74.60 214× Semi-structured (+ rank optimization)

98%

47.47 1479× Structured
49.04 1399× Structured (+ rank optimization)
78.08 none Unstructured
77.56 126× Unstructured (+ rank optimization)
75.13 33× Semi-structured
73.91 278× Semi-structured (+ rank optimization)

Comparative (regularization-based) pruning

98%

64.69 none MP+ℓ0-reg.
70.78 none MP+ℓ1-reg.
67.47 none MP+Entropy-reg.
69.91 none MP+Cost-aware-reg.

Table 5: This table shows detailed performances and ab-
lation study on FPHA for different pruning rates. “none”
stands for no-actual speedup is observed as the underly-
ing tensors/architecture remain shaped identically to the
unpruned network (despite having pruned connections).

Performances, Comparison & Ablation. Tables 4-5 show
a comparison and an ablation study of our method both on
the SBU and the FPHA datasets. First, according to the
observed results, when only the cross entropy loss is used
without budget (i.e., λ = β = 0 in Eq. 6), performances
are close to the initial heavy GCNs (particularly on FPHA),
with less parameters2 as this produces a regularization
effect similar to (Wan et al., 2013). Then, when pruning is
structured, the accuracy is relatively low but the speedup
is important particularly for high pruning regimes. When
pruning is unstructured, the accuracy reaches its highest
value, but no actual speedup is observed as the architecture
of the pruned networks remains unchanged (i.e., not
compact). When pruning is semi-structured, we observe
the best trade-off between accuracy and speedup; in other
words, coarsely pruned parts of the network (related to
entire block/column/row connections) lead to high speedup
and efficient computation, whereas finely pruned parts
(related to individual connections) lead to a better accuracy
with a contained marginal impact on computation, so
speedup is still globally observed with a significant amount.
Extra comparison of our method against other regularizers
shows a substantial gain. Indeed, our method is compared
against different variational pruning with regularizers
plugged in Eq. 6 (instead of our proposed budget and rank

2Pruning rate does not exceed 70% and no control on this rate
is achievable when λ = 0.
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Figure 2: This figure shows a crop of the mask tensor obtained after the gating parametrization when trained on the FPHA
dataset. Top-left corresponds to the original mask (without pruning) while the others correspond to masks obtained with
structured, unstructured and semi-structured pruning respectively. In all these masks, each diagonal block corresponds to a
channel. Better to zoom the PDF.

regularizers), namely ℓ0 (Louizos et al., 2017), ℓ1 (Koneru
& Vasudevan, 2019), entropy (Wiedemann et al., 2019)
and ℓ2-based cost (Lemaire et al., 2019), all without our
parametrization. From the observed results, the impact
of our method is substantial for different settings and for
equivalent pruning rate (namely 98%). Note that when
alternative regularizers are used, multiple settings (trials)
of the underlying mixing hyperparameters (in Eq. 6)
are considered prior to reach the targeted pruning rate,
and this makes the whole training and pruning process
overwhelming. While cost-aware regularization makes
training more affordable, its downside resides in the
observed collapse of trained masks; this is a well known
effect that affects performances at high pruning rates.
Finally, Fig.2 shows examples of obtained mask tensors
taken from the second (attention) layer of the pruned GCN.
For semi-structured pruning, we observe a compact tensor
layer with some individually pruned connections whereas
structured and unstructured pruning — when applied
separately — either produce compact or spread tensors,
with a negative impact on respectively accuracy or speed.
In sum, semi-structured pruning gathers the advantages of
both while discarding their inconveniences.

6. Conclusion
This paper introduces a novel magnitude pruning approach
that combines both the strengths of structured and unstruc-
tured pruning methods while discarding their drawbacks.
The proposed method, dubbed as semi-structured, is based
on a novel cascaded weight parametrization including band-
stop, weight-sharing, and gating mechanisms. Our pruning
method also relies on a budget loss that allows implement-
ing fine-grained targeted pruning rates while also reducing
the rank of the pruned tensors resulting in more efficient and
still effective networks. Extensive experiments, conducted
on the challenging task of skeleton-based recognition, cor-
roborate all these findings.
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