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Figure 1. Illustration shows the pipeline created for generating the synthetic point cloud dataset. Step (1) shows the process of gathering
images of a combine harvester. Step (2) shows the combine harvester mesh, extracted using GOF. Step (3) shows an example of a combine
harvester mesh employed in the Gazebo LiDAR simulation environment, where the LiDAR sensor is visualized as the red cylinder with
rays depicting the LiDAR scans. Step (4) shows an example of a final, synthetically generated, point cloud of a combine harvester.

Abstract

Training neural networks for tasks such as 3D point cloud001
semantic segmentation demands extensive datasets, yet ob-002
taining and annotating real-world point clouds is costly003
and labor-intensive. This work aims to introduce a novel004
pipeline for generating realistic synthetic data, by lever-005
aging 3D Gaussian Splatting (3DGS) and Gaussian Opac-006
ity Fields (GOF) to generate 3D assets of multiple differ-007
ent agricultural vehicles instead of using generic models.008
These assets are placed in a simulated environment, where009
the point clouds are generated using a simulated LiDAR.010
This is a flexible approach that allows changing the LiDAR011
specifications without incurring additional costs. We eval-012
uated the impact of synthetic data on segmentation models013
such as PointNet++, Point Transformer V3, and OACNN, by014
training and validating the models only on synthetic data.015
Remarkably, the PTv3 model had an mIoU of 91.35%, a016
noteworthy result given that the model had neither been017
trained nor validated on any real data. Further studies018
even suggested that in certain scenarios the models trained019
only on synthetically generated data performed better than020
models trained on real-world data. Finally, experiments021
demonstrated that the models can generalize across seman-022
tic classes, enabling accurate predictions on mesh models023
they were never trained on.024

1. Introduction 025

The demand for automation in the transportation sector for 026
self driving vehicles has, in recent years, fueled research for 027
having machines understand 3D environments [25]. As a 028
format to capture 3D information, point clouds are increas- 029
ingly popular due to their efficiency and direct representa- 030
tion of LiDAR data. Commonly, for the models to under- 031
stand the composition of the environment represented by 032
the point cloud, semantic segmentation is used as it pro- 033
vides per-point class-wise information, thus getting an un- 034
derstanding of the complete environment [14, 19–21, 31– 035
33, 39]. An example of this is autonomous driving, where 036
point cloud semantic segmentation is used to identify vehi- 037
cles, road signs, pedestrians, etc. [25]. 038

However, obtaining and annotating point clouds is a 039
well-known tedious and expensive task, making the avail- 040
able training resources sparse compared to the training 041
datasets for image recognition. This has led a wave of re- 042
search into both using the point clouds more efficiently by 043
augmenting them [4, 13], and methods for generating new, 044
annotated point clouds synthetically using simulated envi- 045
ronments relying on existing 3D assets [16, 30, 37]. The is- 046
sue with using existing 3D assets arises when models need 047
training for niche tasks with a sparse amount of available 3D 048
assets. As a method to mitigate this issue, we propose the 049
use of 3D Gaussian splatting (3DGS) to generate 3D assets 050
that can be used to generate synthetic point cloud datasets. 051
3DGS is used due to the ease of only needing a digital cam- 052
era for capturing useful data, and a few hours of GPU time 053
to get a mesh. In this project, the method is tested as a use 054
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case to generate and train point cloud semantic segmenta-055
tion models in a self driving tractor scenario, with synthetic056
data acquired using the pipeline shown in Figure 1. This is057
a motivating domain for the proposed pipeline, as the ex-058
isting 3D data is sparse and the meshes needed would be059
hard to model from scratch. As a proof of concept, the class060
count is reduced to: tractor, combine harvester, and other,061
as these vehicles often carry out collaborative tasks. Our062
key contributions are as follows:063

• We present a novel way of generating high-quality Li-064
DAR data from 3DGS.065

• We demonstrate that by training a model purely on syn-066
thetic data it is possible to achieve high performance on067
real world data.068

• We show that our method generalizes to objects not seen069
during training, highlighting its robustness and adaptabil-070
ity.071

• Our method allows seamless modification of LiDAR-072
specific settings and the choice of mesh models used in073
the simulation, enabling greater adaptability to different074
sensing conditions and environments.075

2. Related work076

2.1. Point Cloud Semantic Segmentation077

Segmentation of 3D points is a common problem in the078
field of 3D computer vision. Many methods have been pro-079
posed to tackle the challenge of segmenting the unstruc-080
tured and irregular-spaced point clouds [14, 19–21, 31–081
33, 39]. These methods can be categorized into two cat-082
egories: point-based models and voxel-based models [19].083
Point-based methods directly manipulate the unstructured084
point clouds using point-wise operations. One such method085
is PointNet [20], which introduced a novel deep learning086
architecture used for point cloud semantic segmentation.087
However, the network cannot capture local structures due088
to the lack of neighborhood processing, limiting its ability089
to recognize fine-grained patterns and generalize to com-090
plex scenes. This was improved in PointNet++ [21] by par-091
titioning the point set into local overlapping regions, and092
then recursively applying PointNet to obtain the local fea-093
tures. Dynamic Graph CNN, proposed by Wang et al. [31],094
is another method which expands upon the PointNet archi-095
tecture, this time by implementing a new convolutional op-096
eration, EdgeConv, which allows the extraction of the local097
neighborhood features for each point. Another prominent098
point-based method is the transformer-based models, which099
leverages the attention mechanism [28] that has gained100
prominence across various domains, including point cloud101
segmentation. The Point Transformer V3 (PTv3) [33] ad-102
vances point cloud segmentation by emphasizing scalabil-103
ity and efficiency. Unlike its predecessors, PTv1 [39] and104
PTv2 [32], which introduced local attention mechanisms,105

grouped vector attention, improved position encoding, and 106
partition-based pooling, PTv3 focuses on the benefits of 107
scaling rather than architectural complexity. It replaces the 108
K-Nearest Neighbors (KNN) query with serialized patterns 109
like Z-order and Hilbert curves, significantly reducing com- 110
putational overhead, as KNN accounted for 28% of PTv2’s 111
forward time. Additionally, PTv3 refines the positional en- 112
coding, further enhancing the model’s efficiency and ability 113
to handle large-scale point clouds. 114

Voxel-based methods convert the point clouds into a 115
voxel grid during data pre-processing. A recent paper by 116
Peng et al. [19], introduced an Omni-Adaptive CNN which 117
addressed the common problem of adaptivity for previous 118
voxel-based methods [19]. They created an Adaptive Rela- 119
tion Convolution, and a corresponding adaptive aggregator, 120
which dynamically adjusts the receptive field, allowing the 121
model to focus more on parts with many defining features. 122

2.2. Synthetic data generation 123

Multiple methods have been proposed to generate synthetic 124
annotated point cloud datasets [4, 13, 16, 26, 30, 34, 37]. 125
These methods can be categorized into using augmented 126
real point clouds or using simulated environments. A recent 127
method that uses simulated point clouds that are then further 128
processed by an augmentation process is suggested by Xiao 129
et al. [34], proposing the use of the Unreal Engine to create 130
a synthetic LiDAR segmentation dataset where they used an 131
adversarial network to transform the synthetic point clouds 132
that are acquired from the simulated environment, into point 133
clouds that are closer to what would be sampled in reality. 134

Chen et al. [4] proposes to linearly interpolate between 135
point clouds of the same classes to generate new training 136
data. Another augmentation method by Li et al. [13] pro- 137
pose an augmentation neural network trained together with 138
a classifier neural network in an adversarial manner. How- 139
ever, this method has not been tested on point cloud seg- 140
mentation tasks. 141

Focusing on simulated environments, Ma et al. [16] uses 142
building models to create synthetic annotated point clouds 143
for training segmentation tasks. The point cloud sampling 144
method used in the study resulted in uniformly sampled 145
point clouds, whereas real point clouds would have non- 146
uniform sparsity. This, according to the paper, is something 147
that could be improved upon, as synthetic data should be 148
similar to the real data. 149

Another simulated approach by Wang et al. [30] uses a 150
simulated city environment made with the CARLA simula- 151
tion tool [6], where the LiDAR is simulated with ray cast- 152
ing to get a synthetic segmented LiDAR point cloud dataset. 153
Similarly, Yue et al. [37] uses the video game Grand Theft 154
Auto V to simulate an outdoor driving environment. Using 155
plugins, a synthetic dataset is generated from the simula- 156
tion. An approach that focuses on human body part segmen- 157
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tation proposed by Takamz et al. [26], used mesh scenes158
from the ScanNet dataset[5] with human models, where the159
poses of the humans have been generated. These scenes160
are then sampled with a simulated depth camera to obtain161
annotated point clouds. This method relies on having a pre-162
existing dataset of scenes, and a model [38] to generate syn-163
thetic humans in the scene. Due to this, it is ill suited for164
making datasets of niche tasks.165

2.3. Novel View Synthesis166

Novel view synthesis aims to generate an unseen view of a167
scene from an arbitrary viewpoint. It can, however, also be168
used to capture the geometry of a scene. Mildenhall et al.169
[17] introduced Neural Radiance Field (NeRF), which uses170
a multi-layer perceptron (MLP) to represent a 3D scene, in-171
cluding view-dependent reflections, colors, and geometry.172
Although later enhancements in NeRF have improved the173
rendering speed [9, 22, 35], and anti-aliasing [1, 2], they174
are still implicit, as the scene is encoded in the weights of175
the model. This results in extra long inference times that176
can be reduced only by lowering the quality of the visuals.177
Another method used to synthesize novel views is 3D Gaus-178
sian Splatting, introduced by Kerbl et al. [11], which uses179
3D Gaussians to represent a scene explicitly, thus allowing180
real-time rendering, editable scenes, and a more accurate181
extraction of geometry. Furthermore, in recent years NeRF182
and 3DGS methods have been used to generate synthetic183
data, though so far limited to dense image tasks such as184
stereo vision and optical flow [7, 15, 23, 27].185

2.4. Mesh Extraction186

Photorealistic rendering through 3DGS has shown remark-187
able efficiency compared to NeRFs, however, generating188
accurate geometric reconstructions from these scene rep-189
resentations, remains a challenging problem. This chal-190
lenge arises from the inherently disconnected nature of indi-191
vidual Gaussian primitives, and the complexity of aligning192
these Gaussians with continuous surfaces for reconstruc-193
tion. [8, 10, 36]194

SuGaR, introduced by Guédon et al. [8], regularizes the195
3D gaussians to align with surfaces, allowing them to com-196
pute the surface normals. Using the regularized 3D gaus-197
sians and the computed normals, a Poisson surface recon-198
struction is employed to generate the mesh. Huang et al.199
[10] proposes 2DGS, which, instead of the original 3D200
gaussians splats, uses 2D gaussians to recreate the radi-201
ance field. The meshes are then reconstructed through depth202
maps of the radiance field using Truncated Signed Distance203
Function.204

Yu et al. [36] introduced Gaussian Opacity Fields205
(GOF), a state-of-the-art technique that directly extracts sur-206
face normals from the 3D Gaussian representations, with-207
out requiring prior regularization or conversion to 2D. This208

Figure 2. Illustration of the pipeline used to obtain synthetic
datasets.

method mitigates the inevitable data loss that happens when 209
regularizing or reducing the dimension of the radiance field, 210
enhancing the quality in more detailed parts. Using the ex- 211
tracted normals, the final mesh extraction is done by uti- 212
lizing tetrahedral grids and the Marching Tetrahedra algo- 213
rithm. 214

3. Methods 215

3.1. Data Acquisition & Processing Pipeline 216

To evaluate the influence of synthetic data on a point cloud 217
semantic segmentation model, a baseline model is trained 218
using only ’real’ data acquired with an Ouster OS0 LiDAR 219
[18]. A baseline model will be trained for each model tested 220
in the paper. The effect of using synthetic data will be estab- 221
lished based on a comparison between the baseline models, 222
and models trained on both synthetic and real data. Fig- 223
ure 2 shows how data is acquired for the datasets, where 224
the training and validation data is comprised of synthetic 225
data. It also includes the pipeline for obtaining synthetic 226
data, which begins with capturing 700+ images of each ve- 227
hicle using a drone. These images are then processed to 228
extract 3D meshes using GOF [36]. Finally, the meshes are 229
imported into Gazebo [12], where a simulated LiDAR sen- 230
sor is used to generate the synthetic data. 231

3.2. LiDAR captured dataset 232

The real dataset, which is split into training, validation and 233
testing, is created by capturing LiDAR data from the real 234
world. The data capture process is performed by driving 235
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Figure 3. Drone-captured frames of a tractor (left) and a combine
harvester (right) used in the 3D Gaussian Splatting mesh genera-
tion process.

around in a tractor, with the Ouster OS0-128 LiDAR sen-236
sor mounted on top, in a common agricultural scenario with237
multiple tractors and combine harvesters. Figure 3 presents238
an image of one of the tractors and an image of one of239
the combine harvesters. The data is collected in sequences240
of driving around for one minute, with the OS0-128 Li-241
DAR sensor sampling point clouds at 10 Hz, yielding 600242
point clouds per sequence. In total, 15 sequences from six243
different configurations have been acquired and annotated,244
where, for each scene configuration, the vehicles are moved245
to new positions. From the total amount of real data, the246
same five sequences, totaling 3,000 real point clouds, are247
used for the testing split for all tests performed. The five248
sequences are chosen such that the distribution of points249
per model is as even as possible across all possible tractor250
and combine models captured in the dataset. The remaining251
6,000 real point clouds, which come from different vehicle252
configurations than those used in the testing set, are then253
used in the training of the real-only baseline models.254

Each point cloud consists of around 50,000 points on255
average, where each point is labeled into separate classes.256
The dataset has three different classes: tractor, combine har-257
vester, and other. Additionally, the average class-wise point258
distribution for each point cloud is 6.5% tractor, 12.6%259
combine harvester and 80.9% other. To annotate the point260
cloud the static environment used to capture the data is261
leveraged to create a combined point cloud for each se-262
quence using KISS-ICP [29]. Clustering is then applied to263
each vehicle in the combined points cloud and these clus-264
ters are used to annotate the individual point clouds in the265
sequence.266

3.3. Synthetic Data Generation267

Multiple methods can be used to generate synthetic point268
cloud data, as mentioned in Section 2.2. Xiao et al. [34],269
showed that synthetic data, modified to close the sim-to-270
real gap, outperformed the purely synthetic data. This mo-271
tivates the use of a simulated environment where points can272
be sampled in a LiDAR pattern compared to uniformly sam-273
pling points from the surfaces of the meshes as done by Ma274
et al. [16]. When producing synthetic data using our simu-275

Figure 4. Figure shows a generated mesh where a single combine
harvester has been cropped out, yielding a usable mesh for the
Gazebo simulation.

lation, data is only generated for the three different classes 276
also available in the real-world LiDAR captured dataset. 277

Mesh generation: To simulate the environment, which 278
synthetic point clouds will be extracted from, it is of utmost 279
importance to obtain the best possible meshes of the vehi- 280
cles in the scene. The better the meshes resemble the real- 281
world vehicles, the better the simulated LiDAR will be at 282
sampling synthetic point clouds close to an actual real-life 283
scene. The method for generating the meshes starts with 284
capturing images of a scene where the vehicle is focused 285
in the middle. This was done by capturing a video with a 286
drone flying slowly around the vehicle, then sampling im- 287
ages from the video at a consistent interval. 288

Using the captured images, the initial sparse point cloud 289
is computed using the Structure-from-Motion (SfM) imple- 290
mentation in COLMAP [24]. Following this, the sparse 291
SfM point cloud is utilized for the 3DGS mesh extraction al- 292
gorithm. Through initial experimentation, it was found that, 293
out of SuGaR [8], 2DGS [10] and GOF [36], the meshes 294
extracted using GOF yielded the best results, with the high- 295
est degree of fidelity. Meshes were then generated for all 296
the different vehicles, which includes seven different tractor 297
models for the tractor class of the dataset, and three differ- 298
ent combine harvesters for the combine class. An example 299
of a combine harvester mesh can be seen in Figure 4. A 300
bit of post-processing is done on the meshes, since the out- 301
put from the 3DGS mesh extraction is one big mesh of the 302
whole scene. The post-processing comprises of cropping 303
out everything except the specific vehicle in question. The 304
meshes are then employed in the Gazebo simulation to gen- 305
erate the synthetic point clouds. Additionally, to achieve a 306
simulation environment resembling the real world as best as 307
possible, grass and other miscellaneous object meshes from 308
the 3DGS meshes are utilized as well. 309

Simulation Environment: Gazebo is an open-source sim- 310
ulation tool designed to simulate robotic applications. It is 311
built around the Ogre2 engine, and has an integrated LiDAR 312
plugin. Using the LiDAR plugin, it is possible to simulate 313
any real LiDAR sensor geometrically. For the data genera- 314
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Figure 5. The Gazebo simulation where the target assets have
moved to random positions. The LiDAR sensors position is
marked by the red cylinder. The blue rays visualize a sparse ver-
sion of the LiDAR rays

Figure 6. An annotated point cloud obtained from the gazebo
simulation containing tractors (green), combine harvesters (blue),
trailers(pink), and other (red).

tion the Ouster OS0-128 LiDAR is simulated, as it was used315
to capture the real dataset. Due to this, the synthetically316
extracted point clouds also end up being roughly the same317
size, with around 62,000 points on average per point cloud,318
with the average class-wise point distribution for each point319
cloud being 88.3% other, 5.0% tractor and 6.7% combine320
harvester.321

To use Gazebo as a dataset generator, a custom plugin322
is used to move the meshes of different classes and the Li-323
DAR to random positions. To avoid meshes being placed324
out of range for the LiDAR or overlapping with one another,325
placement rules were made for the meshes and the LiDAR326
sensor. The result of this is depicted on Figure 5 and 6.327

4. Experimental Design328

To evaluate the effectiveness of our synthetic point cloud329
generation method, we conduct a series of experiments fo-330
cused on 3D point cloud segmentation. This section focuses331
on outlining the 3D point cloud segmentation models used,332
the conducted tests and the dataset compositions used.333

4.1. 3D Point Cloud Segmentation Model Selection 334

All tests performed will be done on three different models, 335
specifically, PointNet++, PTv3 and OACNN. These models 336
were chosen on the basis that all three approach the point 337
cloud segmentation problem quite differently in their point 338
cloud processing and model architectures. The hyperpa- 339
rameters used for the three different models are based upon 340
the original paper implementations of the respective mod- 341
els. We performed a small search on the learning rate and 342
number of epochs, as shown in the supplementary materials. 343

4.2. Synthetic Only Training 344

Recent advances in Gaussian splatting scene representation 345
have allowed for easy generation of highly detailed meshes 346
of custom objects which are very difficult and time consum- 347
ing to model from scratch. The mesh representation can be 348
used to generate highly realistic semantic segmentation Li- 349
DAR datasets for training, as it is easy to model custom 350
LiDAR scanning patterns. Given the relative ease in gen- 351
erating synthetic datasets, it is interesting to test the perfor- 352
mance when only utilizing a synthetically generated dataset 353
to train a segmentation model. 354
To assess the models’ ability to generalize to real scenes, 355
when trained exclusively on synthetic point clouds, a test 356
is proposed. This test also assesses how accurate the sim- 357
ulation replicates real-world environments. The models are 358
trained on 10,000 synthetic point clouds and validated on 359
2,000 synthetic only point clouds, to ensure the models 360
trained using this approach, have never been exposed to 361
any real point clouds until it is tested. Lastly, the models 362
are tested on the test set containing 3,000 real point clouds, 363
outlined in Section 3.2. 364

4.3. Tractor Generalization Test 365

It can be hypothesized that this method of using syntheti- 366
cally generated data can generate otherwise hard to acquire 367
datasets of custom objects we have physical access to, with 368
sufficient fidelity, such that the models trained on the syn- 369
thetic datasets will be able to generalize to new unseen ob- 370
jects of the same semantic category, when captured with 371
real LiDAR sensors. 372
To test this hypothesis, multiple synthetic datasets were cre- 373
ated in which a tractor was removed from the available as- 374
sets during the generation process. As a result, each dataset 375
lacked one specific tractor model. Individual segmentation 376
models were then trained on these modified datasets and had 377
their performance evaluated on the same 3,000 real point 378
clouds as previous tests, which contains all the different 379
tractor models. 380

4.4. Extended Synthetic Dataset Test 381

Given the ease of generating synthetic point cloud datasets, 382
it is valuable to investigate how expanding the synthetic 383
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PointNet++ PTv3 OACNN
Class Baseline Synth only Baseline Synth only Baseline Synth only
Tractor 0.5580 0.6430 0.8675 0.7957 0.9052 0.7755
Combine 0.8180 0.7580 0.9145 0.8853 0.9273 0.8857
Other 0.9720 0.9670 0.9878 0.9790 0.9885 0.9793
mIoU 0.7824 0.7893 0.9232 0.8867 0.9403 0.8802

Table 1. Table displays the individual IoU’s and mIoU for each
model traing two different datasets. Baseline is trained on all the
available real data, and Synth only, is a synthetic only dataset with
10k point clouds.

dataset used in Section 4.2 affects the performance of mod-384
els trained exclusively on synthetic data. To explore this,385
we conduct an experiment in which the number of syn-386
thetic point clouds used for training is significantly in-387
creased, from the initial 10,000 to approximately 65,000,388
while keeping the model architecture and training pipeline389
consistent.390

4.5. Prediction Visualization for Analysis391

As the testing scenes are static, the transforms between each392
point cloud can be found using KISS-ICP [29]. The trans-393
forms can be used to align the point clouds for a testing394
sequence creating a combined point cloud. Visualizing this395
point cloud provides insight into how the models generally396
segment the point clouds. This is done to qualitatively asses397
the segmentation quality of the different models.398

5. Results399

5.1. Synthetic Only Test400

Table 1 presents the results for the synthetic only test, which401
tests the performance of training and validating the models402
without any real data. It can be seen that the mIoU across403
the models is on average 2.99 percentage points worse for404
the synthetic only models compared to the real only. The405
class specific IoU results reveal that all models struggle the406
most with the "tractor" class, which is consistent with the407
class-wise point distributions described in Section 3.3.408

5.2. Tractor Generalization Test409

The results from testing the ability to generalize across in-410
dividual tractor models within the same semantic class are411
presented in Figure 7. The figure displays each individual412
model that has been trained on a dataset missing the dis-413
played tractors, these models are also compared to the syn-414
thetic only model, seen in Section 5.1, as a baseline compar-415
ison which has been trained on all available tractors. The416
results show a general tendency towards a drop in perfor-417
mance when missing a tractor by, on average, 3.65% per-418
centage points.419

The mean of all the unseen tractor IoU’s is used as a met-420
ric to compare the mean tractor IoU for the seen tractors, as421
this gives an image of how well the models generalize to422

Model PTv3 OACNN
Mean IoU of unseen tractors 0.7273 0.7652
Mean IoU of seen tractors 0.7603 0.8052

Table 2. Figure shows the mean IoU of tractor models not included
in the training process compared to tractors which are included in
the training process.
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Figure 7. Figure shows the mIoU results for each test in which the
specified tractor model was not included in the training/validation
data. The "Synth only-10k" entry contains all the tractor models.

unseen tractors compared to seen tractors. This is repre- 423
sented in Table 2, where it can be seen that there is a av- 424
erage drop in accuracy for unseen tractors, but the effect is 425
limited, which shows that the models are able to generalize 426
on the tractor class. 427

An overall view of the difference between the model hav- 428
ing seen the tractor in the training set is presented in Figure 429
8. The matrix displays a small correlation between the trac- 430
tor missing in the training set, and a lower IoU of the tractor 431
in the testing set, however it is not always the case. 432

5.3. Extended Synthetic Dataset Test 433

The results of the test can be seen on Figure 9, which dis- 434
plays the results marked with the "Synth only-65k" label. It 435
can be seen that performance increases significantly with a 436
larger dataset, where PTv3 and OACNN achieve over 90% 437
in mIoU when trained only on 65k synthetic point clouds. 438
Additionally, it can be seen that both of the two syntheti- 439
cally trained PointNet++ models outperform the baseline, 440
which is trained only on real data. This could potentially 441
be due to the lack of augmentations in the PointNet++ im- 442
plementation as opposed to PTv3 and OACNN which use 443
several augmentation techniques. 444
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Figure 8. OACNN IoU of tractors when not in training set
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Figure 9. Figure shows the comparison between real only trained
baseline models and synth only 10k models, from Table 1, with
synth only trained models using 65k synthetic point clouds.

5.4. Qualitative Analysis445

Using the models trained in Section 4.2 and 4.4, all seen446
in Figure 9, combined point clouds can be used to find the447
places where they differ, that are not apparent from IoU and448
mIoU numbers. The first example of where they differ is449
in models under represented in the real training data. This450
is seen on Figure 10a, where the trailer is completely mis-451
classified as a combine harvester. On Figure 10b the model452
trained on the largest synthetic dataset handles the trailer453
perfectly and classifies it as the correct "other" class in the454
majority of the points. However, we find that the the syn-455
thetic models fail segmenting when tall grass is present, as456
shown in the supplementary materials.457

6. Discussion 458

Throughout the experiments in this paper, we have not fo- 459
cused on the performance of the individual segmentation 460
models, but rather on determining the influence of synthet- 461
ically generated data on the performance of point cloud 462
segmentation models. As a result, the performance in our 463
tests could potentially be improved by modifying and fine- 464
tuning the hyperparameters. One of the tests used to gauge 465
the influence of synthetic data on the segmentation models, 466
was the synthetic only test. This test showed that training 467
only on synthetic data, could potentially be a feasible solu- 468
tion in domains where data is hard to acquire. Especially 469
with larger synthetic datasets, as seen in Section 5.3, where 470
OACNN and PTv3, trained on 65k point clouds, compared 471
similarly to the baseline models which were trained on real 472
data. The qualitative analysis revealed that a trailer in the 473
testing dataset was misclassified as a combine with the real- 474
only OACNN baseline. This was not the case with the 475
OACNN model trained on 65k synthetic point clouds. The 476
big difference between the training datasets of these two 477
models, apart from the size, is the distribution of points 478
per mesh/model. In the synthetically generated dataset, the 479
trailer is much more common than in the real dataset. This, 480
along with the enlarged training dataset, could be the reason 481
for the increased performance. Additionally, the qualitative 482
analysis also revealed that the real data helps with the clas- 483
sification of the tall grass in the background of the point 484
clouds, as shown in the supplementary materials. This is 485
most likely due to the similarity of the testing- and train- 486
ing dataset as they were captured on the same field, which 487
would explain why the baseline outperformed the synthetic- 488
only model in the area with tall grass. 489

7. Conclusion 490

In this paper we have proposed and evaluated a novel 491
pipeline to efficiently train point cloud segmentation models 492
in scenarios with limited real data. The pipeline leverages 493
GOF, a state of the art technique for mesh extraction, to ob- 494
tain meshes that accurately represent target vehicles in high 495
detail. 496

A simulation environment, utilizing the high quality 497
meshes, was developed to efficiently generate LiDAR 498
datasets suitable for semantic segmentation. Secondly, a 499
semi-automatic annotation technique was developed, to an- 500
notate the data from the real LiDAR. 501

Three models were tested, namely: Point Transformer 502
V3 [33], Omni-Adaptive Sparse CNN [19], and Pointnet++ 503
[21]. Multiple tests were carried out for the different models 504
exploring different ways that synthetic data could be used to 505
train point cloud segmentation models. The synthetic only 506
test, seen in Section 5.1, shows the potential of training 507
models purely on synthetic data, with OACNN and PTv3 508
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(a) OACNN Baseline model point predictions. Notice how the trailer is incorrectly predicted to be a combine harvester, as highlighted by the red
bounding box.

(b) OACNN Synth only-65k model point predictions. Notice how the trailer is correctly predicted to be of the ”other“, as highlighted by the green
bounding box.

Figure 10. We compare the point predictions of a OACNN network trained in the baseline configuration versus trained with the Synth
only-65K configuration. The scene depicts a tractor and a trailer. The point colors indicate the predicted class: other, tractor, and
combine harvester

achieving +88% mIoU. Additionally, the extended dataset509
test, seen in Section 5.3, showed that expanding the dataset510
significantly improved the mIoU for all the models, with511
OACNN and PTv3 now surpassing +91% in mIoU, almost512
comparable to the baseline trained on real data. Secondly513
it was shown that the model is able to generalize well to514
unseen tractor models when trained only on synthetic data,515
with a mean performance drop in IoU for unseen tractors516
of 3.65 percentage points from Table 2. Thirdly, qualitative517
analysis showed that in some cases the models trained on518
synthetic data had more desirable predictions, which is also519
a strong argument for synthetic data, as this is presumably520
caused by the perfect annotations that are acquired when521

using the proposed pipeline. Finally, with the results gath- 522
ered from all the experiments, it is shown that using the 523
proposed novel pipeline for synthetic data acquisition, is a 524
viable solution when gathering data for training point cloud 525
segmentation models in uncommon domains. While this 526
paper focused on a single domain, there is strong evidence 527
which suggests that other domains would benefit from us- 528
ing a similar data generation pipeline. Moving forward, it 529
would be interesting to see the effects of this method on 530
more common domains, such as semanticKITTI [3], to eval- 531
uate its effect on well-known datasets and gain insights into 532
the drawbacks and benefits. 533
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Point Cloud Segmentation of Agricultural Vehicles using 3D Gaussian Splatting

Supplementary Material

Epochs PointNet++ PTv3 OACNN
10 0.7608 0.8549 0.8708
20 0.7844 0.8867 0.8802
30 0.7894 0.8911 0.8917

Table 3. Table displays the mIoU of the three different models
when trained for three different epoch amounts.

A. Model and Training Tuning706

Given the objective of the paper has not been to fine-tune707
the individual models to obtain the best possible perfor-708
mance, model training efficiency was valued highly when709
weighing performance against training time for the hyper-710
parameter selection, and for the most part, hyperparameters711
have been chosen based solely on the model’s original pa-712
per implementations [19, 21, 33]. Thus, as a last test it also713
seemed interesting to observe the performance differences714
when modifying the base hyperparameters. The tests fo-715
cused on three key hyperparameters: the number of train-716
ing epochs, the learning rate and the degree of point cloud717
downsampling.718

A.1. Epoch Tuning719

The default number of epoch used throughout the test has720
been 20, thus when varying the number of epochs it was721
chosen to test {10, 20, 30} epochs. The results can be found722
in Table 3. As the results suggest, increasing the number of723
training epochs helps performance quite notably, and from724
the training process it seems like the models haven’t quite725
converged, and thus could improve even further given addi-726
tional epochs.727

A.2. Learning Rate Tuning728

The learning rate is usually the most impactful hyperpa-729
rameter when changed, in this case a sweep was conducted730
where the base learning rate used for all other model’s tests731
was scaled by {0.1, 1.0, 10.0}. The results can be seen in732
Table 4. Interestingly it seems the PTv3 model would ben-733
efit from a lowered learning rate, and when scaling it by 10,734
it would outright crash because of exploding gradients, fur-735
ther suggesting that the PTv3 model should have its learning736
rate lowered. The results for the OACNN model encourages737
the opposite, that it should be trained with a higher learning738
rate.739

A.3. Point Cloud Downsampling740

To assess the trade-off between computational efficiency741
and segmentation performance, different point cloud den-742

LR scaling PointNet++ PTv3 OACNN
0.1 0.6876 0.8936 0.8914
1.0 0.7894 0.8867 0.8802
10.0 0.6932 N/A 0.8968

Table 4. Table displays the mIoU of the three different models
when trained on three different learning rate scales. The original
implementation learning rates were 2e-3 with batch size 16 for
both PointNet++ [21] and OACNN [19] and 5e-3 for PTv3 with
batch size 12 [33]. The conducted tests were run with batch size
32 for all models, consequently the learning rates were scaled pro-
portially to this as well.
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Point Cloud Downsampling Ablation Study - mIoU

Figure 11. Figure shows the mIoU results for the OACNN model,
trained on a real only dataset, with varying amounts of downsam-
pling performed on the input point clouds.

sities were tested. A downsampled point cloud is obtained 743
by performing a uniform random sampling without replace- 744
ment from the original point cloud. The results can be seen 745
in Figure 11. Mostly due to VRAM usage constaints, point 746
clouds have been downsampled to 30.000 points for Point- 747
Net++ and 40.000 points for OACNN and PTv3 for all tests, 748
and as the results display, this downsampling does not hin- 749
der the model from sufficiently learning the classwise point 750
cloud representations, unless the point clouds are signifi- 751
cantly downsampled. 752

A.4. Mixed Training Dataset 753

To establish the effects of synthetic data on the 3D semantic 754
segmentation models, we trained the three different models 755
on a combination of synthetic data and real data, and then 756
compared this to models trained only on real data. This was 757
inspired by Ma et al. [16], Wang et al. [30], and Yue et al. 758
[37]. In total, the training dataset consists of 10,000 point 759
clouds, with a 50/50 split of synthetic and real, as done by 760
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Sample PointNet++ PTv3 OACNN Mean
percentage Real only Mixed Real only Mixed Real only Mixed increase

20% 0.6982 0.7461 0.8369 0.8762 0.8465 0.9247 0.0551
40% 0.7215 0.7942 0.8983 0.9116 0.9191 0.9451 0.0373
60% 0.7406 0.7992 0.9096 0.9301 0.9349 0.9474 0.0305
80% 0.7505 0.7673 0.9065 0.9297 0.9378 0.9498 0.0173

100% 0.7824 0.7894 0.9232 0.9328 0.9403 0.9517 0.0093

Table 5. Table displays the mIoU performance comparison
between models trained on real dataset comprised of different
amounts of real point clouds, and mixed datasets. The real only
column shows baseline models trained on varying amounts of real
data. Mean increase displays the average increase seen when using
a mixed dataset compared to using only real. The data is presented
for each sample percentage and each individual model.

Yue et al. [37]. The synthetic part is composed solely from761
unique point clouds, while the real part is composed of 20%,762
40%, 60%, 80% and 100% of all available unique real point763
clouds. The real point clouds are over-sampled to match764
the amount of synthetic point clouds, to avoid biasing the765
model towards the synthetic data. In total, five different766
datasets are produced, which individual models are trained767
upon, each of these datasets also contains the same valida-768
tion split consisting of 1,200 real point clouds. For evalu-769
ation, all models are tested on the test set containing 3,000770
real point clouds, outlined in Section 3.2.771

The test results evaluating the impact of the mixed772
dataset training compared to real-only dataset training are773
presented in Table 5 and Figure 12. Table 5 compares the774
performance of the models, trained only on real data, to775
the models which were trained on a combination of real776
data and synthetic data. Additionally, the mean increase777
is shown, and it can be seen that the synthetic data im-778
proves performance, especially when only a small amount779
of real data is available. Figure 12 visually illustrates780
the mIoU performance of the OACNN model, comparing781
mixed dataset training with real-only dataset training as the782
number of different real point clouds increases.783

B. Combined point clouds with predictions784

Selection of combined point clouds with predictions from785
multiple models are shown in 13. Notice how the baseline786
model can produce better prediction in the presence of tall787
grass, due to tall grass not being included in the data simu-788
lation.789
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Real
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Figure 12. Figure shows the mIoU results for the OACNN model,
trained on both a mixed dataset and a real only dataset, consisting
of different amounts of different real point clouds.
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(a) OACNN Baseline (b) OACNN 10k synth (c) OACNN 65k synth

Figure 13. other, tractor, and combine harvester Top row: tractor with large trailer, second row: tractor with small trailer, Third row
tractor with tall grass backdrop.
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