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Figure 1. Illustration shows the pipeline created for generating the synthetic point cloud dataset. Step (1) shows the process of gathering
images of a combine harvester. Step (2) shows the combine harvester mesh, extracted using GOF. Step (3) shows an example of a combine
harvester mesh employed in the Gazebo LiDAR simulation environment, where the LiDAR sensor is visualized as the red cylinder with
rays depicting the LiDAR scans. Step (4) shows an example of a final, synthetically generated, point cloud of a combine harvester.

Abstract

Training neural networks for tasks such as 3D point cloud
semantic segmentation demands extensive datasets, yet ob-
taining and annotating real-world point clouds is costly
and labor-intensive. This work aims to introduce a novel
pipeline for generating realistic synthetic data, by lever-
aging 3D Gaussian Splatting (3DGS) and Gaussian Opac-
ity Fields (GOF) to generate 3D assets of multiple differ-
ent agricultural vehicles instead of using generic models.
These assets are placed in a simulated environment, where
the point clouds are generated using a simulated LiDAR.
This is a flexible approach that allows changing the LiDAR
specifications without incurring additional costs. We eval-
uated the impact of synthetic data on segmentation models
such as PointNet++, Point Transformer V3, and OACNN, by
training and validating the models only on synthetic data.
Remarkably, the PTv3 model had an mIoU of 91.35%, a
noteworthy result given that the model had neither been
trained nor validated on any real data. Further studies
even suggested that in certain scenarios the models trained
only on synthetically generated data performed better than
models trained on real-world data. Finally, experiments
demonstrated that the models can generalize across seman-
tic classes, enabling accurate predictions on mesh models
they were never trained on.

1. Introduction
The demand for automation in the transportation sector for
self driving vehicles has, in recent years, fueled research for
having machines understand 3D environments [25]. As a
format to capture 3D information, point clouds are increas-
ingly popular due to their efficiency and direct representa-
tion of LiDAR data. Commonly, for the models to under-
stand the composition of the environment represented by
the point cloud, semantic segmentation is used as it pro-
vides per-point class-wise information, thus getting an un-
derstanding of the complete environment [14, 19–21, 31–
33, 39]. An example of this is autonomous driving, where
point cloud semantic segmentation is used to identify vehi-
cles, road signs, pedestrians, etc. [25].

However, obtaining and annotating point clouds is a
well-known tedious and expensive task, making the avail-
able training resources sparse compared to the training
datasets for image recognition. This has led a wave of re-
search into both using the point clouds more efficiently by
augmenting them [4, 13], and methods for generating new,
annotated point clouds synthetically using simulated envi-
ronments relying on existing 3D assets [16, 30, 37]. The is-
sue with using existing 3D assets arises when models need
training for niche tasks with a sparse amount of available 3D
assets. As a method to mitigate this issue, we propose the
use of 3D Gaussian splatting (3DGS) to generate 3D assets
that can be used to generate synthetic point cloud datasets.



3DGS is used due to the ease of only needing a digital cam-
era for capturing useful data, and a few hours of GPU time
to get a mesh. In this project, the method is tested as a use
case to generate and train point cloud semantic segmenta-
tion models in a self driving tractor scenario, with synthetic
data acquired using the pipeline shown in Figure 1. This is
a motivating domain for the proposed pipeline, as the ex-
isting 3D data is sparse and the meshes needed would be
hard to model from scratch. As a proof of concept, the class
count is reduced to: tractor, combine harvester, and other,
as these vehicles often carry out collaborative tasks. Our
key contributions are as follows:
• We present a novel way of generating high-quality Li-

DAR data from 3DGS.
• We demonstrate that by training a model purely on syn-

thetic data it is possible to achieve high performance on
real world data.

• We show that our method generalizes to objects not seen
during training, highlighting its robustness and adaptabil-
ity.

• Our method allows seamless modification of LiDAR-
specific settings and the choice of mesh models used in
the simulation, enabling greater adaptability to different
sensing conditions and environments.

2. Related work
2.1. Point Cloud Semantic Segmentation
Segmentation of 3D points is a common problem in the
field of 3D computer vision. Many methods have been pro-
posed to tackle the challenge of segmenting the unstruc-
tured and irregular-spaced point clouds [14, 19–21, 31–
33, 39]. These methods can be categorized into two cat-
egories: point-based models and voxel-based models [19].
Point-based methods directly manipulate the unstructured
point clouds using point-wise operations. One such method
is PointNet [20], which introduced a novel deep learning
architecture used for point cloud semantic segmentation.
However, the network cannot capture local structures due
to the lack of neighborhood processing, limiting its ability
to recognize fine-grained patterns and generalize to com-
plex scenes. This was improved in PointNet++ [21] by par-
titioning the point set into local overlapping regions, and
then recursively applying PointNet to obtain the local fea-
tures. Dynamic Graph CNN, proposed by Wang et al. [31],
is another method which expands upon the PointNet archi-
tecture, this time by implementing a new convolutional op-
eration, EdgeConv, which allows the extraction of the local
neighborhood features for each point. Another prominent
point-based method is the transformer-based models, which
leverages the attention mechanism [28] that has gained
prominence across various domains, including point cloud
segmentation. The Point Transformer V3 (PTv3) [33] ad-

vances point cloud segmentation by emphasizing scalabil-
ity and efficiency. Unlike its predecessors, PTv1 [39] and
PTv2 [32], which introduced local attention mechanisms,
grouped vector attention, improved position encoding, and
partition-based pooling, PTv3 focuses on the benefits of
scaling rather than architectural complexity. It replaces the
K-Nearest Neighbors (KNN) query with serialized patterns
like Z-order and Hilbert curves, significantly reducing com-
putational overhead, as KNN accounted for 28% of PTv2’s
forward time. Additionally, PTv3 refines the positional en-
coding, further enhancing the model’s efficiency and ability
to handle large-scale point clouds.

Voxel-based methods convert the point clouds into a
voxel grid during data pre-processing. A recent paper by
Peng et al. [19], introduced an Omni-Adaptive CNN which
addressed the common problem of adaptivity for previous
voxel-based methods [19]. They created an Adaptive Rela-
tion Convolution, and a corresponding adaptive aggregator,
which dynamically adjusts the receptive field, allowing the
model to focus more on parts with many defining features.

2.2. Synthetic data generation
Multiple methods have been proposed to generate synthetic
annotated point cloud datasets [4, 13, 16, 26, 30, 34, 37].
These methods can be categorized into using augmented
real point clouds or using simulated environments. A recent
method that uses simulated point clouds that are then further
processed by an augmentation process is suggested by Xiao
et al. [34], proposing the use of the Unreal Engine to create
a synthetic LiDAR segmentation dataset where they used an
adversarial network to transform the synthetic point clouds
that are acquired from the simulated environment, into point
clouds that are closer to what would be sampled in reality.

Chen et al. [4] proposes to linearly interpolate between
point clouds of the same classes to generate new training
data. Another augmentation method by Li et al. [13] pro-
pose an augmentation neural network trained together with
a classifier neural network in an adversarial manner. How-
ever, this method has not been tested on point cloud seg-
mentation tasks.

Focusing on simulated environments, Ma et al. [16] uses
building models to create synthetic annotated point clouds
for training segmentation tasks. The point cloud sampling
method used in the study resulted in uniformly sampled
point clouds, whereas real point clouds would have non-
uniform sparsity. This, according to the paper, is something
that could be improved upon, as synthetic data should be
similar to the real data.

Another simulated approach by Wang et al. [30] uses a
simulated city environment made with the CARLA simula-
tion tool [6], where the LiDAR is simulated with ray cast-
ing to get a synthetic segmented LiDAR point cloud dataset.
Similarly, Yue et al. [37] uses the video game Grand Theft



Auto V to simulate an outdoor driving environment. Using
plugins, a synthetic dataset is generated from the simula-
tion. An approach that focuses on human body part segmen-
tation proposed by Takamz et al. [26], used mesh scenes
from the ScanNet dataset[5] with human models, where the
poses of the humans have been generated. These scenes
are then sampled with a simulated depth camera to obtain
annotated point clouds. This method relies on having a pre-
existing dataset of scenes, and a model [38] to generate syn-
thetic humans in the scene. Due to this, it is ill suited for
making datasets of niche tasks.

2.3. Novel View Synthesis
Novel view synthesis aims to generate an unseen view of a
scene from an arbitrary viewpoint. It can, however, also be
used to capture the geometry of a scene. Mildenhall et al.
[17] introduced Neural Radiance Field (NeRF), which uses
a multi-layer perceptron (MLP) to represent a 3D scene, in-
cluding view-dependent reflections, colors, and geometry.
Although later enhancements in NeRF have improved the
rendering speed [9, 22, 35], and anti-aliasing [1, 2], they
are still implicit, as the scene is encoded in the weights of
the model. This results in extra long inference times that
can be reduced only by lowering the quality of the visuals.
Another method used to synthesize novel views is 3D Gaus-
sian Splatting, introduced by Kerbl et al. [11], which uses
3D Gaussians to represent a scene explicitly, thus allowing
real-time rendering, editable scenes, and a more accurate
extraction of geometry. Furthermore, in recent years NeRF
and 3DGS methods have been used to generate synthetic
data, though so far limited to dense image tasks such as
stereo vision and optical flow [7, 15, 23, 27].

2.4. Mesh Extraction
Photorealistic rendering through 3DGS has shown remark-
able efficiency compared to NeRFs, however, generating
accurate geometric reconstructions from these scene rep-
resentations, remains a challenging problem. This chal-
lenge arises from the inherently disconnected nature of indi-
vidual Gaussian primitives, and the complexity of aligning
these Gaussians with continuous surfaces for reconstruc-
tion. [8, 10, 36]

SuGaR, introduced by Guédon et al. [8], regularizes the
3D gaussians to align with surfaces, allowing them to com-
pute the surface normals. Using the regularized 3D gaus-
sians and the computed normals, a Poisson surface recon-
struction is employed to generate the mesh. Huang et al.
[10] proposes 2DGS, which, instead of the original 3D
gaussians splats, uses 2D gaussians to recreate the radi-
ance field. The meshes are then reconstructed through depth
maps of the radiance field using Truncated Signed Distance
Function.

Yu et al. [36] introduced Gaussian Opacity Fields

Figure 2. Illustration of the pipeline used to obtain synthetic
datasets.

(GOF), a state-of-the-art technique that directly extracts sur-
face normals from the 3D Gaussian representations, with-
out requiring prior regularization or conversion to 2D. This
method mitigates the inevitable data loss that happens when
regularizing or reducing the dimension of the radiance field,
enhancing the quality in more detailed parts. Using the ex-
tracted normals, the final mesh extraction is done by uti-
lizing tetrahedral grids and the Marching Tetrahedra algo-
rithm.

3. Methods
3.1. Data Acquisition & Processing Pipeline
To evaluate the influence of synthetic data on a point cloud
semantic segmentation model, a baseline model is trained
using only ’real’ data acquired with an Ouster OS0 LiDAR
[18]. A baseline model will be trained for each model tested
in the paper. The effect of using synthetic data will be estab-
lished based on a comparison between the baseline models,
and models trained on both synthetic and real data. Fig-
ure 2 shows how data is acquired for the datasets, where
the training and validation data is comprised of synthetic
data. It also includes the pipeline for obtaining synthetic
data, which begins with capturing 700+ images of each ve-
hicle using a drone. These images are then processed to
extract 3D meshes using GOF [36]. Finally, the meshes are
imported into Gazebo [12], where a simulated LiDAR sen-
sor is used to generate the synthetic data.



Figure 3. Drone-captured frames of a tractor (left) and a combine
harvester (right) used in the 3D Gaussian Splatting mesh genera-
tion process.

3.2. LiDAR captured dataset
The real dataset, which is split into training, validation and
testing, is created by capturing LiDAR data from the real
world. The data capture process is performed by driving
around in a tractor, with the Ouster OS0-128 LiDAR sen-
sor mounted on top, in a common agricultural scenario with
multiple tractors and combine harvesters. Figure 3 presents
an image of one of the tractors and an image of one of
the combine harvesters. The data is collected in sequences
of driving around for one minute, with the OS0-128 Li-
DAR sensor sampling point clouds at 10 Hz, yielding 600
point clouds per sequence. In total, 15 sequences from six
different configurations have been acquired and annotated,
where, for each scene configuration, the vehicles are moved
to new positions. From the total amount of real data, the
same five sequences, totaling 3,000 real point clouds, are
used for the testing split for all tests performed. The five
sequences are chosen such that the distribution of points
per model is as even as possible across all possible tractor
and combine models captured in the dataset. The remaining
6,000 real point clouds, which come from different vehicle
configurations than those used in the testing set, are then
used in the training of the real-only baseline models.

Each point cloud consists of around 50,000 points on
average, where each point is labeled into separate classes.
The dataset has three different classes: tractor, combine har-
vester, and other. Additionally, the average class-wise point
distribution for each point cloud is 6.5% tractor, 12.6%
combine harvester and 80.9% other. To annotate the point
cloud the static environment used to capture the data is
leveraged to create a combined point cloud for each se-
quence using KISS-ICP [29]. Clustering is then applied to
each vehicle in the combined points cloud and these clus-
ters are used to annotate the individual point clouds in the
sequence.

3.3. Synthetic Data Generation
Multiple methods can be used to generate synthetic point
cloud data, as mentioned in Section 2.2. Xiao et al. [34],
showed that synthetic data, modified to close the sim-to-
real gap, outperformed the purely synthetic data. This mo-

Figure 4. Figure shows a generated mesh where a single combine
harvester has been cropped out, yielding a usable mesh for the
Gazebo simulation.

tivates the use of a simulated environment where points can
be sampled in a LiDAR pattern compared to uniformly sam-
pling points from the surfaces of the meshes as done by Ma
et al. [16]. When producing synthetic data using our simu-
lation, data is only generated for the three different classes
also available in the real-world LiDAR captured dataset.

Mesh generation: To simulate the environment, which
synthetic point clouds will be extracted from, it is of utmost
importance to obtain the best possible meshes of the vehi-
cles in the scene. The better the meshes resemble the real-
world vehicles, the better the simulated LiDAR will be at
sampling synthetic point clouds close to an actual real-life
scene. The method for generating the meshes starts with
capturing images of a scene where the vehicle is focused
in the middle. This was done by capturing a video with a
drone flying slowly around the vehicle, then sampling im-
ages from the video at a consistent interval.

Using the captured images, the initial sparse point cloud
is computed using the Structure-from-Motion (SfM) imple-
mentation in COLMAP [24]. Following this, the sparse
SfM point cloud is utilized for the 3DGS mesh extraction al-
gorithm. Through initial experimentation, it was found that,
out of SuGaR [8], 2DGS [10] and GOF [36], the meshes
extracted using GOF yielded the best results, with the high-
est degree of fidelity. Meshes were then generated for all
the different vehicles, which includes seven different tractor
models for the tractor class of the dataset, and three differ-
ent combine harvesters for the combine class. An example
of a combine harvester mesh can be seen in Figure 4. A
bit of post-processing is done on the meshes, since the out-
put from the 3DGS mesh extraction is one big mesh of the
whole scene. The post-processing comprises of cropping
out everything except the specific vehicle in question. The
meshes are then employed in the Gazebo simulation to gen-
erate the synthetic point clouds. Additionally, to achieve a
simulation environment resembling the real world as best as
possible, grass and other miscellaneous object meshes from
the 3DGS meshes are utilized as well.

Simulation Environment: Gazebo is an open-source sim-



Figure 5. The Gazebo simulation where the target assets have
moved to random positions. The LiDAR sensors position is
marked by the red cylinder. The blue rays visualize a sparse ver-
sion of the LiDAR rays

Figure 6. An annotated point cloud obtained from the gazebo
simulation containing tractors (green), combine harvesters (blue),
trailers(pink), and other (red).

ulation tool designed to simulate robotic applications. It is
built around the Ogre2 engine, and has an integrated LiDAR
plugin. Using the LiDAR plugin, it is possible to simulate
any real LiDAR sensor geometrically. For the data genera-
tion the Ouster OS0-128 LiDAR is simulated, as it was used
to capture the real dataset. Due to this, the synthetically
extracted point clouds also end up being roughly the same
size, with around 62,000 points on average per point cloud,
with the average class-wise point distribution for each point
cloud being 88.3% other, 5.0% tractor and 6.7% combine
harvester.

To use Gazebo as a dataset generator, a custom plugin
is used to move the meshes of different classes and the Li-
DAR to random positions. To avoid meshes being placed
out of range for the LiDAR or overlapping with one another,
placement rules were made for the meshes and the LiDAR
sensor. The result of this is depicted on Figure 5 and 6.

4. Experimental Design
To evaluate the effectiveness of our synthetic point cloud
generation method, we conduct a series of experiments fo-
cused on 3D point cloud segmentation. This section focuses
on outlining the 3D point cloud segmentation models used,

the conducted tests and the dataset compositions used.

4.1. 3D Point Cloud Segmentation Model Selection
All tests performed will be done on three different models,
specifically, PointNet++, PTv3 and OACNN. These models
were chosen on the basis that all three approach the point
cloud segmentation problem quite differently in their point
cloud processing and model architectures. The hyperpa-
rameters used for the three different models are based upon
the original paper implementations of the respective mod-
els. We performed a small search on the learning rate and
number of epochs, as shown in the supplementary materials.

4.2. Synthetic Only Training
Recent advances in Gaussian splatting scene representation
have allowed for easy generation of highly detailed meshes
of custom objects which are very difficult and time consum-
ing to model from scratch. The mesh representation can be
used to generate highly realistic semantic segmentation Li-
DAR datasets for training, as it is easy to model custom
LiDAR scanning patterns. Given the relative ease in gen-
erating synthetic datasets, it is interesting to test the perfor-
mance when only utilizing a synthetically generated dataset
to train a segmentation model.
To assess the models’ ability to generalize to real scenes,
when trained exclusively on synthetic point clouds, a test
is proposed. This test also assesses how accurate the sim-
ulation replicates real-world environments. The models are
trained on 10,000 synthetic point clouds and validated on
2,000 synthetic only point clouds, to ensure the models
trained using this approach, have never been exposed to
any real point clouds until it is tested. Lastly, the models
are tested on the test set containing 3,000 real point clouds,
outlined in Section 3.2.

4.3. Tractor Generalization Test
It can be hypothesized that this method of using syntheti-
cally generated data can generate otherwise hard to acquire
datasets of custom objects we have physical access to, with
sufficient fidelity, such that the models trained on the syn-
thetic datasets will be able to generalize to new unseen ob-
jects of the same semantic category, when captured with
real LiDAR sensors.
To test this hypothesis, multiple synthetic datasets were cre-
ated in which a tractor was removed from the available as-
sets during the generation process. As a result, each dataset
lacked one specific tractor model. Individual segmentation
models were then trained on these modified datasets and had
their performance evaluated on the same 3,000 real point
clouds as previous tests, which contains all the different
tractor models.



PointNet++ PTv3 OACNN
Class Baseline Synth only Baseline Synth only Baseline Synth only
Tractor 0.5580 0.6430 0.8675 0.7957 0.9052 0.7755
Combine 0.8180 0.7580 0.9145 0.8853 0.9273 0.8857
Other 0.9720 0.9670 0.9878 0.9790 0.9885 0.9793
mIoU 0.7824 0.7893 0.9232 0.8867 0.9403 0.8802

Table 1. Table displays the individual IoU’s and mIoU for each
model traing two different datasets. Baseline is trained on all the
available real data, and Synth only, is a synthetic only dataset with
10k point clouds.

4.4. Extended Synthetic Dataset Test
Given the ease of generating synthetic point cloud datasets,
it is valuable to investigate how expanding the synthetic
dataset used in Section 4.2 affects the performance of mod-
els trained exclusively on synthetic data. To explore this,
we conduct an experiment in which the number of syn-
thetic point clouds used for training is significantly in-
creased, from the initial 10,000 to approximately 65,000,
while keeping the model architecture and training pipeline
consistent.

4.5. Prediction Visualization for Analysis
As the testing scenes are static, the transforms between each
point cloud can be found using KISS-ICP [29]. The trans-
forms can be used to align the point clouds for a testing
sequence creating a combined point cloud. Visualizing this
point cloud provides insight into how the models generally
segment the point clouds. This is done to qualitatively asses
the segmentation quality of the different models.

5. Results
5.1. Synthetic Only Test
Table 1 presents the results for the synthetic only test, which
tests the performance of training and validating the models
without any real data. It can be seen that the mIoU across
the models is on average 2.99 percentage points worse for
the synthetic only models compared to the real only. The
class specific IoU results reveal that all models struggle the
most with the "tractor" class, which is consistent with the
class-wise point distributions described in Section 3.3.

5.2. Tractor Generalization Test
The results from testing the ability to generalize across in-
dividual tractor models within the same semantic class are
presented in Figure 7. The figure displays each individual
model that has been trained on a dataset missing the dis-
played tractors, these models are also compared to the syn-
thetic only model, seen in Section 5.1, as a baseline compar-
ison which has been trained on all available tractors. The
results show a general tendency towards a drop in perfor-
mance when missing a tractor by, on average, 3.65% per-
centage points.

Model PTv3 OACNN
Mean IoU of unseen tractors 0.7273 0.7652
Mean IoU of seen tractors 0.7603 0.8052

Table 2. Figure shows the mean IoU of tractor models not included
in the training process compared to tractors which are included in
the training process.
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Figure 7. Figure shows the mIoU results for each test in which the
specified tractor model was not included in the training/validation
data. The "Synth only-10k" entry contains all the tractor models.

The mean of all the unseen tractor IoU’s is used as a met-
ric to compare the mean tractor IoU for the seen tractors, as
this gives an image of how well the models generalize to
unseen tractors compared to seen tractors. This is repre-
sented in Table 2, where it can be seen that there is a av-
erage drop in accuracy for unseen tractors, but the effect is
limited, which shows that the models are able to generalize
on the tractor class.

An overall view of the difference between the model hav-
ing seen the tractor in the training set is presented in Figure
8. The matrix displays a small correlation between the trac-
tor missing in the training set, and a lower IoU of the tractor
in the testing set, however it is not always the case.

5.3. Extended Synthetic Dataset Test
The results of the test can be seen on Figure 9, which dis-
plays the results marked with the "Synth only-65k" label. It
can be seen that performance increases significantly with a
larger dataset, where PTv3 and OACNN achieve over 90%
in mIoU when trained only on 65k synthetic point clouds.
Additionally, it can be seen that both of the two syntheti-
cally trained PointNet++ models outperform the baseline,
which is trained only on real data. This could potentially
be due to the lack of augmentations in the PointNet++ im-



Figure 8. OACNN IoU of tractors when not in training set
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Figure 9. Figure shows the comparison between real only trained
baseline models and synth only 10k models, from Table 1, with
synth only trained models using 65k synthetic point clouds.

plementation as opposed to PTv3 and OACNN which use
several augmentation techniques.

5.4. Qualitative Analysis
Using the models trained in Section 4.2 and 4.4, all seen
in Figure 9, combined point clouds can be used to find the
places where they differ, that are not apparent from IoU and
mIoU numbers. The first example of where they differ is
in models under represented in the real training data. This
is seen on Figure 10a, where the trailer is completely mis-
classified as a combine harvester. On Figure 10b the model
trained on the largest synthetic dataset handles the trailer
perfectly and classifies it as the correct "other" class in the
majority of the points. However, we find that the the syn-

thetic models fail segmenting when tall grass is present, as
shown in the supplementary materials.

6. Discussion
Throughout the experiments in this paper, we have not fo-
cused on the performance of the individual segmentation
models, but rather on determining the influence of synthet-
ically generated data on the performance of point cloud
segmentation models. As a result, the performance in our
tests could potentially be improved by modifying and fine-
tuning the hyperparameters. One of the tests used to gauge
the influence of synthetic data on the segmentation models,
was the synthetic only test. This test showed that training
only on synthetic data, could potentially be a feasible solu-
tion in domains where data is hard to acquire. Especially
with larger synthetic datasets, as seen in Section 5.3, where
OACNN and PTv3, trained on 65k point clouds, compared
similarly to the baseline models which were trained on real
data. The qualitative analysis revealed that a trailer in the
testing dataset was misclassified as a combine with the real-
only OACNN baseline. This was not the case with the
OACNN model trained on 65k synthetic point clouds. The
big difference between the training datasets of these two
models, apart from the size, is the distribution of points
per mesh/model. In the synthetically generated dataset, the
trailer is much more common than in the real dataset. This,
along with the enlarged training dataset, could be the reason
for the increased performance. Additionally, the qualitative
analysis also revealed that the real data helps with the clas-
sification of the tall grass in the background of the point
clouds, as shown in the supplementary materials. This is
most likely due to the similarity of the testing- and train-
ing dataset as they were captured on the same field, which
would explain why the baseline outperformed the synthetic-
only model in the area with tall grass.

7. Conclusion
In this paper we have proposed and evaluated a novel
pipeline to efficiently train point cloud segmentation models
in scenarios with limited real data. The pipeline leverages
GOF, a state of the art technique for mesh extraction, to ob-
tain meshes that accurately represent target vehicles in high
detail.

A simulation environment, utilizing the high quality
meshes, was developed to efficiently generate LiDAR
datasets suitable for semantic segmentation. Secondly, a
semi-automatic annotation technique was developed, to an-
notate the data from the real LiDAR.

Three models were tested, namely: Point Transformer
V3 [33], Omni-Adaptive Sparse CNN [19], and Pointnet++
[21]. Multiple tests were carried out for the different models
exploring different ways that synthetic data could be used to



(a) OACNN Baseline model point predictions. Notice how the trailer is incorrectly predicted to be a combine harvester, as highlighted by the red
bounding box.

(b) OACNN Synth only-65k model point predictions. Notice how the trailer is correctly predicted to be of the ”other“, as highlighted by the green
bounding box.

Figure 10. We compare the point predictions of a OACNN network trained in the baseline configuration versus trained with the Synth
only-65K configuration. The scene depicts a tractor and a trailer. The point colors indicate the predicted class: other, tractor, and
combine harvester

train point cloud segmentation models. The synthetic only
test, seen in Section 5.1, shows the potential of training
models purely on synthetic data, with OACNN and PTv3
achieving +88% mIoU. Additionally, the extended dataset
test, seen in Section 5.3, showed that expanding the dataset
significantly improved the mIoU for all the models, with
OACNN and PTv3 now surpassing +91% in mIoU, almost
comparable to the baseline trained on real data. Secondly
it was shown that the model is able to generalize well to
unseen tractor models when trained only on synthetic data,
with a mean performance drop in IoU for unseen tractors
of 3.65 percentage points from Table 2. Thirdly, qualitative
analysis showed that in some cases the models trained on
synthetic data had more desirable predictions, which is also
a strong argument for synthetic data, as this is presumably
caused by the perfect annotations that are acquired when
using the proposed pipeline. Finally, with the results gath-

ered from all the experiments, it is shown that using the
proposed novel pipeline for synthetic data acquisition, is a
viable solution when gathering data for training point cloud
segmentation models in uncommon domains. While this
paper focused on a single domain, there is strong evidence
which suggests that other domains would benefit from us-
ing a similar data generation pipeline. Moving forward, it
would be interesting to see the effects of this method on
more common domains, such as semanticKITTI [3], to eval-
uate its effect on well-known datasets and gain insights into
the drawbacks and benefits.
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