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Abstract

We present new fast-rate PAC-Bayesian generalization bounds for multi-task and
meta-learning in the unbalanced setting, i.e. when the tasks have training sets of
different sizes, as is typically the case in real-world scenarios. Previously, only
standard-rate bounds were known for this situation, while fast-rate bounds were
limited to the setting where all training sets are of equal size. Our new bounds
are numerically computable as well as interpretable, and we demonstrate their
flexibility in handling a number of cases where they give stronger guarantees
than previous bounds. Besides the bounds themselves, we also make conceptual
contributions: we demonstrate that the unbalanced multi-task setting has different
statistical properties than the balanced situation, specifically that proofs from
the balanced situation do not carry over to the unbalanced setting. Additionally,
we shed light on the fact that the unbalanced situation allows two meaningful
definitions of multi-task risk, depending on whether all tasks should be considered
equally important or if sample-rich tasks should receive more weight than sample-
poor ones.

1 Introduction

In multi-task learning (MTL) multiple related tasks are learned jointly, with the goal of improving
generalization performance compared to learning each task separately. As a result, MTL is particu-
larly promising in settings where tasks are individually data-scarce but collectively rich in shared
information, such as personalized Internet services, healthcare applications, or autonomous driving.
Due to its fundamental nature, aspects of MTL also influence many other recent developments
in the field of machine learning, such as distributed learning (Verbraeken et al., 2020), federated
learning (Zhao et al., 2018; Kairouz et al., 2021), multi-agent learning (Gronauer & Diepold, 2022)
or meta-learning (Hospedales et al., 2021). Besides numerous algorithmic contributions, there is
also a rich collection of results on the theoretical properties of MTL, in particular the improved
generalization guarantees it provides compared to single-task learning.

Recent works on the generalization properties of machine learning models are often stated in the
framework of PAC-Bayesian generalization bounds (McAllester, 1998). In contrast to classical
approaches, such as VC-theory (Vapnik & Chervonenkis, 1971) or Rademacher complexity (Bartlett
& Mendelson, 2002), these tend to provide tighter results with the potential to not only provide
structural insight but even be numerically informative (i.e. non-vacuous) (Lotfi et al., 2022, 2024).
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For MTL, a number of PAC-Bayesian generalization guarantees have been derived, often in combina-
tion with related results for meta-learning. Initially, these were in the standard-rate setting (Pentina
& Lampert, 2014, 2015; Amit & Meir, 2018; Rothfuss et al., 2023), with convergence rates at best
O(
√
1/M), where M is the total number of training data points.

Quite recently, also some fast-rate bounds for MTL were developed with convergence rates up to
O(1/M) (Guan & Lu, 2022; Zakerinia et al., 2025). However, there is a fundamental limitation:
existing fast-rate bounds for MTL hold only if all tasks have the same number of samples. This
is an unrealistic restriction for practical settings, such as federated learning or healthcare.

In this work, we close this surprising gap in the literature: we prove fast-rate bounds for multi-task
learning, for which tasks can have different numbers of samples (called unbalanced), for both of
the so-called kl-style (Seeger, 2002; Maurer, 2004) as well as “Catoni-style” (Catoni, 2007) bounds.
However, our contribution is not only technical, but also conceptual: first, we demonstrate that the
unbalanced setting is not simply a minor variant of the balanced one, but has its own statistical
properties. Specifically, the results and proofs of the existing fast rate bound do not carry over to
the unbalanced setting, but fast-rate bounds for unbalanced multi-task learning are possible.
Consequently, for our results, we establish a new path for proving fast-rate bounds that we expect to
be of independent interest also for other situations. Second, we identify the previously overlooked fact
that the unbalanced setting allows for not just one but two meaningful definitions for the multi-task
risk: task-centric or sample-centric. The task-centric risk assigns equal importance to each task. This
makes sense, for example, if tasks are individual customers, and one wants to give each of them the
best possible experience. The sample-centric risk assigns weights to tasks proportionally to how
many training data points they have. This makes sense when the core aim is to make as many correct
predictions as possible, e.g. when tasks are products and samples are individual sales. Finally, we
also extend our results to the meta-learning setting (Schmidhuber, 1987; Baxter, 2000).

In summary, our main contributions are the first fast-rate generalization bounds for unbalanced
multi-task learning, both in the task-centric and the sample-centric setting. As an additional
contribution, we provide new insights into the statistical properties of these learning settings, and a
numeric analysis of their potential, in particular in comparison to existing standard-rate bounds.

2 Background

Multi-task and Meta-learning. Machine learning tasks can be described as triples, t = (D,S, ℓ),
where D is a data distribution, S is a dataset of m i.i.d. samples from D, and ℓ is a loss function in
[0, 1]. Learning a task means finding a model, f , from a family of models, F , that has a small risk
(expected loss),R(f) = Ez∼D ℓ(f, z), with respect to the distribution D. In standard (single-task)
learning, the learning algorithm can only use the dataset S to determine f . Typically it does so
by minimizing the training risk R̂(f) = 1

m

∑m
i=1 ℓ(f, zi), potentially in combination with some

regularization terms.

In multi-task learning (MTL) (Caruana, 1997), multiple tasks, t1, . . . , tn, are given. The goal is to
learn individual models f1, . . . , fn for the given tasks, but the learning algorithm can do so jointly,
using the data from all tasks simultaneously. The implicit assumption is that the different tasks
are related and that sharing information across them could improve performance. This reflects
how humans often learn: by leveraging shared structures and knowledge across tasks to learn more
efficiently. In this work, we refer to the number of tasks as n and the number of training samples for
task i as mi.

Meta-learning (Schmidhuber, 1987), or learning to learn (Thrun & Pratt, 1998), extends multi-task
learning to the setting where, in addition to the observed tasks, there will also be future tasks that
are not observed yet. The goal is to use the observed tasks’ data to find a learning algorithm A
from a set of possible algorithms A that will learn good models on future tasks. To theoretically
study meta-learning, one formalizes the relationship between tasks by assuming the existence of an
environment of tasks T and an (unknown) environment distribution τ , from which both the observed
training tasks and future tasks are i.i.d. samples (Baxter, 2000).

PAC-Bayesian bounds. PAC-Bayesian generalization bounds (McAllester, 1998), i.e. guarantees
for the generalization gap of stochastic models, have gained significant interest in recent years,
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particularly for their ability to provide non-vacuous generalization bounds for neural networks
(Dziugaite & Roy, 2017; Lotfi et al., 2022), unlike traditional approaches such as VC dimension
(Vapnik & Chervonenkis, 1971) or Rademacher complexity (Bartlett & Mendelson, 2002).

Stochastic models are parametrized as a distribution (also called posterior) over the hypothesis set.
For any distribution, Q ∈M(F), its loss is the expected loss of models drawn according to Q, i.e.
ℓ(Q, z) = Ef∼Q ℓ(f, z). PAC-Bayes bounds provide upper-bound forR(Q) = Ez∼D ℓ(Q, z) using
the training risk R̂(Q) = 1

m

∑m
i=1 ℓ(Q, zi), and a complexity term which usually is based on the

Kullback-Leibler divergence between the posterior and a data-independent prior.

Standard PAC-Bayesian bounds provide high-probability guarantees that the true risk does not exceed
the training risk by more than a term that decreases with a rate of O(1/

√
m). Here is an example of a

PAC-Bayes bound:
Theorem 2.1 ((McAllester, 1998)). For any fixed δ > 0, and data-independent prior P , with
probability at least 1− δ over sampling of a dataset S we have

R(Q) ≤ R̂(Q) +

√
KL(Q∥P ) + log( 1δ ) +

5
2 log(m) + 8

2m− 1
. (1)

To prove this result, and many other PAC-Bayesian results, one follows a common blueprint: 1)
apply a change of measure inequality (Seldin et al., 2012) to bound the expectation of a function with
respect to the posterior Q by the complexity term KL(Q∥P ), and the expectation of a corresponding
moment generating function (MGF) with respect to the prior P , which is independent of training
samples. 2) one shows that the MGF for the independent samples is bounded by a sufficiently
small term. Often, this involves upper-bounding it by the expectation of an MGF with respect to
i.i.d. Bernoulli random variables, and upper-bounding this upper bound by a more-or-less explicit
calculation.

Besides standard (also called slow-rate) bounds, such as (1), it is also possible to construct bounds
that can give tighter guarantees, even a O(1/m) convergence rate when the training error is small.
The following theorem is an example of such a fast-rate bound:
Theorem 2.2 ((Maurer, 2004)). For any fixed δ > 0, and data-independent prior P , with probability
at least 1− δ over sampling of a dataset S we have

kl(R̂(Q)|R(Q)) ≤
KL(Q∥P ) + log( 2

√
m
δ )

2m
, (2)

where

kl(q|p) = q log
q

p
+ (1− q) log 1− q

1− p
(3)

In fast-rate bounds, the dependence between training risk and true risk is typically implicit, such as
characterized by their Kullback-Leibler divergence in (2). However, for any observed R̂(Q), one can
derive an explicit upper bound onR(Q) by numerically inverting the kl expression with respect to
its second argument.

The main advantage of fast-rate bounds is that they provide much tighter guarantees in the regime
where the training risk is small, as is commonly the case when working with rich model classes such
as neural networks. As a consequence, fast-rate PAC-Bayesian bounds are among the most promising
tools for studying the generalization properties of deep neural networks (Dziugaite & Roy, 2017;
Pérez-Ortiz et al., 2021; Lotfi et al., 2022), even including large language models (Lotfi et al., 2024).

PAC-Bayesian multi-task learning and meta-learning. Following Pentina & Lampert (2014),
PAC-Bayes is an important framework to study multi-task learning and meta-learning, as it naturally
formalizes information sharing through the concept of a prior.

In PAC-Bayesian multi-task learning, we wish to learn posterior distributions for the n given tasks
jointly. However, instead of data-independent priors, we can learn a (distribution over) data-dependent
prior to be shared for all tasks. Formally, we learn a shared hyper-posteriorQ over priors, and different
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posteriors, Q1, . . . , Qn, for different tasks. We define two distributions overM(F)×F⊗n, i.e. they
assign joint probabilities to tuples, (P, f1, ..., fn), which contain a prior over models, and n models.
A standard PAC-Bayesian multi-task bound then has form

Theorem 2.3. For any fixed hyper-prior P , any δ > 0, it holds with probability at least 1− δ over
the sampling of the training datasets, S1, . . . , Sn, that for all hyper-posterior Q and all posteriors
Q1, . . . , Qn:

1

n

n∑
i=1

Ri(Qi) ≤
1

n

n∑
i=1

R̂i(Qi) +

√
KL(Q∥P) + log 4mhn

δ + 1

2mhn
, (4)

whereRi and R̂i are the expected risk and training risk of task i, mh = n∑
1

mi

is the harmonic mean

of the training set sizes, mi = |Si|. Q is a distribution overM(F) × F⊗n given by the product
Q × Q1 × · · · × Qn, and P is a distribution given by the generating process: i) sample a prior
P ∼ P , ii) for each task, i = 1, . . . , n, sample a model fi ∼ P .

From the fact that KL(Q∥P) = KL(Q∥P)+
∑n
i=1 EP∼Q KL(Qi∥P ) (Lemma B.4 in the appendix)

one can see the importance of the hyper-posterior. Compared to a naive bound with n complexity
terms based on the individual posteriors and a fixed prior P , in (4) the prior can be chosen in a
data-dependent way (by means of choosing Q), at the expense of only one additional complexity
term KL(Q∥P). When the tasks are related in a way that allows for a common prior, the multi-task
bound can be much tighter than single-task bounds could. See Appendix A for more discussion.

PAC-Bayes meta-learning was first formalized in Pentina & Lampert (2014) as transferring the prior
learned using the training tasks to future tasks to be used for minimizing a PAC-Bayes bound. This
was followed by a rich line of works (Amit & Meir, 2018; Liu et al., 2021; Guan & Lu, 2022; Riou
et al., 2023; Friedman & Meir, 2023; Rezazadeh, 2022; Rothfuss et al., 2023; Ding et al., 2021; Tian
& Yu, 2023; Farid & Majumdar, 2021; Scott et al., 2024) in different setups. In this work, we follow
the general form introduced in Zakerinia et al. (2024), which formulates meta-learning as learning a
general stochastic learning algorithm for future tasks. Formally, the goal is to learn a meta-posterior ρ
over a set of algorithms A, generating training posteriors A(S1), . . . , A(Sn), and using a multi-task
hyper-posterior Q(A) as described above.

3 Unbalanced multi-task learning

In this section, we describe our main technical and conceptual contributions. First, we briefly
demonstrate in what sense the existing proofs for fast-rate bounds do not carry over from the balanced
to the unbalanced multi-task situation. Then, we discuss the requirements that fast-rate bounds should
possess in the unbalanced situation, in particular we draw attention to the fact that one has to make a
choice whether to bound the task-centric or the sample-centric risk (which we will introduce there).
And finally, for both of these, we prove a series of generalization bounds, first for the multi-task
learning and then extending them to the meta-learning setting.

3.1 Existing proofs do not carry over to the unbalanced setting

Existing fast-rate multi-task bounds (Guan & Lu, 2022; Zakerinia et al., 2025) are proved following
essentially the same steps as their single-task analogues. First, one applies a change of measure
inequality. Second, one bounds the empirical multi-task risk 1

n

∑n
i=1

1
m

∑m
i=1 ℓ(fi, z

i
j) by an average

µ̂ = 1
n

∑n
i=1

1
m

∑m
j=1Xi,j , where the Xi,j for i = 1, . . . , n and j = 1, . . . ,m are Bernoulli random

variables with a common mean µ. Third, one uses Theorem (1) from Maurer (2004) to establish a
bound on the resulting MGF Mµ(λ) = E[enλkl(µ̂|µ)] ≤ 2

√
nm for any λ ≤ m. Finally, one uses

Markov’s inequality and rearranges terms to obtain the final form of the bound, where the multiplier
λn in front of the kl-term in the MGF becomes the denominators of the complexity term, i.e. here
the rate of convergence is up to O(1/nm).

In the following Lemma we show that this otherwise ubiquitous proof technique fails in the case of
unbalanced MTL, because the corresponding MGF does not have a finite bound for sufficiently large
multipliers.
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Lemma 3.1. Let Xi,j
i.i.d.∼ Bernoulli(µ) for i = 1, . . . , n and j = 1, . . . ,mi. Define µ̂ =

1
n

∑n
i=1

1
mi

∑mi

j=1Xi,j , as their average, weighted by inverse dataset sizes. Let mmin = minimi,
Then, the MGF Mµ(λ) = E

[
enλkl(µ̂|µ)] has the property that sup0<µ<1Mµ(λ) = +∞,

whenever λ > mmin. In particular, there is no finite bound on Mµ(λ) that depends only on n and the
mi but not µ.

Discussion. A consequence of Lemma 3.1 is that the best multi-task rate achievable by the proof
technique above is O(1/nmmin). However, the resulting bound would not improve when the number
of samples for some tasks increases while mmin remains the same. This is unintuitive and inconsistent
with the standard-rate bound in Theorem 2.3, whose convergence depends on the harmonic average
of dataset sizes, mh, rather than their minimum. Also, a known property of implicit bounds in the
form of Theorem 2.2 is that one can derive corresponding explicit standard-rate bounds from them by
means of Pinsker’s inequality, kl(q|p) ≥ 2(q − p)2. Doing so in this situation, however, would result
in a standard-rate bound with the suboptimal rate O(

√
1/nmmin) instead of O(

√
1/nmh). Overall,

our analysis suggests that a different approach should be considered to achieve fast-rate bound for the
unbalanced multi-task learning, and we do so in the following sections.1

Note that in this paper, we focus on the fast-rate bounds for unbalanced multi-task learning in the
PAC-Bayesian framework, however, a similar problem also exists in the PAC setting, i.e., the current
fast-rate bounds in the PAC literature would also have dependency on the minimum number of
samples (Yousefi et al., 2018).

3.2 Task-centric vs sample-centric guarantees for unbalanced multi-task learning

Unarguably, the goal of multi-task learning is to learn multiple models that perform well for their
respective tasks. As such, one might argue that MTL is actually a multi-objective learning prob-
lem (Sener & Koltun, 2018). In practice, however, one needs to define a scalar objective to quantify
the success of learning in general, and generalization in particular (Hu et al., 2023). Most exist-
ing work in multi-task learning use a uniform average across tasks for this purpose, resulting in a
multi-task risk , and its empirical counterpart

RT(Q1, . . . , Qn) =
1

n

n∑
i=1

Ri(Qi) =
1

n

n∑
i=1

E
z∼Di

ℓi(Qi, z), (5)

R̂T(Q1, . . . , Qn) =
1

n

n∑
i=1

R̂i(Qi) =
1

n

n∑
i=1

1

mi

mi∑
j=1

ℓi(Qi, zij). (6)

We call this setting task-centric MTL, because each task is treated as equally important, regardless of
how much data it contributes to the learning. An alternative scalarization is sample-centric MTL, in
which tasks get weighted proportionally to their amount of training data. The corresponding risk and
empirical risk are

RS(Q1, . . . , Qn) =

n∑
i=1

mi

M
Ri(Qi) =

n∑
i=1

mi

M
E

z∼Di

ℓi(Qi, z), (7)

R̂S(Q1, . . . , Qn) =

n∑
i=1

mi

M
R̂i(Qi) =

1

M

n∑
i=1

mi∑
j=1

ℓi(Qi, zij), (8)

respectively, where M =
∑n
i=1mi is the total number of data points.

In balanced MTL, both notions coincide, so no decision between them is necessary. In unbalanced
MTL, however, they are distinct, and we argue that the choice of preferable objective depends
on the problem setting. For example, consider a common scenario, in which a service provider
trains client-specific models. If the goal is to maximize client satisfaction, the task-centric setting is
appropriate. If, however, the goal is make as few mistakes as possible on future data, data-rich clients
should get more attention, because they will likely contribute also a larger fraction of the future data
points. Consequently, the sample-centric setting is preferable.

1Note that none of the discussed problems occur for the balanced setting with m1 = . . . ,mn = m, because
there mmin = m = mh.
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Consequently, in this work we provide new results for both settings. All proofs are provided in the
supplemental material.

3.3 Fast-rate generalization bounds for task-centric multi-task learning

Our main results are the following generalization bounds, which establish the first fast-rate general-
ization guarantees for unbalanced multi-task learning.
Theorem 3.2. For any fixed hyper-prior P , any δ > 0, it holds with probability at least 1− δ over
the sampling of the training datasets that for all hyper-posterior functions Q and all posteriors
Q1, . . . , Qn :

n∑
i=1

mi kl(R̂i(Qi)|Ri(Qi)) ≤ KL(Q∥P) + log
1

δ
+

n∑
i=1

log(2
√
mi) (9)

For any fixed hyper-prior P , any δ > 0, and any λ1, . . . , λn > 0, it holds with probability at least
1 − δ over the sampling of the training datasets that for all hyper-posterior functions Q and all
posteriors Q1, . . . , Qn:

−
n∑
i=1

mi log(1−Ri(Qi) +Ri(Qi)e
−λi
nmi ) ≤ 1

n

n∑
i=1

λiR̂i(Qi) +KL(Q∥P) + log(
1

δ
) (10)

Discussion. For proving these results (unlike the balanced setting), we consider independent terms
capturing the derivations related to each task (which depends on its own sample size). By jointly
bounding the combination of these terms to gain the shared complexity term based on hyper-posterior.

The kl-type bound (9) relates the individual per-tasks risk with their empirical estimates. For the
balanced setting with m1 = · · · = mn = m, it recovers previous fast-rate results (up to log terms),
because nmkl(R̂T|RT) ≤

∑
imkl(R̂i|Ri) due to Jensen’s inequality. The form we provide also

handles the unbalanced case, for which—in light of our discussion in Section 3.1—we avoid having
to bound kl(R̂T|RT) directly, instead finding the weighted linear combination of per-task kl-terms
to be a more suitable target.

To better understand the behavior of (9) in the unbalanced setting, assume a setting in which all
tasks have fixed training set sizes, except for one, say task k, for which we consider larger and
larger training set sizes, i.e. mk →∞. Then, for identical (Q, Q1, . . . , Qn), and therefore constant
KL(Q∥P), the left hand side of the bound grows with mk kl(R̂k,Rk), while the right hand side
grows as log(

√
mk), which implies fast-rate convergence kl(R̂k,Rk)→ 0. In particular, tasks with

few samples do not slow down generalization of tasks with many samples.

As a second indication that (9) provides the right characterization, observe that it readily implies an
explicit standard-rate bound of the correct rate O(

√
1/nmh), using the relation

2nmh

( 1
n

n∑
i=1

(
Ri − R̂i

))2
≤ 2

n∑
i=1

mi

(
R̂i −Ri

)2 ≤ n∑
i=1

mi kl
(
R̂i ∥Ri

)
, (11)

where the left inequality follows from the Cauchy-Schwarz and the right one from Pinsker’s inequality.

The Catoni-type bound (10) offers a more explicit characterization of the generalization behavior,
because the empirical risk appears explicitly on the right hand side of the inequality. Like the
kl-bound, it guarantees fast-rate convergence for any task, even if the training set sizes of all other
tasks remain fixed.

A natural question is which of the two bounds yields better guarantees. As it turns out, this depends
on the choice of λ1, . . . , λn. It is known (Germain et al., 2009, Proposition 2.1) that supλ>0

[
−

log(1 − p + pe−λ) − λq
]
= kl(q|p), i.e., an optimal choice of the λi would recover (9), except

without the log terms on the right hand side. Unfortunately, (10) does not hold uniformly with respect
to the λi-values, so one cannot simply optimize the expressions to obtain the best values. However, if
one has a candidate set of potential values, the bound can be made uniform for this set by a union
bound, and select the tightest one. This is also the strategy we follow in our empirical evaluation, see
Section 5. Note, however, there is no guarantee that the resulting bound will improve over (9), so a
promising strategy is to also include that one into the union bound.
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3.4 Numerical computation of the bounds

Single-task kl-bounds are straightforward to compute numerically: because only a single quantity
is unknown (the true risk R), one can make use of the fact that kl(q|p) is strictly monotonically
increasing and therefore invertible in p ∈ [q, 1] to identify the largest values ofR such that kl(R̂|R)
fulfills the bound. Similarly, single-task Catoni-style bounds can readily be used to derive a numeric
bound on the risk by observing that −m log(1−R+Re−λ

m ) is a strictly monotonically increasing
function ofR.

In the MTL setting, the bounds in Theorem 3.2 have n unknowns,R1, . . . ,Rn, but the corresponding
bounds provide only a single joint constraint. As such, the set of feasible solutions is much richer
than in the single-task setting. In the task-centric setting, we are interested in guarantees on the largest
possible value forRT = 1

n

∑
iRi, i.e. we have to numerically solve the optimization problem

RT∗ ← max
R1,...,Rn

[ 1
n

∑
i

Ri
]

subject to generalization bound constraint. (12)

We illustrate this process in Figure 3. Interestingly, and to our knowledge unique to the MTL
setting, the potentially complex geometry of the constraint set allows obtaining tighter guarantees by
combining multiple bounds. For example, we can instantiate both (9) and (10) and combine them by
a union bound. Optimizing over the resulting constraint set can provide an even better guarantee on
RT than the minimum of using each bound individually. Figure 3 also illustrates this effect, which is
impossible in the single-task setting due to the one-dimensional nature of the problem there.

For our experiments, we use Sequential Least Squares Programming (SLSQP) (Kraft, 1988), a
gradient-based optimization algorithm that solves constrained nonlinear problems by iteratively
approximating them with quadratic programming subproblems. Note that this procedure is computa-
tionally inexpensive compared to model training.

3.5 Generalization bounds for sample-centric multi-task learning

As discussed in Section 3.2, sample-centric MTL has a different goal than task-centric MTL: its
objectives are weighted by the training set sizes, to reflect that tasks with many samples can also be
expected to occur more often in the future. In this section, we provide the fast-rate generalization
bounds for the corresponding risk (7).
Theorem 3.3. For any fixed hyper-prior P , any δ > 0, it holds with probability at least 1− δ over
the sampling of the training datasets that for all hyper-posterior functions Q and all posteriors
Q1, . . . , Qn:

kl(R̂S|RS) ≤
KL(Q∥P) + log 2

√
M
δ

M
sample-centric kl-bound (13)

For any fixed hyper-prior P , any δ > 0, and any λ > 0, it holds with probability at least 1 − δ
over the sampling of the training datasets that for all hyper-posterior functions Q and all posteriors
Q1, . . . , Qn

−M
λ

log(1−RS +RSe
−λ
M ) ≤ R̂S +

KL(Q∥P) + log( 1δ )

λ
sample-centric Catoni-bound (14)

Discussion. The provided bounds are more similar to balanced multi-task learning, and have the
following properties: 1) The focus is on the sample level, and separating terms based on the tasks is
not necessary. 2) All samples contribute the same amount to the training risk, and an issue such as in
Lemma 3.1 does not happen. 3) The sample complexity is based on the total number of samples, and
the minimum sample size or harmonic mean is not a bottleneck.
Corollary 3.4. Applying Pinsker’s inequality to the kl-bound of Theorem 3.3 results in the following
explicit standard-rate bound for sample-centric multi-task learning:

RS ≤ R̂S +

√
KL(Q∥P) + log 2

√
M
δ

2M
(15)
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4 Meta-learning with unbalanced tasks

In this section, we extend our results to meta-learning. Following the framework of Zakerinia et al.
(2024), the goal is to learn a learning algorithm, A, from a candidate set, A, to be used for future
tasks. At meta-training time, a set of training tasks are available that were sampled i.i.d. from a task
environment that allows for tasks to have different training set sizes in [1,mmax]. As in multi-task
learning, previous works studied this problem only in a task-centric view. However, it is also possible
and relevant to study sample-centric meta-learning for the setting in which tasks with more training
samples should get more weight in the analysis. Consequently, we define two meta-learning risks:

RT
M (ρ)= E

A∼ρ
E

(D,m,S)∼τ
E
z∼D

ℓ(z,A(S)), RS
M (ρ)= E

A∼ρ
E

(D,m,S)∼τ
E
z∼D

m

mmax
ℓ(z,A(S)), (16)

where ρ is a meta-posterior over the set of algorithms A. Each algorithm in A ∈ A is a function that
given a dataset would generate a posterior distribution A(S). Additionally, each algorithm can learn
a hyper-posterior Q(A) similar to multi-task learning. Therefore, for each algorithm we would use
the two distributions. 1) Q(A): a hyper-posterior Q(A) specific to algorithm A (data-dependent) and
task posteriors A(Si), and 2) P(A): a hyper-prior P(A) specific to algorithm A (data-independent)
and priors P ∼ P(A).
In this section, we provide fast-rate bounds for unbalanced meta-learning. Here, we state the kl-
style bounds, while the analogous Catoni-style bounds and the proofs for both types are provided
in Appendix B.4. To provide our results, we first introduce the following notation, which is the
upper-bound given numerical optimization of the kl-bound explained in Section 3.4.

kl−1
m1,...,mn

(
q1, . . . , qn

∣∣∣b) = sup
{ 1

n

n∑
i=1

pi

∣∣∣ n∑
i=1

mi kl(qi|pi) ≤ b, pi ∈ [0, 1]
}

(17)

With this notation we provide our main meta-learning bounds.

Theorem 4.1. For any fixed meta-prior π, and fixed set of P(A), any δ > 0, it holds with probability
at least 1 − δ over the sampling of the training datasets that for all meta-posteriors, and hyper-
posteriors Q(A):

Task-centric meta-learning: with c1 =
∑n
i=1 log(2

√
mi)

RTM (ρ) ≤ kl−1
n

(
kl−1
m1,...,mn

(
R̂1(ρ), . . . , R̂n(ρ)

∣∣∣C(ρ) + c1

)∣∣∣∣∣KL(ρ∥π) + log
4
√
n

δ

)
, (18)

Sample-centric meta-learning: with c2 = log(2
√
M)

RSM (ρ) ≤ kl−1
n

(
M

nmmax
kl−1
M

(
R̂S(ρ)

∣∣∣C(ρ) + c2

)∣∣∣∣∣KL(ρ∥π) + log
4
√
n

δ

)
(19)

where C(ρ) = KL(ρ∥π) + E
A∼ρ

[KL(Q(A)∥P(A))] + log 2
δ .

Discussion. The meta-learning generalization bounds are based on two parts: 1) a multi-task bound
which upper-bounds the generalization error within the training tasks 2) a generalization bound at the
environment level, to upper-bound the expected performance for the environment based on the true
risk of the training tasks.

Numerically computing the bounds consists of first numerically computing the upper-bound for the
true risk of the training risks, and then numerically computing the final bound. Similar to multi-task
learning, the bounds have a better sample complexity over the sample size of training task when
the risks are small, and additionally, a better complexity over the number of tasks, for example
for task-centric bounds, when the risks are small, the rate of the bounds would be O(1/m + 1/n)

instead of O(
√
1/m+

√
1/n). Additionally, applying Pinsker’s inequality to the task-centric bound,

would result in the standard-rate meta-learning bounds of Zakerinia et al. (2024). Similarly, by using
Pinsker’s inequality, we get standard-rate bounds for sample-centric meta-learning.
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Figure 1: Task-centric MTL: graphical results for linear models on the MDPR dataset
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Figure 2: Sample-centric MTL: graphical results for linear models on the MDPR dataset

5 Experiments

While our contribution in this work is theoretical, we also provide some results from numeric
experiments to illustrate the numeric behavior of the bounds we establish. Specifically, we report on
experiments in two prototypical multi-task settings: linear classification with learned regularizer, and
neural network learning in a random subspace representation. We also provide a visual illustration of
the bounds’ geometry for n = 2 in Appendix C.

MTL bound for linear models. In our first experiments, we provide generalization guarantees in
the setup of linear multi-task learning with biased regularization (Kienzle & Chellapilla, 2006): for
each task, we learn a (stochastic) linear classifier, parametrized by a (Gaussian) distribution over each
task’s classifier weights. Additionally, we learn a regularization term, which is also parametrized by
a Gaussian and shared among all tasks. As dataset, we use the MDPR dataset (Pentina & Lampert,
2017), which consists of 953 tasks. Their training set sizes range between 102 and 22530 samples,
making the setting clearly unbalanced. Besides the original data, we also create variants of higher
simplicity, by adding a η-multiple of the label value to each input features for η ∈ [0, 0.1]. For details
on the setup, see Appendix C.

Figures 1 and 2 show the results (more details and numeric values can be found in the appendix).
In the task-centric setting, fast-rate and standard bounds provide similar guarantees for η = 0, but
with larger values of η, the fast-rate bounds benefit more from the decrease of the empirical risk and
provide tighter guarantees than the standard-rate bound. This only holds for the new unbalanced
bounds we present in this work, though. The naive fast-rate bound with convergence rate determined
by mmin is always far looser than even the standard-rate bound. In the sample-centric setting, the
benefit of our fast-rate bounds is apparent already at η = 0, and the gap to the standard-rate bound
increases with growing η.

9



Table 1: Generalization bounds for low-rank parametrized deep networks on split-CIFAR.
Task-centric

Dataset CIFAR10 CIFAR100

Standard rate 0.307 0.595
Fast-rate with mmin 0.347 0.616
Fast-rate: kl-style 0.272 0.591

Fast-rate: Catoni-style 0.271 0.591
Joint constraint 0.270 0.591

Sample-centric
Dataset CIFAR10 CIFAR100

Standard rate 0.300 0.595
Fast-rate: kl-style 0.265 0.593

Fast-rate: Catoni-style 0.262 0.590

MTL bound for neural networks. Our second experiment provides generalization guarantees for
unbalanced multi-task learning of low-rank parametrized neural networks (Zakerinia et al., 2025).
As dataset we use split-CIFAR10 and split-CIFAR100 (Krizhevsky, 2009), in which the popular
CIFAR datasets are split in an unbalanced way into tasks, each of which possesses only 3 of 10
(for CIFAR10) or 10 out of 100 (for CIFAR100) classes. As model, we use a Vision Transformer
model with approximately 5.5 million parameters, pretrained on ImageNet (Dosovitskiy et al., 2020).
Further details are provided in Appendix C.

Table 1 shows the results. For the task-centric as well as the sample-centric views using our fast-rate
bounds instead of the standard-rates ones leads to noticeable improvements, while the bound with
dependence on mmin would be much looser. In line with the theory, the improvements are larger
for split-CIFAR10, where the empirical error is small, than for split-CIFAR100, where the empirical
error is too large for the fast-rate property to be effective.

6 Conclusion

The literature on generalization behavior of multi-task learning has been heavily focused on the
setting where all tasks have the same number of training samples, despite the fact that this balanced
setting is not realistic for real-world tasks. In this work, we explicitly study the unbalanced multi-task
learning, showing that it has different statistical properties than the balanced setting, and that the
results and proof techniques from the balanced setting do not simply carry over to the unbalanced
setting. We argued that for evaluating multi-task methods, there are two different views, which matter
in different applications: task-centric and sample-centric. As our main contribution, we provided
fast-rate generalization bounds in the PAC-Bayes framework for both settings, and we demonstrated
through empirical evaluations that these bounds are not only theoretically superior but also can
provide tighter guarantees than standard-rate bounds.

A limitation of our work is that the resulting bounds are less interpretable than explicit standard-rate
bounds, and that numeric optimization is required to obtain numerical guarantees. We believe it will
be interesting future work to explore if more explicit fast-rate bounds are possible for the unbalanced
setup at all.
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A PAC-Bayesian multi-task learning

A very simple solution to achieve bounds for several tasks with different sample sizes is to compute
single-task bounds for all tasks separately, and combine them by averaging and a union bound.
However, this simple solution does not achieve the goal of multi-task learning, i.e., benefiting from
shared information between tasks and task similarity. Importantly, this method does not share
complexity terms and does not benefit from an increasing number of tasks, resulting in a sub-optimal
bound, see e.g. Zakerinia et al. (2025) for numeric experiments.

PAC-Bayes multi-task learning shares information by learning a (distribution over) data-dependent
prior to be shared for all tasks. Formally, we define two distributions overM(F)×F⊗n, i.e. they
assign joint probabilities to tuples, (P, f1, ..., fn), which contain a prior over models, and n models:
1) Q is a distribution given by the product Q×Q1 × · · · ×Qn, and P is a distribution given by the
generating process: i) sample a prior P ∼ P , ii) for each task, i = 1, . . . , n, sample a model fi ∼ P .

Additionally, we can also define the distribution Q slightly differently by the following generating
process: i) sample a prior P ∼ Q, ii) for each task, i = 1, . . . , n, sample a model fi ∼ Qi(P ), which
is a data-dependent function that adapts the posterior for each prior P . This approach might help
reducing the complexity terms, i.e. for each P , the term KL(Qi∥P ) would become KL(Qi(P )∥P ).
However, it causes an additional complexity in adapting the posterior to each prior. The results stated
in this paper are mentioned in the form of the first approach, however, all results would hold by
simply inserting the different Q in the results and proofs (Pentina & Lampert, 2014; Zakerinia et al.,
2024).

B Proofs

B.1 Auxiliary Lemmas

Lemma B.1 ((Berend & Tassa, 2010) Proposition 3.2). Let Xi, 1 ≤ i ≤ t, be a sequence of
independent random variables for which P (0 ≤ Xi ≤ 1) = 1, X =

∑t
i=1Xi, and µ = E(X). Let

Y be the binomial random variable with distribution Y ∼ B
(
t, µt
)
. Then for any convex function f

we have:

Ef(X) ≤ Ef(Y ). (20)

Lemma B.2 ((Maurer, 2004) Theorem 1). Let Y be the binomial random variable with distribution
Y ∼ B

(
t, µt
)
, then we have:

E[et kl(Y
t |µt )] ≤ 2

√
t (21)

where kl(q|p) = q log q
p + (1 − q) log 1−q

1−p is the Kullback-Leibler divergence between Bernoulli
distributions with mean q and p.

Lemma B.3 (Generalization of (Catoni, 2007) Lemma 1.1.1.). Let Xi,j
i.i.d.∼ Bernoulli(µi) for

i = 1, . . . , n and j = 1, . . . ,mi. Define µ̂i = 1
mi

∑mi

j=1Xi,j , then we have:

log
[
e

∑n
i=1

λ
n [Φ λ

nmi

(µi)−µ̂i]
]
≤ 1 (22)

where Φa(p) = − 1
a log(1− p+ pe−a)

Proof.

logE
[
e
∑n

i=1
−λ
n µ̂i

]
= logE

[
e
∑n

i=1
−λ
n

∑mi
j=1

1
mi
Xi,j

]
(23)

=

n∑
i=1

mi∑
j=i

logE
[
e

−λ
nmi

Xi,j

]
=

n∑
i=1

mi logE
[
e

−λ
nmi

Xi,j

]
(24)

=

n∑
i=1

mi log(1− µi + µie
λ

nmi ) =
−λ
n

n∑
i=1

Φ λ
nmi

(µi) (25)
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Therefore,

E
[
e
∑n

i=1
−λ
n µ̂i

]
= e

−λ
n

∑n
i=1 Φ λ

nmi

(µi)
(26)

Multiplying both sides by e
λ
n

∑n
i=1 Φ λ

nmi

(µi)
completes the proof.

The following lemma splits the KL term of (41) into more interpretable quantities.
Lemma B.4. For the posterior, Q, and prior, P, defined above it holds:

KL(Q||P) = KL(Q∥P) + E
P∼Q

[ n∑
i=1

KL(A(Si)||P )
]
. (27)

Proof.

KL(Q||P) = E
P∼Q

[
E

(f1,...,fn)∼(Q1,...,Qn)
log
Q(P )

∏n
i=1Qi(fi)

P(P )
∏n
i=1 P (fi)

]
(28)

= E
P∼Q

[
log
Q(P )
P(P )

]
+ E
P∼Q

[ n∑
i=1

E
fi∼Qi

log
Qi(fi)

P (fi)

]
(29)

= KL(Q∥P) + E
P∼Q

n∑
i=1

KL(Qi||P ). (30)

B.2 Task-centric bounds

Theorem 2.3. For any fixed hyper-prior P , any δ > 0, it holds with probability at least 1− δ over
the sampling of the training datasets, S1, . . . , Sn, that for all hyper-posterior Q and all posteriors
Q1, . . . , Qn:

1

n

n∑
i=1

Ri(Qi) ≤
1

n

n∑
i=1

R̂i(Qi) +

√
KL(Q∥P) + log 4mhn

δ + 1

2mhn
, (4)

whereRi and R̂i are the expected risk and training risk of task i, mh = n∑
1

mi

is the harmonic mean

of the training set sizes, mi = |Si|. Q is a distribution overM(F) × F⊗n given by the product
Q × Q1 × · · · × Qn, and P is a distribution given by the generating process: i) sample a prior
P ∼ P , ii) for each task, i = 1, . . . , n, sample a model fi ∼ P .

Proof. First for any task i and any model fi we define:

∆i(fi) = E
z∼Di

ℓ(z, fi)−
1

mi

∑
z∈Si

ℓ(z, fi). (31)

By definingRu(Q) = 1
n

∑n
i=1Ri(Qi) and R̂u(Q) = 1

n

∑n
i=1 R̂i(Qi), we have:

E
(P,f1,...,fn)∼Q

[ 1
n

n∑
i=1

∆i(fi)
]
= Ru(Q)− R̂u(Q) (32)

Applying the change of measure inequality (Seldin et al., 2012) between the two distributions Q and
P, for any λ > 0, and any Q, Q1, . . . , Qn, we have:

Ru(Q)− R̂u(Q)− 1

λ
KL(Q||P) ≤ 1

λ
log E

(P,f1,f2,...,fn)∼P

n∏
i=1

e
λ
n∆i(fi) (33)
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By the construction of P, we have

E
S1,...,Sn

E
(P,f1,f2,...,fn)∼P

n∏
i=1

e
λ
n∆i(fi) = E

S1,...,Sn

E
P∼P

E
f1∼P

. . . E
fn∼P

n∏
i=1

e
λ
n∆i(fi), (34)

and, because it is independent of S1, . . . , Sn, we can rewrite this as

= E
P∼P

E
S1

E
f1∼P

e
λ
n∆1(f1) . . . E

Sn

E
fn∼P

e
λ
n∆n(fn). (35)

= E
P∼P

n∏
i=1

E
Si

E
fi∼P

e
λ
n∆i(fi) (36)

Each ∆i(fi) is a bounded random variable with support in an interval of size 1. By Hoeffding’s
lemma we have

E
Si

E
fi∼P

e
λ
n∆i(fi) ≤ e

λ2

8n2mi . (37)

Therefore, by combining (36) and (37) we have:

E
S1,...,Sn

E
(P,f1,f2,...,fn)∼P

n∏
i=1

e
λ
n∆i(fi) ≤ e

λ2

8n2 (
∑n

i=1
1

mi
)
= e

λ2

8nmh . (38)

Which mh = n∑n
i=1

1
mi

is the harmonic mean of mis. By Markov’s inequality, for any ϵ > 0 we have

PS1,...,Sn

(
E

(P,f1,f2,...,fn)∼P

n∏
i=1

e
λ
n∆i(fi) ≥ eϵ

)
≤ e

λ2

8nmh
−ϵ (39)

Hence by combining (33) and (39) we get for any ϵ:

PS1,...,Sn

(
∃Q : Ru(Q)− R̂u(Q)− 1

λ
KL(Q||P) ≥ 1

λ
ϵ
)
≤ e

λ2

8nmh
−ϵ
, (40)

or, equivalently, it holds for any δ > 0 with probability at least 1− δ
2 :

∀Q : Ru(Q)− R̂u(Q) ≤ 1

λ
KL(Q||P) +

1

λ
log(

2

δ
) +

λ

8nmh
. (41)

By applying a union bound for λ∗ ∈ {1, 2, . . . , 4nmh}, and optimizing for λ in this set we get:

Ru(Q)− R̂u(Q) ≤

√
KL(Q||P) + log( 4nmh

δ ) + 1

2nmh
. (42)

In the following theorem, we prove that standard fast-rate kl-bounds scale at best with nmmin.

Lemma 3.1. Let Xi,j
i.i.d.∼ Bernoulli(µ) for i = 1, . . . , n and j = 1, . . . ,mi. Define µ̂ =

1
n

∑n
i=1

1
mi

∑mi

j=1Xi,j , as their average, weighted by inverse dataset sizes. Let mmin = minimi,
Then, the MGF Mµ(λ) = E

[
enλkl(µ̂|µ)] has the property that sup0<µ<1Mµ(λ) = +∞,

whenever λ > mmin. In particular, there is no finite bound on Mµ(λ) that depends only on n and the
mi but not µ.

Proof. Assume λ > mmin. Then

M(λ) = E
[
enλkl(µ̂|µ)

]
(43)

=

m1∑
k1=0

· · ·
mn∑
kn=0

[ n∏
i=1

(
mi

ki

)
µki(1− µ)mi−ki

]
e
nλkl(

1
n

∑n
i=1

ki
mi

|µ) (44)

=
∑

k1,...,kn

µ
∑

i ki(1− µ)
∑

i(mi−ki)
( 1
n

∑
i

ki
mi

µ

)λ∑
i

ki
mi
( 1
n

∑
i

mi−ki
mi

1−µ

)λ∑
i

mi−ki
mi

n∏
i=1

(
mi

ki

)
(45)

=
∑

k1,...,kn

µ
∑

i ki−λ
∑

i
ki
mi (1− µ)

∑
i(mi−ki)−λ

∑
i

mi−ki
mi f(n, λ, k1,m1, . . . , kn,mn),

(46)
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where

f(n, λ, k1,m1, . . . , kn,mn) =
(

1
n

n∑
i=1

ki
mi

)λ∑
i

ki
mi
(

1
n

n∑
i=1

mi−ki
mi

)λ∑
i

mi−ki
mi

n∏
i=1

(
mi

ki

)
. (47)

Assume l is the index for the minimum mi such that ml = mmin, pick the single term with kl = ml

and ki = 0 for i ̸= l. Since all terms are positive,

M(λ) ≥ µml−λ
ml
ml (1− µ)

∑
i̸=lmi−(n−1)λ f(n, λ, 0,m1, . . . ,ml,ml, . . . , 0,mn) (48)

(49)

which for µ < 0.1, there is a constant C such that

M(λ) > Cµml−λ f(n, λ, 0,m1, . . . ,ml,ml, . . . , 0,mn). (50)

Since λ > ml, the exponent ml − λ < 0, so as µ→ 0, µml−λ → +∞. Hence M(λ) is unbounded
for λ > mmin, and no finite bound depending only on n and the mi can hold.

Theorem B.5 (Theorem 3.2, Equation (9)). For any fixed hyper-prior P , any δ > 0, it holds with
probability at least 1 − δ over the sampling of the training datasets that for all hyper-posterior
functions Q and all posteriors Q1, . . . , Qn :

n∑
i=1

mi kl(R̂i(Qi)|Ri(Qi)) ≤ KL(Q∥P) + log
1

δ
+

n∑
i=1

log(2
√
mi) (51)

Proof. Based on Jensen’s inequality we have:
n∑
i=1

mi kl(R̂i(Qi)|Ri(Qi)) ≤ E
fi∼Qi,i∈[n]

[ n∑
i=1

mi kl(R̂i(fi)|Ri(fi))
]

(52)

And by change of measures we get

E
P∼Q,fi∼Qi,i∈[n]

[ n∑
i=1

mi kl(R̂i(fi)|Ri(fi))
]
−KL(Q∥P)

≤ log E
P∼P,fi∼P,i∈[n]

[
e
∑n

i=1mi kl(R̂i(fi)|Ri(fi))
]

= log E
P∼P

n∏
i=1

E
fi∼P

[
emi kl(R̂i(fi)|Ri(fi))

]
(53)

Where the equality comes from priors being data-independent. Additionally, based on Lemma (B.1),
for a binomial random variable as Y ∼ B(mi,Ri(fi)) we have:

E
Si∼D

mi
i

E
fi∼P

[
emi kl(R̂i(fi)|Ri(fi))

]
= E
fi∼P

E
Si∼D

mi
i

[
emi kl(R̂i(fi)|Ri(fi))

]
(54)

≤ E
fi∼P

E
Y

[
e
mi kl(

Y
mi

|Ri(fi))
]
≤ 2
√
mi (55)

Where the last inequality comes from Lemma (B.2). Therefore

E
S1,...,Sn

E
P∼P

n∏
i=1

E
fi∼P

[
emi kl(R̂i(fi)|Ri(fi))

]
≤

n∏
i=1

2
√
mi (56)

And by Markov’s inequality, with probability at least 1− δ over sampling of S1, . . . , Sn, we have:

log E
P∼P

n∏
i=1

E
fi∼P

[
emi kl(R̂i(fi)|Ri(fi))

]
≤

n∑
i=1

log 2
√
mi + log

1

δ
(57)

By combining (52), (53) and (57) we get
n∑
i=1

mi kl(R̂i(Qi)|Ri(Qi)) ≤ KL(Q∥P) + log
1

δ
+

n∑
i=1

log(2
√
mi) (58)
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Theorem B.6 (Theorem 3.2, Equation (10)). For any fixed hyper-prior P , any δ > 0, and any
λ1, . . . , λn > 0, it holds with probability at least 1 − δ over the sampling of the training datasets
that for all hyper-posterior functions Q and all posteriors Q1, . . . , Qn:

−
n∑
i=1

mi log(1−Ri(Qi) +Ri(Qi)e
−λi
nmi ) ≤ 1

n

n∑
i=1

λiR̂i(Qi) +KL(Q∥P) + log(
1

δ
) (59)

Proof. Note that the function Φa is convex for a > 0, therefore λ
nΦ λ

nmi

is also convex. Based on
Jensen’s inequality we have:

λ

n
[Φ λ

nmi

(Ri(Qi))− R̂i(Qi)] ≤ E
fi∼Qi

λ

n
[Φ λ

nmi

(Ri(fi))− R̂i(fi)] (60)

And by change of measures, and independence of priors, we get

E
P∼Q,fi∼Qi

[λ
n

n∑
i=1

[Φ λ
nmi

(Ri(fi))− R̂i(fi)]
]
−KL(Q∥P)

≤ log E
P∼P

E
fi∼P

[
e

∑n
i=1

λ
n [Φ λ

nmi

(Ri(fi))−R̂i(fi)]
]

(61)

Now we apply Lemma (B.1) n times for each task separately, keeping the others fixed. if we define a
binomial random variable Yi ∼ B(mi,Ri(fi)), we have

E
Si∼D

mi
i

E
P∼P

E
fi∼P

[
e

∑n
i=1

λ
n [Φ λ

nmi

(Ri(fi))−R̂i(fi)]
]

(62)

E
P∼P

E
fi∼P

E
Si∼D

mi
i

[
e

∑n
i=1

λ
n [Φ λ

nmi

(Ri(fi))−R̂i(fi)]
]

(63)

≤ E
Y1,...,Yn

[
e

λ
n [Φ λ

nmi

(Ri(fi))−
Yi
mi

]]
≤ 1 (64)

Where the last inequality comes from Lemma (B.3). Therefore by Markov’s inequality, with proba-
bility at least 1− δ over sampling of S1, . . . , Sn, we have:

log E
P∼P

E
fi∼P

[
e

∑n
i=1

λ
n [Φ λ

nmi

(Ri(fi))−R̂i(fi)]
]
≤ log

1

δ
(65)

By combining (60), (61) and (65) we get that with probability at least 1− δ:

λ

n

n∑
i=1

[Φ λ
nmi

(Ri(Qi))− R̂i(Qi)] ≤ KL(Q∥P) + log
1

δ
(66)

Or equivalently,

−1
λ

n∑
i=1

mi log(1−Ri(Qi) +Ri(Qi)e
−λ
nmi ) ≤ R̂u +

KL(Q∥P) + log( 1δ )

λ
(67)

−
n∑
i=1

mi log(1−Ri(Qi) +Ri(Qi)e
−λi
nmi ) ≤ 1

n

n∑
i=1

λiR̂i(Qi) +KL(Q∥P) + log(
1

δ
) (68)

B.3 Sample-centric bounds

Theorem B.7 (Theorem 3.3, Equation (13)). For any fixed hyper-prior P , any δ > 0, it holds with
probability at least 1 − δ over the sampling of the training datasets that for all hyper-posterior
functions Q and all posteriors Q1, . . . , Qn:

kl(R̂S|RS) ≤
KL(Q∥P) + log 2

√
M
δ

M
sample-centric kl-bound (69)
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Proof. Based on Jensen’s inequality we have:

M kl

(
n∑
i=1

miR̂i(Qi)
M

∣∣∣∣∣
n∑
i=1

miRi(Qi)
M

)
≤ E
fi∼Qi,i∈[n]

[
M kl

( n∑
i=1

miR̂i(fi)
M

∣∣∣∣∣
n∑
i=1

miRi(fi)
M

)]
(70)

And by definition ofRi and R̂i we get

E
fi∼Qi

[
M kl

( n∑
i=1

miR̂i(fi)
M

∣∣∣∣∣
n∑
i=1

miRi(fi)
M

)]
= E
fi∼Qi

M kl
( 1

M

n∑
i=1

mi∑
j=1

ℓ(fi, zi,j)

∣∣∣∣∣Rw)

(71)

And by change of measures we get

E
P∼Q,fi∼Qi

[
M kl

(
1

M

n∑
i=1

mi∑
j=1

ℓ(fi, zi,j)

∣∣∣∣∣Rw
)]
−KL(Q∥P)

≤ log E
P∼P,fi∼P

[
e

M kl( 1
M

∑n
i=1

∑mi
j=1 ℓ(fi,zi,j)

∣∣∣∣∣Rw)]
Additionally, we have

E
zi,j

[ 1

M

n∑
i=1

mi∑
j=1

ℓ(fi, zi,j)
]
= Rw (72)

Therefore, Based on Lemma (B.1) if we define a binomial random variable Y ∼ B(M,Rw), we can
replace the loss of samples of all tasks as in

E
Si

E
fi∼P

[
eM kl( 1

M

∑n
i=1

∑mi
j=1 ℓ(fi,zi,j)|Rw)

]
≤ E

Y

[
eM kl( Y

M |Rw)
]

(73)

And by Lemma (B.2) we have

E
Y

[
eM kl( Y

M |Rw)
]
≤ 2
√
M (74)

Therefore,

E
S1,...,Sn

E
P∼P

E
fi∼P

[
eM kl( 1

M

∑n
i=1

∑mi
j=1 ℓ(fi,zi,j)|Rw)

]
≤ 2
√
M (75)

And by Markov’s inequality, with probability at least 1− δ over sampling of S1, . . . , Sn, we have:

log E
P∼P

E
fi∼P

[
eM kl( 1

M

∑n
i=1

∑mi
j=1 ℓ(fi,zi,j)|Rw)

]
≤ log

2
√
M

δ
(76)

By combining (70), (72) and (76) we get

M kl

(
R̂w

∣∣∣∣∣Rw
)
≤ KL(Q∥P) + log

2
√
M

δ
(77)

Theorem B.8 (Theorem 3.3, Equation (14)). For any fixed hyper-prior P , any δ > 0, and any
λ > 0, it holds with probability at least 1− δ over the sampling of the training datasets that for all
hyper-posterior functions Q and all posteriors Q1, . . . , Qn

−M
λ

log(1−RS +RSe
−λ
M ) ≤ R̂S +

KL(Q∥P) + log( 1δ )

λ
sample-centric Catoni-bound (78)
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Proof. Based on Jensen’s inequality we have:

λ[Φ λ
M
(

n∑
i=1

miRi(Qi)
M

)−
n∑
i=1

miR̂i(Qi)
M

] ≤ E
fi∼Qi

λ[Φ λ
M
(

n∑
i=1

miRi(fi)
M

)−
n∑
i=1

miR̂i(fi)
M

]

(79)

And by change of measures, and independence of priors, we get

E
P∼Q,fi∼Qi

[
λ[Φ λ

M
(

n∑
i=1

miRi(fi)
M

)−
n∑
i=1

miR̂i(fi)
M

]
]
−KL(Q∥P)

≤ log E
P∼P

E
fi∼P

[
e
λ[Φ λ

M
(
∑n

i=1
miRi(fi)

M )−
∑n

i=1
miR̂i(fi)

M ]
]
(80)

Therefore, Based on Lemma (B.1) if we define a binomial random variable Y ∼ B(M,Rw), we can
replace the loss of samples of all tasks as in

E
Si∼D

mi
i

E
P∼P

E
fi∼P

[
e
λ[Φ λ

M
(
∑n

i=1
miRi(fi)

M )−
∑n

i=1
miR̂i(fi)

M ]
]

(81)

≤ E
Y

[
e
EP∼P Efi∼P

[
e
λ(Φ λ

M

(Rw)− Y
M

)
]]
≤ 1 (82)

Where the last inequality comes from applying Lemma (B.3). Therefore by Markov’s inequality, with
probability at least 1− δ over sampling of S1, . . . , Sn, we have:

log E
P∼P

E
fi∼P

[
e
λ[Φ λ

M
(
∑n

i=1
miRi(fi)

M )−
∑n

i=1
miR̂i(fi)

M ]
]
≤ log

1

δ
(83)

By combining (79), (80) and (83) we get that with probability at least 1− δ:

λ[Φ λ
M
(Rw)− R̂w] ≤ KL(Q∥P) + log

1

δ
(84)

Or equivalently,

−M
λ

log(1−Rw +Rwe
−λ
M ) ≤ R̂w +

KL(Q∥P) + log( 1δ )

λ
(85)

B.4 Meta-Learning

In this section, we extend our results to meta-learning, i.e. learning an algorithm to use for future
tasks based on unbalanced training tasks where task environments have different sample sizes in
[1,mmax], using the framework introduced in (Zakerinia et al., 2024). Similar to multi-task learning,
the previous works only focused to a task-centric view, however, it is also possible to study sample-
centric meta-learning: when we care more about the performance of the tasks with more sample sizes,
and can define the two following meta-learning objectives:

RTM (ρ) = E
A∼ρ

E
(D,m,S)∼τ

E
z∼D

ℓ(z,A(S)) (86)

RSM (ρ) = E
A∼ρ

E
(D,m,S)∼τ

E
z∼D

m

mmax
ℓ(z,A(S)) (87)

where ρ is a meta-posterior over the set of algorithms A. Each algorithm in A ∈ A is a function that
given a dataset would generate a posterior distribution A(S). Additionally, each algorithm can learn
a hyper-posterior Q(A) similar to multi-task learning. Therefore, for each algorithm we would use
the two distributions. 1) Q(A): hyper-posterior Q(A) specific to algorithm A (data-dependent) and
task posteriors A(Si), and 2) P(A): hyper-prior P(A) specific to algorithm A (data-independent)
and priors P ∼ P(A).
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For the proofs, we define the following intermediate objectives, which are multi-task risks for
A(S1), . . . , A(Sn):

RT (ρ) = E
A∼ρ

1

n

n∑
i=1

E
zi∼Di

ℓ(zi, A(Si)) (88)

RS(ρ) = E
A∼ρ

n∑
i=1

mi

M
E

zi∼Di

ℓ(zi, A(Si)) (89)

We restate the notation introduced in the main body of the paper:

kl−1
m1,...,mn

(
q1, . . . , qn

∣∣∣b) = sup
{ 1

n

n∑
i=1

pi

∣∣∣ n∑
i=1

mi kl(qi|pi) ≤ b, pi ∈ [0, 1]
}

(90)

and the Catoni counterpart

Φ−1
m1,...,mn

(
q1, . . . , qn

∣∣∣b, λ1, . . . , λn) (91)

= sup
{ 1

n

n∑
i=1

pi

∣∣∣− n∑
i=1

mi log(1− pi + pie
−λi
nmi ) ≤ 1

n

n∑
i=1

λiqi + b, pi ∈ [0, 1]
}
(92)

B.4.1 Task-centric meta-learning

Theorem B.9 (Theorem 4.1, Equation (18)). For any fixed meta-prior π, and fixed set of P(A), any
δ > 0, and any λi > 0, it holds with probability at least 1 − δ over the sampling of the training
datasets that for all meta-posteriors, and hyper-posteriors Q(A):

RTM (ρ) ≤ kl−1
n

(
kl−1
m1,...,mn

(
R̂1(ρ), . . . , R̂n(ρ)

∣∣∣C(ρ) + c1

)∣∣∣∣∣KL(ρ∥π) + log
4
√
n

δ

)
(93)

where C(ρ) = KL(ρ∥π) + EA∼ρ[KL(Q(A)∥P(A))] + log 2
δ , c1 =

∑n
i=1 log(2

√
mi)

Proof. Proof of this theorem consists of two steps. 1) upper-bounding RT(ρ), R̂1(ρ), . . . , R̂n(ρ),
and upper-boundingRT

M (ρ) based onRT(ρ). For the first step, define the following distributions:

• Sample an algorithm A ∼ ρ, sample (P, f1, . . . , fn) from Q(A).

• Sample an algorithm A ∼ π, sample (P, f1, . . . , fn) from P(A).

By the same proof steps as Theorem B.5 by replacing Q and P with these two distributions, we get

E
A∼ρ

[ n∑
i=1

mi kl(R̂i(A(Si))|Ri(A(Si)))
]
≤ C(ρ) + log

1

δ
+

n∑
i=1

log(2
√
mi) (94)

Therefore, by Jensen’s inequality
n∑
i=1

mi kl(R̂i(ρ)|Ri(ρ)) ≤ C(ρ) + log
1

δ
+

n∑
i=1

log(2
√
mi) (95)

Hence, with probability at least 1− δ
2 :

RT(ρ) ≤ kl−1
m1,...,mn

(
R̂1(ρ), . . . , R̂n(ρ)

∣∣∣C(ρ) + c1

)
(96)

For the second part, note that by an application of the single-task learning bound, where each sample
is a task from τ , we get that with probability at least 1− δ

2 :

RTM (ρ) ≤ kl−1
n

(
RT(ρ)

∣∣∣KL(ρ∥π) + log
4
√
n

δ

)
(97)

By combining Equations 96 and 97 with a union bound, we complete the proof.
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By the same reasoning, applied to Catoni-style task-centric multi-task and single-task bounds we get
the following theorem:
Theorem B.10 (task-centric meta-learning, Catoni-style bound). For any fixed meta-prior π, and
fixed set of P(A), any δ > 0, any λM > 0, and any λi > 0, i ∈ [n] it holds with probability at least
1− δ over the sampling of the training datasets that for all meta-posteriors, and hyper-posteriors
Q(A):

RTM (ρ) ≤ Φ−1
n

(
Φ−1
m1,...,mn

(
R̂1(ρ), . . . , R̂n(ρ)

∣∣∣C(ρ), [λi])
∣∣∣∣∣KL(ρ∥π) + log

2

δ
, λM

)
(98)

where C(ρ) = KL(ρ∥π) + EA∼ρ[KL(Q(A)∥P(A))] + log 2
δ

B.4.2 Sample-centric meta-learning

Theorem B.11 (Theorem 4.1, Equation (19)). For any fixed meta-prior π, and fixed set of P(A), any
δ > 0, it holds with probability at least 1− δ over the sampling of the training datasets that for all
meta-posteriors, and hyper-posteriors Q(A):

RSM (ρ) ≤ kl−1
n

(
M

nmmax
kl−1
M

(
R̂S(ρ)

∣∣∣C(ρ) + c2

)∣∣∣∣∣KL(ρ∥π) + log
4
√
n

δ

)
(99)

where C(ρ) = KL(ρ∥π) + EA∼ρ[KL(Q(A)∥P(A))] + log 2
δ , and c2 = log(2

√
M).

Proof. Proof of this theorem consists of two steps. 1) upper-bounding RS(ρ), based on R̂S(ρ),
and upper-bounding RS

M (ρ) based on RS(ρ). Consider the same distributions as the proof of
Theorem B.11. With the same steps as the proof of Theorem B.7 using these distributions we get:

kl(R̂S(ρ)|RS(ρ)) ≤
C(ρ) + log 2

√
M
δ

M
(100)

Therefore,

M

nmmax
RS(ρ) ≤ M

nmmax
kl−1
M

(
R̂S(ρ)

∣∣∣C(ρ) + c2

)
(101)

and from Equations (2) we get

RSM (ρ) ≤ kl−1
n

(
M

nmmax
RS(ρ)|KL(ρ∥π) + log

4
√
n

δ

)
(102)

Combination of these inequality with a union bound proves the theorem.

Analogously to above, using Catoni-style sample-centric multi-task and single-task bounds we get
the following theorem:
Theorem B.12 (sample-centric meta-learning, Catoni-style bound). For any fixed meta-prior π, and
fixed set of P(A), any δ > 0, any λ > 0, and any λM > 0 it holds with probability at least 1 − δ
over the sampling of the training datasets that for all meta-posteriors, and hyper-posteriors Q(A):

RSM (ρ) ≤ Φ−1
n

(
M

nmmax
Φ−1
M

(
R̂S(ρ)

∣∣∣C(ρ), λ)∣∣∣∣∣KL(ρ∥π) + log
2

δ
, λM

)
(103)

where C(ρ) = KL(ρ∥π) + EA∼ρ[KL(Q(A)∥P(A))] + log 2
δ .
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C Experiments

C.1 Simulation

In this section, we provide more information and intuition on the (geometric) behavior of the
bounds in Theorem 3.2. In Figure 3, we illustrate the values of the bounds for a toy example for
n = 2,m1 = 250,m2 = 150, R̂1 = 0.2, R̂2 = 0.2, δ = 0.05, and KL = 10. The shaded areas are
indicators of the areas that each constraint holds, and the goal is to maximize 1

2 (R1 +R2), i.e. find a
feasible point as far as possible in the diagonal direction with slope 45 degrees.

Similar to single-task learning, the kl-bound is a two-sided bound, which limits the deviation between
R̂ to R and can also give a lower-bound to the true risk. It is parameter-free and can therefore be
evaluated as is. In contrast, Catoni bounds only provide an upper-bounds on the risk, which emerge
as convex curves in the (R1, R2) planes, parametrized by n parameters (here: λ1, λ2), which have
to be chosen a priori (in a data-independent way) for the bound to hold. The purple, orange and
yellow regions in the figure illustrate different choices. For example, with λ1 = λ2 = 700 (purple
line), the guarantees from the Catoni-bound are worse than the ones provided by the kl-bound. With
λ1 = λ2 = 200 (red curve), the resulting guarantees are better, though. Since a priori good values
for the λs are not clear, this observation suggests that in practice, it is beneficial to combine the
constraints from both bounds by a union bound, such that the resulting guarantees are always at least
as good as the better one of them.

An interesting phenomenon emerges when doing so for λ1 = 300, λ2 = 400. The resulting bound
value (yellow square) is in fact smaller than the minimum of the kl-bound or the corresponding
Catoni-bound individually, because the different geometric shapes of the constraint sets. While
in this example the difference is quite small, we find this an interesting observation that cannot
occur in single-task learning (where the optimization problem is one-dimensional), and might be of
independent interest.

0.2 0.4 0.6 0.8
R1

0.2

0.4

0.6

0.8

R 2

Constraints and Maximizers for (R1 + R2)/2
kl-bound
Catoni bound, 1 = 200, 2 = 200
Both constraint, 1 = 200, 2 = 200
Catoni bound, 1 = 700, 2 = 700
Both constraint, 1 = 700, 2 = 700
Catoni bound, 1 = 300, 2 = 400
Both constraint, 1 = 300, 2 = 400

Figure 3: Illustration of the constraint and optimal value of bounds
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Table 2: Task-centric MTL: numeric results (in %, lower is better) for linear models on MDPR
simplicity empirical risk standard rate fast-rate bounds

η R̂T bound kl-style Catoni-style with mmin oracle

0.00 21.4±0.1 38.8±0.1 38.0±0.1 38.6±0.1 71.0±0.1 37.4±0.1

0.02 19.9±0.2 37.6±0.2 36.9±0.2 37.3±0.2 70.5±0.1 36.2±0.2

0.04 13.7±0.1 32.5±0.1 31.0±0.1 30.7±0.1 67.3±0.2 30.4±0.1

0.06 6.4±0.2 25.9±0.1 22.7±0.1 22.6±0.1 60.5±0.3 22.2±0.1

0.08 2.3±0.1 21.0±0.3 16.4±0.3 16.7±0.3 51.5±0.7 15.8±0.3

0.10 1.1±0.2 18.7±0.3 13.6±0.3 13.6±0.3 45.5±0.6 13.0±0.3

C.2 MTL bound for linear models

In this section we provide the details for our numeric experiments on linear multi-task classification.

We use the MDPR dataset (Pentina & Lampert, 2017), which consists of 953 tasks. Each task’s data
is a binary classification task of 25-dimensional feature vectors, which we augment with an additional
constant feature to simulate a bias term. We set aside a random subset of 500 examples from each
task as the test set and use the rest for training. The resulting training set sizes range between 102 and
22530 samples (average 2450, harmonic average 859.7), making the setting clearly unbalanced. In
order to influence the simplicity of the task, we create variants of the dataset in which for each task, i,
an offset ηYi for η ∈ [0, .1] is added to features Xi, where Yi is the vector of labels. Larger values of
η result in an easier classification task and consequently smaller empirical risk (and ultimately also
expected risk).

As model class, we use (stochastic) linear classifiers, fi(x) = sign(⟨x,wi⟩ + b) with a Gaussian
distribution of fixed variance over the weight vectors: wi ∼ Qi := N (µi, σId×d) with σ = 0.1. For
training we perform logistic regression with biased Frobenius regularization (Kienzle & Chellapilla,
2006):

min
µ1,...,µn,ψ

n∑
i=1

1

|Si|
∑

(x,y)∈Si

E
w∼N (µi,σI)

log(1 + exp(−yw⊤x)) + λ∥µi − ψ∥2 (104)

We implement this problem in jax. We determine the mean vectors µ1, . . . , µn by 25 steps of
L-BFGS optimization with λ = 0.001 using the optax package. To evaluate the stochastic classifiers
we always sample a weight vector from the corresponding distribution. After each step, we update
the regularization bias to its closed-form optimum, ψ ← 1

n

∑n
i=1 µi.

To evaluate the bounds, we use a hyper-prior P = N (0, Id×d) and a hyper-posterior, Q = N (ψ, I),
such that the KL-terms become

KL(Q∥P) = d

2
∥ψ∥2 (105)

E
P∼Q

KL(Qi∥P ) =
d

2
(σ2 − 1− log σ2) + E

ψ′∼N (ψ,Id×d)

1

2
∥µi − ψ′∥2 (106)

=
d

2
(σ2 − log σ2) +

1

2
∥µi − ψ∥2. (107)

To numerically compute the non-explicit bounds, we fix δ = 0.05 and first compute the empirical
risks, R̂1 . . . , R̂n. In the task-centric setting, we then treat the unknown risks R1, . . . ,Rn as free
optimization variables and numerically maximizeRT = 1

n

∑
iRi subject to the inequality constraint

specified to the bound of interest. In the sample-centric setting, we compute the empirical sample
risk, R̂S =

∑
imiR̂i and solve for the scalar quantityR, again constrained by the respective bound.

For the Catoni-style bounds, the optimal λ value(s) are not clear a prior. Therefore, we instantiate
these bounds with 11 values for λ (where λ1 = · · · = λn = λ in the task-centric case), exponentially
spaced in [10−2 · nmh, 10

2 · nmh] and with confidence values δ = 0.05
11 . We then combine the

resulting inequalities by a union bound and solve the optimization problem subject to all of the
constraints. We found the SLSQP optimizer, which is available in scipy.optimize’s minimize’s
routine to work reliably and efficiently for all of these setups.
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Table 3: Sample-centric MTL: numeric results (in %, lower is better) for linear models on MDPR
simplicity empirical risk standard rate fast-rate bounds

η R̂S bound kl-style Catoni-style oracle

0.00 15.2±0.1 25.5±0.1 23.5±0.1 23.9±0.1 23.5±0.1

0.02 14.6±0.1 25.1±0.1 23.0±0.1 23.4±0.1 23.0±0.1

0.04 11.1±0.1 22.3±0.1 19.4±0.2 20.1±0.2 19.4±0.2

0.06 6.3±0.3 17.9±0.2 13.5±0.3 13.6±0.4 13.5±0.3

0.08 2.8±0.1 13.8±0.2 8.0±0.2 8.0±0.3 8.0±0.3

0.10 1.7±0.6 12.2±0.7 5.9±1.1 6.1±1.0 5.9±1.1

Table 2 and 3 report the numerical results, and Figures 1 and 2 show the results graphically, which also
include a plot of the differences between the new fast-rate bounds and the original standard-rate ones.
Additionally included is the value of the fast-rate oracle bound, i.e. the Catoni-bound if the optimal
λ-value(s) were known. In the task-centric case, one can see that kl-style and Catoni-style bounds
yield comparable values, slightly (for η ≤ 0.2) to clearly (for η ≥ 0.4) better than the standard-rate
bounds. A small difference to the oracle bound remains, indicating that a more involved procedure
for choosing the λ-values might be beneficial. In the sample-centric case, the kl-style bound achieves
almost identical results to the oracle one. The Catoni-style bound is slightly looser for η ≤ 0.4, but
then catches up to the other ones. Here, there is a clear improvement over the standard rate bound for
all values of η.

C.3 MTL bound for neural networks

In this section, we provide the details of the numerical experiments on multi-task learning with
low-rank parametrized neural networks. 2 We use the multi-task framework of (Zakerinia et al., 2025),
but generalize it to the unbalanced case. For learning n models f1, . . . , fn ∈ Rd, they use k random
expansion matrices G1, . . . , Gk ∈ Rd×l, to form matrix G = [G1v1, G2v2, · · · , Gkvk] ∈ RD×k, to
represent a subspace, and individual models are learned in the subspace fj = f0 +Gαj , αj ∈ Rk.
They follow by quantizing the model and encoding all trainable parameters using arithmetic coding.

For computing the bounds, for a subspace G, we would define a prior P for a discrete set
of models in G as P (fj) = 1

Z 2
− len(αj), and the hyper-prior over priors (or equivalently sub-

spaces) is P(G) = 1
Z̄
2− len(v1,...,vk). For the choice of Qi = δ(fi) and Q = δ(G), we get

KL(Q∥P) = len(G, f1, . . . , fn) log 2, and we can compute our new bounds. For experiments,
we use two multi-task benchmarks: split-CIFAR10 and split-CIFAR100 (Krizhevsky, 2009), which
samples are distributed between tasks such that each task has data for 3 out of 10 and 10 out of 100,
respectively. We use a Vision Transformer model (Dosovitskiy et al., 2020) (∼ 5.5 million parame-
ters) pretrained on ImageNet. For computing the numerical upper-bound we use Sequential Least
Squares Programming (SLSQP), a gradient-based optimization algorithm that solves constrained
nonlinear problems by iteratively approximating them with quadratic programming subproblems.
For computing the Catoni bound, we choose equal λi = λ for all tasks. For task-centric bound we
choose λ = cnmh, and for sample-centric we choose λ = cM for c ∈ {0.5, 0.6, . . . , 1.5} by a union
bound for values of c. The results are given in Table 1. For both views, the improvements from
slow-rates to our fast-rates are visible. Specifically, the fast-rate bounds of previous works (Guan &
Lu, 2022; Zakerinia et al., 2025) for balanced MTL would give at best the rate with mmin, which
translates to even a worse result compared to slow-rate bounds. Additionally, the fast-rate behavior of
more improvement when training error is small is visible between the easier task (split-CIFAR10)
compared to the more challenging task (split-CIFAR100).

2Code: https://github.com/hzakerinia/MTL

25

https://github.com/hzakerinia/MTL
https://github.com/hzakerinia/MTL


NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our claims accurately reflect the paper’s contributions and scope.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss limitations in the Conclusion section.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

26



Justification: We provide this information in the main body and appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide this information in the main body and appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how
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to have some path to reproducing or verifying the results.
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eration due to laws or regulations in their jurisdiction).
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to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
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feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not release model or data.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
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16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Our research does not rely on LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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