
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TLXML: TASK-LEVEL EXPLANATION OF META-
LEARNING VIA INFLUENCE FUNCTIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

The scheme of adaptation via meta-learning is seen as an ingredient for solving
the problem of data shortage or distribution shift in real-world applications, but
it also brings the new risk of inappropriate updates of the model in the user en-
vironment, which increases the demand for explainability. Among the various
types of XAI methods, establishing a method of explanation based on past experi-
ence in meta-learning requires special consideration due to its bi-level structure of
training, which has been left unexplored. In this work, we propose influence func-
tions for explaining meta-learning that measure the sensitivities of training tasks
to adaptation and inference. We also argue that the approximation of the Hessian
using the Gauss-Newton matrix resolves computational barriers peculiar to meta-
learning. We demonstrate the adequacy of the method through experiments on
task distinction and task distribution distinction using image classification tasks
with MAML and Prototypical Network.

1 INTRODUCTION

Meta-learning is a widely studied class of methods that enables models to quickly adapt to unseen
tasks (Finn et al., 2017), addressing limitations in generalization due to data scarcity during training
phase (Song & Jeong, 2024; Li et al., 2018; Shu et al., 2021; Lu et al., 2021) or distribution shift
in the user environment (Mann et al., 2021; Mouli et al., 2024; Lin et al., 2020). Although meta-
learning methods guarantee faster adaptation than conventional methods, they do not account for
safe adaptations (Zhang et al., 2020). In fact, they may cause inappropriate model updates in user
environments, which raises safety concerns in downstream tasks (Khattar et al., 2024; Wen et al.,
2022; Yao et al., 2024). Consequently, This increases the need for explanation methods to enhance
transparency and ensure the safe operation of autonomous systems.

The most commonly proposed explanation methods in this decade focus on local explanation: They
treat the model parameters as given and explain the model’s local behavior around specific inference
data points. Although these methods can be applied to the models with their weights determined
via meta-learning and adaptation, they do not cover the needs raised by the peculiarities of meta-
learning (Figure 1a). Because they are based solely on the input data used at each inference, what
they can achieve at most is assessing and comparing the importance of the components in a single
data, and understanding those explanations requires knowledge about those components, which is
sometimes technical and of expert levels (Adebayo et al., 2022). This requirement is considered to
limit the application area where local explanations can resolve the above-mentioned safety concerns
of meta-learning.

One way without relying on the details of the inference data is to avoid seeing the lower level struc-
ture and instead analyze the relation to previously known data, i.e. training data. In meta-learning,
this expectation is supported by the fact that in some cases, where analyses based on training tasks
are essential for understanding the model’s behaviors (Goldblum et al., 2020b). This insight leads
us to consider highlighting how previously encountered tasks have influenced the model’s current
inference (Figure 1b). Notice that explanations based on past experiences have an advantage in uti-
lizing structures of the training dataset, which increases the conciseness of explanations. In the case
of Figure 3b, the second half of the explanation is possible owing to the nature that training data
can be supplemented with their attributes with various levels of abstraction, which can be added
by annotators, or taken from descriptions of the data acquisition process. Such conciseness enables

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

users to draw analogies to familiar situations, enhancing their understanding of the new task. This is
essential as future real-world applications will likely involve training datasets from diverse domains,
making it difficult for non-expert users to understand explanations without abstracting the raw data.

Explanation based on past experiences has been studied for supervised learning (Koh & Liang,
2017; Jeyakumar et al., 2020; Yeh et al., 2019; Wolf et al., 2024). Particularly, Koh & Liang (2017)
proposed a method to evaluate the influence of training data points on the model’s predictions using
influence functions (Hampel, 1974). To achieve this, they introduced a perturbation parameter that
upweights the loss contribution of each training data. By calculating the derivative of the model’s
learned parameters with respect to this parameter, they were able to trace the influence of training
data on the model’s behavior. Influence functions are effective techniques (Zhang et al., 2022; Koh
et al., 2019; Han & Tsvetkov, 2020) widely utilized in standard supervised learning settings, offering
powerful tools for understanding model robustness (Cohen et al., 2020), measure the effectiveness
of data-models (Saunshi et al., 2022), and improving model interpretability (Chhabra et al., 2024).
Nevertheless, utilizing influence functions in meta-learning settings has not been explored.

(a) Without TLXML, it is common to explain the
model’s behavior via local explanations.

(b) TLXML calculates the influence of each previously
learned task on the model’s behavior in a given new
task, resulting in a more effective user explanation.

Figure 1: Key insights of TLXML.

In this paper, we introduce Task-Level eXpla-
nation of Meta-Learning (TLXML), a novel
method that leverages influence functions to
quantify the impact of previously learned tasks
(training tasks) in a meta-learning framework.
The primary objective of this work is to extend
the focus of Koh and Liang’s approach (Koh
& Liang, 2017) to meta-learning. We empir-
ically demonstrate that TLXML quantifies the
influence of the training tasks on the meta-
parameters, adapted network weights, and in-
ference, which can serve as a similarity mea-
sure between training and test tasks.

Contributions. We summarize our contribu-
tions as follows: 1) Task-Level Explanations
for Meta-Learning: We introduce TLXML for
assessing the influence of meta-training tasks
on adaptation and inference during meta-tests.
it provides concise, task-based explanations
that align with users’ abstraction levels, facilitating better interpretability of meta-learning pro-
cesses. 2) Computation optimization: we reveal that TLXML, for a network with p weights and
q meta-parameters, incurs an expensive computational cost of O(pq2) in its exact form, which does
not scale up to complex networks. We then introduce an approximation method for the Hessian
matrix of the training loss using Gauss-Newton matrix, which reduces the cost to O(pq).

2 RELATED WORK

Influence functions for machine learning. The primary focus of existing research is the use of
influence functions in standard supervised learning models initiated by Koh & Liang (2017). Influ-
ence functions have been successfully used for multiple purposes, such as explaining model behavior
with respect to training data in various tasks (Barshan et al., 2020; Koh & Liang, 2017; Han et al.,
2020), quantifying model uncertainty (Alaa & Van Der Schaar, 2020), crafting/detecting adversarial
training examples (Cohen et al., 2020).These approaches focus on data-level explanations, render-
ing them of limited practical value in meta-learning settings. TLXML leverages influence functions
for task-level explanations, offering more effective insights into how training tasks influence the
model’s behavior. Nevertheless, as noted in Alaa & Van Der Schaar (2020), computing the Hessian
matrix is expensive. To scale the methods of influence functions to more complex networks and
larger datasets. TLXML uses an approximation method for faster computation of the matrix.

Explainable AI (XAI) for meta-learning. It is natural to consider applying existing XAI methods
to meta-learning. The methods that are agnostic to the learning process should be applicable for
explaining inference in meta-learning. Although this area is still in its early stages, some research
examples already exist (Woźnica & Biecek, 2021; Sijben et al., 2024; Shao et al., 2023). The closest

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

work to ours is by Woźnica & Biecek (2021) who quantified the importance of meta-features,
i.e., high-level characteristics of a dataset such as size, number of features and number of classes.
In meta-learning, the goal is to train models that can generalize across various tasks. We argue
that understanding the influence of training tasks play an important role in evaluating the model’s
adaptability, whereas meta-features offer limited insight for such evaluation.

Impact of training data. The robustness of machine learning models is another area where the
impact of training data on inference is frequently discussed (Khanna et al., 2019; Ribeiro et al.,
2016). This topic has also been explored in the context of meta-learning such as creating training-
time adversarial attacks via meta-learning (Zügner & Günnemann, 2019; Xu et al., 2021), training
robust meta-learning models by exposing models to adversarial attacks during the query step of
meta-learning (Goldblum et al., 2020a), and data augmentation for enhancing the performance of
meta-learning algorithms (Ni et al., 2021b). However, influence functions have not been utilized
for meta-learning in this field. Similar to Khanna et al. (2019); Barshan et al. (2020) in the case of
supervised learning, TLXML also leverages Fisher information metrics. This formulation provides
a valuable geometric viewpoint for analyzing the model’s parameter space.

3 PRELIMINARIES

Influence functions. Koh & Liang (2017) proposed influence functions for measuring the impact of
training data on the outcomes of supervised learning models, under the assumption that the trained
weights θ̂ minimize the empirical risk:

θ̂ = argmin
θ

L
(
Dtrain, fθ

)
= argmin

θ

1

n

n∑
i=1

l (zi, fθ)

where fθ is the model to be trained, Dtrain={zi}ni=1 is the training dataset consisting of n pairs of
an input xi and a label yi, i.e., zi=(xi, yi), and the total loss L is the sum of the losses l of each data
point. The influence functions are defined with a perturbation ϵ for the loss of each data point zj :

θ̂ϵ,j = argmin
θ

Lϵ,j

(
Dtrain, fθ

)
= argmin

θ

1

n

n∑
i=1

l (zi, fθ) + ϵl (zj , fθ) ,

which is considered as a shift of the probability that zj is sampled from the data distribution. The
influence of the data zj on the model parameter θ̂ is defined as its increase rate with respect to this
perturbation:

Iparam(j)
def
=

dθ̂ϵ,j
dϵ

∣∣∣∣∣
ϵ=0

= −H−1 ∂l (zj , fθ)

∂θ

∣∣∣∣
θ=θ̂

(1)

where the Hessian is given by H= ∂θ∂θL|θ=θ̂. The influence on a differentiable function of θ is
defined similarly, and calculated with the chain rule. For example, the influence on the loss of a test
data ztest, which is a measure of the model’s performance, is calculated to be

Iperf(ztest, j)
def
=

dl
(
ztest, fθ̂ϵ,zj

)
dϵ

∣∣∣∣∣∣
ϵ=0

=
dl (ztest, fθ)

dθ

∣∣∣∣
θ=θ̂

· Iparam(j).

See Appendix A.1 for the derivation of equation 1. An underlying assumption is that the Hessian
matrix is invertible, which is not always the case. Typically, in over-parameterized networks, the loss
function often has non-unique minima with flat directions around them. In this paper, we examine
how the definition of influence functions extends to cases with non-invertible Hessian matrix.

Supervised meta-learning. In this paper, we utilize TLXML for supervised meta-learning expla-
nations (see for a review Hospedales et al. (2021)). In a typical supervised meta-learning setup, a
task T is defined as a pair

(
DT ,LT) where DT represents the dataset and LT is the associated

loss function for the supervised learning task. The occurrence of each task follows a distribution
T ∼p (T). An adaptation algorithm A takes as input a task T and meta-parameters ω, and outputs

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

the weights θ̂ of the model fθ. The learning objective of a meta-learner is stated as the optimization
of ω with respect to the test loss averaged over the task distribution:

ω̂ = argmin
ω

E
T ∼p(T)

[
LT (DT ,test, fθ̂T)

]
with θ̂T = A(T , ω)

A more practical formulation avoids explicitly using the notion of task distribution. Instead,
it uses sampled tasks as building blocks. Task samples are divided into a taskset for training
meta-parameters(source taskset) Dsrc={T src(i)}Mi=1 and a taskset for testing them(target taskset)
Dtrg={T trg(i)}M ′

i=1 and the learning objective is framed as empirical risk minimization:

ω̂ = argmin
ω

1

M

M∑
i=1

Lsrc(i)(Dsrc(i)test, fθ̂i) with θ̂i = A(Dsrc(i)train,Lsrc(i), ω) (2)

One performance metric in meta-testing is the test loss Ltrg(i)(Dtrg(i)test, fθ̂i) where
θ̂i=A(Dtrg(i)train,Ltrg(i), ω̂). In our experiments, we use and Prototypical Network (Snell et al.,
2017) (see Appendix B.3.2) as commonly used examples of meta-learning algorithms. For MAML,
the initial values θ0 of the network weights serve as the meta-parameters, and A represents a one-
step gradient descent update of the weights with a fixed learning rate α: θ̂i = A(D(i)train,Li, θ0) =
θ0 − α ∂θLi(D(i)train, fθ)

∣∣
θ=θ0

.

For Prototypical Network, the meta-parameters are the weights of a feature extractor fθ and the
adaptation algorithm A is independent of the loss function. It passes the weights θ without any
modification and simply calculates the feature centroid ck for each class k based on the subset
Sk ∈ D: θ = Aθ(D(i)train,Li, θ), and ck = Ak(D(i)train,Li, θ) = (1/|S(i)

k |)
∑

(x,y)∈S
(i)
k

fθ(x).
The loss function L is not used in the adaptation of the Prototypical Network; it is only used in the
outer loop. With d being a distance measure (e.g. Euclidean distance), the class prediction for the
data point x in the test set D(i)test is give by: Pθ(i|x) = exp d(fθ(x),ci)∑

k exp d(fθ(x),ck)
.

4 PROPOSED METHOD

4.1 TASK-LEVEL INFLUENCE FUNCTIONS

We now describe our method. TLXML measures the influence of training tasks on the adaptation and
inference processes in meta-learning. To measure the influence of a training task T j on the model’s
behaviors, we consider the task-level perturbation of the empirical risk defined in Equation 2:

ω̂j
ϵ = argmin

ω

1

M

M∑
i=1

Li(D(i)test, fθ̂i) + ϵLj(D(j)test, fθ̂j) with θ̂i = A(D(i)train,Li, ω). (3)

The influence on ω̂ is measured as:

Imeta(j)
def
=

dω̂j
ϵ

dϵ

∣∣∣∣
ϵ=0

= − H−1 ∂Lj(D(j)test, fθ̂j)

∂ω

∣∣∣∣∣
ω=ω̂

(4)

where the Hessian matrix, H , is defined as follows:

H =
1

M

M∑
i=1

∂2Li(D(i)test, fθ̂i)

∂ω∂ω

∣∣∣∣∣
ω=ω̂

. (5)

See Appendix A.1 for the derivation of Equation 4. The model’s behavior is affected by the pertur-
bation through the adapted parameters θ̂ijϵ ≡ A(D(i)train,Li, ω̂j

ϵ). Therefore, the influence of the
training task T j at the original parameter values θ̂i = A(D(i)train,Li, ω̂) is measured by:

Iadpt(i, j)
def
=

dθ̂ijϵ
dϵ

∣∣∣∣∣
ϵ=0

=
∂A
(
D(i)train,Li, ω

)
∂ω

∣∣∣∣∣
ω=ω̂

Imeta(j) (6)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Consequently, the influence of the training task T j on the loss of a test task T i is measured by:

Iperf(i, j)
def
=

dLi
(
D(i)test, fθ̂ij

ϵ

)
dϵ

∣∣∣∣∣∣
ϵ=0

=
∂Li

(
D(i)test, fθ

)
∂θ

∣∣∣∣∣
θ=θ̂(i)

Iadpt(i, j) (7)

Note that training tasks are used only for evaluating Imeta. This means that we can obtain other
explanation data without requiring accessing the original raw data. By retaining only the calculated
Imeta from the meta-learning process, we can mitigate storage concerns, making this approach
suitable for devices with limited storage capacity.

Task grouping. In some cases, the abstraction of task-level explanation is not enough, and the
explanation based on the task groups is more appropriate. This happens when the tasks used in
the training are similar to each other for human intuition. For example, when an image recognition
model is trained with task augmentation(see Ni et al. (2021a) for terminologies of data augmentation
for meta-learning), e.g., flipping, rotating, or distorting the images in original tasks. In this case, the
influence of each deformed task is not of interest; rather, the influence of a group consisting of tasks
made from a single original task is of interest.

We extend the definition of influence functions to the task-group level by considering a common
perturbation ϵ in the losses of tasks within a task-group GJ={T j0 , T j1 , · · · }:

ω̂J
ϵ =argmin

ω

1

M

M∑
i=1

Li(D(i)test, fθ̂i) + ϵ
∑

T j∈GJ

Lj(D(j)test, fθ̂j) with θ̂i=A(D(i)train,Li, ω),

(8)

which modifies the influence function in Equation 4 as:

Imeta(J)
def
=

dω̂J
ϵ

dϵ

∣∣∣∣
ϵ=0

=
∑

T j∈GJ

Imeta(j) (9)

Equation 6 and Equation 7 are only affected by replacing the task index j with the task-group index
J . See Appendix A.1 for the derivation of Equation 9.

4.2 HESSIAN APPROXIMATION METHOD VIA THE GAUSS-NEWTON MATRIX

TLXML faces computational barriers when applied to large models, particularly (as also noted
in Alaa & Van Der Schaar (2020)) due to the computational costs of handling the Hessian in Equa-
tion 5. Although the Hessian is defined as the second-order tensor of the meta parameters, third-
order tensors appear during its computation, resulting in a computational cost of at least O(pq2) for
a model with p weights and q meta-parameters. This is due to the bi-level structure of meta-learning
(see Appendix A.2 for details). Furthermore, as is common in matrix inversion issues, inverting the
Hessian incurs a computational cost of O(p3).

To address this limitation in the expressiveness of meta-parameters, we propose using the Gauss-
Newton matrix to approximate the Hessian matrix. For specific loss functions, e.g., mean squared
error and cross-entropy, the Hessian can be decomposed into a sum of outer products of two vectors
along with terms containing second-order derivatives. In this work, we only focus on the case of
cross-entropy with the softmax function, which leads to

H =
∂2

∂ω∂ω
L =

∑
njk

σk (yn) (δkj − σj (yn))
∂ynk
∂ω

∂ynj
∂ω

−
∑
njk

tnj (δjk − σk (yn))
∂2ynk
∂ω∂ω

(10)

where y is the output of the last layer, σ is the softmax function, t is the one-hot vector of the target
label, j, k are class indices, and n is the index specifying the combination of the input task and
its corresponding data. The first term of Equation 10 is known as the Gauss-Newton matrix or the
Fisher information metric. The coefficients of the second-order derivatives in the second term are the
differences between predictions and target labels, and their sum equals zero. Since the second-order
derivatives give rise to third-order tensors, we should discuss when these derivatives are uncorrelated
with the coefficients, enabling the Hessian to be approximated by the first term.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 2: Diagram of the projected influence function, which measures the influence of a training task on the
meta-parameters with the Hessian flat directions projected out.

Approximating the Hessian using the Gauss-Newton matrix is well-established in supervised learn-
ing (see for example Botev et al. (2017)). The difference in our case is the variables: in supervised
learning, L and y depend on the model’s weights θ, whereas in our case, they depend on the meta-
parameters ω. Putting some basic facts about cross-entropy (see A.3), we conclude that if there
exists a distribution P (X|ω∗) that is well approximated by the training taskset, and the training
result ω̂ is close to ω∗, Equation 10 is dominated by its first term:

∂2

∂ωµ∂ων
L

∣∣∣∣
ω=ω̂

∼
∑
njk

σk (yn) (δkj − σj (yn))
∂ynk
∂ωµ

∂ynj
∂ων

∣∣∣∣∣∣
θ=ω̂

=
∑
nj

(V)µ(nj)
(
VT
)
(nj)ν

(11)

where we introduce the factorized form of expression using the matrix V with the parameter index
µ as a row index and (nj) as a column index. In the case of a model with p meta-parameters, a
taskset with M tasks, n data point per task, and c target classes, the size of V is p × cnM . For
the approximated Hessian to be positive definite, p must be as small as cnM , which limits the
expressiveness of ω. even if this condition is met, positive definiteness is not guaranteed. Instead,
we extend the definition of influence functions to allow flat directions in the Hessian.

4.3 EXTENDING INFLUENCE FUNCTIONS WITH FLAT DIRECTIONS IN THE HESSIAN

Fig.2 depicts a generic case where flat directions of the Hessian appear in the parameter space.
When the number of parameters is sufficiently large, the points that satisfy the minimization con-
dition, ω̂ = argmin L(ω), form a hyper-surface, resulting in flat directions of the Hessian. The
same holds true for the perturbed loss Lϵ(ω) used for defining the influence functions. The position
along the flat directions resulting from minimization depends on the initial conditions and the learn-
ing algorithm. We do not explore this dependency in this paper. Instead, we employ a geometric
definition of influence functions. Specifically, we take the partial inverse H+ of H in the subspace
perpendicular to the flat directions, known as the pseudo-inverse matrix. With this approach, we
modify the definitions of influence functions as:

Imeta(j)
def
=H+H

dω̂j
ϵ

dϵ

∣∣∣∣
ϵ=0

= − H+ ∂Lj(D(j)test, fθ̂j)

∂ω

∣∣∣∣∣
ω=ω̂

. (12)

See Appendix A.1 for the derivation of the second equation. H+H represents the projection that
drops the flat directions. When the Hessian is approximated by the Fisher information metric, those
are viewed as the direction in which the data distribution remains unchanged. The influence function,
projected by H+H , expresses the sensitivity of ω̂ in the steepest direction of the distribution change.

Note that H+ can be computed without diagonalizing H = V V T . Instead, this can be achieved
by first finding an orthogonal matrix O that diagonalizes V TV , i.e., V TV=OΛOT . Then, V V T is

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

implemented as a sequence of unnormalized projections in the direction of the column vectors of
V O = [v1, v2, · · ·], i.e., V V T =

∑
viv

T
i . The norms of the projections with non-vanishing vectors

are adjusted accordingly, i.e., vivTi → viv
T
i /|vi|4 for |vi| > 0. Note that this method is feasible

if the number of columns in V is small. Although the Gauss-Newton matrix approximation avoids
the O(pq2) computational cost, the size of V remains large, posing significant storage/memory cost.
1 Fortunately, the number of independent columns in V is expected to be small, as most columns
are dropped as zero vectors during orthogonalization. This number corresponds to the non-flat
directions, representint the constraints imposed by the loss minimization condition. Typically, this
is at most the number of training tasks. Exceptional cases arise when the model has weak adaptation
ability, yet some training tasks are perfectly fitted Li(D(i)test, ω̂) = 0. In such cases, the sum of
perfectly fitted data across tasks can increase the number of constraints on ω̂, thereby reducing the
number of flat directions. In all other cases, where task losses take non-zero values, the number of
the constraints on ω̂ is at most equal to the number of tasks.

5 EXPERIMENTS

The definition and approximation of influence functions in TLXML rely on certain assumptions:
equation 4 is defined with the meta-parameters ω̂ at the exact optimum point, and the approximation
in equation 11 is based on the assumption that the number of training samples is sufficiently large and
ω̂ fits well to the target distribution. The experiments in this section aim to investigate whether the
outputs of TLXML can be used to measure the influence of a training task on the meta-parameters
numerically estimated by stochastic gradient descent. We empirically investigate two fundamental
properties:

Property 1: If the network memorizes a training task, its influence on a test task with similar
characteristics should be higher than the influence of other training tasks. We investigate this to
validate the exact formulas in Equation 4, 6, and 7. For this validation, pairs of similar training and
test tasks are created by setting the test task as identical to one of the training tasks.

Property 2: If the network encodes information about the training task distributions, tasks sampled
from distributions similar to the test task should have a higher measured influence than tasks sampled
from other distributions. We examine this to validate the approximation methods in Equation 11 and
12, as encoding task distribution information requires a sufficiently large network.

Setup. We use MAML as a meta-learning algorithm. We conduct the experiments with 5-ways-
5-shots problem, taken from MiniImagenet (Vinyals et al., 2016) dataset. The implementation is
based on the meta-learning library lean2learn (Arnold et al., 2020) and PyTorch’s automatic dif-
ferentiation package. The meta-parameters are trained with Adam. The meta batch size is set to
32, meaning the meta-parameters are updated after accumulating the gradients with 32 randomly
selected tasks. We also conduct experiments with Prototypical Network and Omniglot dataset, with
results in Appendix B.

5.1 DISTINCTION OF TASKS

To validate Property 1, we train a two-layer fully-connected network with widths of 32 and 5 (1285
parameters) with 1000 meta-batches. We use 128 training tasks to facilitate training progress with
this small network. The model’s input is a 32-dimensional feature vector extracted from the images
by using Bag-of-Visual-Words (Csurka et al., 2004) with SIFT descriptor (Lowe, 1999; 2004) and
k-means clustering.

First, we use the training tasks as test tasks to assess whether the network can distinguish the training
task that is identical to each test task from other training tasks. Figure 3 shows the results, where
Figure 3a illustrates a successful case, while Figure 3b reveals that in some tests, the training tasks
that of the exact match are not ranked first, although they generally rank high in most cases. This
instability might be because of the non-convexity of the training loss. In our case, a large fraction of
the 1285 Hessian eigenvalues are near zero, and 92 eigenvalues are negative, violating the underlying

1For example, if the network has 100k parameters, the training taskset has 1000 tasks, and each task is
a 5-way-5-shot problem, then the number of matrix elements is p×cnM=105×(5×25×1000)∼1010, which
makes it challenging to use floating-point numbers of 16, 32, or 64-bit precision.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Effect of Hessian pruning. ”# eigenvalues” denotes the number of largest eigenvalues treated as non-
zero when computing the pseudo-inverse, with the rest set to zero (the 1st row is the original Hessian). The 2nd

row corresponds to the pruned Hessian, where all 92 negative eigenvalues are set to zero. The 2nd column shows
the self-ranks in the tests without degradation. The 2nd column lists self-ranks for tests without degradation, and
the remaining columns show correlation coefficients between the two degradation parameters and the self-ranks
or self-scores. Values are reported as means and standard deviations across 128 tasks.

eigenvalues selfrank(avg±std) correlation with degradation(avg±std)
alpha/rank alpha/score ratio/rank ratio/score

1285 12.6±18.9 0.51±0.32 -0.41±0.29 0.36±0.32 -0.11±0.31
1193 0.0±0.0 0.69±0.21 -0.69±0.22 0.46±0.30 -0.15±0.34
512 0.0±0.0 0.71±0.12 -0.96±0.06 0.63±0.09 -0.89±0.13
256 0.0±0.0 0.71±0.11 -0.95±0.08 0.62±0.11 -0.88±0.14
128 0.0±0.0 0.72±0.10 -0.94±0.04 0.63±0.10 -0.86±0.15
64 0.0±0.0 0.71±0.12 -0.92±0.06 0.66±0.12 -0.77±0.20
32 0.0±0.2 0.72±0.16 -0.85±0.12 0.68±0.14 -0.68±0.22
16 2.0±3.2 0.67±0.22 -0.69±0.20 0.61±0.22 -0.46±0.27
8 8.6 ±9.1 0.55±0.26 -0.53±0.23 0.47±0.27 -0.29±0.31

assumption of Equation 4 (See AppendixB.2.1 for details). A potential solution is to treat small and
negative eigenvalues as zero and use the pseudo-inverse of Hessian (instead of the inverse), as in
Equation 12. The second column of Table 1 shows the effect of this solution, where the training
tasks of the exact match are consistently ranked first.

To evaluate the performance in the scoring of training tasks that are not identical but similar to the
test task, we degrade the test tasks by darkening some of the images in the task and examine whether
the ranks and scores of the originally identical training tasks get worse as the similarity decreases.
Figure 4 shows examples where the ranks and scores tend to get worse as the amount of darkness
or the proportion of dark images increases. These examples include a small amount of Hessian
pruning. We investigate the effects of pruning for these tests. The third to sixth columns of Table 1
show the correlation coefficients between the degradation parameters and the ranks and the scores
of the originally identical training tasks. We can see that pruning increases the correlation values.

5.2 DISTINCTION OF TASK DISTRIBUTIONS

To validate Property 2, we construct a training set of tasks sampled from different distributions by
mixing 128 tasks made up of noise images with 896 training tasks from MiniImagenet (in total 1024
tasks). We train a CNN with four convolutional layers and one fully connected layer (121,093 pa-
rameters). To see the effect of generalization, we apply task augmentation and weight decay during
training. For task augmentation, we rotate images in each training task. Specifically, for each train-
ing task, we randomly select 2, 4, 8, or 16 angles between −π/2 and +π/2 and we create new tasks

(a) Example of training task score distribution in
a single test. Highlighted is the training task iden-
tical to the test task.

(b) Distribution of the self-ranks across the 128
tests. We define the self-rank as the rank of the
training task identical to the test task.

Figure 3: Test with training tasks. As shown in (a), the task most similar to the test task is successfully separated
from the others by using TLXML.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

by rotating all images with those angles. We take 128 test tasks from the MiniImagenet test taskset.
For each training condition, we evaluate the influences of the 1024 training tasks on the 128 test loss
values based on Equation 6, and 7 with the projected influence on the meta-parameters (Equation 12)
and the Gauss-Newton matrix approximation of the Hessian (Equation 10). For the cases where we
employ task augmentation, we use the technique to define group influence equation 9.

Figure 5 shows the results of the experiments. According to the figure, the distributions of the scores
for both the regular training tasks and the noise image tasks overlap, showing no clear distinction in
each test. However, when analyzing the statistics over the 128 tests, the order of mean scores shows
a noticeable difference between the two distributions. We define the mean values of the scores for
the regular and noise image tasks to be in proper order if the mean score of the regular tasks is
greater than that of the noise image tasks. Table 2 shows the number of tests exhibiting the proper
order and their p-values from binomial tests across various training settings. We observe a trend,
that is, when the model fits well to the training tasks, the scores of regular and noise tasks are in
the opposite of proper order. Also, as we enhance the model’s generalization via data augmentation
(image rotation or weight decay), the scores align in the proper order. This observation can be
interpreted as reflecting a specific characteristic of model behavior. During overfitting, only a few
training tasks that are similar to the test task provide useful information, while the majority of regular
training tasks become detrimental. Conversely, when generalization occurs, the model effectively
encodes information from the training task distributions, making tasks from distributions similar to
the test task generally beneficial. In contrast, the noise image tasks have a neutral impact on the
test performance, as they do not contribute a non-vanishing gradient on average. Given that the p-
values are statistically significant in both overfitting and generalization scenarios, we conclude that
TLXML can effectively analyze these phenomena. See Appendix B.3 for experimental details.

6 DISCUSSION AND CONCLUSION

This paper presented TLXML, a method for quantifying the impact of training tasks on the meta-
parameters, adapted network weights, and inference outcomes. Through experiments with a small
network and two meta-learners, we observed that TLXML effectively serves as a similarity measure
between training and test tasks. In Figure 6, this observation is qualitatively explored. The figure
shows image samples from similar (Figure 6b and Figure 6c) and dissimilar (Figure 6d) training
tasks to a test task (Figure 6a) that received high and low scores, respectively.

Additionally, we proposed a modification of the influence functions to address cases where the
Hessian has flat directions. We also explored how the computational cost of managing the Hessian
for large networks can be reduced by using the quadratic form with the Gauss-Newton matrix. In
our experiments with a middle-sized CNN, we observed that the approximated influence scores were
effective in distinguishing between training task distributions in several cases.

One limitation of our work is that the definitions of the influence functions rely on the assumption
of a local minimum of the loss function. Future work could aim to design influence functions that
account for early stopping techniques. Additionally, our discussion of the approximation method

(a) Example of the effect of increasing α. α=1
means all the images in the task are dark images.

(b) Example of the effect of increasing the ratio. ra-
tio=1 means all dark images are completely black.

Figure 4: Test with degraded training tasks. The parameters α and ratio specify the darkness of images, and
the proportion of the dark images, respectively. The red and blue lines represent ranks and scores, respectively.
Both examples were performed with the Hessian pruned to retain only the 1193 most significant eigenvalues.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

(a) rotation angle: 0 weight decay: 0 (b) rotation angle: 0 weight decay: 1e-3

Figure 5: Experiment with mixed training tasksets: examples of a score distribution. Lines show mean values
and the standard deviations of the scores of training tasks. Black and green lines represent regular and noise
image tasks, respectively, with 128 tests arranged horizontally by ascending test error.

(a) Test task (b) 1st training task (c) 2nd training task (d) 1024th training task

Figure 6: A test task (accuracy=0.76)(a) and three training tasks ranked 1st(b), 2nd(c), and 1024th(d) by TLXML.
According to this figure, in the test task, class 0 is similar to classes 1 and 2 from the first training task, while
class 4 is similar to class 3. Similarly, class 0 in the test task resembles class 3 of the 1024th training task.
Additionally, class 2 in the test task is similar to class 0 of both the first and second training tasks, and class 4
is again similar to class 3 of the first training task. Interestingly, class 1 in the test task is similar to classes 0, 1,
and 2 of the 1024th training task, suggesting that models trained on these classes may struggle to classify class
1 correctly, making the 1024th training task ineffective for accurate explanations.

focuses solely on classification tasks with cross-entropy loss in meta-learning. Nevertheless, we
expect that future work focusing on extending TLXML to other task types, e.g., regression and
reinforcement learning, should be straightforward, similar to its application in supervised learning.

Table 2: Experiments with a CNN trained with MAML on MiniImagenet dataset, combined with 128 noise
image tasks. The 128 test tasks were drawn from the pure MiniImagenet test taskset. The number of tests in
which the mean training task scores are in proper order is presented in the 6th column. The p values of the
binomial test are also listed. The standard deviation σ of the binomial distribution under the null hypothesis is
calculated as

√
128× 0.52 ∼ 5.66.

training parameter accuracy test in proper order
rotation angles weight decay iteration test train count p-value

1(0 radian) 0 12000 0.43 1.0 10 (−9.5σ) 1.5× 10−24

2 0 40000 0.40 0.99 42 (−3.9σ) 1.3× 10−4

4 0 40000 0.39 0.95 57 (−1.2σ) 0.25
8 0 40000 0.48 0.86 90 (+4.6σ) 4.9× 10−6

16 0 40000 0.41 0.77 101 (+6.5σ) 3.0× 10−11

1(0 radian) 0.00001 16000 0.41 1.00 16 (−8.5σ) 6.4× 10−19

1(0 radian) 0.0001 20000 0.41 0.97 89 (+4.4σ) 1.2× 10−5

1(0 radian) 0.001 20000 0.45 0.95 100 (+6.4σ) 1.1× 10−10

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Julius Adebayo, Michael Muelly, Harold Abelson, and Been Kim. Post hoc explanations may be
ineffective for detecting unknown spurious correlation. In International conference on learning
representations, 2022.

Ahmed Alaa and Mihaela Van Der Schaar. Discriminative jackknife: Quantifying uncertainty in
deep learning via higher-order influence functions. In International Conference on Machine
Learning, pp. 165–174. PMLR, 2020.

Sébastien M R Arnold, Praateek Mahajan, Debajyoti Datta, Ian Bunner, and Konstantinos Saitas
Zarkias. learn2learn: A library for Meta-Learning research. August 2020.

Elnaz Barshan, Marc-Etienne Brunet, and Gintare Karolina Dziugaite. RelatIF: Identifying ex-
planatory training samples via relative influence. In Silvia Chiappa and Roberto Calandra (eds.),
Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics,
volume 108 of Proceedings of Machine Learning Research, pp. 1899–1909. PMLR, 2020.

Aleksandar Botev, Hippolyt Ritter, and David Barber. Practical gauss-newton optimisation for deep
learning. In International Conference on Machine Learning, pp. 557–565. PMLR, 2017.

Anshuman Chhabra, Peizhao Li, Prasant Mohapatra, and Hongfu Liu. ” what data benefits my clas-
sifier?” enhancing model performance and interpretability through influence-based data selection.
In The Twelfth International Conference on Learning Representations, 2024.

Gilad Cohen, Guillermo Sapiro, and Raja Giryes. Detecting adversarial samples using influence
functions and nearest neighbors. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 14453–14462, 2020.

Gabriella Csurka, Christopher R Dance, Lixin Fan, Jutta Willamowski, and Cédric Bray. Visual cat-
egorization with bags of keypoints. https://people.eecs.berkeley.edu/˜efros/
courses/AP06/Papers/csurka-eccv-04.pdf, 2004. Accessed: 2024-11-26.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-Agnostic Meta-Learning for fast adap-
tation of deep networks. In Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th
International Conference on Machine Learning, volume 70 of Proceedings of Machine Learning
Research, pp. 1126–1135. PMLR, 2017.

Micah Goldblum, Liam Fowl, and Tom Goldstein. Adversarially robust Few-Shot learning: A
Meta-Learning approach. Advances in Neural Information Processing Systems, pp. 17886–17895,
2020a.

Micah Goldblum, Steven Reich, Liam Fowl, Renkun Ni, Valeriia Cherepanova, and Tom Goldstein.
Unraveling meta-learning: Understanding feature representations for few-shot tasks. In Interna-
tional Conference on Machine Learning, pp. 3607–3616. PMLR, 2020b.

Frank R Hampel. The influence curve and its role in robust estimation. Journal of the american
statistical association, 69(346):383–393, 1974.

Xiaochuang Han and Yulia Tsvetkov. Fortifying toxic speech detectors against veiled toxicity.
In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 7732–7739, 2020.

Xiaochuang Han, Byron C. Wallace, and Yulia Tsvetkov. Explaining black box predictions and
unveiling data artifacts through influence functions. In Dan Jurafsky, Joyce Chai, Natalie
Schluter, and Joel R. Tetreault (eds.), Proceedings of the 58th Annual Meeting of the Associa-
tion for Computational Linguistics, ACL 2020, Online, July 5-10, 2020, pp. 5553–5563. Asso-
ciation for Computational Linguistics, 2020. doi: 10.18653/V1/2020.ACL-MAIN.492. URL
https://doi.org/10.18653/v1/2020.acl-main.492.

Timothy M Hospedales, Antreas Antoniou, Paul Micaelli, and Amos J Storkey. Meta-Learning in
neural networks: A survey. IEEE Trans. Pattern Anal. Mach. Intell., 2021.

11

https://people.eecs.berkeley.edu/~efros/courses/AP06/Papers/csurka-eccv-04.pdf
https://people.eecs.berkeley.edu/~efros/courses/AP06/Papers/csurka-eccv-04.pdf
https://doi.org/10.18653/v1/2020.acl-main.492

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jeya Vikranth Jeyakumar, Joseph Noor, Yu-Hsi Cheng, Luis Garcia, and Mani Srivastava. How can
i explain this to you? an empirical study of deep neural network explanation methods. Advances
in neural information processing systems, 33:4211–4222, 2020.

Rajiv Khanna, Been Kim, Joydeep Ghosh, and Sanmi Koyejo. Interpreting black box predictions
using fisher kernels. In Kamalika Chaudhuri and Masashi Sugiyama (eds.), Proceedings of the
Twenty-Second International Conference on Artificial Intelligence and Statistics, volume 89 of
Proceedings of Machine Learning Research, pp. 3382–3390. PMLR, 2019.

Vanshaj Khattar, Yuhao Ding, Bilgehan Sel, Javad Lavaei, and Ming Jin. A cmdp-within-online
framework for meta-safe reinforcement learning. arXiv preprint arXiv:2405.16601, 2024.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. Pro-
ceedings of the 34th International Conference on Machine Learning, 70:1885–1894, 2017.

Pang Wei W Koh, Kai-Siang Ang, Hubert Teo, and Percy S Liang. On the accuracy of influence
functions for measuring group effects. Advances in neural information processing systems, 32,
2019.

Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy Hospedales. Learning to generalize: Meta-learning
for domain generalization. In Proceedings of the AAAI conference on artificial intelligence, vol-
ume 32, 2018.

Zichuan Lin, Garrett Thomas, Guangwen Yang, and Tengyu Ma. Model-based adversarial meta-
reinforcement learning. Advances in Neural Information Processing Systems, 33:10161–10173,
2020.

D G Lowe. Object recognition from local scale-invariant features. In Proceedings of the Seventh
IEEE International Conference on Computer Vision, volume 2, pp. 1150–1157 vol.2. IEEE, 1999.

D G Lowe. Distinctive image features from scale-invariant keypoints. International Journal of
Computer Vision, 2004.

Chaochao Lu, Yuhuai Wu, José Miguel Hernández-Lobato, and Bernhard Schölkopf. Invariant
causal representation learning for out-of-distribution generalization. In International Conference
on Learning Representations, 2021.

Khushdeep Singh Mann, Steffen Schneider, Alberto Chiappa, Jin Hwa Lee, Matthias Bethge,
Alexander Mathis, and Mackenzie W Mathis. Out-of-distribution generalization of internal mod-
els is correlated with reward. In Self-Supervision for Reinforcement Learning Workshop-ICLR,
volume 2021, 2021.

S Chandra Mouli, Muhammad Alam, and Bruno Ribeiro. Metaphysica: Improving ood robustness
in physics-informed machine learning. In The Twelfth International Conference on Learning
Representations, 2024.

Renkun Ni, Micah Goldblum, Amr Sharaf, Kezhi Kong, and Tom Goldstein. Data augmentation for
Meta-Learning. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International
Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research,
pp. 8152–8161. PMLR, 2021a.

Renkun Ni, Micah Goldblum, Amr Sharaf, Kezhi Kong, and Tom Goldstein. Data augmentation
for meta-learning. In International Conference on Machine Learning, pp. 8152–8161. PMLR,
2021b.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ” why should i trust you?” explaining the
predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference
on knowledge discovery and data mining, pp. 1135–1144, 2016.

Nikunj Saunshi, Arushi Gupta, Mark Braverman, and Sanjeev Arora. Understanding influence func-
tions and datamodels via harmonic analysis. In The Eleventh International Conference on Learn-
ing Representations, 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Xinyue Shao, Hongzhi Wang, Xiao Zhu, Feng Xiong, Tianyu Mu, and Yan Zhang. Effect: Explain-
able framework for meta-learning in automatic classification algorithm selection. Information
Sciences, 622:211–234, 2023.

Yang Shu, Zhangjie Cao, Chenyu Wang, Jianmin Wang, and Mingsheng Long. Open domain gen-
eralization with domain-augmented meta-learning. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 9624–9633, 2021.

Evi Sijben, Jeroen Jansen, Peter Bosman, and Tanja Alderliesten. Function class learning with
genetic programming: Towards explainable meta learning for tumor growth functionals. In Pro-
ceedings of the Genetic and Evolutionary Computation Conference, pp. 1354–1362, 2024.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. Ad-
vances in neural information processing systems, 30, 2017.

Yeongwoo Song and Hawoong Jeong. Towards cross domain generalization of hamiltonian repre-
sentation via meta learning. In ICLR 2024, The Twelfth International Conference on Learning
Representations, pp. 12319–12338. ICLR, 2024.

O Vinyals, C Blundell, T Lillicrap, K Kavukcuoglu, and Daan Wierstra. Matching networks for one
shot learning. Adv. Neural Inf. Process. Syst., pp. 3630–3638, June 2016.

Lu Wen, Songan Zhang, H Eric Tseng, Baljeet Singh, Dimitar Filev, and Huei Peng. Improved
robustness and safety for pre-adaptation of meta reinforcement learning with prior regularization.
In 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 8987–
8994. IEEE, 2022.

Tom Nuno Wolf, Fabian Bongratz, Anne-Marie Rickmann, Sebastian Pölsterl, and Christian
Wachinger. Keep the faith: Faithful explanations in convolutional neural networks for case-based
reasoning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp.
5921–5929, 2024.

Katarzyna Woźnica and Przemysław Biecek. Towards explainable meta-learning. In Machine Learn-
ing and Principles and Practice of Knowledge Discovery in Databases, pp. 505–520. Springer
International Publishing, 2021.

Han Xu, Yaxin Li, Xiaorui Liu, Hui Liu, and Jiliang Tang. Yet meta learning can adapt fast, it can
also break easily. In Proceedings of the 2021 SIAM International Conference on Data Mining,
2021.

Yihang Yao, Zuxin Liu, Zhepeng Cen, Jiacheng Zhu, Wenhao Yu, Tingnan Zhang, and Ding Zhao.
Constraint-conditioned policy optimization for versatile safe reinforcement learning. Advances in
Neural Information Processing Systems, 36, 2024.

Chih-Kuan Yeh, Cheng-Yu Hsieh, Arun Suggala, David I Inouye, and Pradeep K Ravikumar. On the
(in) fidelity and sensitivity of explanations. Advances in neural information processing systems,
32, 2019.

Jesse Zhang, Brian Cheung, Chelsea Finn, Sergey Levine, and Dinesh Jayaraman. Cautious adapta-
tion for reinforcement learning in safety-critical settings. In International Conference on Machine
Learning, pp. 11055–11065. PMLR, 2020.

Jieyu Zhang, Haonan Wang, Cheng-Yu Hsieh, and Alexander J Ratner. Understanding programmatic
weak supervision via source-aware influence function. Advances in neural information processing
systems, 35:2862–2875, 2022.

Daniel Zügner and Stephan Günnemann. Adversarial attacks on graph neural networks via meta
learning. In International Conference on Learning Representations, 2019. URL https://
openreview.net/forum?id=Bylnx209YX.

13

https://openreview.net/forum?id=Bylnx209YX
https://openreview.net/forum?id=Bylnx209YX

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

TECHNICAL APPENDICES

A METHOD DETAILS

A.1 IMPLICIT DIFFERENTIATION

The second equation in each of Equation 1, Equation 4, Equation 9, and Equation 12 is derived from
the following property.

Property 1: If a vector parameter θ̂ϵ is parametrized by a scalar parameter ϵ in such a way such the
local maximum or the local minimum condition of a second-order differentiable function L(θ, ϵ) is
satisfied for each value of ϵ, then the derivative of θ̂ϵ with respect to ϵ satisfies:

∂2L(θ, ϵ)

∂θ∂θ

∣∣∣∣
θ=θ̂ϵ

dθ̂ϵ
dϵ

= −∂L (θ, ϵ)

∂θ∂ϵ

∣∣∣∣
θ=θ̂ϵ

. (13)

The proof is done almost trivially by differentiating the local maximum or minimum condition:
∂L (θ, ϵ)

∂θ

∣∣∣∣
θ=θ̂ϵ

= 0 (14)

with respect to ϵ and apply the chain rule. Note that if the matrix ∂∂L in Equation 13 is invertible,
we can solve the equation to obtain the ϵ-derivative of θ̂ϵ. Note also that we do not assume θ̂ϵ to be
the unique solution of Equation 14 and Equation 13 is true for any parametrization of θ with ϵ that
satisfies Equation 14.

A.2 THIRD-ORDER TENSORS IN INFLUENCE FUNCTIONS

Here, we explain how the computational cost of O(pq2) arises in evaluating the influence function
in Equation 4. This is due to the third order tensors which appear in the intermediate process of
evaluating the Hessian:

H =
1

M

M∑
i=1

∂2Li(D(i)test, fθ̂i(ω))

∂ω∂ω
(15)

=
1

M

M∑
i=1

(∂θ̂i (ω)

∂ω

)T
∂2Li(D(i)test, fθ)

∂θ∂θ

∣∣∣∣
θ=θ̂i(ω)

∂θ̂i (ω)

∂ω
(16)

+
∂Li(D(i)test, fθ)

∂θ

∣∣∣∣
θ=θ̂i(ω)

∂2θ̂i (ω)

∂ω∂ω

]
where θ̂i = A(L(i)train,Li, ω). Because θ̂i and ω is a p-dimensional q-dimensional and vector, the
second-order derivative ∂∂θ̂i in the last term is the third-order tensor of pq2 elements. This tensor
also appears in the evaluation of the second-order derivative of the network output with respect to
ω. In the case of MAML, this tensor is in the form of a third-order derivative:

∂2θ̂i (θ0)

∂θ0∂θ0
=

∂2

∂θ0∂θ0
A(D(i)train,Li, θ0) = −α

∂3

∂θ0∂θ0∂θ0
Li
(
D(i)train, fθ0

)
.

A.3 RELATIONS AMONG KL-DIVERGENCE, CROSS-ENTROPY, AND FISHER INFORMATION
MATRIX

For the reader’s convenience, we present basic facts related to the approximation method argued in
section 4.2.

Variant expressions of Hessian The cross-entropy L between two probability distributions
P (X|ω∗), P (X|ω) parametrized by ω∗ and ω, is equivalent to the Kullback–Leibler (KL) diver-
gence up to a ω-independent term:

DKL (P (X|ω∗) , P (X|ω)) = L (P (X|ω∗) , P (X|ω)) +
∫

P (X|ω∗) logP (X|ω∗)dX.

1

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Therefore, the second-order derivatives of them with respect to ω are identical:

∂2

∂ω∂ω
DKL =

∂2

∂ω∂ω
L

Furthermore, considering the Taylor expansion of DKL with ∆ω=ω−ω∗

DKL (P (X|ω∗) , P (X|ω))

∼ −
∑
µ

[∫
∂µP (X|ω∗) dX

]
∆ωµ

+
1

2

∑
µν

[∫
−∂µ∂νP (X|ω∗) +

∂µP (X|ω∗) ∂νP (X|ω∗)
2

P (X|ω∗)
dX

]
∆ωµ∆ων

=
1

2

∑
µν

EX∼P (X|ω∗) [∂µ logP (X|ω∗) ∂ν logP (X|ω∗)]∆ωµ∆ων .

≡ 1

2

∑
µν

gµν (ω
∗)∆ωµ∆ων ,

we see that

∂2

∂ωµ∂ων
DKL

∣∣∣∣
ω=ω∗

=
∂2

∂ωµ∂ων
L

∣∣∣∣
ω=ω∗

= gµν (ω
∗) (17)

Approximations by empirical sums Let us consider the case that X = (x, c) is the pair of a
network input xn and a class label cn and P is the composition of soft-max function σ and the
network output yn ≡ fω(xn). Assuming that sampled data accurately approximate the distributions,
we obtain the expressions of the Fisher information metric in the form of an empirical sum:

gµν (ω
∗) = EX∼P (X|ω∗) [∂µ logP (X|ω∗) ∂ν logP (X|ω∗)]

= E(c,x)∼Pω∗ (c|x)P (x) [∂µ log (Pω (c|x)P (x)) ∂ν log (Pω (c|x)P (x))]
∣∣
ω=ω∗

= E(c,x)∼Pω∗ (c|x)P (x) [∂µ log (Pω (c|x)) ∂ν log (Pω (c|x))]
∣∣
ω=ω∗

∼
∑
ni

σi (yn) [∂µ log (σi (yn)) ∂ν log (σi (yn))]

∣∣∣∣∣
ω=ω∗

=
∑
nijk

σi (yn) (δik − σk (yn)) (δij − σj (yn))
∂ynk
∂ωµ

∂ynj
∂ων

∣∣∣∣∣∣
ω=ω∗

=
∑
nkj

σk (yn) (δkj − σj (yn))
∂ynk
∂ωµ

∂ynj
∂ων

∣∣∣∣∣∣
ω=ω∗

.

2

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

To express the Hessian in a similar way, we denote the target vector of a sample xn as tni. Then:

∂2

∂ω∂ω
L = − ∂2

∂ω∂ω

∑
c

∫
Pω∗ (c|x)P (x) log [Pω (c|x)P (x)] dx

∼ − ∂2

∂ω∂ω

∑
ni

tni log [Pω (i|xn)P (xn)]

= − ∂2

∂ω∂ω

∑
ni

tni log σi(yn)

= − ∂

∂ω

∑
nik

tni [δik − σk(yn)]
∂ynk
∂ω

=
∑
nijk

tniσk(yn) (δkj − σj(yn))
∂ynk
∂ω

∂ynj
∂ω

−
∑
nik

tni [δik − σi(yn)]
∂2ynk
∂ω∂ω

=
∑
njk

σk(yn) (δkj − σj(yn))
∂ynk
∂ω

∂ynj
∂ω

−
∑
nik

tni [δik − σi(yn)]
∂2ynk
∂ω∂ω

= g(ω)−
∑
nik

tni [δik − σi(yn)]
∂2ynk
∂ω∂ω

. (18)

The second to the last equation proves Equation 10. Thus we see that if the distributions P (X|ω∗)
and P (X|ω) are accurately approximated by the training data samples and the model’s outputs,
respectively, the first term in Equation 10 becomes equivalent to the Fisher information metric eval-
uated at ω. By comparing Equation 17 and Equation 18, we see that if ω is near to ω∗, the second
term of Equation 18 drops and the Hessian is well approximated by the Fisher information metric.

B EXPERIMENTAL DETAILS

B.1 COMPUTE RESOURCES

The experiments in Section 5 are carried out in multiple computing environments. We present the
information on computation times in the case of an Intel Core i7-7567U CPU with a 3.50GHz clock
and an NVIDIA GeForce RTX 2070 GPU.

For conducting the experiments in Section 5.1 with the small network with 1285 parameters, training
the model with 1000 meta-bathes takes about ≈ 2 hours, computing Imeta with the 128 training
tasks without approximation takes about ≈ 20 minutes, and after that, computing the influence
scores Iperf for the 128 test tasks takes a few minutes.

For conducting the experiments in Section 5.2 with the CNN with 121,093 parameters, training the
model with 40000 meta-batches takes about ≈ 1 day, computing Imeta with the 1024 training tasks
with the proposed approximation method takes about ≈ 15 hours, and after that, computing the
influence scores Iperf for the 128 test tasks takes about ≈ 2 hours. If we employ data augmentation
in training, we need to perform the summation over the augmented tasks in the computation of
Imeta, and its computational time scales proportionally with the amount of augmentation.

B.2 DETAILS OF DISTINCTION OF TASKS (SECTION 5.1)

B.2.1 EFFECT OF PRUNING HESSIAN

In the experiments in Section 5.1 with MiniImagenet, we encountered negative eigenvalues of the
Hessian. We provide some details here. The plot in Figure 7 shows 1285 eigenvalues arranged from
the largest to the smallest. We can see that the non-zero eigenvalues are almost restricted to the first
several hundred elements. We can also see 92 negative eigenvalues in the tail.

We also conducted experiments with the Omniglot dataset. We train a two-layer fully connected
network with widths of 32 and 5 (1413 parameters) with 1000 meta-batches. We use 128 training
tasks to facilitate training progress with this small network. The model’s input is a 36-dimensional

3

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 3: Effect of pruning the Hessian(Omniglot dataset). ”# eigenvalues” means the number of the eigenvalues
we choose from the largest and treat as non-zero in taking the pseudo inverse. We set the rest of the eigenvalues
to zero. The first line is the case of the original Hessian, where we take the inverse without any additional
manipulation. Actually, 428 of them are negative, and the second line is the case that we prune them. The
second column presents the self-ranks in the tests without degradation. The rest of the columns present the
correlation coefficients between the two degradation parameters and self-ranks or self-scores. All the values
are given with the mean values and standard deviations across the 128 tests. There are cases in which increasing
α does not change the ranks of the original training tasks. The numbers of those cases are shown in the brackets,
and they are removed from the statistics because the correlation coefficients can not be defined for them.

eigenvalues selfrank(avg±std) correlation with degradation(avg±std)
alpha/rank alpha/score ratio/rank ratio/score

1413 66.0 ±36.9 0.15 ±0.48(21) 0.06 ±0.50 0.02 ±0.34 0.03 ±0.23
985 7.8 ±10.0 0.48 ±0.12(2) -0.37 ±0.33 0.25 ±0.28 0.01 ±0.23
512 0.8 ±5.0 0.50 ±0.00(1) -0.50 ±0.00 0.35 ±0.26 -0.15 ±0.23
256 1.6 ±6.3 0.50 ±0.00(1) -0.50 ±0.00 0.34 ±0.27 -0.12 ±0.25
128 2.9 ±7.4 0.50 ±0.00(1) -0.50 ±0.00 0.36 ±0.27 -0.11 ±0.24
64 4.3 ±8.0 0.50 ±0.00(1) -0.50 ±0.00 0.36 ±0.26 -0.13 ±0.23
32 6.4 ±8.8 0.50 ±0.00(1) -0.49 ±0.09 0.33 ±0.26 -0.08 ±0.24
16 8.4 ±10.0 0.50 ±0.00(1) -0.50 ±0.00 0.32 ±0.30 -0.08 ±0.25
8 11.8 ±12.5 0.50 ±0.00(4) -0.50 ±0.00 0.29 ±0.29 -0.06 ±0.24

Figure 7: Eigenvalues of the Hessian before the pruning in 5.1

feature vector extracted from the image by applying 2-dimensional FFT and dropping the edges
to get the 6x6 images at the center. In this case, we encountered 428 negative eigenvalues of the
Hessian. The effects of pruning on the rank of test tasks chosen from the training task set are shown
in the first column of Table 3. Tests with the degradation of those test tasks were also conducted,
and the third to seventh columns of the table in Table 3 show the correlation coefficients between
the degradation parameters and the ranks and the scores of the originally identical training tasks.
Again, we see the values of correlation coefficients are increased by pruning to some extent, but
those correlations are weaker than in the cases of MiniImagenet (Table 1). A possible reason for
the weak correlation with is that the images of handwritten digits in Omniglot have small varieties
of darkness and the trained model is more agnostic about the darkness of the images. A possible
reason for the weak correlation with the ratio is that the tasks in Omniglot are easier to adapt to than
the tasks in MiniImagenet.

B.3 DETAILS OF DISTINCTION OF TASK DISTRIBUTIONS (SECTION 5.2)

B.3.1 MAML

Implementation Details As discussed in Section 4, approximating the Hessian using the quadratic
form of the Gauss-Newton matrix is insufficient to fully address the storage or memory cost issue.
Thus it is necessary to select a small number of independent vectors from the linear combinations
of columns of V in Equation 11. In the experiments of Section 5.2, 1024 independent vectors are

4

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 8: Distribution of self-ranks in test with the training tasks with CNN. Here we define the self-rank as
the rank of the training task identical to the test task.

Table 4: Experiments with a CNN trained with MAML and MiniImagenet dataset combined with 128 noise
image tasks. 128 test tasks were taken from the test taskset of pure MiniImagenet. The numbers of tests where
mean and median training task scores are in proper order are listed in the last two columns. We say the mean
or median scores of normal and noise image tasks are in proper order if the former is larger than the latter. The
standard deviation σ of the binomial distribution of the hypothesis is

√
128× 0.52 ∼ 5.66.

training parameter accuracy # test with proper score order
rotation angles weight decay iteration test train mean median

1(0 radian) 0 12000 0.43 1.00 10 (−9.5σ) 12 (−9.2σ)
2 0 40000 0.40 0.99 42 (−3.9σ) 25 (−6.9σ)
4 0 40000 0.39 0.95 57 (−1.2σ) 58 (−1.1σ)
6 0 40000 0.43 0.89 87 (+4.1σ) 81 (+3.0σ)
8 0 40000 0.48 0.86 90 (+4.6σ) 91 (+4.8σ)

10 0 40000 0.45 0.84 102 (+6.7σ) 97 (+5.8σ)
12 0 40000 0.49 0.84 83 (+3.4σ) 76 (+2.1σ)
14 0 40000 0.45 0.80 61 (−0.5σ) 53 (−1.9σ)
16 0 40000 0.41 0.77 101 (+6.5σ) 95 (+5.5σ)

1(0 radian) 0.00001 16000 0.41 1.00 16 (−8.5σ) 15 (−8.7σ)
1(0 radian) 0.0001 20000 0.44 0.97 89 (+4.4σ) 76 (+2.1σ)
1(0 radian) 0.0005 20000 0.46 0.97 88 (+4.2σ) 90 (+4.6σ)
1(0 radian) 0.001 20000 0.45 0.95 100 (+6.4σ) 91 (+4.8σ)

5

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 5: Experiments with a CNN trained with MAML and Omniglot dataset combined with 128 noise image
tasks. 128 test tasks were taken from the test taskset of pure Omniglot. See the caption of Table 4 for other
notations.

training parameter accuracy # test with proper score order
tasks # normal tasks # noise tasks iteration test train mean median

136 8 128 17000 0.531 1.00 58 (−1.1σ) 61 (−0.53σ)
144 16 128 9000 0.571 1.00 57 (−1.2σ) 63 (−0.18σ)
160 32 128 10000 0.631 1.00 65 (+0.18σ) 66 (+0.35σ)
192 64 128 18000 0.657 1.00 66 (+0.35σ) 75 (+1.9σ)
256 128 128 12000 0.747 1.00 51 (−2.3σ) 54 (−1.8σ)
512 384 128 20000 0.868 1.00 71 (+1.2σ) 75 (+1.9σ)
1024 896 128 18000 0.939 1.00 84 (+3.5σ) 80 (+2.8σ)
2048 1920 128 15000 0.965 1.00 73 (+1.6σ) 73 (+1.6σ)

Table 6: Experiments with a CNN trained with MAML and Omniglot dataset combined with noise image tasks
at the mixing rate 7:1. 128 test tasks were taken from the test taskset of pure Omniglot. See the caption of
Table 4 for other notations.

training parameter accuracy # test with proper score order
tasks # normal tasks # noise tasks iteration test train mean median

128 112 16 20000 0.749 1.000 61(-0.53σ) 53(-1.94σ)
256 224 32 20000 0.829 1.000 61(-0.53σ) 65(+0.18σ)
512 448 64 20000 0.894 1.000 76(+2.12σ) 76(+2.12σ)
1024 896 128 18000 0.939 1.000 84(+3.54σ) 80(+2.83σ)

collected. At each step in the summation of Equation 11 over the training tasks, the columns of
V are orthogonalized, the vectors with the largest 1024 norms are kept, and the other vectors are
dropped.

To evaluate if the buffer of vectors with the size 1024 has enough expressiveness, we trained the
same CNN with 1024 regular tasks of MiniImagenet, approximated the Hessian using the same
method, and conducted 128 tests with the tasks taken from the training taskset as in the case of 5.1.
Figure 8 shows that the training task identical to each of the test tasks is perfectly distinguished by
the influence score calculated using the aforementioned approximation.

MiniImagenet Table 4 shows the full list of the results of the experiments with mixed training task
distributions. In the last two columns, we present the numbers of the tests where the two distributions
are in proper order both in terms of mean values and median values. Again, we observe the tendency
that when the model fits well to the training tasks, the scores of regular and noise image tasks are
distributed in the opposite of proper order, and as we increase the generalization ability through data
augmentation with image rotation or weight decay, they align in proper order.

Omniglot For Omniglot dataset, we trained a CNN with four-layer convolutional layers and one
fully connected layer(111,261 parameters). Table 5 and 6 shows the results with the Ominglot
dataset mixed with noise image training task. Ominiglot tasks are known to be easier than MiniIma-
genet, therefore we can investigate the region of higher test accuracies. Note that no data augmenta-
tion nor use weight decay were necessary to achieve test accuracies above 0.9. Rather, we reduced
the number of training tasks to lower the level of generalization. We examined two methods for
reducing the number of training tasks: 1) reducing the number of normal tasks and 2) reducing the
number of both normal and noise tasks with a fixed mixing rate. The tables once again show the
tendency of the relative positions of the distribution of influence scores of the noise image tasks and
the normal tasks to change depending on the extent of generalization.

B.3.2 PROTOTYPICAL NETWORK

The experimental setup for Prototypical Network is parallel with the one for MAML. We trained
four-layer CNN backbones (for 113,088 parameters for MiniImagenet and 111.936 parameters for
Omniglot) for the 5-way-5-shot problem. Table 7, 8, 9, and 10 show the result of the experiment.

6

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 7: Experiments with a CNN as a Prototypical network trained with MiniImagenet dataset combined with
128 noise image tasks. 128 test tasks were taken from the test taskset of pure MiniImagenet. See the caption of
Table 4 for other notations.

training parameter accuracy # test with proper score order
tasks # normal tasks # noise tasks iteration test train mean median

136 8 128 10000 0.357 1.000 91(+4.77σ) 86(+3.89σ)
144 16 128 10000 0.363 1.000 85(+3.71σ) 79(+2.65σ)
160 32 128 10000 0.333 1.000 66(+0.35σ) 60(-0.71σ)
192 64 128 10000 0.363 1.000 71(+1.24σ) 70(+1.06σ)
256 128 128 10000 0.393 0.999 24(-7.07σ) 30(-6.01σ)
512 384 128 10000 0.447 0.751 115(+9.02σ) 110(+8.13σ)
1024 896 128 10000 0.507 0.621 94(+5.30σ) 92(+4.95σ)
2024 1896 128 10000 0.535 0.599 88(+4.24σ) 77(+2.30σ)

Table 8: Experiment with a Prototypical network trained with MiniImagenet dataset and noise image tasks with
a fixed mixing rate. 128 test tasks were taken from the test taskset of pure MiniImagenet. See the caption of
Table 4 for other notations.

training parameter accuracy # test with proper score order
tasks # normal tasks # noise tasks iteration test train mean median

128 112 16 10000 0.417 1.000 33(-5.48σ) 38(-4.60σ)
256 224 32 10000 0.434 0.916 122(+10.25σ) 98(+6.01σ)
512 448 64 10000 0.490 0.732 111(+8.31σ) 101(+6.54σ)
1024 896 128 10000 0.507 0.621 94(+5.30σ) 92(+4.95σ)

Table 9: Experiments with a CNN as a Prototypical network trained with Omniglot dataset combined with 128
noise image tasks. 128 test tasks were taken from the test taskset of pure Omniglot. See the caption of Table 4
for other notations.

training parameter accuracy # test with proper score order
tasks # normal tasks # noise tasks iteration test train mean median

136 8 128 10000 0.679 1.000 81(+3.01σ) 70(+1.06σ)
144 16 128 10000 0.699 1.000 79(+2.65σ) 83(+3.36σ)
160 32 128 10000 0.719 1.000 64(+0.00σ) 68(+0.71σ)
192 64 128 10000 0.654 1.000 84(+3.54σ) 75(+1.94σ)
256 128 128 10000 0.697 1.000 86(+3.89σ) 85(+3.71σ)
512 384 128 10000 0.750 0.998 76(+2.12σ) 70(+1.06σ)
1024 896 128 10000 0.754 0.971 77(+2.30σ) 72(+1.41σ)
2024 1896 128 10000 0.841 0.960 59(-0.88σ) 55(-1.59σ)

Table 10: Experiments with a CNN as a Prototypical network trained with Omniglot dataset combined with
noise image tasks at the mixing rate 7:1. 128 test tasks were taken from the test taskset of pure Omniglot. See
the caption of Table 4 for other notations.

training parameter accuracy # test with proper score order
tasks # normal tasks # noise tasks iteration test train mean median

128 112 16 10000 0.727 1.000 70(+1.06σ) 68(+0.71σ)
256 224 32 10000 0.717 1.000 68(+0.71σ) 68(+0.71σ)
512 448 64 10000 0.740 1.000 68(+0.71σ) 67(+0.53σ)
1024 896 128 10000 0.754 0.971 77(+2.30σ) 72(+1.41σ)

7

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 11: Experiments with a CNN trained with MAML and Omniglot dataset combined with 128 noise image
tasks. 128 test tasks were taken from the combined training taskset. See the caption of Table 4 for other
notations.

training parameter accuracy self-rank # test with proper score order
tasks # normal # noise iteration train mean median

136 8 128 17000 1.00 0.00±0.00 10(-9.55σ) 59(-0.88σ)
144 16 128 9000 1.00 0.00±0.00 18(-8.13σ) 60(-0.71σ)
160 32 128 10000 1.00 0.00±0.00 27(-6.54σ) 69(+0.88σ)
192 64 128 18000 1.00 0.00±0.00 44(-3.54σ) 60(-0.71σ)
256 128 128 12000 1.00 0.00±0.00 60(-0.71σ) 61(-0.53σ)
512 384 128 20000 1.00 0.00±0.00 68(+0.71σ) 56(-1.41σ)

1024 896 128 18000 1.00 0.01±0.09 54(-1.77σ) 46(-3.18σ)
2048 1920 128 15000 1.00 10.73±72.39 66(+0.35σ) 68(+0.71σ)

Table 12: Experiments with a CNN trained with MAML and Omniglot dataset combined with noise image
tasks at the mixing rate 7:1. 128 test tasks were taken from the combined training taskset. See the caption of
Table 4 for other notations.

training parameter accuracy self-rank # test with proper score order
tasks # normal # noise iteration train mean median

128 112 16 20000 1.00 0.00±0.00 106(+7.42σ) 59(-0.88σ)
256 224 32 20000 1.00 0.02±0.20 85(+3.71σ) 52(-2.12σ)
512 448 64 20000 1.00 0.00±0.00 77(+2.30σ) 55(-1.59σ)
1024 896 128 18000 1.00 0.01±0.09 54(-1.77σ) 46(-3.18σ)

The results of the test accuracies with Omniglot (Table 9 and 10) show that the decrease of the gener-
alization ability due to the number of training tasks is not as severe as with MAML. This is reflected
in the relative positions of the training task distributions, as measured by the means and medians of
influence scores, which remain relatively stable. In contrast, the results with MiniImagenet (Table
7 and 8) both show test accuracy decreases with the number of training tasks and the shift in the
relative positions occues in the regions with the number of normal tasks being around 120. Note
that in the case of the fixed number of noise tasks (Table 7), further decreasing of the tasks leads to
the change of the relative position again. This can be considered due to the shortage of statistics.
In those situations, a small number of normal training tasks with high scores can affect the mean
or median values significantly, and those statistical values are less adequate for characterizing the
positions of the task distributions.

B.4 TEST WITH TRAINING TASKS

To check if the CNNs used in the above experiments have Property 1 in Section 5, we tested them
with tasks taken from the training tasks. The results are shown in Table 11, 12, 13, 14, 15, and 16.

The columns of self-ranks in the tables indicate that the influence scores with the approximation
method also have the ability to distinguish the tasks identical to the test tasks both for MAML and

Table 13: Experiments with a CNN as a Prototypical network trained with MiniImagenet dataset combined
with 128 noise image tasks. 128 test tasks were taken from the combined training taskset. See the caption of
Table 4 for other notations.

training parameter accuracy self-rank # test with proper score order
tasks # normal # noise iteration train mean median

136 8 128 10000 1.00 0.00±0.00 8(-9.90σ) 25(-6.89σ)
144 16 128 10000 1.00 0.00±0.00 16(-8.49σ) 28(-6.36σ)
160 32 128 10000 1.00 0.00±0.00 29(-6.19σ) 28(-6.36σ)
192 64 128 10000 1.00 0.00±0.00 42(-3.89σ) 22(-7.42σ)
256 128 128 10000 1.00 0.00±0.00 56(-1.41σ) 15(-8.66σ)
512 384 128 10000 0.75 0.00±0.00 69(+0.88σ) 55(-1.59σ)
1024 896 128 10000 0.62 0.00±0.00 87(+4.07σ) 72(+1.41σ)
2024 1896 128 10000 0.60 0.00±0.00 84(+3.54σ) 84(+3.54σ)

8

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 14: Experiments with a CNN as a Prototypical network trained with MiniImagenet dataset combined
with noise image tasks at the mixing rate 7:1. 128 test tasks were taken from the combined training taskset. See
the caption of Table 4 for other notations.

training parameter accuracy self-rank # test with proper score order
tasks # normal # noise iteration train mean median

128 112 16 10000 1.00 0.00±0.00 103(+6.89σ) 25(-6.89σ)
256 224 32 10000 0.92 0.00±0.00 60(-0.71σ) 22(-7.42σ)
512 448 64 10000 0.73 0.00±0.00 80(+2.83σ) 68(+0.71σ)
1024 896 128 10000 0.62 0.00±0.00 87(+4.07σ) 72(+1.41σ)

Table 15: Experiments with a CNN as a Prototypical network trained with Omniglot dataset combined with
128 noise image tasks. 128 test tasks were taken from the combined training taskset. See the caption of Table
4 for other notations.

training parameter accuracy self-rank # test with proper score order
tasks # normal # noise iteration train mean median

136 8 128 10000 1.00 0.00±0.00 12(-9.19σ) 43(-3.71σ)
144 16 128 10000 1.00 0.00±0.00 14(-8.84σ) 42(-3.89σ)
160 32 128 10000 1.00 0.04±0.26 27(-6.54σ) 35(-5.13σ)
192 64 128 10000 1.00 1.09±6.42 45(-3.36σ) 34(-5.30σ)
256 128 128 10000 1.00 3.67±16.55 57(-1.24σ) 81(+3.01σ)
512 384 128 10000 1.00 30.11±56.72 69(+0.88σ) 83(+3.36σ)
1024 896 128 10000 0.97 83.41±122.60 66(+0.35σ) 64(+0.00σ)
2024 1896 128 10000 0.96 120.10±241.10 54(-1.77σ) 63(-0.18σ)

Table 16: Experiments with a CNN as a Prototypical network trained with Omniglot dataset combined with
noise image tasks at the mixing rate 7:1. 128 test tasks were taken from the combined training taskset. See the
caption of Table 4 for other notations.

training parameter accuracy self-rank # test with proper score order
tasks # normal # noise iteration train mean median

28 112 16 10000 1.00 1.70±9.24 109(+7.95σ) 73(+1.59σ)
256 224 32 10000 1.00 7.12±23.36 86(+3.89σ) 48(-2.83σ)
512 448 64 10000 1.00 36.98±69.89 55(-1.59σ) 54(-1.77σ)
1024 896 128 10000 0.97 83.41±122.60 66(+0.35σ) 64(+0.00σ)

9

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Prototypical Network. However, we should note that self-ranks deviate slightly from 0 in some
experiments with Prototypical Network and Omniglot dataset. A possible interpretation is that Om-
niglot dataset has pairs of closely similar tasks that the influence score fail to distinguish. This may
contribute to why tasks in the Omniglot dataset are easier to learn than those in MiniImagenet.

We should also mention the counts of the tests with the proper order of the normal task distributions
and the noise task distributions. In the cases of the combined tasksets with the fixed mixing ratio
(Table 12, 14, and 16). We observe that the mean scores of normal tasks tend to increase relative
to those of noise tasks when the number of training tasks is reduced, although this tendency is
less pronounced in the median scores. The tendency of the mean values is considered due to their
susceptibility to a small number of high scores. The relatively weak tendency of the median values
can be viewed as the result of their smaller susceptibility to those high scores.

In the cases of the combined tasksets with the fixed number of noise tasks (Table 11, 13, and 15),
we observe the tendencies opposite to the above. In those cases, the mean scores of normal tasks
tend to decrease when the number of training tasks is reduced. Similarly, the median scores show
less tendency. The reason is that the test tasks also contain the same portion of noise tasks. When
the number of training tasks is reduces, most of the test tasks are noise tasks. For those noise test
tasks, the mean scores of noise tasks become large, which means the mean scores of normal tasks
become small.

B.5 VALIDITY OF THE HESSIAN APPROXIMATION

From the above results, we see that influence scores calculated with GN matrix approximation have
enough expressibility for finding training tasks identical to test tasks and some statistical values
over different tests can also be used to distinguish the task distributions. As reference information
for observing the extent to which those results are under the influence of the approximation, we
trained a 2-layer fully connected network of the same structure as in Section B.2.1 with MAML and
Omniglot and calculated the correlation coefficients of influence scores obtained with and without
the approximation. As training settings, we took 5 cases of different numbers of training tasks, and
for each of them, as conditions for inverting the Hessians, we took 5 cases of different numbers of
the exact Hessian eigenvalues treated as non-zero, and 5 cases of different vector buffer sizes for
the approximated Hessians. In Table 17, 18, 19,20, and 21, we list the mean ± std values resulting
from calculating correlation coefficients between the influence scores of the training tasks and taking
statistics over 128 tests for each setting.

From the tables, we observe that most of the diagonal elements have the largest values in the rows
and in the columns where they reside. This is because the number of inverted eigenvalues in the
exact method and the size of the vector buffer in the approximation method both determine how
many directions are treated as non-flat, establishing a correspondence between the two.

We note that columns of larger inverted eigenvalues and rows of larger vector buffers exhibit weaker
correlations. This is likely due to instability in inversion caused by small eigenvalues. Additionally,
the network used here is much smaller than the CNN used in the previous subsections. We can
expect that larger networks fit better to the training data and therefore, the approximated influence
scores have more correlations with the exact ones. However, we cannot verify this experimentally
due to the computational barriers and the memory cost.

10

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 17: 64 training tasks, accuracy: 0.85

GN Matrix # inverted eigenvalues in exact Hessian
vector buffer 64 128 256 512 1024

64 0.45±0.26 0.32±0.35 0.30±0.38 0.18±0.44 0.03±0.41
128 0.34±0.30 0.36±0.37 0.37±0.39 0.23±0.51 0.03±0.46
256 0.21±0.34 0.27±0.39 0.30±0.41 0.26±0.50 0.04±0.42
512 0.19±0.34 0.25±0.40 0.30±0.41 0.28±0.48 0.06±0.38

1024 0.19±0.34 0.25±0.39 0.30±0.39 0.27±0.46 0.07±0.36

Table 18: 128 training tasks, accuracy: 0.84
GN Matrix # inverted eigenvalues in exact Hessian

vector buffer 64 128 256 512 1024
64 0.48±0.14 0.36±0.14 0.23±0.11 0.13±0.11 0.01±0.09
128 0.34±0.11 0.42±0.11 0.32±0.12 0.19±0.11 0.03±0.12
256 0.19±0.11 0.27±0.11 0.38±0.10 0.28±0.11 0.03±0.13
512 0.08±0.10 0.13±0.12 0.22±0.10 0.29±0.10 0.07±0.16

1024 0.06±0.13 0.08±0.12 0.13±0.11 0.20±0.11 0.07±0.15

Table 19: 256 training tasks, accuracy: 0.87
GN Matrix # inverted eigenvalues in exact Hessian

vector buffer 64 128 256 512 1024
64 0.44±0.11 0.35±0.10 0.24±0.10 0.15±0.10 0.02±0.11
128 0.34±0.10 0.42±0.09 0.32±0.10 0.20±0.09 0.03±0.10
256 0.23±0.09 0.31±0.08 0.38±0.08 0.28±0.09 0.04±0.10
512 0.14±0.09 0.18±0.09 0.25±0.08 0.31±0.08 0.06±0.09

1024 0.09±0.08 0.11±0.09 0.15±0.08 0.21±0.09 0.10±0.09

Table 20: 512 training tasks, accuracy: 0.88
GN Matrix # inverted eigenvalues in exact Hessian

vector buffer 64 128 256 512 1024
64 0.39±0.10 0.32±0.10 0.23±0.09 0.16±0.07 0.02±0.07
128 0.31±0.07 0.38±0.07 0.30±0.08 0.21±0.07 0.03±0.07
256 0.22±0.07 0.29±0.06 0.36±0.07 0.29±0.06 0.04±0.08
512 0.15±0.07 0.20±0.06 0.27±0.07 0.33±0.05 0.06±0.07

1024 0.10±0.06 0.13±0.06 0.19±0.07 0.25±0.06 0.08±0.06

Table 21: 1024 training tasks, accuracy: 0.89
GN Matrix # inverted eigenvalues in exact Hessian

vector buffer 64 128 256 512 1024
64 0.36±0.10 0.29±0.09 0.22±0.08 0.15±0.07 0.02±0.05
128 0.31±0.07 0.36±0.07 0.30±0.08 0.22±0.06 0.04±0.05
256 0.23±0.06 0.31±0.06 0.36±0.06 0.29±0.05 0.06±0.05
512 0.16±0.05 0.22±0.05 0.29±0.05 0.33±0.05 0.08±0.05

1024 0.12±0.05 0.16±0.05 0.21±0.05 0.27±0.04 0.11±0.05

11

	Introduction
	Related work
	Preliminaries
	Proposed Method
	Task-level Influence Functions
	Hessian Approximation method via the Gauss-Newton matrix
	Extending Influence Functions with Flat Directions in the Hessian

	Experiments
	Distinction of tasks
	Distinction of task distributions

	Discussion and Conclusion
	Method details
	Implicit differentiation
	Third-order tensors in influence functions
	Relations Among KL-divergence, Cross-Entropy, and Fisher Information Matrix

	Experimental details
	Compute resources
	Details of Distinction Of Tasks (Section 5.1)
	Effect of pruning Hessian

	Details of Distinction Of Task Distributions (Section 5.2)
	MAML
	Prototypical Network

	Test with training tasks
	Validity of the Hessian approximation

