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Abstract
Graph generation has shown great potential in applications like network design and1

mobility synthesis and is one of the fastest-growing domains in machine learning2

for graphs. Despite the success of graph generation, the corresponding real-world3

datasets are few and limited to areas such as molecules and citation networks. To4

fill the gap, we introduce GraphGT, a large dataset collection for graph generation5

and transformation problem, which contains 36 datasets from 9 domains across6

6 subjects. To assist the researchers with better explorations of the datasets, we7

provide a systemic review and classification of the datasets based on research tasks,8

graph types, and application domains. We have significantly (re)processed all the9

data from different domains to fit the unified framework of graph generation and10

transformation problems. In addition, GraphGT provides an easy-to-use graph11

generation pipeline that simplifies the process for graph data loading, experimental12

setup and model evaluation. Finally, we compare the performance of popular13

graph generative models in 16 graph generation and 17 graph transformation14

datasets, showing the great power of GraphGT in differentiating and evaluating15

model capabilities and drawbacks. GraphGT has been regularly updated and16

welcomes inputs from the community. GraphGT is publicly available at https:17

//graphgt.github.io/ and can also be accessed via an open Python library.18

1 Introduction19

Graphs are ubiquitous data structures to capture connections (i.e., edges) between individual units20

(i.e., nodes). One central problem in machine learning on graphs is the gap between the discrete graph21

topological information and continuous numerical vectors preferred by data mining and machine22

learning models [1, 2, 3]. This directly leads to two major directions on graph research in modern23

machine learning: 1) graph representation learning [2, 4, 5, 6], which aims at encoding graph24

structural information into a (low-dimensional) vector space, and 2) graph generation [7, 8], which25

reversely aims at constructing a graph-structured data from the (low-dimensional) vector space. In26

the past several years, graph representation learning has enjoyed an explosive growth in machine27

learning. Techniques such as DeepWalk [9], graph convolutional network (GCN) [10], and graph28

attention networks (GAT) [11] have been proposed for various tasks including node classification29

[12], link prediction [13, 14, 15], clustering [2, 4] and others [16, 17].30

Beyond graph representation learning, graph generation and transformation via machine learning31

start to obtain fast-increasing attention in even more recent years. It enables end-to-end learning of32

underlying unknown graph generation or transformation process, which is a significant advancement33

beyond traditional prescribed graph models such as random graphs and stochastic block models34
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Figure 1: GraphGT dataset collection overview.

which require strong human prior knowledge and hand-crafted rules. Hence, graph generation and35

transformation via machine learning has great potential of many challenging tasks such as molecule36

design, mobility network synthesis, and protein folding statistical modeling. Over recent few years,37

substantial efforts have been paid on developing models and algorithms for graph generation and38

transformation, and a few of them have been studied targeting specific domains, such as GraphVAE39

[18], MolGAN [19] and JT-VAE [20].40

Unlike graph representation learning which enjoys various benchmark datasets such as CORA,41

CITESEER and PUBMED for node classification [21], OAG for link prediction [22], and Molecule-42

LENET for graph-level prediction [23], graph generation and transformation via machine learning is43

still in its nascent stage and lacks comprehensive benchmark datasets that well cover different key44

real-world applications and types of graph patterns. Existing datasets are basically limited to few45

domains such as citation networks and molecules [7, 24]. Such data scarcity issue further leads to46

the following bottlenecks for the advancement of this fast-growing domain of graph generation and47

transformation: (1) Difficulty in formulation: graph structured data is complex in its nature; and48

the raw data in different domains may requires greatly different procedures to process or re-process49

in order to fit into a unified format. (2) Limited number of application domains: Although graph50

generation and transformation is a very broad generic concept that covers graphs in areas ranging51

from geography to biology, to physics, to sociology, to engineering, existing datasets only cover52

limited domains which prevents the development of graph generative models as well as applications53

in more diverse domains. (3) Lack of taxonomy: As the area of graph generation and transformation54

grows, the research tasks are diversified and hence require a well-defined categorization in order55

to have the dataset under the right category for the evaluation of the corresponding task. (4) Lack56

of unified evaluation procedures: the evaluation metrics used in existing research works are quite57

diverse and a gold standard for the evaluation procedure and metrics is needed. Moreover, the scarcity58

of existing datasets may bias the selection of elevation metrics to fit the limited number of existing59

datasets (e.g., molecules) but may not be general to other datasets. (5) Lack of comprehensive60

model comparisons: existing models are usually evaluated in a small number of datasets in very61

focused domains and some may be prone to “overfitting” to these datasets already, which significantly62

challenges the differentiation, evaluation, and advancement of the existing methods.63

To tackle the aforementioned challenges, we introduce GraphGT, a large dataset collection for graph64

generation and transforamtion in machine learning, which (1) collects, re-purposes, re-formats a large65

amount of graph datasets, that (2) covers a variety of domains and subjects, (3) provides a systematic66

reviews and classifications of the datasets, (4) standardizes on the model evaluation procedures, and67

(5) provides benchmark results on a large amount of datasets. The major contributions are as follows.68

• 36 datasets are published under various graph types cover 6 disciplines (including biology, physics,69

chemistry, artificial intelligence (AI), engineering, and social science) and 9 domains (including70
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protein, brain network, physical simulation, vision, molecule, transportation science, electrical71

and computer engineering (ECE), social network and synthetic data).72

• Among all 36 datasets, we collect and construct CollabNet dataset and 7 brain network datasets73

from scratch for graph generation and transformation. Another 8 datasets are re-purposed by us74

from other applications into graph generation and transformation tasks for the first time. The75

remaining are from very different domains that share quite different terminology, formats, and76

data structures, which are reformatted by us to a unified format for the first time for easy access77

and use in a standardized manner.78

• We provide and analyze results of graph generation on 16 datasets and graph transformation on79

17 datasets using popular graph generation and transformation models. We observed that the80

performance of the comparison methods in different datasets (e.g., with different graph sizes,81

feature types, etc.) in different domains can be quite diverse. Hence GraphGT can be very helpful82

in differentiating the comparison methods, locating their drawbacks, and further advancing them.83

• Easy-to-use Python API for users to query and access pre-processed datasets according to specific84

disciplines, domains, and applications per their interests. We also provide a detailed tutorial for85

the implementation in Appendix E. In addition to the access via the Python API, GraphGT is86

open-sourced and available for download via GitHub at https://graphgt.github.io/.87

2 Related Works88

As graph representation learning enjoys an explosive growth in machine learning, numerous research89

works such as DeepWalk [9], graph convolutional network (GCN) [10], and graph attention networks90

(GAT) [11] have been proposed for various tasks including node classification [12], link prediction91

[13, 14] and clustering [2, 4]. Along with this, some datasets are proposed, such as datasets for node92

classification (CORA, CITESEER and PUBMED) [21], datasets for link prediction (OAG) [22],93

and datasets for Graph-level prediction (Molecule-LENET) [25]. To summarize and standardize94

these datasets, many data collections for graph representation learning has been proposed. Stanford95

Network Analysis Platform (SNAP) is a general purpose network analysis and graph mining library96

which contains massive networks with hundreds of millions of nodes, and billions of edges [26].97

OPEN GRAPH BENCHMARK (OGB) is a diverse set of challenging and realistic benchmark98

datasets to facilitate scalable, robust, and reproducible graph machine learning (ML) research [27].99

However, most of the datasets for graph representation learning research cannot be used as graph100

generation benchmarks as the latter requires large number of individual whole graphs in order to101

learn their distributions. While the aforementioned datasets either contain one giant graph for node102

classification and link prediction, or a set of graphs from different distributions for graph classification.103

Graph generation and transformation have been increasingly drawing attentions from the community104

due to its significant roles in various domains. Though many advanced methods have been proposed,105

there are only limited number of datasets for this research topics. Enzyme dataset [28], ProFold106

dataset [29] and Protein dataset [30] are used for protein structure generation. ZINC molecule107

database is borrowed to generate optimal molecules that have desired properties [20]. Moreover, a108

few synthetic datasets are also generated for graph generation tasks to learn graph distributions, such109

as Erdos-Renyi graphs [31] and Waxman random graphs [29]. There exist few data collections that110

systematic organize the graph generation datasets from different domains.111

3 Graph Generation and Transformation112

A graph can be defined as G = (V, E , E, F ), where V is the set of N nodes, and E ✓ V ⇥ V113

corresponds to a set of edges. eij 2 E is an edge that connects node vi and vj 2 V . If the graph114

is node-attributed or edge-attributed, it has the node attribute matrix F 2 RN⇥D that assigns node115

attributes to each node or edge attribute tensor E 2 RN⇥N⇥K that assigns attributes to each edge. D116

and K are dimensions of node attributes and edge attributes, respectively.117

3.1 Graph Generation118

Graph generation aims to sample novel graphs via well-designed probabilistic models [7]. More119

formally, given a set of observed graphs with arbitrary number of nodes and edges, graph generative120

models aim to learn the distribution p(G) of the observed graphs and then graph generation can be121

achieved by sampling a graph G from the learned distribution G ⇠ p(G).122

According to the size of generated graph, graph generation tasks can be classified into two categories:123

(1) fixed-size generation in which the number of nodes is fixed across different graph samples; For124

example, in human brain networks (e.g., functional connectivity), the number of brain regions is125
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usually the same across different human subjects; and (2) variable-sized generation when the number126

of nodes varies across graph samples. For example, different molecules can be considered as graphs127

with various numbers of atoms. The two categories are accommodated with different types of datasets.128

Recent studies on graph generation could be divided into two branches, (1) one-shot generation, (2)129

sequential generation, based on the their choices of the generation process. Specifically, one-shot130

generation builds probabilistic matrices for the generated graph features which the graph structures131

could be obtained by taking the maximum probability nodes and edges in one shot [18, 32, 19, 33].132

While sequential generation, formulates graph generation as a sequential process and generates nodes133

and edges one by one [34, 35, 36, 37].134

3.2 Graph Transformation135

Graph transformation aims at transforming from one graph in source domain into another graph136

in target domain. It can also be regarded as the graph generation conditioning on another graph.137

For instance, in neuroscience, it is interesting to explore the functional connectivity given the138

corresponding structural connectivity. In hardware design domain, given a integrated circuit design,139

one may be asked to obfuscate it, by adding additional gates and keys (i.e., can be considered as nodes)140

but maintain the same functionality. More formally, graph transformation problem can be formalized141

as learning a generative mapping T : (V0, E0, E0, F0) ! (V 0, E 0, E0, F 0), in which (V0, E0, E0, F0)142

corresponds to the graph in source domain and (V 0, E 0, E0, F 0) represents a graph in target domain.143

Based on the entities transformed in the transformation process, problems regarding graph transforma-144

tion can be divided into three main scenarios: (1) node transformation transforms nodes and/or their145

attributes from the source to the target domain; (2) Edge transformation maps graph topology and/or146

edge attributes from the source domain to the target domain; In (3) node-edge co-transformation,147

both the node and edge information can change during the transformation process.148

Recent works cover each of three categories of graph transformation models. Interaction networks149

is a node-transformation technique that provides reasoning on objects, relations and physics [38].150

DCRNN integrates diffusion convolution with a seq2seq framework to handle node transformation151

[39]. Graph Convolutional Policy Network is proposed for modeling chemical reactions. DCGAN has152

been used for generating novel protein structure [40]. GC-GAN can handle malware cyber-network153

synthesis [41]. For the node-edge co-transformation, JT-VAE [20] and Mol-CycleGAN [42] are154

designed for molecule optimization. DG-DAGRNN is employed to generalize stacked RNNs on155

sequences on directed acyclic graph structures [43].156

4 Descriptions of GraphGT Benchmark Datasets157

4.1 Taxonomy158

Our GraphGT Benchmark covers 36 datasets from various domains and tasks. The taxonomy with159

respect to different domains is shown in Figure 2, where there are 9 domains, including protein,160

brain network, physical simulation, vision, molecule, transportation science, electrical and computer161

engineering, social network and synthetic data, across 6 subjects including biology, physics, artificial162

intelligence (AI), chemistry, engineering and social science. Moreover, the taxonomy by different163

tasks is illustrated in Figure 3. For the graph generation task, they can extract datasets for either164

fixed-sized generation or variable-sized generation. For the graph transformation task, we provide165

datasets for node transformation, edge transformation as well as node and edge co-transformation.166

4.2 Dataset Details167

In this section, we provide the specifications of representative datasets spanning different subjects168

introduced in Figure 2. Their potential use in tasks such as graph generation or transformation tasks169

will also be provided. The general profiles for different datasets are summarized in Table 1. A more170

detailed description of each dataset and curation method can be found in the Appendix C.171

4.2.1 Biology172

Motivation. In biology domain, we have two subjects which are proteins and brain networks. Proteins173

are essential to all lives, and are highly related to significant biomedicine-related tasks, such as protein174

design [57] and drug design [58, 59, 60, 61, 62, 63]. De novo protein design [64] is a promising field175

the explores the full sequence space which is estimated 20200 possible amino-acid sequences for176

only a 200-residue protein with the guidance of physical principles of protein folding. In addition to177

protein structure, brain networks include two major types of connectivities, structural and functional,178

which reflect the fiber nerve connectivity and co-activation relations, respectively, among different179
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Protein Brain network
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• ProFold dataset
• Protein dataset

• Brain-restingstate dataset
• Brain-emotion dataset
• Brain-gambling dataset
• Brain-language dataset

Biology

Molecule

• ChEMBL dataset
• ChemReact dataset
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Graphs dataset
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• Erdos-Renyi Graphs 
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• TwitterNet
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Others

Transportation ECE
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•PeMS-BAY dataset

•AuthNet dataset
• IoTNet dataset
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• Brain-motor dataset
• Brain-relational dataset
• Brain-social dataset
• Brain-wm dataset

• Scale-free dataset
• Waxman Graphs 

dataset
• Random Geometric 

dataset

Social science

Figure 2: GraphGT Benchmark datasets by domains.
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• CLEVR dataset
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• PeMS-BAY dataset
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dataset
• Waxman Graphs dataset
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• Community dataset
• Ego dataset
• Enzyme dataset
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• ZINC250K dataset

Graph generation

Node transformation

• N-body-charged 
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• N-body-spring 
dataset
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• AuthNet dataset
• Barab´asi-Albert Graphs 

dataset
• Brain-restingstate dataset
• Brain-emotion dataset
• Brain-gambling dataset
• Brain-language dataset
• Brain-motor dataset
• Brain-relational dataset
• Brain-social dataset
• Brain-wm dataset 
• Scale-free dataset
• TwitterNet dataset

• ChemReact dataset
• IoTNet dataset
• MolOpt dataset

Graph transformation

Node-edge transformation

Figure 3: GraphGT benchmark datasets by tasks.

regions of human brains. Understanding and modeling brain networks and the correlations between180

structural connectivity and functional connectivity are crucial tasks in neuroscience [65].181

Tasks. Protein structures can be considered as graphs where amino acids as nodes and contacts as182

edge connections. Generating novel proteins grounds up to tackle challenges in biomedicine and183

nanotechnology [64, 57, 58, 66, 67, 68, 67]. In a brain network, the brain regions are represented184

as nodes and the connectivity between each pair of regions are represented as edges. The graph185

transformation model can assist understanding the transformation from structural connectivity to186

resting-state or task-specific functional connectivities in the human brain [31].187

Dataset Construction. We reformat 3 protein structure datasets for graph generation and 8 brain188

network datasets for graph transformation in GraphGT. For protein data, we start from the amino acid189

coordinates, and then extract graphs of protein structures according to mutual distances of amino acids.190

The node feature (type of amino acids) are also extracted and recorded in GraphGT. We construct 7191

brain network datasets by performing standard neuroimage processing, time series processing, and192

network construction on both types of connectivities from the magnetic resonance imaging (MRI)193

data to obtain brain graphs, with edge attributes as Pearson correlation between two regions and node194

attributes as node index. We also reformat one brain network dataset (Brain-restingstate) that has195

already been used for graph transformation task [31].196

4.2.2 Physics197

Motivation. Physical simulation is a significant technique to explore interactions among objects with198

natural forces. Specific physical systems, such as dynamical systems [49], can be formed into graph199

structures. The dynamics of a physical system can be seen as a group of interaction components, in200

which complex dynamics occur at both individual level and in the system as a whole [49]. One could201

utilize the graph transformation methods to observe the evolution of a physical system.202

Tasks. The dynamics of a physical system can be regarded as a graph, in which nodes represent203

components and edges represent their interactions. Graph transformation models have been applied204

to physical systems to generate possible conditions of the system sequentially [49, 69, 70]. Work in205

[71] utilize deep generative models to simulate physically realistic realizations of the cosmic web.206

Work in [72] introduces generative models in N-body simulations that pushes closer the ideas of deep207

generative models to practical use in cosmology.208
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Table 1: Summary of statistics and types of graphs for different GraphGT datasets. (Note: ‘Y’ stands for
‘Yes’, ‘N’ stands for ‘No’, ‘GCS’ stands for ‘Geographic Coordinate System’, ‘2D/3D’ stands for ‘2D or 3D
coordinates under Cartesian Coordinate System’.)

Name Type #Graphs #Nodes #Edges Attributed Directed Weighted Signed Homogeneous Spatial Temporal Labels

QM9 [44] Molecules 133,885 ⇠ 9 ⇠ 19 Y N Y N Y 3D N Y

ZINC250K [45] Molecules 249,455 ⇠ 23 ⇠ 50 Y N Y N Y 3D N Y

MOSES [46] Molecules 193,696 ⇠ 22 ⇠ 47 Y N Y N Y 3D N Y

MolOpt [47] Molecules 229,473 ⇠ 24 ⇠ 53 Y N Y N Y 3D N Y

ChEMBL [48] Molecules 1,799,433 ⇠ 27 ⇠ 58 Y N Y N Y 3D N Y

ChemReact [31] Molecules 7,180 ⇠20 ⇠ 16 Y N Y N Y 3D N Y

Protein [30] Proteins 1,113 ⇠39 ⇠73 Y N N N Y N N Y

Enzyme [28] Proteins 600 ⇠33 ⇠62 Y N N N Y N N Y

ProFold [29] Proteins 76,000 8 ⇠40 Y N N N Y 3D Y Y

Brain-restingstate [31] Brain networks 823 68 2274 N N Y Y Y N N Y

Brain-emotion [31] Brain networks 811 68 2278 N N Y Y Y N N Y

Brain-gambling [31] Brain networks 818 68 2278 N N Y Y Y N N Y

Brain-language [31] Brain networks 816 68 2278 N N Y Y Y N N Y

Brain-motor [31] Brain networks 816 68 2278 N N Y Y Y N N Y

Brain-relational [31] Brain networks 808 68 2278 N N Y Y Y N N Y

Brain-social [31] Brain networks 816 68 2278 N N Y Y Y N N Y

Brain-wm [31] Brain networks 812 68 2278 N N Y Y Y N N Y

N-body-charged [49] Physical simulation networks 3,430,000 25 ⇠3 Y N N N Y 2D Y Y

N-body-spring [49] Physical simulation networks 3,430,000 5 ⇠10 Y N N N Y 2D Y Y

CLEVR [50] Scene graphs 85,000 6 ⇠40 Y Y Y N Y 3D N N

Skeleton (Kinectics) [51] Skeleton graphs 260,000 18 17 N N N N Y 2D Y Y

Skeleton (NTU-RGB+D) [52] Skeleton graphs 56,000 25 24 N N N N Y 3D Y Y

METR-LA [53] Traffic networks 34,272 325 2,369 Y Y Y N Y GCS Y Y

PeMS-BAY [54] Traffic networks 50,112 207 1,515 Y Y Y N Y GCS Y Y

AuthNet [41] Authen. networks 114/412 50/300 ⇠3/⇠7 N Y Y N Y N N Y

IoTNet [31] IoT networks 343 20/40/60 ⇠220/⇠630/⇠800 Y N Y N Y N N Y

CollabNet [55] Collab. networks 2,361 303,308 207,632 N N N N Y GCS Y Y

Ego [34] social networks 757 ⇠145 ⇠335 N N N N Y N N N

TwitterNet [56] social networks 2,580 300 0.5 N N N N Y N N N

Barab’asi-Albert Graphs [31] Synthetic networks 1,000 20/40/60 ⇠60/⇠190/⇠300 Y N N N Y N N N

Erdos-Renyi Graphs [31] Synthetic networks 1,000 20/40/60 ⇠100/⇠200/⇠400 Y N N N Y N N N

Scale-Free [41] Synthetic networks 10,000 10/20/50/100/150 20/ 40/ 100/ 200/ 320 N Y N N Y N N N

Community [34] synthetic networks 3,000 64 ⇠340 N N N N Y N N N

Random Geometric [29] Synthetic networks 9,600 25 ⇠350 Y N N N Y Y Y Y

Waxman Graphs [29] Synthetic networks 9,600 25 ⇠250 Y N N N Y Y Y Y

Dataset Construction. We re-purpose two datasets that have never been tried on graph transformation209

tasks prior to our efforts. We start from velocities and coordinates of each particle and merge them210

into a single structure with node velocities as node features. Moreover, we extract temporal features211

from the temporal array contained in original datasets.212

4.2.3 Artificial Intelligence213

Motivation. Graph-structured data are widely employed in computer vision, a sub-field of AI. We214

store two most common graph-structured data from computer vision in GraphGT which are skeleton215

graphs and scene graphs. For example, generating scene graphs is of great importance to understand216

the relationship in a scene (i.e. image) [73]. In addition to scene graph generation, generating new217

human skeleton graphs also has a wide range of applications in computer vision, graphics and games,218

where characters could be generated and interact with human players [74, 75].219

Tasks. In a scene graph, objects are represented as nodes and the relationship between pairs of220

objects is represented as edges. Graph generation models can be applied to the scene graph to help221

the community understand the relationship between objects in a scene, e.g. generating scene graphs222

with different relationships (man riding a horse vs. man standing by a horse). In a human skeleton223

graph, joints are represented as nodes and skeletons between each pair of joints are represented as224

edges. Similarly, graph generation models can be designed for skeleton graph to help the community225

approach interactions between human players and characters in a video (e.g. generating AI players226

with realistic gestures and movements).227

Dataset Construction. We re-purpose one dataset for the scene graph and two datasets for skeleton228

graph that have not been used for graph generation tasks. For the scene graph, we start from the229

CLEVR dataset containing 10 objects in the image with different 3D locations. Then we form labeled230
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directed graphs with different shape of objects as the node feature and relative location between two231

objects as the edge feature. For skeleton graphs, we start from video clips of human action datasets,232

and then use OpenPose toolbox to generate skeleton with location and joints for each subject. The233

temporal information is also recorded and wrapped into our data as the temporal feature.234

4.2.4 Chemistry235

Motivation. Chemistry is another subject in which graph generation and transformation play critical236

roles for generating optimal molecules or predicting products of chemical reactions [20, 31, 76, 77].237

The chemical space, drug-like molecules are vast and estimated to 1060 [78]. Generating novel238

molecules with desired properties has great potentials in discovering new drugs and materials.239

Modeling chemical reactions is another fundamental problem in chemistry which can advance our240

understanding of the properties of molecules [76].241

Tasks. In a molecular graph, atoms are represented as nodes, and bonds are represented as edges.242

Molecular graph generation has numerous applications in drug discovery and [79] material science243

[80] to generate optimal molecules. Moreover, learning the transformation from the reactants to the244

products can help the community better understand the mechanism of chemical reactions [76].245

Dataset Construction. We reformat 6 datasets in chemistry by converting SMILES sequence into246

molecular structures. Then the molecular structures are converted into graphs with atoms as nodes247

and chemical bonds as edges. Atom and bond type serve as node and edge feature respectively.248

4.2.5 Engineering249

Motivation For the engineering field, we provide datasets corresponding to two domains, transporta-250

tion system and electrical and computer engineering (ECE). First of all, a few graph representation251

learning methods such as graph neural networks have been applied to transportation research such as252

traffic prediction [81, 39]. In addition to graph representation learning tasks, graph generative models253

in machine learning have started experiencing increase in recent years, for tasks like human mobility254

generative modeling [82] given that a number of tasks can be formalized into a graph generation or255

transformation problem in the field of engineering. The road system can also be considered as graphs256

where road segments and interactions are connected, for which the graph generative models can be257

employed for generating newly designed networks [83].258

Tasks. In internet network, graphs contain nodes representing devices, and edges representing259

connection between two devices. The malware confinement over the internet can be treated as a graph260

transformation problem to generate optimal status of network that limits malware propagation [31].261

Traffic networks contain graphs with nodes as speed sensors and edges as roads. Traffic networks can262

be employed with graph generation models for designing new and efficient traffic networks.263

Dataset Construction. We reformat the malware dataset by adopting the initial attacked networks264

(i.e., the Internet of Things) as the input graphs, with nodes representing devices and edges repre-265

senting their connections. Malware confinement status are extracted as node features and distances266

between two devices are edge features. We also split the dataset according to their graph sizes for267

different graph transformation purposes. We reformat two transportation datasets by extracting them268

from LA-Metro and PeMS projects, respectively. We extract sensors as graph nodes an roads as269

edges, with traffic speed as the node feature. We also extract GCS spatial features and temporal270

features in the dataset.271

4.2.6 Social Science272

Motivation. Social networks are an important type of graphs where people or other subjects are273

connected by relationships such as friendship and co-authorship, and have been widely explored274

in social science, statistics, and physics with network (generative) modeling techniques. The ad-275

vancement of graph generative models further stimulate the social network research by handling276

different aspects of the data. For example, DYMOND achieves graph generation on social networks277

by borrowing building blocks of network structure to capture long-range interactions [84]. Another278

graph generative model, TagGen, can preserve both structural and temporal information in the process279

of modeling interactions in the social network [85].280

Tasks. Social networks can be formalized into graphs in which social subjects are nodes and their281

relationships are edges. The community network has been used to on graph generative models so that282

the relationship between people or community could be modeled and understood [34].283

Dataset Construction. We reformat Ego dataset from Citeseer dataset. Nodes represent documents284

and edges represent citation relationships. We also re-purpose TwitterNet from [56]. Both datasets do285

not have node or edge attributes. We construct from scratch the graphs of CollabNet by selecting286
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authors as nodes and co-authorships as edges. To cut the graphs into pieces, we generate sub-graphs287

based on the fields of study of papers. For each field, we generate one spatio-temporal graphs.288

4.2.7 Synthetic289

Motivation. The limited amount of available data in the real world, especially graph data for specific290

geometric properties [86, 87, 88] for graph generation and transformation problems, limits the291

advance of the field. Synthetic data is a way to overcome this obstacle and prolong the march of292

progress in graph generation and transformation tasks. This motivate us to reformat a few simulated293

synthetic datasets in GraphGT to accommodate various needs of the community for evaluating graph294

generation and transformation tasks.295

Tasks. Synthetic datasets contain graphs corresponding to various geometric properties, including296

scale-free graphs, Erdos-Renyi graphs, random geometric graphs and so on. A huge amount of works297

regarding graph generation and transformation have been using synthetic datasets to evaluate their298

models. NEC-DGT is evaluated with Barab’asi-Albert graphs and Erdos-Renyi graphs [31]. Another299

graph transformation model, GT-GAN, is evaluated by scale-free graphs [41].300

Dataset Construction. We reformat synthetic datasets by converting the original sparse matrices into301

dense matrices, and reshaping them into predefined dimensions. All synthetic datasets are simulated302

based on specific geometric properties or laws.303

5 Benchmark Experiments304

5.1 Graph Generation305

5.1.1 Evaluation Metrics306

The evaluation of graph generation performance has been widely recognized as a challenging tasks307

[34, 37] and there lacks a unified framework that can provide comprehensive evaluation procedures308

and metrics. Following the survey of graph generation [7], we enhanced our deployed API with309

easy-to-use evaluation tools. The evaluation metrics in GraphGT is elaborated as follows.310

In statistics-based evaluation metrics, the quality of the generated graphs is accessed by computing311

the distance between the graph statistic distribution of real graphs and generated graphs. In the312

deployed API, seven typical graph statistics are considered, which are summarized as follows: (1)313

Node degree distribution: the empirical node degree distribution of a graph, which could encode its314

local connectivity patterns. (2) Clustering coefficient distribution: the empirical clustering coefficient315

distribution of a graph. Intuitively, the clustering coefficient of a node is calculated as the ratio of the316

potential number of triangles the node could be part of to the actual number of triangles the node317

is part of. (3) Orbit count distribution; the distribution of the counts of node 4-orbits of a graph.318

Intuitively, an orbit count specifies how many of these 4-orbits substructures the node is part of. This319

measure is useful in understanding if the model is capable of matching higher-order graph statistics,320

as opposed to node degree and clustering coefficient, which represent measures of local (or close321

to local) proximity. (4) Largest connected component: the size of the largest connected component322

of the graphs. (5) Triangle count: the number of triangles counted in the graph. (6) Characteristic323

path length: the average number of steps along the shortest paths for all node pairs in the graph.324

(7) Assortativity: the Pearson correlation of degrees of connected nodes in the graph. To calculate325

the distances regarding the above mentioned statistics, Average Kullback-Leibler Divergence and326

Maximum Mean Discrepancy (MMD) are utilized.327

In self-quality based evaluation, the quality of the generated graphs, validity, uniqueness and novelty,328

are measured. The definition and calculation of the three metrics are provided as follows: (1) Validity:329

validity evaluates graphs by judging whether they preserve specific properties. For example, for330

cycles graphs/tree graphs, the validity is calculated as the percentage of generated graphs that are331

cycles or trees [8]. For molecule graphs, validity is the percentage of chemically valid molecules332

based on domain-specific rules [36]. (2) Uniqueness: ideally, high-quality generated graphs should be333

diverse and similar, but not identical. Thus, uniqueness is utilized to capture the diversity of generated334

graphs [89, 8, 36]. To calculate the uniqueness of a generated graph, the generated graphs that are335

sub-graph isomorphic to some other generated graphs are first removed. The percentage of graphs336

remaining after this operation is defined as Uniqueness. For example, if the model generates 100337

graphs, all of which are identical, the uniqueness is 1/100 = 1%. (3) Novelty. Novelty measures the338

percentage of generated graphs that are not sub-graphs of the training graphs and vice versa [89].339

Note that identical graphs are defined as graphs that are sub-graph isomorphic to each other. In other340

words, novelty checks if the model has learned to generalize unseen graphs.341
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Table 2: Quantitative evaluation and comparison on spatial network generation tasks by different deep generative
models on graphs (“Deg.” is short for degree distribution. “Clus.” is short for clustering coefficient distribution.
“Orbit.” is short for average orbit counts statistics. ).

Method ! GraphRNN GraphVAE GraphGMG
Dataset # Deg. (%) Clus. (%) Orbit. (%) Deg. (%) Clus. (%) Orbit. (%) Deg. (%) Clus. (%) Orbit. (%)
Waxman 1.20 1.74 0.87 120.14 144.22 109.72 26.44 41.58 21.15

Random Geometric 1.09 19.19 2.80 88.27 95.52 102.71 57.12 111.94 71.32
CLEVR 56.89 2.66 61.19 0.00 0.00 0.00 126.96 163.53 180.65

METR-LA 193.11 196.69 165.86 - - - - - -
PeMS-BAY 172.97 173.37 159.68 - - - - - -

ProFold 1.10 0.38 0.09 114.60 109.02 84.78 5.55 44.61 4.55
Skeleton (Kinetics) < 10�5 0.00 < 10�5 200.00 200.00 200.00 9.84 0.00 0.06

Skeleton (NTU-RGB+D) < 10�5 0.00 < 10�5 200.00 200.00 200.00 120.31 0.27 2.31
CollabNet - - - - - - - - -

N-body-charged 172.93 0.00 0.00 0.00 0.00 0.00 37.83 75.48 2.76
N-body-spring 3.17 1.86 0.02 141.06 123.22 5.71 127.42 49.46 0.75

Ego 66.44 129.82 64.18 - - - - - -
Community 19.61 55.46 57.09 - - - - - -

Protein 2.57 5.27 1.27 - - - - - -
Enzyme 0.81 1.64 0.88 - - - - - -

5.1.2 Benchmark Results342

For graph generation, we benchmark 16 graph generation datasets in GraphGT with GraphRNN343

[34], GraphVAE [18], and GraphGMG [8], three common graph generation baselines. The detailed344

descriptions of each baseline models can be found in Appendix D. We evaluate the performance of the345

graph generative models on three statistics-based metrics, degree distribution, clustering coefficient346

distribution and orbit counts statistics. For efficiency problem, GraphVAE and GraphGMG cannot347

scale to multiple large datasets, e.g. METR-LA, Protein, Enzyme, etc. Note that the CollabNet is348

too large even for GraphRNN to scale. From Table 2, we can observe that GraphRNN outperforms349

GraphVAE and GraphGMG in most of the datasets. Notably, GraphRNN takes the advantage of350

sequential graph generation which allows scaling to large graphs, while GraphVAE cannot due351

to its costly one-shot generation method. Additioanlly, GraphRNN works extraordinarily well on352

relatively small graphs datasets, e.g. Profold, N-body, Skeleton, while performs worse on large353

graphs like traffic networks. GraphVAE performs very well in two particular datasets which are354

CLEVR and N-body-charged which both of them are very small and the simulation processes are355

stochastic. GraphGMG performs well in specifically one skeleton graph and one protein dataset356

which both of the graph structures are fixed and simple. Additionally, GraphVAE outperforms the357

sequence-based models on CLEVR and N-body-charged datasets. We believe that it is easier for an358

one-shot generation method to learn topology which is related to spatial locations since it doesn’t359

have to learn a sequence-dependent process.360

5.2 Graph Transformation361

5.2.1 Evaluation Metrics362

In Graph-property-based evaluation, we directly compare each generated graph to its target graph363

via the following metrics: (1) random-walk kernel similarity by using the random-walk based364

graph kernel [90]; (2) combination of Hamming and Ipsen-Mikhailov distances(HIM) [91]; (3)365

spectral entropies of the density matrices; (4) eigenvector centrality distance [92]; (5) closeness366

centrality distance [93]; (6) Weisfeiler Lehman kernel similarity [94]; (7) Neighborhood Sub-graph367

Pairwise Distance Kernel [95] by matching pairs of subgraphs with different radii and distances; (8)368

Jensen–Shannon distance, (9) Bhattacharyya distance and (10) Wasserstein distance by measuring369

distance of node degrees of two graphs.370

In Mapping-relationship-based evaluation, we measure whether the learned relationship between371

the input and the generated graphs is consistent with the true relationship between the input and372

the real graphs. There are two kinds of relationship to be considered [7]: (1) Explicit mapping373

relationship. Considering the situation where the true relationship between the input conditions374

and the generated graphs is known in advance, the evaluation can be conducted as follows: we375

quantitatively compare the property scores of the generated and input graphs to see if the change376

indeed meets the requirement. For example, one can compute the improvement of logP scores from377

the input molecule to the optimized molecule in molecule optimization task [96]. (2) Implicit mapping378

relationship. When the underlying patterns of the mapping from the input graphs to the real target379

graphs are implicit and complex to define and measure, a classifier-based evaluation metric can be380

utilized [41]. By regarding the input and target graphs as two classes, it assumes that a classifier that381

is capable of distinguishing the generated target graphs would also succeed in distinguishing the real382

target graphs from the input graphs. Specifically, a graph classifier is first trained based on the input383

9



Table 3: Quantitative evaluation and comparison on transformation tasks by different deep transformation models
on graphs ("JS-dist." is the Jensen–Shannon distance. "BH-dist." is the Bhattacharyya distance. "WS-dist." is
the Wasserstein distance.).

Method ! Interaction Network NEC-DGT
Dataset # JS-dist. (%) BH-dist. (%) WS-dist. (%) JS-dist. (%) BH-dist. (%) WS-dist. (%)
AuthNet 1.04 0.01 0.33 82.81 95.88 24.59

Barab’asi-Albert Graphs 4.50 0.21 5.12 66.87 59.39 36.84
Brain-restingstate 11.17 1.26 13.26 11.39 1.31 18.24

Brain-emotion 12.63 1.61 15.78 12.83 1.66 12.58
Brain-grambling 12.55 1.59 15.73 12.82 1.66 26.54
Brain-language 12.23 1.51 15.24 12.56 1.60 16.51

Brain-motor 11.88 1.43 14.69 12.14 1.49 31.04
Brain-relational 12.26 1.52 15.23 12.50 1.58 35.62

Brain-social 12.09 1.48 14.97 12.34 1.54 141.58
Brain-wm 12.23 1.51 15.24 12.48 1.58 37.31
Scale-free 1.19 0.01 0.42 79.13 83.00 21.71
TwitterNet 0.01 < 10�3 < 10�3 < 10�3 < 10�3 6155.10

N-body-charged 0.12 < 10�3 0.14 4.37 0.21 47.52
N-body-spring 0.05 < 10�3 0.07 4.50 0.20 53.20

ChemReact 0.94 < 10�3 0.27 77.84 79.92 0.6714
IoTNet 17.01 3.01 19.32 65.39 55.90 2572.62
MolOpt 0.71 0.01 0.11 82.67 94.89 19.97

and generated target graphs. Then this trained graph classifier is tested to classify the input graph and384

real target graphs, and the results will be used as the evaluation metrics.385

5.2.2 Benchmark Results.386

Here, 17 transformation datasets are benchmarked for graph transformation tasks in GraphGT. Two387

state-of-the-art graph transformation models, Interaction network (IN) [38] and Node-Edge Co-388

evolving Deep Graph Translator (NEC-DGT) [31] are borrowed to analyze these datasets. Three389

metrics, Jensen–Shannon distance, Bhattacharyya distance and Wasserstein distance, are used to390

measure the distance between the distribution of generated graphs and target graphs. Details regarding391

the experimental settings can be found in Appendix D. We find that two models have a close392

performance regarding graph transformation on most datasets. This is not surprising since two models393

follow similar philosophies to handle node interactions in the graph. With the Interaction Network, the394

smallest Jensen–Shannon and Bhattacharyya distance are achieved on TwitterNet, which is aligned395

with NEC-DGT. TwitterNet also has the closest Wasserstein distance, whether Brain-emotion has396

the closest Wasserstein distance for NEC-DGT. This difference might originate from the capacity397

to handle node or edge features of two models, or different hyper-parameter settings. Interaction398

Networks can handle edge attributes, which are available for Brain-emotion dataset but not for399

TwitterNet dataset, whereas NEC-DGT can handle both node and edge attributes, neither of which are400

available for TwitterNet. We also find that, for the same model, datasets from different domains have401

different performances. We observe a relatively large distances regarding three metrics for 8 brain402

network datasets compared with most other datasets when being evaluated by Interaction Network.403

However, these 8 datasets have a relatively smaller distance when being evaluated by NEC-DGT.404

This reflects the complexity of the brain network domain [97] that needs more advanced models to be405

handled, such as NEC-DGT. N-body-charged and N-body-spring datasets have a generally smaller406

distances compared with most other datasets when being evaluated by both models. This results from407

the relatively small graph size in physical simulation domain (Table 3).408

6 Conclusion409

We introduce GraphGT, a large dataset collection for graph generation and transformation problems.410

GraphGT covers datasets in 9 domains across 6 subjects, in which CollabNet dataset and 7 brain411

network datasets are collected and constructed from scratch for graph generation and transformation.412

Another 8 datasets are re-purposed by us from other applications into graph generation and trans-413

formation tasks for the first time. The remaining are from very different domains that share quite414

different terminology, formats, and data structures, which are reformatted by us to a unified format415

for the first time for easy access and use in a standardized manner. In addition, we provide 3 types of416

Python APIs, including dataset downloader, graph generation data processor, graph transformation417

data processor and evaluator, for users to query and access datasets according to specific disciplines,418

domains and applications per their interests. Finally, we provide 16 graph generation benchmark419

results and 17 graph transformation benchmark results We believe that GraphGT can advance the420

community to address significant challenges in graph generation and transformation.421
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